Phosphine catalyzed [3+2] cyclization/Michael addition of allenoate with CS_{2} to form 2-thineyl vinyl sulfide

Weihong Fei ${ }^{\text {a }}$, Ping Xu ${ }^{\text {a }}$, Jie Hou ${ }^{\text {a }}$ and Weijun Yao* ${ }^{\text {a }}$${ }^{\text {a }}$ Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, P.R. China.${ }^{\dagger}$ The authors contribute equally to this work.Email: Orgywj@zstu.edu.cn;
Table of contents
A. General information S2
B. Preparation and analytical data of allenoate $\mathbf{1}$ and $\mathbf{3}$ S2
C. General procedure for the DPPE catalyzed tandem reaction S5
D. Analytical data of products $\mathbf{2}$ and $\mathbf{4}$ S5
E. Gram scale synthesis of $\mathbf{2 l}$ S12
F. Reaction of $\mathbf{2 l}$ with benzyne S12
G. Transformation of $\mathbf{2 I}$ S13
H. Control experiment with Maleimide S15
I. X-Ray crystallographic analysis of $\mathbf{4 a}$ S15
J. References S16
K. Spectra S17

A. General information

Unless otherwise specified, all reactions were carried out with dry solvents in anhydrous conditions. THF, toluene, dichloromethane and acetonitrile were dried by activated molecular sieve (4 \AA). All chemicals were used without further purification as commercially available unless otherwise noted. Thin-layer chromatography (TLC) was performed on silica gel plates (60F-254) using UV-light (254 and 365 nm). Flash chromatography was conducted on silica gel (200-300 mesh). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker AV400 MHz spectrometer. Chemical shifts were reported in parts per million (ppm). High resolution mass spectra (HRMS) were recorded on a Waters TOFMS GCT Premier using ESI ionization. Petroleum ether (PE) refers to the fraction with boiling point in the range $60-90^{\circ} \mathrm{C}$.

B. Preparation and analytical data of allenoate 1 and 3

Allenoate 1 and $\mathbf{3}$ was prepared from corresponding substituted acetyl chloride with phosphonium ylide according to the reported procedure. ${ }^{[1,2]}$ The ${ }^{1} \mathrm{H}$ NMR spectra of known compounds were consistent with the literature reported. The analytical data of new compounds $(\mathbf{1 e}, \mathbf{1 h}, \mathbf{1 i}, \mathbf{3 b}, \mathbf{3 c}, \mathbf{3 f}, \mathbf{3 g}$, $\mathbf{3 h}$ and $\mathbf{3 i}$) were as follow.

Benzyl octa-2,3-dienoate $\mathbf{1 e}$

Colourless oil; it is a unseparated mixture with alkynoate, and the ratio is 2.3:1 from crude ${ }^{1} \mathrm{H}$ NMR. The NMR details as follow: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44-7.29(\mathrm{~m}, 5 \mathrm{H}), 5.66-5.59(\mathrm{~m}, 1.25 \mathrm{H}$, allenoate), $5.27-5.09(\mathrm{~m}, 2 \mathrm{H}), 3.30(\mathrm{t}, J=2.4 \mathrm{~Hz}, 0.54 \mathrm{H}$, alkynoate), $2.24-2.10(\mathrm{~m}, 2 \mathrm{H}), 1.53-1.31$ $(\mathrm{m}, 4 \mathrm{H}), 0.95-0.84(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) for allenoate: $\delta 212.6,166.1,136.0$, $128.5,128.2,95.5,88.0,66.4,30.8,27.1,22.0,13.8 \mathrm{ppm}$; for alkynoate: $\delta 168.8,135.5,128.5,128.33$ 128.1, 128.1, 84.0, 71.2, 67.0, 30.7, 26.1, 21.9, 18.4, 13.6 ppm ; IR (film) $v=2958,2932,2026,1960$, 1722, $1631 \mathrm{~cm}^{-1} ;$ HRMS (ESI) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}=231.1380$, found $=231.1395$.

Benzyl deca-2,3-dienoate 1h

Pale yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.30(\mathrm{~m}, 5 \mathrm{H}), 5.66-5.61(\mathrm{~m}, 2 \mathrm{H}), 5.22(\mathrm{~d}, J=$ $12.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.19-2.11(\mathrm{~m}, 2 \mathrm{H}), 1.52-1.42(\mathrm{~m}, 2 \mathrm{H}), 1.39-1.25(\mathrm{~m}, 6 \mathrm{H})$, $0.90(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 212.6,166.0,136.0,128.4,128.0,127.9$, $95.5,87.9,66.3,31.4,28.6,28.5,27.4,22.5,14.0 \mathrm{ppm}$; IR (film) $v=2959,2929,2026,1960,1720$, $1631 \mathrm{~cm}^{-1} ;$ HRMS (ESI) m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}=259.1693$, found $=259.1704$.

Benzyl 4-cyclopentylbuta-2,3-dienoate 1i

Pale yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42-7.29(\mathrm{~m}, 5 \mathrm{H}), 5.71-5.63(\mathrm{~m}, 2 \mathrm{H}), 5.22(\mathrm{~d}, J=$ $12.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.68-2.55(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.53(\mathrm{~m}, 4 \mathrm{H})$, $1.49-1.37(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 211.9,166.0,136.1,128.4,128.0,128.0$, $100.3,88.6,66.3,38.1,32.7,32.4,24.7 \mathrm{ppm}$; IR (film) $v=2955,2869,2026,1958,1720,1631 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}=243.1380$, found $=243.1396$.

Ethyl 4-(p-tolyl)buta-2,3-dienoate 3b

yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.21(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.61(\mathrm{~d}, J$ $=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$ ppm; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 214.6,165.17,137.9,129.5,128.0,127.3,98.4,91.7,61.0,21.2$, 14.1 ppm ; IR (film) $v=2980,2924,2026,1729,1631,1590 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{O}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+}=203.1067$, found $=203.1081$;

Ethyl 4-(4-(tert-butyl)phenyl)buta-2,3-dienoate 3c

Pale yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.62$ $(\mathrm{d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{qd}, J=7.1,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.33(\mathrm{~s}, 9 \mathrm{H}), 1.30(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 214.7,165.1,151.3,128.1,127.2,125.8,98.3,91.7$, $61.0,34.6,31.2,14.2 \mathrm{ppm}$; IR (film) $v=2963,2026,1733,1632,1592,1386 \mathrm{~cm}^{-1} ;$ HRMS (ESI) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}=245.1536$, found $=245.1548$.

Ethyl 4-(naphthalen-2-yl)buta-2,3-dienoate $\mathbf{3 f}$

Pale yellow gel; it is a unseparated mixture with alkynoate, and the ratio is $9: 1$ from crude ${ }^{1} \mathrm{H}$ NMR.. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.80(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 3 \mathrm{H}), 7.72(\mathrm{~s}, 1 \mathrm{H}), 7.47(\mathrm{dd}, J=11.1,7.0 \mathrm{~Hz}, 3 \mathrm{H}), 6.80$ $(\mathrm{d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.31(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$;
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 215.1,165.0,133.5,133.0,131.6,128.5,127.8,127.7,126.8,126.4$, $126.2,124.8,99.0,92.1,61.1,14.2 \mathrm{ppm} ; \mathrm{IR}(\mathrm{KBr}) v=2980,2026,1718,1632,1596,1351 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}=239.1067$, found $=239.1080$.

Ethyl 4-([1,1'-biphenyl]-4-yl)buta-2,3-dienoate 3g

White solid, m.p. 59.8-62.1 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.62-7.56(\mathrm{~m}, 4 \mathrm{H}), 7.45(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.40-7.34(\mathrm{~m}, 3 \mathrm{H}), 6.68(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{qd}, J=7.1,1.6 \mathrm{~Hz}$, 2H), $1.31(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 214.9,165.0,140.9,140.4,130.1$, $128.8,127.9,127.5,127.5,126.9,98.3,92.0,61.2,14.2 \mathrm{ppm}$; IR (KBr) $v=3031,2978,2026,1943$, $1714,1632 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}=265.1223$ found $=265.1236$.

Ethyl 4-(benzo[d][1,3]dioxol-5-yl)buta-2,3-dienoate 3h

Pale yellow oil; it is a mixture containing 14% unseparated alkynoate from ${ }^{1} \mathrm{HNMR}$. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.78(\mathrm{~s}, 1 \mathrm{H}), 6.75(\mathrm{~s}, 2 \mathrm{H}), 6.54(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.98(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{~s}$, $2 \mathrm{H}), 4.20(\mathrm{qd}, J=7.1,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 214.4$, $165.0,148.2,147.7,124.8,121.6,108.5,107.2,101.2,98.6,92.1,61.1,14.2 \mathrm{ppm}$; IR (film) $v=2980$, 2903, 2026, 1718, 1632, 1603 $\mathrm{cm}^{-1} ;$ HRMS (ESI) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}=233.0808$, found $=$ 233.0822.

Ethyl 4-(2,3-dihydrobenzofuran-5-yl)buta-2,3-dienoate 3i

pale yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.16(\mathrm{~s}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 6.58(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.99(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.22(\mathrm{qd}, J=7.1$, $2.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.20(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.29(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $214.6,165.3,160.3,128.0,127.7,123.9,122.9,109.5,109.2,98.5,91.8,71.5,61.0,29.5,14.2 \mathrm{ppm}$; IR (film) $v=2980,2026,1716,1632,1593,1385 \mathrm{~cm}^{-1} ;$ HRMS (ESI) m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}=$ 231.1016, found $=231.1029$.

C. General procedure for the DPPE catalyzed tandem reaction

To a dried sealed tube with a magnetic stirring bar were added allenoate $\mathbf{1}$ or $\mathbf{3}(0.4 \mathrm{mmol})$ and CS_{2} (2 $\mathrm{mL})$, followed by the addition of DPPE ($0.04 \mathrm{mmol}, 15.9 \mathrm{mg}$) at room temperature. The resulting mixture was sealed and stirred overnight at room temperature. After the completely consumption of allenoate monitore by TLC, the mixture was purified directly by column chromatography on silica gel with $\mathrm{PE} / \mathrm{Ea}$ as eluent to afford product $\mathbf{2}$ or 4.

D. Analytical data of products 1 or 3

Benzyl (E)-2-((5-(benzyloxy)-5-oxopent-2-en-3-yl)thio)-5-methylthiophene-3-carboxylate 2a

Crude ${ }^{1} \mathrm{HNMR}$ show the E/Z ratio is more than 19:1. pale yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.44-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.29(\mathrm{~m}, 8 \mathrm{H}), 7.06(\mathrm{~s}, 1 \mathrm{H}), 6.42(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~s}, 2 \mathrm{H}), 5.12(\mathrm{~s}$, $2 \mathrm{H}), 3.49(\mathrm{~s}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.81(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.6$, $162.5,146.0,140.6,137.6,136.1,135.6,128.5,128.2,128.1,128.0,127.4,126.2,66.7,66.2,37.6,15.5$, 15.2 ppm ; IR (film) $v=3033,2917,1736,1701,1455,1232 \mathrm{~cm}^{-1} ;$ HRMS (ESI) m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{O}_{4} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}=453.1189$, found $=453.1193$.

Benzyl (E)-2-((1-(benzyloxy)-1-oxohex-3-en-3-yl)thio)-5-ethylthiophene-3-carboxylate 2b

Crude ${ }^{1} \mathrm{HNMR}$ show the E/Z ratio is more than 19:1. pale yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.44(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.31(\mathrm{~m}, 8 \mathrm{H}), 7.09(\mathrm{~s}, 1 \mathrm{H}), 6.34(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~s}, 2 \mathrm{H}), 5.11$ (s, 2H), $3.49(\mathrm{~s}, 2 \mathrm{H}), 2.70(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.19(\mathrm{p}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.24(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.04(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.7,162.7,147.7,145.0,136.2,135.7,128.5$, $128.2,128.2,128.1,128.0,127.2,125.6,124.7,66.8,66.2,37.9,23.3,15.4,13.1 \mathrm{ppm}$; IR (film) $v=$ 3032, 2967, 1737, 1701, 1497, $1455 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{O}_{4} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}=481.1502$, found $=481.1505$.

Benzyl (E)-2-((1-(benzyloxy)-1-oxohept-3-en-3-yl)thio)-5-propylthiophene-3-carboxylate 2c

Crude ${ }^{1} \mathrm{HNMR}$ show the E/Z ratio is more than 19:1. pale yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ
$7.44(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.29(\mathrm{~m}, 8 \mathrm{H}), 7.08(\mathrm{~s}, 1 \mathrm{H}), 6.35(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~s}, 2 \mathrm{H}), 5.11$ $(\mathrm{s}, 2 \mathrm{H}), 3.49(\mathrm{~s}, 2 \mathrm{H}), 2.64(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.15(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.69-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.38$ $(\mathrm{m}, 2 \mathrm{H}), 0.93(\mathrm{tt}, J=11.9,5.9 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.6,162.6,146.3,146.0$, $143.3,136.1,135.6,128.4,128.2,128.1,128.1,128.0,126.3,125.2,66.7,66.1,38.0,32.0,31.9,24.4$, $21.9,13.7,13.5 \mathrm{ppm}$; IR (film) $v=2959,2930,1736,1702,1455,1250 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{O}_{4} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}=509.1815$, found $=509.1822$.

Benzyl (E)-2-((1-(benzyloxy)-5-methyl-1-oxohex-3-en-3-yl)thio)-5-isopropylthiophene-3-carboxylate 2d

Crude ${ }^{1} \mathrm{HNMR}$ show the E/Z ratio is $10: 1$ and it is an unseparated mixture. pale yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.30(\mathrm{~m}, 8 \mathrm{H}), 7.09(\mathrm{~s}, 1 \mathrm{H}), 6.18(\mathrm{~d}, J=10.1 \mathrm{~Hz}$, $1 \mathrm{H}), 5.30(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.12(\mathrm{~s}, 2 \mathrm{H}), 3.50(\mathrm{~s}, 2 \mathrm{H}), 3.09-2.95(\mathrm{~m}, 1 \mathrm{H}), 2.64-2.55(\mathrm{~m}, 1 \mathrm{H}), 1.27$ $(\mathrm{d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 1.04(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.7,162.7,153.3$, $150.5,146.1,136.2,135.6,128.5,128.2,128.2,128.1,128.0,124.1,122.9,66.8,66.1,38.1,30.0,29.6$, 24.2, 22.0 ppm ; IR (film) $v=3033,2961,1738,1702,1456,1324 \mathrm{~cm}^{-1} ;$ HRMS (ESI) m / z calcd for $\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{O}_{4} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}=509.1815$, found $=509.1823$.

Benzyl (E)-2-((1-(benzyloxy)-1-oxooct-3-en-3-yl)thio)-4-butylcyclopenta-1,4-diene-1-carboxylate 2e

Crude ${ }^{1} \mathrm{HNMR}$ show the E / Z ratio is more than 19:1. pale yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.44(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.30(\mathrm{~m}, 8 \mathrm{H}), 7.07(\mathrm{~s}, 1 \mathrm{H}), 6.35(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~s}, 2 \mathrm{H}), 5.11$ $(\mathrm{s}, 2 \mathrm{H}), 3.48(\mathrm{~s}, 2 \mathrm{H}), 2.66(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.17(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.58(\mathrm{dt}, J=15.2,7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $1.44-1.28(\mathrm{~m}, 6 \mathrm{H}), 0.91(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 169.7,162.7,146.6,143.5,136.2,135.7,128.5,128.2,128.2,128.1,128.0,127.0,126.2$, $125.0,66.8,66.2,38.0,33.3,30.7,29.7,29.7,22.3,22.0,13.8,13.7 \mathrm{ppm}$; IR (film) $v=2956,2929$, 2857, 1739, 1704, $1456 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{31} \mathrm{H}_{37} \mathrm{O}_{4} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}=537.2128$, found $=$ 537.2138.

Benzyl (E)-2-((1-(benzyloxy)-6-methyl-1-oxohept-3-en-3-yl)thio)-5-isobutylthiophene-3-carboxylate $\mathbf{2 f}$

Crude ${ }^{1} \mathrm{HNMR}$ show the E / Z ratio is more than 19:1. pale yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.45-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.31(\mathrm{~m}, 8 \mathrm{H}), 7.08(\mathrm{~s}, 1 \mathrm{H}), 6.38(\mathrm{t}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{~s}, 2 \mathrm{H}), 5.12(\mathrm{~s}$, $2 \mathrm{H}), 3.50(\mathrm{~s}, 2 \mathrm{H}), 2.54(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.08(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.83-1.71(\mathrm{~m}, 2 \mathrm{H}), 0.97-0.89$ (m,12H) ppm; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.6,162.7,146.3,145.6,142.1,136.1,135.6,128.4$,
$128.2,128.1,128.0,127.1,127.0,125.6,66.7,66.26,39.2,38.9,38.0,30.3,28.3,22.4,22.1 \mathrm{ppm} ;$ IR (film) $v=2956,2925,1739,1704,1495,1454 \mathrm{~cm}^{-1} ;$ HRMS (ESI) m / z calcd for $\mathrm{C}_{31} \mathrm{H}_{37} \mathrm{O}_{4} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}=$ 537.2128 , found $=537.2133$.

Benzyl (E)-2-((1-(benzyloxy)-5,5-dimethyl-1-oxohex-3-en-3-yl)thio)-5-(tert-butyl)thiophene-3-carboxylate
2 g

Crude ${ }^{1} \mathrm{HNMR}$ show the E / Z ratio is more than 19:1. white powder, m.p. $=45.5-47.4{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.46(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.30(\mathrm{~m}, 8 \mathrm{H}), 7.06(\mathrm{~s}, 1 \mathrm{H}), 6.45(\mathrm{~s}, 1 \mathrm{H}), 5.32(\mathrm{~s}$, $2 \mathrm{H}), 5.14(\mathrm{~s}, 2 \mathrm{H}), 3.69(\mathrm{~s}, 2 \mathrm{H}), 1.33(\mathrm{~s}, 9 \mathrm{H}), 1.19(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.8$, $162.8,156.1,154.4,146.8,136.2,135.6,128.4,128.2,128.1,128.0,126.2,124.2,123.5,66.7,66.1,38$. 8, 34.8, 34.6, 32.0, 30.1, 29.6 ppm ; IR (KBr) $v=3033,2961,1740,1704,1456,1364 \mathrm{~cm}^{-1} ;$ HRMS (ESI) m / z calcd for $\mathrm{C}_{31} \mathrm{H}_{37} \mathrm{O}_{4} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}=537.2128$, found $=537.2136$.

Benzyl (E)-2-((1-(benzyloxy)-1-oxodec-3-en-3-yl)thio)-5-hexylthiophene-3-carboxylate 2h

Crude ${ }^{1} \mathrm{HNMR}$ show the E/Z ratio is more than 19:1. pale yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.44(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.30(\mathrm{~m}, 8 \mathrm{H}), 7.07(\mathrm{~s}, 1 \mathrm{H}), 6.36(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~s}, 2 \mathrm{H}), 5.11$ $(\mathrm{s}, 2 \mathrm{H}), 3.49(\mathrm{~s}, 2 \mathrm{H}), 2.65(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.17(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.67-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.47-1.40$ $(\mathrm{m}, 2 \mathrm{H}), 1.38-1.19(\mathrm{~m}, 14 \mathrm{H}), 0.98-0.83(\mathrm{~m}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.6,162.7$, $146.8,146.2,143.5,136.2,135.6,128.4,128.27,128.1,128.1,128.0,127.0,126.2,125.0,66.7,66.1$, $38.0,31.6,31.4,31.2,30.0,29.9,28.9,28.6,28.5,22.6,22.5,14.0,14.0 \mathrm{ppm}$; IR (film) $v=2954,2927$, 2855, 1740, 1705, $1456 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{35} \mathrm{H}_{45} \mathrm{O}_{4} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}=593.2754$, found $=$ 593.2764.

Benzyl (E)-2-((4-(benzyloxy)-1-cyclopentyl-4-oxobut-1-en-2-yl)thio)-5-cyclopentylthiophene-3-carboxylate $2 i$

Crude ${ }^{1} \mathrm{HNMR}$ show the E/Z ratio is more than 19:1. pale yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.45(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.29(\mathrm{~m}, 8 \mathrm{H}), 7.10(\mathrm{~s}, 1 \mathrm{H}), 6.29(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{~s}, 2 \mathrm{H}), 5.12$ (s, 2H), $3.52(\mathrm{~s}, 2 \mathrm{H}), 3.17-3.02(\mathrm{~m}, 1 \mathrm{H}), 2.69(\mathrm{~h}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.10-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.89-1.54(\mathrm{~m}$, $12 \mathrm{H}), 1.42-1.32(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.8,162.7,151.6,148.1,146.2$, 136.2, 135.7, 128.4, 128.1, 128.1, 128.0, 128.0, 126.7, 124.7, 123.4, 66.7, 66.1, 41.0, 40.7, 38.2, 34.9,
$32.8,25.3,25.0 \mathrm{ppm}$; IR (film) $v=2954,2868,1736,1702,1451,1223 \mathrm{~cm}^{-1} ;$ HRMS (ESI) m / z calcd for $\mathrm{C}_{33} \mathrm{H}_{37} \mathrm{O}_{4} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}=561.2128$, found $=561.2133$.

Benzyl (E)-2-((4-(benzyloxy)-1-cyclohexyl-4-oxobut-1-en-2-yl)thio)-5-cyclohexylthiophene-3-carboxylate 2j

Crude ${ }^{1} \mathrm{HNMR}$ show the E / Z ratio is more than 19:1. pale yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.44(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.41-7.29(\mathrm{~m}, 8 \mathrm{H}), 7.08(\mathrm{~s}, 1 \mathrm{H}), 6.19(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~s}, 2 \mathrm{H}), 5.11$ $(\mathrm{s}, 2 \mathrm{H}), 3.50(\mathrm{~s}, 2 \mathrm{H}), 2.73-2.56(\mathrm{~m}, 1 \mathrm{H}), 2.32-2.22(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.77(\mathrm{~m}$, 2H), $1.75-1.63(\mathrm{~m}, 6 \mathrm{H}), 1.37-1.13(\mathrm{~m}, 10 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.8,162.7$, $151.8,149.5,145.9,136.2,135.6,128.4,128.2,128.1,128.0,126.6,124.0,123.3,66.7,66.1,39.4,39.3$, $38.2,34.8,31.9,26.2,25.7,25.4 \mathrm{ppm}$; IR (film) $v=2925,2850,1738,1702,1448,1245 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{35} \mathrm{H}_{41} \mathrm{O}_{4} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}=589.2441$, found $=589.2441$.

Benzyl (E)-2-((1-(benzyloxy)-1-oxo-6-phenylhex-3-en-3-yl)thio)-5-phenethylthiophene-3-carboxylate 2k

Crude ${ }^{1} \mathrm{HNMR}$ show the E/Z ratio is more than 19:1. pale yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.43(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.41-7.27(\mathrm{~m}, 12 \mathrm{H}), 7.24-7.15(\mathrm{~m}, 6 \mathrm{H}), 7.09(\mathrm{~s}, 1 \mathrm{H}), 6.35(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 5.29(\mathrm{~s}, 2 \mathrm{H}), 5.11(\mathrm{~s}, 2 \mathrm{H}), 3.41(\mathrm{~s}, 2 \mathrm{H}), 3.00-2.95(\mathrm{~m}, 2 \mathrm{H}), 2.93-2.87(\mathrm{~m}, 2 \mathrm{H}), 2.74(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}), 2.49(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.5,162.6,145.9,144.8$, $142.3,140.8,140.5,136.1,135.6,128.4,128.4,128.2,128.1,128.1,127.3,126.6,126.38,126.1,125.9$, $66.8,66.2,38.0,37.4,34.6,31.8,31.6 \mathrm{ppm}$; IR (film) $v=3027,2921,1735,1701,1496,1453 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z calcd for $\mathrm{C}_{39} \mathrm{H}_{37} \mathrm{O}_{4} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}=633.2128$, found $=633.2139$

Ethyl 2-((4-ethoxy-4-oxobut-1-en-2-yl)thio)thiophene-3-carboxylate 21

Pale yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.65$ $(\mathrm{s}, 1 \mathrm{H}), 5.61(\mathrm{~s}, 1 \mathrm{H}), 4.31(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.14(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.36(\mathrm{~s}, 2 \mathrm{H}), 1.35(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}), 1.24(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.6,162.6,143.3,136.3,130.9$, $129.8,125.1,124.5,61.0,60.7,42.1,14.2,14.0 \mathrm{ppm}$; IR (film) $v=2981,2935,1736,1702,1509,1445$ $\mathrm{cm}^{-1} ;$ HRMS $(E S I) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{NaO}_{4} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{Na}]^{+}=323.0382$, found $=323.0398$.

Ethyl (E)-2-((4-ethoxy-4-oxo-1-phenylbut-1-en-2-yl)thio)-5-phenylthiophene-3-carboxylate 4a

Crude ${ }^{1} \mathrm{HNMR}$ show the E/Z ratio is more than $19: 1$. white solid, m.p. $=64.7-66.1^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.64(\mathrm{~s}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.32(\mathrm{~m}, 8 \mathrm{H}), 7.29(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.38(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.19(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.67(\mathrm{~s}, 2 \mathrm{H}), 1.41(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.27(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.9,162.8,146.1,142.8,142.0,135.6,133.1,129.7$, $128.9,128.8,128.6,128.4,128.3,127.9,125.4,125.0,61.2,60.8,38.7,14.4,14.1 \mathrm{ppm}$; IR (KBr) $v=$ 3030, 2927, 1735, 1702, 1441, $1225 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{NaO}_{4} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{Na}]^{+}=$ 475.1008 , found $=475.1012$.

Ethyl (E)-2-((4-ethoxy-4-oxo-1-(p-tolyl)but-1-en-2-yl)thio)-5-(p-tolyl)thiophene-3-carboxylate 4b

Crude ${ }^{1} \mathrm{HNMR}$ show the E/Z ratio is more than $19: 1$. white solid, m.p. $=65.3-67.5{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.58(\mathrm{~s}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{~s}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.37(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.19(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.67(\mathrm{~s}, 2 \mathrm{H})$, $2.38(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 170.0,162.8,146.0,143.1,142.0,138.3,137.8,132.7,130.4,129.6,129.3,128.9,128.4$, $127.8,125.2,124.4,61.2,60.7,38.8,21.2,21.1,14.4,14.1 \mathrm{ppm}$; $\operatorname{IR}(\mathrm{KBr}) v=2980,2922,1735,1702$, $1441,1224 \mathrm{~cm}^{-1} ;$ HRMS (ESI) m/z calcd for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{NaO}_{4} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{Na}]^{+}=503.1321$, found $=503.1331$

Ethyl (E)-5-(4-(tert-butyl)phenyl)-2-((1-(4-(tert-butyl)phenyl)-4-ethoxy-4-oxobut-1-en-2-yl)thio)thio-phene-3-carboxylate $\mathbf{4 c}$

Crude ${ }^{1} \mathrm{HNMR}$ show the E / Z ratio is more than 19:1. pale yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.59(\mathrm{~s}, 1 \mathrm{H}), 7.47-7.42(\mathrm{~m}, 4 \mathrm{H}), 7.38(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.37$ $(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.20(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.69(\mathrm{~s}, 2 \mathrm{H}), 1.41(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 9 \mathrm{H}), 1.33(\mathrm{~s}$, $9 \mathrm{H}), 1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.1,162.9,151.5,151.1,146.3$, $143.1,142.0,132.8,130.4,129.4,128.3,127.8,125.8,125.6,125.2,124.5,61.2,60.8,38.9,34.7,34.6$, $31.2,14.4,14.1 \mathrm{ppm}$; IR (film) $v=2962,2902,1735,1702,1507,1438 \mathrm{~cm}^{-1} ;$ HRMS (ESI) m$/ \mathrm{z}$ calcd for $\mathrm{C}_{33} \mathrm{H}_{40} \mathrm{NaO}_{4} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{Na}]^{+}=587.2260$, found $=587.2266$.

Ethyl (E)-2-((4-ethoxy-1-(4-methoxyphenyl)-4-oxobut-1-en-2-yl)thio)-5-(4-methoxyphenyl)thio-phene-3-carboxylate 4d

Crude ${ }^{1} \mathrm{HNMR}$ show the E / Z ratio is $12: 1$. pale yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.50(\mathrm{~s}, 1 \mathrm{H})$, $7.43(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 21 \mathrm{H}), 7.35(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~s}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.36(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.18(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{~s}, 2 \mathrm{H})$, $1.40(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.1,162.8$, $159.6,159.4,145.7,142.7,141.8,130.9,129.9,129.3,128.1,126.7,126.0,123.8,114.3,114.0,61.2$, $61.0,60.7,55.3,55.2,38.8,14.4,14.1 \mathrm{ppm}$; IR (film) $v=2932,2834,1732,1699,1606,1507 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z calcd for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{NaO}_{6} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{Na}]^{+}=535.1220$, found $=535.1226$.

Ethyl (E)-2-((4-ethoxy-1-(4-fluorophenyl)-4-oxobut-1-en-2-yl)thio)-5-(4-fluorophenyl)thiophene-3carboxylate $\mathbf{4 e}$

Crude ${ }^{1} \mathrm{HNMR}$ show the E/Z ratio is more than 19:1. pale yellow gel; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.55(\mathrm{~s}, 1 \mathrm{H}), 7.51-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{~s}, 1 \mathrm{H}), 7.13-7.03(\mathrm{~m}, 4 \mathrm{H}), 4.36(\mathrm{q}, J=7.1$ $\mathrm{Hz}, 2 \mathrm{H}), 4.18(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.61(\mathrm{~s}, 2 \mathrm{H}), 1.40(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.9,162.7,162.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=248.9 \mathrm{~Hz}\right), 162.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=248.2 \mathrm{~Hz}\right)$, $141.5,141.5,141.2,131.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=2.7 \mathrm{~Hz}\right), 130.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=8.2 \mathrm{~Hz}\right), 129.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=3.5 \mathrm{~Hz}\right), 128.8$, $128.8,127.2\left(\mathrm{~d}, J_{\text {C-F }}=8.1 \mathrm{~Hz}\right), 125.0,116.0\left(\mathrm{~d}, J_{\text {C-F }}=22.0 \mathrm{~Hz}\right), 115.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=21.6 \mathrm{~Hz}\right), 61.4,60.9$, $38.6,14.4,14.1 \mathrm{ppm}$; IR (film) $v=2988,2917,1736,1700,1655,1507 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~F}_{2} \mathrm{NaO}_{4} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{Na}]^{+}=511.0820$, found $=511.0829$.

Ethyl (E)-2-((4-ethoxy-1-(naphthalen-2-yl)-4-oxobut-1-en-2-yl)thio)-5-(naphthalen-2-yl)thiophene-3-
carboxylate $\mathbf{4 f}$

Crude ${ }^{1} \mathrm{HNMR}$ show the E/Z ratio is more than 19:1. pale yellow gel; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.93(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.90-7.79(\mathrm{~m}, 6 \mathrm{H}), 7.78(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{dd}, J=8.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~s}, 1 \mathrm{H})$,
$7.55-7.50(\mathrm{~m}, 3 \mathrm{H}), 7.49-7.44(\mathrm{~m}, 2 \mathrm{H}), 4.42(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.23(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{~s}$, $2 \mathrm{H}), 1.45(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.30(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.0,162.8$, $146.4,142.9,142.2,133.44133 .2,133.0,132.9,132.8,130.5,129.9,129.0,128.7,128.3,128.3,128.0$, $127.9,127.7,126.7,126.6,126.5,126.2,126.1,125.4,123.9,123.5,61.3,60.9,38.9,14.4,14.2 \mathrm{ppm} ;$ IR (film) $v=3063,2980,2923,1733,1701,1596 \mathrm{~cm}^{-1} ;$ HRMS (ESI) m / z calcd for $\mathrm{C}_{33} \mathrm{H}_{28} \mathrm{NaO}_{4} \mathrm{~S}_{2}$ $[\mathrm{M}+\mathrm{Na}]^{+}=575.1321$, found $=575.1324$

Ethyl (E)-5-([1,1'-biphenyl]-4-yl)-2-((1-([1,1'-biphenyl]-4-yl)-4-ethoxy-4-oxobut-1-en-2-yl)thio)thio-phene-3-carboxylate $\mathbf{4 g}$

Crude ${ }^{1} \mathrm{HNMR}$ show the E / Z ratio is $14: 1$. pale yellow gel; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.69(\mathrm{~s}, 1 \mathrm{H})$, $7.67(\mathrm{~s}, 1 \mathrm{H}), 7.65-7.58(\mathrm{~m}, 10 \mathrm{H}), 7.50(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.37(\mathrm{dd}, J=14.1,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.40(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.22(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 2 \mathrm{H})$, $1.44(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.29(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.0,162.8$, $146.2,142.4,141.7,141.2,140.7,140.3,140.2,134.5,132.1,129.9,129.8,129.0,128.8,127.6,127.5$, $127.3,127.0,126.9,125.8,125.1,125.0,61.3,60.9,38.9,14.4,14.1 \mathrm{ppm}$; IR (film) $v=3030,2980$, 1734, 1701, 1487, $1438 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{37} \mathrm{H}_{32} \mathrm{NaO}_{4} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{Na}]^{+}=627.1634$, found $=$ 627.1641 .

Ethyl (E)-5-(benzo[d][1,3]dioxol-5-yl)-2-((1-(benzo[d][1,3]dioxol-5-yl)-4-ethoxy-4-oxobut-1-en-2-yl)-thio)thiophene-3-carboxylate $\mathbf{4 h}$

Crude ${ }^{1} \mathrm{HNMR}$ show the E / Z ratio is more than $19: 1$. pale yellow gel; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.47(\mathrm{~s}, 1 \mathrm{H}), 7.27(\mathrm{~s}, 1 \mathrm{H}), 6.99(\mathrm{~s}, 1 \mathrm{H}), 6.99-6.96(\mathrm{~m}, 1 \mathrm{H}), 6.90(\mathrm{~s}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.83$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.99(\mathrm{~s}, 2 \mathrm{H}), 5.98(\mathrm{~s}, 2 \mathrm{H}), 4.35(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.18$ $(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.64(\mathrm{~s}, 2 \mathrm{H}), 1.39(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $(101$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.0,162.8,148.2,147.9,147.7,147.6,145.7,145.6,142.7,142.7,141.9,129.6$, $127.5,124.3,122.9,119.4,108.6,108.6,108.5,106.0,101.3,101.3,61.3,60.8,38.8,14.4,14.1 \mathrm{ppm} ;$ IR (film) $v=2980,2920,1734,1701,1502,1489 \mathrm{~cm}^{-1} ;$ HRMS (ESI) m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{NaO}_{8} \mathrm{~S}_{2}$ $[\mathrm{M}+\mathrm{Na}]^{+}=563.0805$, found $=563.0813$.

Ethyl (E)-5-(2,3-dihydrobenzofuran-5-yl)-2-((1-(2,3-dihydrobenzofuran-5-yl)-4-ethoxy-4-oxobut-1-en-2-yl)thio)thiophene-3-carboxylate 4i

Crude ${ }^{1} \mathrm{HNMR}$ show the E/Z ratio is more than 19:1. pale yellow gel; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.46(\mathrm{~s}, 1 \mathrm{H}), 7.35(\mathrm{~s}, 1 \mathrm{H}), 7.31(\mathrm{~s}, 1 \mathrm{H}), 7.27-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{td}, J=8.7,6.2 \mathrm{~Hz}, 4 \mathrm{H}), 4.35(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.18(\mathrm{q}, J=$ $7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.67(\mathrm{~s}, 2 \mathrm{H}), 3.23(\mathrm{q}, J=8.3 \mathrm{~Hz}, 4 \mathrm{H}), 1.39(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$ ppm; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.1,170.2,162.9,160.4,160.1,143.4,142.3,130.4,129.0$, 128.1, 127.9, 127.6, 126.1, 126.0, 125.7, 125.2, 123.6, 122.3, 109.5, 109.4, 71.5, 71.5, 61.2, 60.7, 38.9, $29.5,29.5,14.4,14.1 \mathrm{ppm}$; IR (film) $v=2980,2922,1734,1701,1611,1491 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{NaO}_{6} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{Na}]^{+}=559.1220$, found $=559.1222$.

E. Gram scale synthesis of 21

To a dried 100 mL round-bottomed flask with a magnetic stirring bar were added ethyl buta-2,3-dienoate $\mathbf{1 1}(21.8 \mathrm{mmol}, 2.44 \mathrm{~g})$ and $\mathrm{CS}_{2}(50 \mathrm{~mL})$, followed by the addition of DPPE (2.18 mmol, 0.87 g) at room temperature. The resulting mixture was stirred overnight. After the completely consumption of $\mathbf{1 1}$ monitored by TLC, the mixture was evaporated to remove CS_{2} and the residue was purified by column chromatography on silica gel with $\mathrm{PE} / \mathrm{Ea}=10: 1$ as eluent to afford product $\mathbf{2 l}(1.8 \mathrm{~g}$, 55% yield) as a yellow oil.

F. Reaction of 21 with benzyne

To a dried sealed tube with a magnetic stirring bar were added $\operatorname{CsF}(0.4 \mathrm{mmol}, 60.8 \mathrm{mg})$ and acetonitrile (1.5 mL), followed by the addition of $\mathbf{2 1}(0.2 \mathrm{mmol}, 60.1 \mathrm{mg})$ and benzyne precursor (0.3 mmol, 89.5 mg). The resulting mixture was sealed and stirred at $100{ }^{\circ} \mathrm{C}$. After the completely
consumption of $\mathbf{1 1}$ monitored by TLC (about 12 h), the mixture was evaporated to remove solvent and the residue was purified by column chromatography on silica gel with $\mathrm{PE} / \mathrm{Ea}=10: 1$ as eluent to afford product $5(22.7 \mathrm{mg}, 55 \%$ yield $)$ as a white powder, m.p. $=46.0-48.0{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.67-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.38(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{q}, J$ $=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.38(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.1,151.0,134.5,133.2$, 129.7, 129.2, 127.2, 122.7, 60.7, $14.4 \mathrm{ppm} ; \operatorname{IR}(\mathrm{KBr}) v=2980,2927,1698,1509,1421,1260$ $\mathrm{cm}^{-1} ; \mathrm{HRMS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{O}_{2} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}=265.0351$, found $=265.0365$.

G. Transformation of 21

Step 1
To the solution of $\mathbf{2 1}(5 \mathrm{mmol}, 1.502 \mathrm{~g})$ in 25 mL anhydrous THF was added dropwise LHMDS (5.5 $\mathrm{mmol}, 5.5 \mathrm{~mL}, 1 \mathrm{~mol} / \mathrm{L}$ in THF) over 15 min at $-78^{\circ} \mathrm{C}$ under Nitrogen atmosphere. The mixture was stirred at the same temperature for one hour, and then was warmed to $0{ }^{\circ} \mathrm{C}$ and kept stirring. After the completely consumption of $\mathbf{2 l}$ monitored by TLC (about one hour), 20 mL saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution was added and separated. The aqueous phase was extracted by $\mathrm{Ea}(20 \mathrm{~mL} \times 2)$, and the organic phase was combined, dried by $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated under vacuum to remove solvent and the residue was purified by column chromatography on silica gel with $\mathrm{PE} / \mathrm{Ea}=5: 1$ as eluent to afford product $6(0.992 \mathrm{~g}, 78 \%$ yield $)$ as a white powder, m.p. $=102.8-103.6{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.73(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.48(\mathrm{~s}$, $3 \mathrm{H}), 1.39(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.6,165.9,147.4,142.6,137.1$, $132.2,125.9,125.3,61.9,21.0,14.2 \mathrm{ppm}$; IR (film) $v=3109,2920,1934,1683,1647,1507 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{O}_{3} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}=255.0144$, found $=255.0149$.

Step 2
To the solution of $\mathbf{6}(3.6 \mathrm{mmol}, 0.916 \mathrm{~g} \mathrm{~g})$ in 25 mL anhydrous DCM was added mCPBA (10.8 mmol ,
1.86 g) and the resulting mixture was stirred at room temperature. After the completely consumption of 6 monitored by TLC (about one hour), the mixture was concentrated under vacuum to remove solvent and the residue was purified by column chromatography on silica gel with $\mathrm{PE} / \mathrm{Ea}=5: 1$ as eluent to afford product $7(0.938 \mathrm{~g}, 91 \%$ yield $)$ as a white powder, m.p. $=118.2-121.2{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.69(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.37$ (t, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 171.8,162.3,150.9,144.0,137.4,133.8,130.8$, 126.2, 62.7, 14.0, 11.6 ppm ; IR (film) $v=2927,2814,2026,1724,1661,1631 \mathrm{~cm}^{-1} ;$ HRMS (ESI) m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{O}_{5} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}=287.0042$, found $=287.0044$.

Step 3
To a 25 mL round-bottomed flask with a magnetic stirring bar were added compound 7 ($2 \mathrm{mmol}, 0.572$ $\mathrm{g})$ and $10 \% \mathrm{Pd} / \mathrm{C}(60 \mathrm{mg})$, followed by the addition of 10 mL Methanol. The RBF was connected with vacuum bump and Hydrogen balloon. After switched 4 times of vacuum and Hydrogen, the mixture was stirred at room temperature overnight. when compound 7 was completely consumed monitored by TLC, the mixture was filtered through a short pad of Celite and the filtrate was concentrated under vacuum to remove solvent to afford crude product $\mathbf{8}$, which was used directly in the next step.

Step 4
To the solution of above product $\mathbf{8}$ in 10 mL DMSO was added $\mathrm{LiCl}(2 \mathrm{mmol}, 84.8 \mathrm{mg})$, and the resulting solution was stirred at $100^{\circ} \mathrm{C}$. After the completely consumption of $\mathbf{8}$ monitored by TLC (about 6 hour), the mixture was cooled to room temperature, then added 20 mL water and 20 mL ether. After separation, the aqueous phase was extracted by ether ($20 \mathrm{~mL} \times 2$). The organic phase was combined, washed by brine, dried by $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated under vacuum to remove solvent and the residue was purified by column chromatography on silica gel with $\mathrm{PE} / \mathrm{Ea}=$ 5:1 as eluent to afford product $9(272.5 \mathrm{mg}, 63 \%$ yield in two steps) as a white powder, m.p. $=99.9-$ $102{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.60(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{ddd}, J=$ $9.3,6.9,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.41-3.03(\mathrm{~m}, 2 \mathrm{H}), 1.56(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $186.5,146.8,139.8,130.6,126.1,58.0,44.7,11.7$; $\mathrm{HRMS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{O}_{3} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}=$ 216.9988 , found $=216.9989$.

H. Control experiment with Maleimide

To a dried sealed tube with a magnetic stirring bar were added allenoate $\mathbf{1 a}(0.4 \mathrm{mmol}, 75.3 \mathrm{mg})$, N-phenyl Maleimide ($4 \mathrm{mmol}, 692.7 \mathrm{mg}$) and $\mathrm{CS}_{2}(2 \mathrm{~mL})$. After the mixture became clear, DPPE (0.04 $\mathrm{mmol}, 15.9 \mathrm{mg}$) was added and the mixture was stirred at room temperature overnight. When allenoate 1a was completely consumed monitored by TLC, the mixture was purified directly by column chromatography on silica gel with $\mathrm{PE} / \mathrm{Ea}$ as eluent to afford product $\mathbf{2 a}(50.7 \mathrm{mg}, 56 \%$ yield) and $\mathbf{1 0}$ $(17.5 \mathrm{mg}, 10 \%$ yield $)$ as a yellow solid, m.p. $=137.2-139.0^{\circ} \mathrm{C},{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.49-$ $7.35(\mathrm{~m}, 8 \mathrm{H}), 7.27-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.20(\mathrm{~s}, 1 \mathrm{H}), 5.30(\mathrm{~s}, 2 \mathrm{H}), 4.43(\mathrm{dd}, J=9.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{dd}, J$ $=19.0,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{dd}, J=19.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $173.8,173.3,162.2,142.6,135.6,135.0,134.6,131.5,129.2,128.8,128.6,128.4,128.2,126.3,66.8$, 44.7, 35.3, $15.4 \mathrm{ppm} ; \operatorname{IR}(\mathrm{KBr}) v=2914,2843,1783,1716,1702,1495 \mathrm{~cm}^{-1} ;$ HRMS (ESI) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{NNaO}_{4} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{Na}]^{+}=460.0648$, found $=460.0655$.

I. X-Ray crystallographic analysis of 4a

Figure 1. X-ray structure of $\mathbf{4 a}$
Table 1. Crystal data and structure refinement for $\mathbf{4 a}$ (CCDC 2018743)

Empirical formula
Formula weight
Temperature
Wavelength
$\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{~S}_{2}$
452.56

296K
$0.71073 \AA$

Crystal system	monoclinic
Space group	P 1 21/c 1
Unit cell dimensions	$a=10.917$ (3) $\AA \quad \alpha=90^{\circ}$.
	$\mathrm{b}=7.526(3) \AA$ A $\quad \beta=100.154^{\circ}$.
	$\mathrm{c}=26.688(11) \AA \quad \gamma=90^{\circ}$.
Volume	$2320.1(14) \AA^{3}$
Z	4
Density (calculated)	$1.296 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.258 \mathrm{~mm}^{-1}$
$F(000)$	952
Crystal size	$0.664 \times 0.305 \times 0.16 \mathrm{~mm}^{3}$
Theta range for data collection	2.576 to 30.548°.
Index ranges	$-15<=\mathrm{h}<=15,-10<=\mathrm{k}<=10,-40<=1<=40$
Reflections collected	38600
Independent reflections	$7096[\mathrm{R}(\mathrm{int})=0.0330]$
Completeness to theta $=25.242^{\circ}$	99.9 \%
Absorption correction	multi-scan from equivalents
Max. and min. transmission	1.00000 and 0.9073
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	7096 / 0 / 282
Goodness-of-fit on F^{2}	1.031
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0462, \mathrm{wR} 2=0.1241$
R indices (all data)	$\mathrm{R} 1=0.0614, \mathrm{wR} 2=0.1377$
Largest diff. peak and hole	0.454 and -0. 408 e..$^{-3}$

J. Reference

1. Rout, L.; Harned, A. M. Chem. Eur. J. 2009, 15, 12926-12928.
2. Kalek, M.; Fu. G. C. J. Am. Chem. Soc. 2015, 137, 9438 - 9442.

K. Spectra

1 h

$\stackrel{\circ}{6}$	8	৪®ூஜூ	¢	¢8inctis
-	$\stackrel{\stackrel{1}{6}}{1}$			
$\stackrel{1}{1}$	I	-	,	$\xrightarrow{ }$

	ハロロボN	$\stackrel{1}{8}$	각
	Nへi¢		ம่อ
\bigcirc－－－	7		

아 앙		8オザゆ0
－${ }_{-1}$		
।	$\downarrow \longmapsto$	$\rightarrow 1 \sim$

250

| 250 | 240 | 230 | 220 | 210 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{fl}(\mathrm{ppm})$ | | | | | | | | | | | | | | |

