Urethanes Synthesis from oxamic acids under Electrochemical Conditions

Ikechukwu Martin Ogbu,^a Jonathan Lusseau,^a Gülbin Kurtay,^a Frédéric Robert,^a and Yannick Landais^{*a}

^{a.}University of Bordeaux, Institute of Molecular sciences (ISM), UMR-CNRS 5255, 351, Cours de la Libération, 33405 Talence Cedex, France.

Email: yannick.landais@u-bordeaux.fr

Supporting Information

Table of contents

<u>1.</u>	General Information	2
<u>2.</u>	General procedure for Preparation of Oxamic Acid	2
<u>3.</u>	General Procedure for Electrochemical Synthesis of Urethane	4
<u>4.</u>	¹ H and ¹³ C NMR Data of Urethanes	6
<u>5.</u>	Alcohol Recovery after Electrochemical Reaction	19
<u>6.</u>	HPLC Data for (S)-Methyl 2-((ethoxycarbonyl)amino)-3-phenylpropanoate (6f)	20
<u>7.</u>	Cyclic voltammetry studies	22
<u>8.</u>	References	25
<u>9.</u>	Copies of ¹ H and ¹³ C NMR Spectra	25

1. General Information

Solvents/reagents such as triethylamine (Et₃N), dichloroethane (DCE), acetonitrile (MeCN), ethanol (EtOH), isopropanol, isobutanol were distilled using calcium hydride. Other alcohols of higher boiling point (> 100°C) were distilled under reduced pressure. MeOH, Et₂O, CH₂Cl₂ (DCM) and THF were dried over activated alumina columns on MBraun Solvent Purification System (SPS-800). All other reagent-grade chemicals procured from commercial suppliers were used directly without further purification unless otherwise indicated. Yields refer to chromatographically and spectroscopically (¹H-NMR) homogeneous material unless otherwise stated.

¹H-NMR and ¹³C-NMR were done using the following spectrometers: Bruker Avance 300 (¹H: 300 MHz, ¹³C: 75 MHz) and Bruker Avance 400 (¹H: 400 MHz, ¹³C: 100 MHz), using CDCl₃ as an internal reference. Chemical shifts (δ) and coupling constants (J) are expressed in ppm and Hz respectively unless otherwise indicated. For the multiplicity: broad singlet = bs, singlet = s, doublet = d, triplet = t, quartet = q, doublet of doublets = dd and multiplets = m. FTIR analysis was performed using a Perkin-Elmer Spectrum 100 using a KBr disc or pellet. High-resolution mass spectra (HRMS) analysis was done using a Waters Q-TOF 2 spectrometer in the electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) mode. High-performance liquid chromatography (HPLC) was done with a Thermo Scientific Dionex Ultimate 3000 with a column Lux 5µm Cellulose-3, 250x4.6 mm, using a mixture of water: acetonitrile: trifluoroacetic acid (22:45:0.1) as eluent. Optical rotations were recorded on a Rudolph Research Analytical Autopol III Automatic Polarimeter. Melting points (m.p.) were done using Stuart melting point apparatus. Thin layer chromatography (TLC) was done using silica gel 60 F254 pre-coated plates (Merck) and visualized with ultraviolet light, potassium permanganate or ceric ammonium molybdate. Flash chromatography was done using silica gel (0.043-0.063 mm).

2. General procedure for Preparation of Oxamic Acid

Method A^{1, 2}:

$$R-NH_{2} \xrightarrow{i) \quad CI \xrightarrow{O} Ot-Bu} R \xrightarrow{N} H \xrightarrow{O} OH$$

Et₃N (1.2 eq.), DCM
0 °C - rt, 4 -6 h
ii) TFA, DCM, rt, 6-12 h

Scheme S1: preparation of oxamic acid

Amine (10 mmol) and triethylamine (1.2 eq.) were added to a two-neck round-bottom flask containing dry CH_2Cl_2 (0.3 M) under argon atm. The solution was cooled to 0°C using ice bath. *t*-Butyl-2-chloro-2-oxo acetate (1.2 eq.) was added drop wise for about 10 min. The solution was then warmed to room temperature and stirred for 4 – 6 h. Note: for solid amine, the amine was added into the flask first, flushed with argon before CH_2Cl_2 and triethylamine were added. The reaction mixture was then washed successively with 1M HCl (20 mL), the aqueous layer was further extracted with DCM (3 x 20 mL). The combined organic layer was washed with brine and dried using anhydrous Na₂SO₄ and concentrated in vacuo. The ester obtained (light brown gel) was then dissolved in DCM (0.3 M), TFA (5.0 eq.) was added and the solution was stirred at room temperature for 6 to 12 h. TLC was used to monitor the completion of the reaction. The solution was concentrated at reduced pressure using rotary evaporator to obtain oxamic acid as a white solid product.

Figure S1: Oxamic acid substrates previously reported¹⁻⁵

2,2'-((1,4-Phenylenebis(methylene))bis(azanediyl))bis(2-oxoacetic acid) (1q)

Following the general procedure 2A, using 7.3 mmol of the corresponding diamine, oxamic acid **1q** (2.29 g, 90 %) was obtained as a white solid, m.p. = $204 - 205^{\circ}$ C. ¹H NMR (300 MHz, MeOD) δ 7.28 (s, 4H), 4.44 (s, J = 8.9 Hz, 4H). ¹³C NMR (76 MHz, MeOD) δ 161.4, 158.9, 137.0, 127.5, 42.6. IR (neat) umax (cm-¹) = 3347, 3168, 1757,

1677, 1554. HRMS (ESI): Calcd. For $C_{12}H_{11}O_6N_2$ [M-H]⁺ 279.0622, found 279.0620.

Method B^{2, 6}

Scheme S2: preparation of amino acid derived oxamic acid

To a dry two-neck round-bottom flask equipped with a reflux condenser, the corresponding amino acid (30.07 mmol) was added. Methanol (25 mL) was added under nitrogen. The heterogeneous mixture was cooled to 0°C using ice bath. Thionyl chloride (45.11 mmol) was added dropwise over 15 min under

constant stirring, resulting in a homogeneous solution. The mixture was warmed to room temperature and then heated to reflux for 4 h. The resulted solution was concentrated in vacuo to afford a colorless oil. Hexane was added to this crude oily product and was stirred for 10 min. The hexane was decanted, and this procedure was repeated twice to afford a solid compound. The solid product was dissolved in DCM (60 mL) at 0°C and under nitrogen, triethylamine (60.15 mmol) was added into the mixture followed by addition of t-butyl-2-chloro-2-oxo acetate (36.08 mmol) dropwise over 10 min. The solution was then allowed to stir at room temperature for 4–6 h. The reaction mixture was then washed successively with water (100 mL), and brine (100 mL), dried over sodium sulfate and concentrated under reduced pressure resulting in a crude solid product. The crude product was dissolved in DCM (60 mL), TFA (150 mmol) was added and the mixture was stirred at room temperature 6 h and then concentrated under reduced pressure to afford the desired product as a light brown oily substance.

Figure S2: Amino acid derived oxamic acid substrates previously reported²

(S)-2-((1-Methoxy-1-oxo-3-phenylpropan-2-yl)amino)-2-oxoacetic acid (5c)

Following the general procedure 2B, using 12 mmol of corresponding amino acid, the corresponding oxamic acid **5c** (1.22 g, 80 %) was obtained as a light brown gel which later solidified, m.p. = $101 - 102^{\circ}$ C. ¹H NMR (300 MHz, CDCl₃) δ 7.63 (s, 1H), 7.44 – 7.20 (m, 3H), 7.13 (dd, J = 7.5, 1.7 Hz, 2H), 4.98 – 4.72 (m, 1H), 3.79 (s, 3H), 3.21 (m, J = 14.0, 6.1 Hz, 2H). ¹³C NMR (76 MHz, CDCl₃) δ

170.2, 158.9, 156.9, 134.7, 129.1, 128.9, 127.6, 54.3, 52.8, 37.8. IR (neat) $\max (\text{cm}^{-1}) = 3327, 3023, 2943, 1742, 1692, 1535.$ HRMS (ESI): Calcd. For C₁₂H₁₃O₅N [M+Na]+ 274.0685, found 274.0679. [α]_D²⁵+43.04 (c 0.5, CHCl₃).

3. General Procedure for Electrochemical Synthesis of Urethane Method A:

$$R'_{N} \overset{O}{\underset{H}{\longrightarrow}} OH \overset{R"OH, Bu_4NCIO_4}{\xrightarrow{+C_{gr}/-C_{gr}, 5mA}} R'_{N} \overset{O}{\underset{H}{\longrightarrow}} R''_{N}$$

undivided cell, 6-12 h

ElectraSyn vial (5 mL) equipped with a stir bar was charged with oxamic acid (0.5 mmol, 1.0 eq.) and Bu_4NClO_4 (0.01 M). The vial was covered with the cap bearing graphite electrodes as both cathode and anode. The orifice on the vial cap was sealed with a septum and the vial was flushed with argon for 10 min through the septum, Figure S3(a). Dry alcohol (3 mL) was added into the vial under argon using a plastic syringe and metal needle. The vial was fitted on the ElectraSyn machine and pre-stirred for 15 minutes. The reaction mixture was electrolyzed at a constant current of 5 mA for 6-12 h under argon. The reaction was monitored with TLC. Thereafter, the reaction mixture was transferred to a round-bottom flask, the vial and electrodes were rinsed with DCM (3 x 3 mL). The combined solution was concentrated under reduced pressure and the resulted crude reaction mixture was purified by column chromatography (AcOEt/petroleum ether).

Note 1: Using MeOH as solvent, the reaction can progress without supporting electrolyte, however not all the oxamic acid can support 5 mA at the beginning of the reaction without supporting electrolyte. Therefore, supporting electrolyte may be added also with MeOH if needed.

Note 2: with methanol as solvent, Increase in temperature neither improved the product yield nor shortened reaction time. Effect of temperature appeared to be significant when more viscous alcohols are used. This could be due to improved viscosity/mobility and current conductivity under the mild heating condition.

Note 3: From the optimization table, it was shown that though the reaction can progress more rapidly at higher current density (60 mA) and complete within 2 to 5 h, the product yield is however higher when 5 mA was used. Also, these milder reaction conditions are more favourable for the reaction with other alcohols.

Method B. General Procedure for Electrochemical Synthesis of Urethane at 50°C

$$R \xrightarrow{\mathsf{N}}_{\mathsf{H}} \xrightarrow{\mathsf{OH}}_{\mathsf{O}} OH \xrightarrow{\mathsf{R'OH}, \mathsf{Bu}_4\mathsf{NCIO}_4}_{\mathsf{+C}_{\mathsf{gr}}/\mathsf{-C}_{\mathsf{gr}}} R \xrightarrow{\mathsf{N}}_{\mathsf{H}} \xrightarrow{\mathsf{O}}_{\mathsf{O}} R$$
5 mA, 50°C, 6-12 h
undivided cell

ElectraSyn vial (5 mL) equipped with a stir bar was charged with oxamic acid (0.5 mmol, 1.0 eq.) and Bu₄NClO₄ (0.03M). The vial was covered with the cap bearing graphite electrodes as both cathode and anode. The orifice on the vial cap was sealed with a septum and the vial was flushed with argon through the septum for 10 min. Dry alcohol (3 mL) was added into the vial under argon using a plastic syringe and metal needle. The vial was then clamped in an oil bath at 50°C. The cathode and anode of the vial were connected to the ElectraSyn machine using external flexible wire with alligator clips (4 mm), Figure S3(b). After pre-stirring for 15 minutes, the reaction mixture was electrolyzed at a constant current of 5 mA for 6-12 h under argon. The reaction was monitored with TLC. Thereafter, the reaction mixture was transferred to a round-bottom flask and the vial and the electrode were rinsed with DCM (3x3 mL). The combined solution was concentrated under reduced pressure and the resulted crude reaction mixture was purified by column chromatography (AcOEt/petroleum ether).

(a) Setup for reaction at room temperature

(b) Setup for reaction at 50°C

Figure S3: Set-up for Urethane Synthesis by Electrochemical Decarboxylation of Oxamic

Method C. General Procedure for Electrochemical Synthesis of Urethane on gram-scale

ElectraSyn vial (10 mL) equipped with a stir bar was charged with oxamic acid (1.0 g, 5.18 mmol) and Bu_4NClO_4 (0.03M). The vial was covered with the cap bearing graphite cathode and anode. The orifice on the vial cap was sealed with a septum and the vial was flushed with argon through the septum for 15 min. Dry ethanol (10 mL) was added into the vial under argon using a plastic syringe with a metal needle. The vial was then clamped in an oil bath at 50°C. The cathode and anode of the vial were connected to the ElectraSyn machine using external flexible wire with alligator clips (4 mm), and after pre-stirring for 15 minutes, the reaction mixture was electrolyzed at a constant current of 5 mA for 36 h under argon. The reaction was monitored with TLC. Thereafter, the reaction mixture was transferred to round-bottom flask, the vial and the electrode were rinsed with DCM (3 x 10 mL). The combined solution was concentrated under reduced pressure and the resulted crude reaction mixture was purified by column chromatography (AcOEt/petroleum ether).

4. ¹H and ¹³C NMR Data of Urethanes

Methyl phenethyl carbamate (3a)

Following the general procedure 3.A, the corresponding oxamic acid (0.5 mmol) was used. Purification by column chromatography (silica, petroleum ether/ethyl acetate 90/10) afforded **3a** (65 mg, 72 %) as a colourless viscous liquid. Rf = 0.25 (EtOAc-petroleum ether 20/80). ¹H NMR (300 MHz, CDCl₃) δ 7.40 – 7.11 (m, 5H),

4.78 (s, 1H), 3.68 (s, 3H), 3.46 (dd, J = 13.1, 6.6 Hz, 2H), 2.83 (t, J = 7.0 Hz, 2H). ¹³C NMR (76 MHz, CDCl₃) δ 157.0, 138.8, 128.8, 128.6, 126.5, 52.0, 42.2, 36.2. IR (neat) umax (cm⁻¹) = 3336, 3027, 2946, 1709, 1603, 1532. HRMS (ESI): Calcd. For C₁₀H₁₄O₂N [M+H]⁺ 180.1019, found 180.1010.

Methyl 4-fluorobenzylcarbamate (3b)

Following the general procedure 3.A, the corresponding oxamic acid (0.5 mmol) was used. Purification by column chromatography (silica, petroleum ether/ethyl acetate 90/10) afforded **3b** (71.4 mg, 78 %) as a white solid, m.p. = $68 - 70^{\circ}$ C, Rf = 0.25 (EtOAc- petroleum ether, 20/80). ¹H NMR (300 MHz, CDCl₃) δ 7.37 – 7.12 (m, 2H),

7.01 (t, J = 8.7 Hz, 2H), 5.04 (s, 1H), 4.32 (d, J = 6.0 Hz, 2H), 3.69 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 162.2 (d, ¹J_{CF} = 245.6 Hz), 157.1, 134.4, 129.2 (d, ³J_{CF} = 7.3 Hz), 115.5 (d, ²J_{CF} = 21.5 Hz), 52.3, 44.4. IR (neat) vmax (cm⁻¹) = 3318, 3000, 2879, 1688, 1600, 1548. HRMS (ESI): Calcd. For C₉H₁₁O₂NF [M+H]⁺ 184.0768, found 184.0760.

Methyl 4-methoxybenzylcarbamate (3c)

Following the general procedure 3.A, the corresponding oxamic acid (0.5 mmol) was used. Purification by column chromatography (silica, petroleum ether/ethyl acetate 90/10) afforded **3c** (79 mg, 76 %) as a light golden gel. Rf = 0.15 (EtOAc-petroleum ether, 20/80). ¹H NMR (300 MHz, CDCl₃) δ 7.34 – 7.18 (m, 1H), 6.95 –

6.75 (m, 3H), 5.09 (s, 1H), 4.36 (d, J = 5.9 Hz, 2H), 3.82 (s, 3H), 3.72 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 159.9, 157.10, 140.2, 129.7, 112.9, 55.2, 52.2, 45.1. IR (neat) υmax (cm⁻¹) = 3340, 3008, 2943, 2831, 1705. HRMS (ESI): Calcd. For C₁₀H₁₃O₃N [M+Na]⁺ 218.0787, found 218.0788.

Methyl (2-phenylpropan-2-yl) carbamate (3d)

Following the general procedure 3.A, the corresponding oxamic acid (0.5 mmol) was used. Purification by column chromatography (silica, petroleum ether/ethyl acetate 90/10) afforded **3d** (51 mg, 53 %) as a colourless viscous liquid, Rf = 0.35 (EtOAc/petroleum ether 20/80). ¹H NMR (300 MHz, CDCl₃) δ 7.55 – 7.11 (m, 5H),

5.17 (s, 1H), 3.62 (s, 3H), 1.69 (s, 6H). ¹³C NMR (76 MHz, CDCl₃) δ 156.7, 141.3, 126.9, 125.7, 125.1, 52.3, 39.9. IR (neat) umax (cm⁻¹) = 3340, 3056, 2958, 2926, 1713. HRMS (ESI): Calcd. For C₁₁H₁₅O₂N [M+Na]⁺ 216.0995, found 216.0993.

Methyl 2-chlorobenzyl carbamate (3e)

Following the general procedure 3.A, the corresponding oxamic acid (0.3 mmol) was used. Purification by column chromatography (silica, petroleum ether/ethyl acetate 90/10) afforded **3e** (42.5 mg, 71 %) as a colourless liquid that solidified into a white solid afterwards, m.p. = $61 - 63^{\circ}$ C. Rf = 0.29 (EtOAc- petroleum ether 20/80). ¹H NMR

 $(300 \text{ MHz}, \text{CDCl}_3) \delta 7.39 - 7.15 \text{ (m, 4H)}, 5.06 \text{ (s, 1H)}, 4.35 \text{ (d, J} = 6.1 \text{ Hz}, 2\text{H}), 3.72 \text{ (s, 3H)}.$ ¹³C NMR (76)

MHz, CDCl₃) δ 157.0, 135.9, 133.5, 129.5, 128.9, 127.0, 52.3, 43.0. IR (neat) umax (cm⁻¹) = 3329, 3080, 2951, 1707, 1529. HRMS (ESI): Calcd. For C₉H₁₀O₂N³⁵Cl [M+Na]⁺ 222.0292, found 222.0292.

Methyl 4-chlorobenzylcarbamate (3f)

Following the general procedure 3.A, the corresponding oxamic acid (0.4 mmol) was used. Purification by column chromatography (silica, cyclohexane/ethyl acetate 85/15) afforded **3f** (54 mg, 68 %) as white solid, m.p. = 83 - 86°C. Rf = 0.36 (EtOAcpetroleum ether 20/80). ¹H NMR (300 MHz, CDCl₃) δ 7.43 – 7.08 (m, 4H), 5.06 (s,

1H), 4.35 (d, J = 6.2 Hz, 2H), 3.72 (s, 3H). ¹³C NMR (76 MHz, CDCl₃) δ 157.1, 137.1, 133.3, 128.8, 52.3, 44.4. IR (neat) vmax (cm⁻¹) = 3312, 2995, 1689, 1545. HRMS (ESI): Calcd. For C₉H₉O₂N³⁵Cl [M-H]⁺ 198.0327, found 198.0326.

Methyl (thiophen-2-ylmethyl) carbamate (3g)

Following the general procedure 3.A, the corresponding oxamic acid (0.5 mmol) and Bu₄NClO₄ (0.01M) were used. Purification by column chromatography (silica, cyclohexane/ethyl acetate 85/15) afforded **3g** (45 mg, 41 %) as a light brown gel. Rf = 0.23 (AcOEt/petroleum ether, 20/80). ¹H NMR (300 MHz, CDCl₃) δ 7.26 – 7.20 (m, 1H), 7.00 - 6.93 (m, 2H), 5.20 (s, 1H), 4.54 (d, J = 5.8 Hz, 2H), 3.71 (s, 3H). ¹³C NMR (76 MHz, CDCl₃) δ 156.7, 141.3, 126.8, 125.7, 125.1, 52.3, 39.9. IR (neat) umax (cm⁻¹) = 3327, 3064, 2952, 1703, 1529. HRMS (ESI): Calcd. For C₇H₉O₂NS [M+Na]⁺ 194.0246, found 194.0246.

Methyl benzyl carbamate (3h)

Following the general procedure 3.A, the corresponding oxamic acid (0.5 mmol) was used. Purification by column chromatography (silica, 100% DCM) afforded 3h (63 mg, 76 %) as a white solid, m.p. = $50 - 52^{\circ}$ C. Rf = 0.34 (DCM). ¹H NMR (300 MHz, CDCl₃) δ 7.58 –7.25 (m, 5H), 5.06 (s, 1H), 4.39 (d, J = 5.9 Hz, 2H), 3.72 (s, 3H). ¹³C NMR (76

MHz, CDCl₃) δ 157.1, 138.5, 128.7, 127.5, 52.2, 45.1. IR (neat) vmax (cm⁻¹) = 3331, 3030, 2950, 1705, 1530. Spectroscopic data were in good agreement with literature[t]. HRMS (ESI): Calcd. For C₉H₁₁O₂N [M+Na]⁺ 188.0682, found 188.0681.

Methyl cyclohexyl carbamate (3i)

Following the general procedure 3.A, the corresponding oxamic acid (0.5 mmol) was used. Purification by column chromatography (silica, petroleum ether/ethyl acetate 90/10) afforded 3i (57 mg, 73 %) as a white crystalline solid, m.p. = 75°C. Rf = 0.41 3i (AcOEt/petroleum ether, 20/80). ¹H NMR (300 MHz, CDCl₃) δ 4.67 (s, 1H), 3.64 (s, 3H), 3.45 (s, 1H), 2.02 – 1.78 (m, 2H), 1.76 – 1.48 (m, 3H), 1.48 – 1.23 (m, 2H), 1.22 – 1.03 (m, 3H). ¹³C NMR $(101 \text{ MHz}, \text{CDCl}_3) \delta 156.3, 51.7, 49.8, 33.4, 25.5, 24.8. \text{ IR (neat) } \text{vmax (cm}^{-1}) = 3344, 2941, 2841, 1691,$ 1536. HRMS (ESI): Calcd. For C₈H₁₆O₂N [M+H]⁺ 158.1175, found 158.1175.

Methyl (1-phenylethyl)carbamate (3j)

Following the general procedure 3.A, the corresponding oxamic acid (1.0 mmol) used. Purification by column chromatography (silica, 100% DCM) afforded **3j** (125 mg, 70%) as a white solid, m.p. = 59°C. Rf = 0.25 (AcOEt/petroleum ether, 20/80). ¹H NMR (300 MHz, CDCl₃) δ 7.26 (m, 5H), 5.04 (s, 1H), 4.79 (s, 1H), 3.59 (s, 3H), 1.42 (d, J = 6.9 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 156.3, 143.7, 128.6, 127.3, 125.9, 52.1,

50.7, 22.4. IR (neat) ν max (cm⁻¹) = 3318, 3038, 2982, 1703, 1530. HRMS (ESI): Calcd. For C₁₀H₁₃O₂N [M+Na]⁺ 202.0836, found 202.0838.

Dimethyl hexane-1,6-diyldicarbamate (3k)

Following the general procedure 3.A, the corresponding oxamic acid (0.5 mmol) and Bu₄NClO₄ (0.01M) were used. Purification by column chromatography (silica, DCM/MeOH 98/2) afforded **3k** (56 mg, 50 %) as a white solid, m.p. = $117 - 119^{\circ}$ C. Rf = 0.37 (MeOH- DCM, 4/96). ¹H

NMR (300 MHz, CDCl₃) δ 4.79 (s, 2H), 3.66 (s, 6H), 3.26 – 2.93 (m, 4H), 1.63 – 1.41 (m, 4H), 1.39 – 1.22 (m, 4H). ¹³C NMR (76 MHz, CDCl₃) δ 157.1, 52.0, 40.8, 29.9, 26.2. IR (neat) umax (cm⁻¹) = 3337, 2942, 2855, 1689, 1535. HRMS (ESI): Calcd. For C₁₀H₂₁O₄N₂ [M+H]⁺ 233.1495, found 233.1493.

Dimethyl (cyclohexane-1,4-diylbis(methylene))dicarbamate (3l)

Following the general procedure 3.A, the corresponding oxamic acid (0.5 mmol) and Bu₄NClO₄ (0.01M) were used. Purification by column chromatography (silica, DCE/MeOH 98/2) afforded **3l** (70 mg, 54 %) as white solid, m.p. = 119-123°C. Rf = 0.36 (MeOH- CH₂Cl₂ 4/96). ¹H NMR (300 MHz, CDCl₃) δ 4.76 (s, 2H), 3.66 (s, 6H), 3.08 (dt, J = 27.2, 6.6 Hz,

4H), 1.87 - 1.57 (m, 3H), 1.57 - 1.28 (m, 5H), 1.02 - 0.83 (m, 2H). ¹³C NMR (76 MHz, CDCl₃) δ 157.2, 52.0, 47.1, 44.6, 38.3, 35.8, 29.9, 26.1. IR (neat) umax (cm⁻¹) = 3330, 2923, 2854, 1704, 1539. HRMS (ESI): Calcd. For C₁₂H₂₂O₄N₂ [M+Na]⁺ 281.1471, found 281.1468.

Dimethyl (1,4-phenylenebis(methylene)) dicarbamate (3m)

Following the general procedure 3.A, the corresponding oxamic acid (0.5 mmol) and Bu₄NClO₄ (0.01M) were used. Purification by column chromatography (silica, DCM/MeOH 98/2) afforded **3m** (80 mg, 64 %) as a white solid, m.p. = $190 - 193^{\circ}$ C. Rf = 0.14 MeOH-DCM, 4/96) ¹H NMR (300 MHz, CDCl₃) δ 7.27 (s, 4H), 5.03 (s, 2H), 4.36 (d, J = 6.0 Hz, 4H), 3.72

(s, 6H). ¹H NMR (300 MHz, CDCl₃) δ 7.28, 7.27, 5.03, 4.37, 4.35, 3.72. ¹³C NMR (101 MHz, DMSO) δ 157.3, 138.8, 127.5, 51.8, 44.1, 43.9. IR (neat) umax (cm⁻¹) = 3313, 3047, 2939, 1688, 1535. HRMS (ESI): Calcd. For C₁₂H₁₆O₄N₂ [M+Na]⁺ 275.1001, found 275.0997.

Ethyl phenethylcarbamate (4a)

Following the general procedure 3.A, the corresponding oxamic acid (0.5 mmol) and Bu₄NClO₄ (0.03M) were used. Purification by column chromatography (silica, 100% DCM) afforded **4a** (59 mg, 62 %) as a colourless gel; Rf = 0.40 (EtOAc-Hexane 10/90). ¹H NMR (300 MHz, CDCl₃) δ ppm 7.40 – 7.16 (m, 5H), 4.69 (s, 1H), 4.13 (q, *J* = 7.2 Hz, 2H), 3.46 (q, *J* = 6.8 Hz, 2H),

2.84 (t, J = 7.0 Hz, 2H), 1.25 (t, J = 7.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ ppm 156.6, 138.8, 130.0,

128.8, 128.7, 128.6, 126.5, 60.7, 42.1, 36.2, 14.6. IR (neat) v max (cm⁻¹) = 3334, 2980, 2934, 1702, 1533. Spectroscopic data were in good agreement with literature¹.

Isobutyl phenethyl carbamate (4b)

Following the general procedure 3.B, the corresponding oxamic acid (0.5 mmol) and Bu₄NClO₄ (0.03M) were used. Purification by column chromatography (silica, 100% DCM) afforded **4b** (71 mg, 64 %) as a light brown viscous liquid. Rf = 0.35 (AcOEt/petroleum ether, 20/80). ¹H NMR (300 MHz, CDCl₃) δ 7.37 – 7.17 (m,

5H), 4.70 (s, 1H), 3.86 (d, J = 6.6 Hz, 2H), 3.46 (dd, J = 13.1, 6.6 Hz, 2H), 2.84 (t, J = 7.0 Hz, 2H), 1.91 (dt, J = 13.0, 6.5 Hz, 1H), 0.94 (d, J = 6.6 Hz, 6H). ¹³C NMR (76 MHz, CDCl₃) δ 156.7, 138.8, 128.8, 128.6, 126.5, 71.0, 42.1, 36.2, 28.0, 19.0. IR (neat) umax (cm⁻¹) = 3331, 3021, 2965, 2866, 1703, 1529. HRMS (ESI): Calcd. For C₁₃H₁₉O₂N [M+Na]⁺ 244.1308, found 244.1308.

2,2,2-Trifluoroethyl phenethylcarbamate (4c)

Following the general procedure 3.B, the corresponding oxamic acid (0.5 mmol) and Bu₄NClO₄ (0.05M) were used. Purification by column chromatography (silica, petroleum ether/ethyl acetate 90/10) afforded **4c** (61 mg, 50 %) as a colourless liquid. Rf = 0.6 (EtOAc-Hexane 20/80). ¹H NMR (300 MHz, CDCl₃) δ

7.44 - 7.05 (m, 5H), 4.93 (s, 1H), 4.47 (q, J = 8.5 Hz, 2H), 3.51 (dd, J = 13.1, 6.8 Hz, 2H), 2.86 (t, J = 6.9 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 154.5, 138.4, 123.3 (q, ¹J_{CF} = 277.5 Hz), 60.9 (q, ²J_{CF} = 36.4 Hz), 42.6, 36.0. IR (neat) umax (cm⁻¹) = 3345, 3064, 3030, 2945, 1730, 1604, 1604, 1526. HRMS (ESI): Calcd. For C₁₁H₁₂O₂NF₃ [M+Na]⁺ 270.0712, found 270.0708. Spectroscopic data were in good agreement with literature¹.

Ethyl cyclohexylcarbamate (4d)

Following the general procedure 3.B, the corresponding oxamic acid (0.5 mmol) and Bu₄NClO₄ (0.03M) were used. Purification by column chromatography (silica, 100% DCM) afforded **4d** (54 mg, 63 %) as a white crystalline solid, mp = 59°C. Rf = 0.40 (AcOEt/petroleum ether, 20/80). ¹H NMR (300 MHz, CDCl₃) δ 4.52 (s, 1H), 4.12 (q, J = 7.1 Hz, 2H), 3.49 (s, 1H), 2.04 – 1.86 (m, 2H), 1.80 – 1.55 (m, 3H), 1.46 – 1.03 (m, 8H). ¹³C NMR (76 MHz, CDCl₃) δ 155.8, 60.4, 49.7, 33.4, 25.5, 24.8, 14.6. IR (neat) umax (cm-¹) = 3314, 2978, 2922, 2853, 1688, 1542. HRMS (ESI): Calcd. For C₉H₁₈O₂N [M+H]⁺ 172.1332, found 172.1331.

Pent-4-en-1-yl phenethylcarbamate (4e)

Following the general procedure 3.B, the corresponding oxamic acid (0.5 mmol) and Bu₄NClO₄ (0.08M) were used. Purification by column chromatography (silica, petroleum ether/ethyl acetate 90/10) afforded **4e** (24 mg, 21 %) as a colourless gel. Rf = 0.56 (EtOAc-Hexane 20/80). ¹H NMR

 $(300 \text{ MHz}, \text{CDCl}_3) \delta 7.49 - 6.99 \text{ (m, 5H)}, 5.83 \text{ (m, J = 16.9, 10.2, 6.6 Hz, 1H)}, 5.01 \text{ (d, J = 10.2 Hz, 2H)}, 4.68 \text{ (s, 1H)}, 4.09 \text{ (t, J = 6.6 Hz, 2H)}, 3.47 \text{ (dd, J = 13.0, 6.5 Hz, 2H)}, 2.84 \text{ (t, J = 7.0 Hz, 2H)}, 2.13 \text{ (dd, J = 13.9, 6.8 Hz, 2H)}, 1.81 - 1.62 \text{ (m, 2H)}.$ ¹³C NMR (76 MHz, CDCl₃) δ 156.6, 138.8, 137.6, 128.8, 128.6, 126.5, 115.1, 64.3, 42.1, 36.2, 30.0, 28.3. IR (neat) umax (cm⁻¹) = 3335, 3065, 3028, 2940, 1703, 1641, 1531. HRMS (ESI): Calcd. For C₁₄H₂₀O₂N [M+H]⁺ 234.1488, found 234.1482.

Isobutyl cyclohexylcarbamate (4f)

Following the general procedure 3.B, the corresponding oxamic acid (0.7 mmol) and Bu₄NClO₄ (0.05M) were used. Purification by column chromatography (silica, petroleum ether/ethyl acetate 95/5) afforded **4f** (99 mg, 71 %) as a white solid, 51 - 52°C. Rf = 0.71 (EtOAc-Hexane 20/80). ¹H NMR (300 MHz, CDCl₃) δ 4.56 (s, 1H),

3.80 (d, J = 6.6 Hz, 2H), 3.52 – 3.34 (m, 1H), 1.90 (dt, J = 17.3, 6.5 Hz, 3H), 1.74 – 1.52 (m, 3H), 1.40 – 1.22 (m, 2H), 1.21 – 1.03 (m, 3H), 0.90 (d, J = 6.7 Hz, 6H). ¹³C NMR (76 MHz, CDCl₃) δ 156.0, 49.8, 33.5, 28.0, 25.5, 24.8, 19.1. IR (neat) umax (cm⁻¹) = 3324, 2856, 2932, 1694. HRMS (ESI): Calcd. For C₁₁H₂₁O₂N [M+Na]⁺ 222.1464, found 222.1464.

2,2,2-Trifluoroethyl cyclohexylcarbamate (4g)

Following the general procedure 3.B, the corresponding oxamic acid (0.7 mmol) and Bu₄NClO₄ (0.05M) were used. Purification by column chromatography (silica, petroleum ether/ethyl acetate 95/5) afforded **4g** (71 mg, 45 %) as a white solid, 82 - 85°C. Rf = 0.76 (EtOAc-Hexane 20/80). ¹H NMR (300 MHz, CDCl₃) δ 4.82 (s, 1H),

4.43 (q, J = 8.6 Hz, 2H), 3.55 - 3.39 (m, 1H), 1.93 (dd, J = 8.4, 4.0 Hz, 2H), 1.78 - 1.51 (m, 3H), 1.42 - 1.07 (m, 5H). ¹³C NMR (76 MHz, CDCl₃) δ 153.5, 123.2 (q, ¹J_{CF} = 277.4 Hz), 60.7 (q, ²J_{CF} = 36.2 Hz), 50.3, 33.1, 25.4, 24.7. IR (neat) umax (cm⁻¹) = 3325, 2925, 2859, 1703. HRMS (ESI): Calcd. For C₉H₁₃O₂NF₃ [M+H]⁺ 224.0903, found 224.0898.

Pent-4-en-1-yl cyclohexylcarbamate (4h)

Following the general procedure 3.B, the corresponding oxamic acid (0.5 mmol) and Bu₄NClO₄ (0.08M) were used. Purification by column chromatography (petroleum ether/ethyl acetate 93/7) afforded **4h** (56 mg, 53 %) as a white solid, m.p. = $40 - 41^{\circ}$ C. Rf = 0.54 (EtOAc-Hexane 20/80). ¹H NMR (300 MHz, CDCl₃)

δ 5.83 (m, *J* = 16.9, 10.2, 6.6 Hz, 1H), 5.13 – 4.91 (m, 2H), 4.55 (s, 1H), 4.07 (t, *J* = 6.5 Hz, 2H), 3.47 (s, 1H), 2.22 – 2.02 (m, 2H), 2.05 – 1.83 (m, 2H), 1.77 – 1.53 (m, 5H), 1.47 – 1.00 (m, 5H). ¹³C NMR (76 MHz, CDCl₃) δ 155.8, 137.7, 115.0, 64.0, 49.7, 33.4, 30.0, 28.3, 25.5, 24.8. IR (neat) υmax (cm⁻¹) = 3325, 3077, 2932, 2855, 1697, 1533. HRMS (ESI): Calcd. For C₁₂H₂₁O₂ N [M+Na]⁺ 234.1464, found 234.1459.

3-Chloropropyl phenethylcarbamate (4i)

Following the general procedure 3.B, the corresponding oxamic acid (0.5 mmol) and Bu_4NClO_4 (0.08M) were used. Purification: vacuum distillation to remove excess alcohol, column chromatography (silica, petroleum ether/ ethyl acetate 90/10) afforded **4i** (54%, NMR yield, 38 mg isolated, 31 %) as a

colourless liquid. Rf = 0.42 (EtOAc-Hexane 20/80).¹H NMR (300 MHz, CDC₁₃) δ 7.43 – 7.16 (m, 5H), 4.71 (s, 1H), 4.23 (t, J = 6.0 Hz, 2H), 3.61 (t, J = 6.5 Hz, 2H), 3.47 (dd, J = 13.1, 6.6 Hz, 2H), 2.84 (t, J = 6.9 Hz, 2H), 2.09 (p, J = 6.2 Hz, 2H).¹³C NMR (76 MHz, CDCl₃) δ 156.2, 138.7, 128.8, 128.6, 126.5, 61.5, 42.1, 41.3, 36.1, 32.0. IR (neat) umax (cm⁻¹) = 3334, 3063, 3028, 2960, 1706, 1603, 1603, 1528. HRMS (ESI): Calcd. For C₁₂H₁₆O₂NCl³⁵ [M+Na]+ 264.0761, found 264.0757.

Butyl 4-fluorobenzylcarbamate (4j)

Following the general procedure 3.B, the corresponding oxamic acid (0.5 mmol), Bu_4NClO_4 (0.1M) and DCE (0.5 mL) and were used. Purification by column chromatography (silica, petroleum ether/ ethyl acetate 95/5) afforded **4j** (50.6 mg, 45 %) as a light brown gel. Rf = 0.58 (EtOAc-Hexane 20/80). ¹H

NMR (300 MHz, CDCl₃) δ 7.28 (dd, J = 8.9, 5.0 Hz, 2H), 7.03 (t, J = 8.7 Hz, 2H), 5.01 (s, 1H), 4.34 (d, J = 5.9 Hz, 2H), 4.11 (t, J = 6.7 Hz, 2H), 1.62 (tt, J = 8.2, 6.7 Hz, 2H), 1.38 (dt, J = 14.4, 7.4 Hz, 2H), 0.94 (dd, J = 9.6, 5.1 Hz, 3H). ¹³C NMR (76 MHz, CDCl₃) δ 162.2 (d, ¹J_{CF} = 245.6 Hz), 156.7, 134.4, 129.2 (d, ³J_{CF} = 6.8 Hz), 115.5 (d, ²J_{CF} = 21.5 Hz), 65.0, 44.3, 31.1, 19.1, 13.7. IR (neat) umax (cm⁻¹) = 3332, 2958, 2928, 2883 1701, 1606, 1510. HRMS (ESI): Calcd. For C₁₂H₁₆O₂NF [M+Na]⁺ 248.1057, found 248.1055.

Butyl cyclohexylcarbamate (4k)

Following the general procedure 3.B, the corresponding oxamic acid (0.5 mmol) and Bu₄NClO₄ (0.1M) were used. Purification by column chromatography (silica, petroleum ether/ethyl acetate 90/10) afforded **4k** (52 mg, 52 %) as a white crystalline solid, mp. = $52 - 53^{\circ}$ C. Rf = 0.67 (AcOEt/petroleum ether, 20/80). ¹H NMR (300

MHz, CDCl₃) δ 4.71 – 4.29 (s, 1H), 4.05 (t, J = 6.5 Hz, 2H), 3.64 – 3.23 (s, 1H), 2.03 – 1.85 (m, 2H), 1.78 – 1.49 (m, 5H), 1.49 – 1.24 (m, 4H), 1.25 – 1.03 (m, 3H), 0.94 (t, J = 7.3 Hz, 3H). ¹³C NMR (76MHz, CDCl₃) δ 156.0, 64.4, 49.7, 33.5, 31.1, 25.5, 24.8, 19.1, 13.7. IR (neat) umax (cm⁻¹) = 3318, 2939, 2853, 1686, 1537. HRMS (ESI): Calcd. For C₁₁H₂₁O₂N [M+Na]⁺ 222.1464, found 222.1459.

Isopropyl phenethylcarbamate (4l)

Following the general procedure 3.B, the corresponding oxamic acid (0.5 mmol) and Bu₄NClO₄ (0.03M) were used. Purification by column chromatography (silica, petroleum ether/ethyl acetate 93/7) afforded **4l** (28 mg, 30 %) as a colourless liquid, Rf = 0.0.54 (AcOEt/petroleum ether, 20/80). ¹H NMR (300 MHz, CDCl₃) δ 7.40 –

7.07 (m, 5H), 4.91 (dt, J = 12.5, 6.2 Hz, 1H), 4.62 (s, 1H), 3.43 (d, J = 6.1 Hz, 2H), 2.81 (t, J = 7.0 Hz, 2H), 1.22 (d, J = 6.2 Hz, 6H). ¹³C NMR (76 MHz, CDCl₃) δ 156.2, 138.9, 128.8, 128.6, 126.4, 68.0, 42.0, 22.2. IR (neat) umax (cm⁻¹) = 3340, 3034, 2978, 2935, 1694, 1532. HRMS (ESI): Calcd. For C₁₂H₁₇O₂N [M+Na]⁺ 230.1151, found 230.1146.

3-chloropropyl cyclohexylcarbamate (4m)

Following the general procedure 3.B, the corresponding oxamic acid (0.7 mmol) and Bu₄NClO₄ (0.08M) were used. Purification by vacuum distillation to remove excess alcohol, then column chromatography (silica, petroleum ether/ ethyl acetate 93/7) afforded **4m** (50% NMR yield, 63 mg isolated, 41 %) as a white solid, 59 -

60°C. Rf = 0.54 (EtOAc-Hexane 20/80). ¹H NMR (300 MHz, CDCl₃) δ 4.55 (s, 1H), 4.19 (t, *J* = 5.8 Hz, 2H), 3.60 (t, *J* = 6.5 Hz, 2H), 3.46 (s, 1H), 2.12 – 2.00 (m, 2H), 1.97 – 1.85 (m, 2H), 1.75 – 1.55 (m, 3H), 1.41 – 1.04 (m, 5H). ¹³C NMR (101 MHz, CDCl₃) δ 155.5, 61.3, 49.8, 41.4, 33.4, 32.1, 25.5, 24.8. IR (neat) umax (cm⁻¹) = 3328, 2932, 2856, 1706. HRMS (ESI): Calcd. For C₁₀H₁₈O₂N³⁵Cl [M+Na]⁺ 242.0918, found 242.0912.

Allyl phenethylcarbamate (4n)

Following the general procedure 3.B, the corresponding oxamic acid (0.5 mmol) and Bu₄NClO₄ (0.05M) were used. Purification by column chromatography (silica, petroleum ether/ethyl acetate 92/8) afforded 4n (51 mg, 50 %) as a colourless liquid. Rf = 0.57 (EtOAc-Hexane 20/80). ¹H NMR

 $(300 \text{ MHz}, \text{CDCl}_3) \delta 7.27 \text{ (m, J = 13.7, 7.8, 4.1 Hz, 5H)}, 5.94 \text{ (m, J = 22.7, 10.8, 5.6 Hz, 1H)}, 5.27 \text{ (m, J = 13.7, 7.8, 4.1 Hz, 5H)}$ 13.8, 11.5, 1.2 Hz, 2H), 4.81 (s, 1H), 4.58 (d, J = 5.5 Hz, 2H), 3.64 – 3.34 (dd, 2H), 2.84 (t, J = 7.0 Hz, 2H). ¹³C NMR (76 MHz, CDCl₃) δ 156.2, 138.7, 132.9, 128.7, 128.6, 126.5, 117.6, 65.5, 42.2, 36.1. IR (neat) $vmax (cm^{-1}) = 3335, 3085, 3064, 3028, 2938, 2878, 1708, 1603, 1530.$ HRMS (ESI): Calcd. For C₁₂H₁₅O₂N [M+Na]+ 228.0995, found 228.0992.

Ethyl 4-chlorobenzylcarbamate (40)

Following the general procedure 3.B, the corresponding oxamic acid (0.3 mmol)and Bu₄NClO₄ (0.05M) were used. Purification by column chromatography (silica, petroleum ether/ ethyl acetate 93/7) afforded 2j (29 mg, 50 %) as a gel. Rf = 0.46(EtOAc-Hexane 20/80). ¹H NMR (300 MHz, CDCl₃) δ 7.36 – 7.16 (m, 4H), 4.99 (s, 1H), 4.32 (d, J = 6.0 Hz, 2H), 4.14 (q, J = 7.1 Hz, 2H), 1.25 (t, J = 7.1 Hz, 3H). HRMS (ESI): ¹³C NMR

(76 MHz, CDCl₃) δ 156.6, 137.2, 133.2, 128.8, 61.1, 44.3, 14.6. Calcd. For C₁₀H₁₂O₂N³⁵Cl [M+Na]⁺ 236.0448, found 236.0447.

Ethyl 4-methylbenzylcarbamate (4p)

Following the general procedure 3.B, the corresponding oxamic acid (0.5 mmol) and Bu₄NClO₄ (0.03M) were used. Purification by column chromatography (silica, petroleum ether/ethyl acetate 93/7) afforded 4p (54 mg, 62 %) as a colourless liquid. Rf = 0.46 (EtOAc-Hexane 20/80). ¹H NMR (300 MHz, CDCl₃) δ 7.18 (q, J

= 8.2 Hz, 4H), 4.92 (s, 1H), 4.35 (d, J = 5.7 Hz, 2H), 4.17 (q, J = 7.1 Hz, 2H), 2.36 (s, 3H), 1.27 (t, J = 7.1Hz, 3H). ¹³C NMR (76 MHz, CDCl₃) δ 156.6, 137.1, 135.5, 129.3, 127.5, 60.9, 44.8, 21.1, 14.7. IR (neat) vmax (cm⁻¹) = 3317, 2980, 2860, 1689. HRMS (ESI): Calcd. For C₁₁H₁₅O₂N [M+Na]⁺ 216.0995, found 216.0993.

Ethyl (3s,5s,7s)-adamantan-1-ylcarbamate (4q)

Following the general procedure 3.B, the corresponding oxamic acid (0.5 mmol) and Bu₄NClO₄ (0.03M) were used. Purification by column chromatography (silica, petroleum) afforded 4q (79 mg, 71 %), as a white solid, m.p. = 94 -96°C. Rf = 0.76 (EtOAc-Hexane 20/80). ¹H NMR (300 MHz, CDCl₃) δ 4.53 (s, 1H), 4.05 (g, J = 7.1 Hz, 2H), 2.17 – 2.00 (m, 3H), 1.93 (d, J = 2.7 Hz, 6H), 1.66 (t, J = 3.0 Hz, 6H), 1.22 (t, J = 7.1 Hz, 3H). ¹³C NMR (76 MHz, CDCl₃) & 154.6, 59.8, 50.5, 41.8, 36.5, 36.4, 36.3, 36.1, 29.6, 29.4, 29.2, 14.6. IR

(neat) umax (cm⁻¹) = 3339, 2908, 2851, 1706, 1527. HRMS (ESI): Calcd. For C₁₃H₂₂O₂N [M+H]⁺ 224.1645, found 224.1641.

2-Methoxyethyl (3s,5s,7s)-adamantan-1-ylcarbamate (4r)

Following the general procedure 3.B, the corresponding oxamic acid (0.4 mmol) and Bu₄NClO₄ (0.08M) were used. Purification by column chromatography (silica, petroleum ether/ ethyl acetate 90/10) afforded **4r** (81 mg, 80 %) as a white gel. Rf = 0.64 (EtOAc-Hexane 30/70). ¹H NMR (300 MHz, CDCl₃) δ 4.65 (s, 1H), 4.18 – 4.10 (t, 2H), 3.60 – 3.52 (m, 2H), 3.39 (s, 3H), 2.06 (s, 3H), 1.92 (d, J = 3.0 Hz, 6H), 1.66 (t,

J = 3.1 Hz, 6H). ¹³C NMR (76 MHz, CDCl₃) δ 154.2, 71.0, 63.0, 58.9, 50.7, 41.8, 36.3, 29.4. IR (neat) umax (cm⁻¹) = 3344, 2909, 2844, 1709, 1527. HRMS (ESI): Calcd. For C₁₄H₂₄O₃N [M+H]⁺ 254.1750, found 254.1749.

2-Methoxyethyl (1-phenylethyl)carbamate (4s)

Following the general procedure 3.B, the corresponding oxamic acid (0.4 mmol) and Bu₄NClO₄ (0.05M) were used. Purification by column chromatography (silica, petroleum ether/ ethyl acetate 90/10) afforded **4s** (58 mg, 65 %) as a colourless gel. Rf = 0.32 (EtOAc-Hexane 30/70. ¹H NMR (300

MHz, CDCl₃) δ 7.44 – 7.15 (5, 1H), 5.10 (s, 1H), 4.83 (p, J = 7.1 Hz, 1H), 4.34 – 4.09 (m, 2H), 3.56 (t, J = 4.7 Hz, 2H), 3.37 (s, 3H), 1.47 (s, J = 6.9 Hz, 3H). ¹³C NMR (76 MHz, CDCl₃) δ 155.5, 128.6, 127.3, 125.9, 63.8, 58.9, 50.7, 22.5. IR (neat) umax (cm⁻¹) = 3323, 3030, 2975, 2893, 1706, 1531. HRMS (ESI): Calcd. For C₁₂H₁₇O₃N [M+Na]⁺ 246.1100, found 246.1095.

2-Ethoxyethyl phenethylcarbamate (4t)

Following the general procedure 3.B, the corresponding oxamic acid (0.37 mmol) and Bu₄NClO₄ (0.05M) were used. Purification by column chromatography (silica, petroleum ether/ ethyl acetate 85/15) afforded **4t** (53 mg, 60 %) as a colourless gel. Rf = 0.40 (EtOAc-Hexane 30/70. ¹H

NMR (300 MHz, CDCl₃) δ 7.37 – 7.12 (m, 5H), 4.77 (s, J = 5.3 Hz, 1H), 4.26 – 4.11 (t, 2H), 3.65 – 3.38 (m, 6H), 2.81 (t, J = 7.0 Hz, 2H), 1.21 (t, J = 7.0 Hz, 3H). ¹³C NMR (76 MHz, CDCl₃) δ 156.3, 138.7, 128.8, 128.6, 126.5, 68.8, 66.6, 64.0, 42.1, 36.1, 15.1. IR (neat) umax (cm-¹) = 3335, 3028, 2974, 2869, 1709, 1530. HRMS (ESI): Calcd. For C₁₃H₁₉O₃N [M+Na]⁺ 260.1275, found 260.1253.

2-(2-Methoxyethoxy)ethyl (1-phenylethyl)carbamate (4u)

Following the general procedure 3.B, the corresponding oxamic acid (0.4 mmol) and Bu₄NClO₄ (0.05M) were used. Purification by column chromatography (silica, petroleum ether/ ethyl acetate 75/25) afforded **4u** (50 mg, 47 %) as a light brown gel. Rf = 0.42 (EtOAc-Hexane 50/50. ¹H NMR (300 MHz, CDCl₃) δ 7.39 – 7.21 (m, 5H), 5.11 (s, 1H), 4.84 (p, J = 7.2 Hz, 1H), 4.23 (q, J = 4.4 Hz, 2H), 3.76 – 3.50 (m, 6H), 3.39 (s, 3H),

1.49 (d, J = 6.9 Hz, 3H). ¹³C NMR (76 MHz, CDCl₃) δ 155.5, 143.5, 128.6, 127.3, 125.9, 71.8, 70.4, 69.6, 63.9, 59.0, 50.7, 22.5. IR (neat) umax (cm⁻¹) = HRMS (ESI): Calcd. For C₁₄H₂₀O₄N [M-H]⁺ 266.1397, found 266.1396.

Diisobutyl (1,4-phenylenebis(methylene))dicarbamate (4v)

Following the general procedure 3.B, the corresponding oxamic acid (0.25 mmol) and Bu₄NClO₄ (0.05M) were used. Purification by column chromatography (silica, DCM/MeOH 99/1) afforded **4v** (42 mg, 50 %) as a white crystalline solid, m.p. = $161 - 163^{\circ}$ C. Rf = 0.21 (EtOAc-Hexane 20/80). Mp = $16-163^{\circ}$ C. ¹H NMR

 $(300 \text{ MHz}, \text{CDCl}_3) \delta 7.28 \text{ (s, 4H)}, 4.98 \text{ (s, 2H)}, 4.37 \text{ (d, J} = 5.8 \text{ Hz}, 4\text{H}), 3.90 \text{ (d, J} = 6.6 \text{ Hz}, 4\text{H}), 1.93 \text{ (m, J} = 13.4, 6.7 \text{ Hz}, 2\text{H}), 0.94 \text{ (d, J} = 6.7 \text{ Hz}, 12\text{H}).$ ¹³C NMR (101 MHz, CDCl₃) δ 156.8, 137.9, 127.9, 71.2, 44.7, 28.0, 19.0. IR (neat) umax (cm⁻¹) = 3313, 3064, 2957, 2865, 1683, 1540. HRMS (ESI): Calcd. For C₁₈H₂₉O₄N₂ [M+H]⁺ 337.2121, found 337.2116.

Diisobutyl hexane-1,6-diyldicarbamate (4w)

Following the general procedure 3.B, the corresponding oxamic acid (0.25 mmol) and Bu₄NClO₄ (0.05M) were used. Purification by column chromatography (silica, petroleum ether/ethyl acetate 85/15) afforded **4w** (50 mg, 63 %) as a white

crystalline solid, m.p. = 116 - 118°C. Rf = 0.43 (EtOAc-Hexane 30/70). Mp = 116 - 118°C, ¹H NMR (300 MHz, CDCl₃) δ 4.69 (s, 2H), 3.85 (d, J = 6.6 Hz, 4H), 3.18 (dd, J = 13.0, 6.5 Hz, 4H), 1.91 (m, J = 13.2, 6.6 Hz, 2H), 1.56 - 1.45 (m, 4H), 1.37 (dd, J = 4.1, 3.0 Hz, 4H), 0.94 (d, J = 6.7 Hz, 12H). ¹³C NMR (76 MHz, CDCl₃) δ 156.9, 70.9, 40.7, 30.0, 28.0, 26.3, 19.1. IR (neat) umax (cm⁻¹) = 3334, 2956, 2876, 1682, 1534. HRMS (ESI): Calcd. For C₁₆H₃₃O₄N₂ [M+H]⁺ 317.2434, found 317.24305.

(S)-Dimethyl 2-((ethoxycarbonyl)amino)succinate (6a)

Following the general procedure 3.B, the corresponding oxamic acid (0.5 mmol) and Bu₄NClO₄ (0.05M) were used. Purification by column chromatography (silica, petroleum ether/ ethyl acetate 88/12) afforded **6a** (59 mg, 51 %) as a light brown gel. Rf = 0.31 (EtOAc-Hexane 20/80). ¹H NMR (300 MHz, CDCl₃) δ 5.68 (d, J = 7.8 Hz, 1H), 4.62 (dt, J = 8.7, 4.5 Hz, 1H), 4.12 (dd, J = 9.5, 4.7 Hz, 2H), 3.77 (s, 3H),

3.70 (s, 3H), 3.03 (dd, J = 17.1, 4.5 Hz, 1H), 2.85 (dd, J = 17.1, 4.7 Hz, 1H), 1.25 (t, J = 7.1 Hz, 3H). ¹³C NMR (76 MHz, CDCl₃) δ 171.3, 156.1, 77.5, 77.0, 76.6, 61.3, 52.8, 52.0, 50.2, 36.5, 14.5. IR (neat) umax (cm-1) = 3366, 2993, 2956. 1733, 1524. HRMS (ESI): Calcd. For C₉H₁₅O₆N [M+Na]⁺ 256.0791, found 256.0787. [α]_D²⁵ +32.47 (c 0.72, CHCl₃).

(S)-Methyl 2-((ethoxycarbonyl)amino)propanoate (6b)

Following the general procedure 3.B, the corresponding oxamic acid (0.5 mmol) and Bu₄NClO₄ (0.05M) were used. Purification by column chromatography (silica, petroleum ether/ ethyl acetate 93/7) afforded **6b** (54 mg, 50 %) as a light brown liquid. Rf = 0.43 (EtOAc-Hexane 20/80). ¹H NMR (300 MHz, CDCl₃) δ 5.26 (s, 1H), 4.40 –

4.24 (m, 1H), 4.09 (q, J = 7.1 Hz, 2H), 3.72 (s, 3H), 1.38 (d, J = 7.2 Hz, 3H), 1.25 – 1.15 (m, 3H). ¹³C NMR (76 MHz, CDCl₃) δ 173.6, 155.8, 61.0, 52.4, 49.4, 18.6, 14.5. IR (neat) umax (cm⁻¹) = 3336, 2982, 1739,

1722, 1529. HRMS (ESI): Calcd. For $C_7H_{13}O_4N [M+Na] + 198.0736$, found 198.0733. $[\alpha]_D^{25} - 4.65$ (c 0.51, CHCl₃).

(S)-Methyl 2-(((allyloxy)carbonyl)amino)propanoate (6c)

Following the general procedure 3.B, the corresponding oxamic acid (0.5 mmol) and Bu₄NClO₄ (0.05M) were used. Purification by column chromatography (silica, petroleum ether/ ethyl acetate 93/7) afforded 6c (56 mg, 61 %) as a light brown liquid. Rf = 0.41 (EtOAc-Hexane 20/80). ¹H NMR (300 MHz, CDCl₃) δ 5.93 (m, J = 17.2, 10.5, 5.6 Hz, 1H), 5.38 - 5.13 (m, 2H), 4.59 (d, J = 5.6 Hz, 2H), 4.47 - 4.28 (m, 1H), 3.77 (s, 3H),

1.43 (d, J = 7.2 Hz, 3H). ¹³C NMR (76 MHz, CDCl₃) δ 173.5, 155.4, 132.6, 117.8, 65.8, 52.4, 49.5, 18.7. IR (neat) vmax (cm⁻¹) = 3344, 2991, 2952, 1722, 1528. HRMS (ESI): Calcd. For C₈H₁₃O₄N [M+Na]+ 210.0736, found 210.0734. $[\alpha]_D^{25}$ -3.72 (c 0.3, CHCl₃).

(S)-Dimethyl 2-(((allyloxy)carbonyl)amino)succinate (6d)

Following the general procedure 3.B, the corresponding oxamic acid (0.5 mmol) and Bu₄NClO₄ (0.05M) were used. Purification by column chromatography (silica, petroleum ether/ ethyl acetate 85/15) afforded 6d (44 mg, 41 %) as a light brown gel. Rf = 0.28 (EtOAc-Hexane 20/80). ¹H NMR (300 MHz, CDCl₃) δ 5.91 (m, J = 17.2, 10.5, 5.6 Hz, 1H), 5.72 (d, J = 7.6 Hz, 1H), 5.38 – 5.18 (m, 2H), 4.57 (d, 2H), 3.76 (s, 3H), 3.69 (s, 3H), 3.03 (dd, J = 17.1, 4.5 Hz, 1H), 2.90 -

2.78 (dd, 1H). ¹³C NMR (76 MHz, CDCl₃) δ 171.3, 171.1, 155.8, 132.5, 117.9, 66.0, 52.8, 52.1, 50.3, 36.5. IR (neat) vmax (cm⁻¹) = 3340, 3025, 2956, 1729, 1650, 1520. HRMS (ESI): Calcd. For C₁₀H₁₅O₆N $[M+Na]^+$ 268.0791, found 268.0783. $[\alpha]_D^{25}$ +21.32 (c 0.5, CHCl₃).

(S)-Methyl 2-((methoxycarbonyl)amino)-3-phenylpropanoate (6e)

Following the general procedure 3.B, the corresponding oxamic acid (0.5 mmol) and Bu₄NClO₄ (0.08M) were used. Purification by column chromatography (silica, petroleum ether/ ethyl acetate 90/10) afforded 6e (85 mg, 70 %) as a colourless gel. Rf = 0.4 (EtOAc-Hexane 20/80). ¹H NMR (300 MHz, CDCl₃) δ 7.39 – 7.20 (m, 3H), 7.19 – 7.06 (m, 2H), 5.24 (s, 1H), 4.66 (dd, J = 13.7, 6.2 Hz, 1H), 3.73 (s, 3H), 3.67 (s, 3H), 3.23 – 2.93 (m, 2H). ¹³C NMR (76 MHz, CDCl₃) δ 172.1, 156.3, 135.7, 129.2,

128.6, 127.1, 54.7, 52.3, 38.3. IR (neat) umax (cm⁻¹) = 3340, 3025, 2956, 2844, 1729, 1526. HRMS (ESI): Calcd. For C₁₂H₁₅O₄N [M+Na]⁺ 260.0893, found 260.0892. $[\alpha]_D^{25}$ +58.92 (c 0.52, CHCl₃).

(S)-Methyl 2-((ethoxycarbonyl)amino)-3-phenylpropanoate (6f)

Following the general procedure 3.B, the corresponding oxamic acid (0.5 mmol) and Bu_4NClO_4 (0.08M) were used. Purification column by chromatography (silica, petroleum ether/ ethyl acetate 85/15) afforded 6f (82 mg, 65 %) as a colourless gel. Rf = 0.37 (EtOAc-Hexane 20/80). ¹H NMR (300 MHz, CDCl₃) δ 7.35 – 7.19 (m, 3H), 7.16 – 7.04 (m, 2H), 5.07 (s, 1H), 4.63 (dd, J = 13.8, 6.0 Hz, 1H), 4.09 (q, J = 7.1 Hz, 2H), 3.70 (s, 3H), 3.15 - 2.95 (m, 2H), 1.21 (t, J = 7.1 Hz, 3H). ¹³C NMR (76) MHz, CDCl₃) δ 172.1, 155.9, 135.8, 129.2, 128.6, 127.1, 61.2, 52.3, 38.3, 14.5. IR (neat) umax (cm⁻¹) = 3340, 3030, 2987, 1746, 1722, 1524. HRMS (ESI): Calcd. For C₁₃H₁₇O₄N [M+Na]⁺ 274.1094, found 274.1044. [α]_D²⁵ +56.74 (c 0.46, CHCl₃).

(S)-Dimethyl 2-((methoxycarbonyl)amino)succinate (6g)

Following the general procedure 3.B, the corresponding oxamic acid (0.5 mmol) and Bu₄NClO₄ (0.01M) were used. Purification by column chromatography (silica, petroleum ether/ ethyl acetate 85/15) afforded **6g** (85 mg, 78 %) as a gel. Rf = 0.25 (EtOAc-Hexane 20/80). ¹H NMR (300 MHz, CDCl₃) δ 5.72 (d, J = 7.6 Hz, 1H), 4.62 (dt, J = 8.7, 4.5 Hz, 1H), 3.77 (s, 3H), 3.69 (s, 6H), 3.03 (dd, J = 17.1, 4.5 Hz, 1H)

1H), 2.85 (dd, J = 17.1, 4.6 Hz, 1H). ¹³C NMR (76 MHz, CDCl₃) δ 171.3, 171.2, 156.5, 52.8, 52.0, 50.3, 36.5. IR (neat) umax (cm⁻¹) = 3357, 3000, 2961, 2853, 1721, 1524. HRMS (ESI): Calcd. For C₈H₁₃O₆N [M+Na]⁺ 242.0635, found 242.0631. [α]_D²⁵ +37.93 (c 0.64, CHCl₃).

(S)-Methyl 3-phenyl-2-(((2,2,2-trifluoroethoxy)carbonyl)amino)propanoate (6h)

Following the general procedure 3.B, the corresponding oxamic acid (0.3 mmol) and Bu₄NClO₄ (0.05M) were used. Purification column chromatography (silica, petroleum ether/ ethyl acetate 92/8) afforded **6h** (39 mg, 40 %) as a colourless gel. Rf = 0.45 (EtOAc-Hexane 20/80). ¹H NMR (300 MHz, CDCl₃) δ 7.45 – 7.20 (m, 3H), 7.20 – 7.07 (m, 2H), 5.41 (d, J = 7.8 Hz, 1H), 4.74 – 4.60 (m, 1H), 4.58 – 4.33 (m, 2H), 3.76 (s, J = 7.8 Hz, 3H), 3.16 (m, J = 13.9, 5.8 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 171.4, 153.7, 135.3, 129.2, 128.7, 127.3, 122.9 (q, ¹J_{CF} = 277.5 Hz), 61.1

(q, ${}^{2}J_{CF}$ = 36.6 Hz), 55.0, 52.5, 38.1. HRMS (ESI): IR (neat) vmax (cm-¹) = 3344, 3038, 2956, 1742, 1520. HRMS (ESI): Calcd. For C₁₃H₁₄O₄NF₃ [M+Na]⁺ 328.0767, found 328.0760. [α]_D²⁵ +49.86 (c 0.66, CHCl₃).

(S)-Methyl 2-((isobutoxycarbonyl)amino)-3-phenylpropanoate (6i)

Following the general procedure 3.B, the corresponding oxamic acid (0.4 mmol) and Bu₄NClO₄ (0.08M) were used. Purification by column chromatography (silica, petroleum ether/ ethyl acetate 92/8) afforded **6i** (69 mg, 50 %) as a colourless gel. Rf = 0.45 (EtOAc-Hexane 20/80). ¹H NMR (300 MHz, CDCl₃) δ 7.33 – 7.20 (m, 3H), 7.15 – 7.08 (m, 2H), 5.13 (d, J = 7.6 Hz, 1H), 4.64 (dd, J = 13.9, 6.0 Hz, 1H), 3.83 (dd, J = 6.7, 1.6 Hz, 2H), 3.71 (s, 3H), 3.10 (m, J = 6.1 Hz, 2H), 1.88 (m, J = 13.4, 6.7 Hz, 3H), 0.90 (d, J = 6.7 Hz, 6H). ¹³C NMR (76 MHz, CDCl₃) δ 172.1, 156.7,

156.0, 135.8, 129.3, 128.6, 127.1, 71.3, 54.7, 52.3, 38.3, 28.0, 19.0. IR (neat) umax (cm⁻¹) = 3349, 3021, 2961, 2875, 1724, 1730, 1518. HRMS (ESI): Calcd. For $C_{15}H_{21}O_4N$ [M+Na]⁺ 302.1373, found 302.1357. [α]_D²⁵ +46.32 (c 0.61, CHCl₃).

N¹, N²-Diphenethyloxalamide (7)

7 (22 mg) was obtained in 15 % as a white solid, m.p. = 164-167°C. Rf = 0.14 (EtOAc-Hexane 20/80). ¹H NMR (300 MHz, CDCl₃) δ 7.51 (s, 2H), 7.41 – 7.16 (m, 10H), 3.59 (dd, J = 13.5, 7.1 Hz, 4H), 2.88 (t, J = 7.2 Hz, 4H). ¹³C NMR (76 MHz, CDCl₃) δ 159.7, 138.1, 128.7, 128.7, 126.7, 40.8,

35.4. IR (neat) umax (cm⁻¹) = 3292, 3056, 2929, 2867, 1646. HRMS (ESI): Calcd. For $C_{18}H_{20}O_2N_2$ [M+Na]⁺ 319.1417, found 319.1414.

1,1-Diethyl-3-phenethylurea (8)

8 (20% (¹H-NMR), 17 mg, 15%) was obtained as a light brown gel. Rf = 0.20 (AcOEt/DCM 10/90) ¹H NMR (300 MHz, CDCl₃) δ 7.46 – 7.06 (m, 5H), 4.30 (s, 1H), 3.59 – 3.36 (m, 2H), 3.21 (q, *J* = 7.1 Hz, 4H), 2.91 – 2.77 (m, 2H), 1.12 – 1.01 (m, 6H). ¹³C NMR (76 MHz, CDCl₃) δ 157.2, 139.5, 128.9, 128.8, 128.5, 126.3,

42.0, 41.1, 36.4, 13.8. IR (neat) umax (cm⁻¹) = 3345, 3027, 2972, 2929, 2871, 1625. HRMS (ESI): Calcd. For $C_{13}H_{21}ON_2$ [M+H]⁺ 221.1684, found 221.1638.

2-Bromoethyl 2-(cyclohexylamino)-2-oxoacetate (9)

Following the general procedure 3.B, the corresponding oxamic acid (0.7 mmol) and Bu₄NClO₄ (0.08M) were used. Purification by column chromatography (silica, petroleum ether/ ethyl acetate 90/10) afforded **9** (138 mg, 79 %) as a white solid, m.p. = 74 - 77°C. Rf = 0.2 (EtOAc-Hexane 20/80). ¹H NMR (300 MHz, CDCl₃) δ

6.97 (s, 1H), 4.57 (t, J = 6.6 Hz, 2H), 3.92 – 3.71 (m, 1H), 3.60 (t, J = 6.6 Hz, 2H), 1.96 (dd, J = 12.1, 2.9 Hz, 2H), 1.82 – 1.56 (m, 3H), 1.50 – 1.08 (m, 5H). ¹³C NMR (76 MHz, CDCl₃) δ 160.4, 154.8, 65.7, 49.0, 32.5, 27.2, 25.3, 24.6. IR (neat) umax (cm⁻¹) = 3289, 2933, 2856, 1740, 1683. HRMS (ESI): Calcd. For C₁₀H₁₆O₃N⁷⁹Br [M+Na]⁺ 300.0192, found 300.0198.

2-Bromoethyl 2-oxo-2-(phenethylamino)acetate (10)

Following the general procedure 3.B, the corresponding oxamic acid (0.5 mmol) and Bu₄NClO₄ (0.08M) were used. Purification by column chromatography (silica, petroleum ether/ ethyl acetate 90/10) afforded **10** (78.6 mg, 53 %) % as a white solid, m.p. = 69 - 71°C. Rf = 0.2 (EtOAc-Hexane

20/80). ¹H NMR (300 MHz, CDCl₃) δ 7.37 – 7.17 (m, 5H), 7.11 (s, 1H), 4.56 (t, *J* = 6.5 Hz, 2H), 3.69 – 3.53 (m, 4H), 2.89 (t, *J* = 7.1 Hz, 2H). ¹³C NMR (76 MHz, CDCl₃) δ 160.0, 155.8, 138.0, 126.8, 65.7, 41.1, 35.2, 27.1. IR (neat) umax (cm⁻¹) = 3331, 2924, 1738, 1693. HRMS (ESI): Calcd. For C₁₂H₁₄O₃N⁷⁹Br [M+Na]⁺ 322.0049, found 322.0049.

5. Alcohol Recovery after Electrochemical Reaction

After the electrochemical reaction, residual alcohol was recovered by vacuum distillation at low temperature ($\leq 50^{\circ}$ C), allowed about 90% alcohol recovery with satisfying purity. Some spectra of the recovered alcohol are shown below.

Instrument:UltiMate-3000 Sequence:IO-2-64 Water;ACN,TFA (85;15;0.1) - Copy

Page 1 of 1

Chromatogram and Results											
Injection Details											
Injection Name: Vial Number: Injection Type: Calibration Level: Instrument Method: Processing Method: Injection Date/Time:			IO-2-65-chiral3-Water;ACN.TFA (75;25;0.1) 1mL;m GC4 Unknown LJ method Water;ACN;DEA (75;25;0,1) 1 mL;min New Processing Method 06/juil./20 16:32			i Run Time (min): 30.00 Injection Volume: 5.00 Channel: EXT206NM Wavelength: 200.0 Bandwidth: 1 Dilution Factor: 1.0000 Sample Weight: 1.0000					
Chr	oma	atogram									
1	400	7 IO-2-64 Water;ACN,T	FA (85;15;0.1) - Copy #9	e [manually integrate	ed]		EXT206NM WVL:206	5 nm			
Absorbance [mAU]	200 - 0000 - 8800 - 6600 - 2000 -		~~~~~~~			1 - 19/290					
-	- 200 (0.0 5.0	10.0	15.0	· · · ·	20.0	25.0	30.0			
				Time [r	nin]						
Integration Results											
No.	F	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount			
1			19 290	7 724	17 530	1.31	% 1.45	n.a.			
2			20.880	582.472	1187.402	98.69	98.55	n.a.			
Total:				590.196	1204.932	100.00	100.00				

HPLC Data for (S)-Methyl 2-((ethoxycarbonyl)amino)-3-phenylpropanoate (rac-6f)

Instrument:UltiMate-3000 Sequence:IO-2-64 Water;ACN,TFA (85;15;0.1) - Copy

7. Cyclic voltammetry studies

Cyclic voltammetry studies were performed using a µAUTOLAB TYPE II potentiostat/galvanostat coupled to the electrochemical Systems (GPES, v.4.9 software; Serial No: AUT72173) (Eco Chemie BV, Utrecht, The Netherlands) and equipped with a cell containing three-electrodes, *i.e.* a silver wire

as the pseudo-reference electrode (pseudo-RE), a glassy carbon electrode (\emptyset : 3 mm) as a working electrode and finally a Pt-wire counter-electrode. The glassy carbon electrode (GCE) was polished prior to each measurement.

5 mM solutions of oxamic acid **1d** and 0.1 M n-Bu₄N PF₆ in CH₃CN were used. Reaction set-up was degassed using highly pure Argon gas bubbling for at least 5 min. This was done before each measurement, and the argon atmosphere was kept over the solution during the process.

Cyclic voltammetry were recorded at 100 mV/s scan rate, at a temperature of 25 ± 0.5 °C.

Generally, we also used the ferrocene as an external reference in which

we measured the redox potential according to the same experimental conditions.

For some specific cases, we used ferrocene as an internal standard (in 0.1 M of n-Bu₄N PF₆ in MeCN as supporting electrolyte solution).

Figure S1. Cyclic voltammogram for oxamic acid **1d** (5 mM) in CH₃CN/*n*-Bu₄NPF₆ (0.1 M). Potential scan rate 100 mV s⁻¹. ($E_{ox} = 2.595$ V vs SCE)

Figure S2. Cyclic voltammogram for oxamic acid **1d** (5 mM), Et₃N (5 mM), in CH₃CN/*n*-Bu₄NPF₆ (0.1 M). Potential scan rate 100 mV s⁻¹. ($E_{ox} = 1.32$ V vs SCE. Litt.⁸ $E_{ox} = 1.17$ V vs SCE)

Figure S3. Cyclic voltammogram for oxamic acid **1d** (5 mM), Et₃N (5 mM) in CH₃CN/*n*-Bu₄NPF₆ (0.1 M) with ferrocene (5 mM) as internal reference. Potential scan rate 100 mV s⁻¹. ($E_{ox} = 1.47$ V vs SCE)

Figure S4. Cyclic voltammogram for ferrocene (5 mM) in CH_3CN/n -Bu₄NPF₆ (0.1 M). Potential scan rate 100 mV s⁻¹.

While we could expect two waves for our *ECE* type process, only one wave is observed as the voltage difference between E_{ox1} and E_{ox2} may be quite small as a result of the stabilization of the carbamoyl cation **III** by resonance with the nitrogen center. Similar observations have been made by Waldvogel et al during anodic oxidation of arylamides.⁷

8. References

- 1. G. G. Pawar, F. Robert, E. Grau, H. Cramail, Y. Landais Chem. Commun., 2018, 54, 9337.
- 2. A. H. Jatoi, G. G. Pawar, F. Robert, Y. Landais Chem. Commun., 2019, 55, 466
- S. D. Linton et. al. J. Med. Chem. 2005, 48, 6779-6782; (b) H. Hanchu, J. Kunfang, C. Yiyun Angew. Chem. Int. Ed. 2015, 54, 1881-1884.
- 4. J. Bálint, G. Egri, M. Czugler, J. Schindler, V. Kiss, Z. Juvancz, E. Fogassy, *Tetrahedron:* Asymmetry 2001, 12, 1511–1518.
- 5. N. S. Vujicic, Z. Glasovac, N. Zweep, J. H. van Esch, M. Vinkovic, J. Popovic, M. Zinic *Chem. Eur. J.* **2013**, *19*, 8558-8572.
- (a) C. R. Reddy, M. D. Reddy, U. Dilipkumar *Eur. J. Org. Chem.* 2014, 6310-6313. (b) Y. Seki, K. Tanabe, D. Sasaki, Y. Sohma, K. Oisaki, M. Kanai *Angew. Chem. Int. Ed.* 2014, *53*, 6501-6505.
- T. Gieshoff, A. Kehl, D. Schollmeyer, K. D. Moeller, S. R. Waldvogel J. Am. Chem. Soc. 2017, 139, 12317-12324.
- 8. X.-L. Lai, X.-M. Shu, J. Song, and H.-C. Xu, Angew. Chem. Int. Ed., 2020, 59, 10626.

9. Copies of ¹H and ¹³C NMR Spectra

f1 (ppm)