Supporting Information for:

Iron(II)-Induced Cycloisomerization of Alkynes via "Non-Vinylidene" Pathways for Iron(II)–Indolizine and –Indolizinone Complexes

Siu-Chung Chan,[‡] Chi-Fung Yeung,[‡] Hau-Lam Shek, Sze-Wing Ng, Sheung-Ying Tse, Man-Kit Tse, Shek-Man Yiu,^a and Chun-Yuen Wong^{*}

Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR

‡ These authors contributed equally to this work.

E-mail: acywong@cityu.edu.hk

Contents	Page
General Procedures	S2
Synthesis of 1–6	S2
X-ray crystallography	S6
Perspective views of 1, 3, 4 and 6 as represented by 30 % probability ellipsoids	S7
Computational Methodology	S9
Potential Energy Surfaces Calculated at DFT Level for the formation of L2 and L5	S9
Characterization of the Optimized Structures by Frequencies Calculations	S10
Cartesian Coordinates for the DFT Optimized Structures	S13
References	S42
NMR Spectra for 1–6	S43
IR Spectra for 1–6	S85

General Procedures

All reactions were performed under an argon atmosphere using standard Schlenk techniques unless otherwise stated. All reagents were used as received, and solvents for reactions were purified by a PureSolv MD5 solvent purification system. The [15]ane(phenN₂)S₃¹, Fe(CH₃CN)₂(OTf)₂² and propargylic pyridines³/pyridyl ynones⁴ were prepared in accordance with literature methods. ¹H, ¹³C{¹H}, ¹⁹F{¹H}, ¹H–¹H COSY, ¹H–¹H ROESY, ¹H–¹³C HSQC and ¹H–¹³C HMBC NMR spectra were recorded on Bruker 600 AVANCE III FT-NMR spectrometers. Peak positions of ¹H and ¹³C{¹H} NMR spectra were calibrated with solvent residue peaks as internal standard, and those of ¹⁹F{¹H} NMR spectra were calibrated with hexafluorobenzene as external standard. Labeling scheme for H and C atoms in the NMR assignments is shown in Scheme S1. Electrospray ionization mass spectrometry was performed on a PE-SCIEX API 3200 triple quadrupole mass spectrometer. Elemental analyses were done on an Elementar Vario Micro Cube carbon-hydrogen-nitrogen elemental microanalyzer. Infrared spectra were recorded as KBr plates on a Perkin-Elmer Spectrum 100 FTIR spectrometer.

Evans NMR measurements were performed to confirm the diamagnetic nature of complexes 1-6.⁵⁻⁸ Briefly, the procedure involves placement of a coaxial insert containing a solution of the Fe complex into a standard 5 mm NMR tube with solvent only. Both the inner and outer solvents (CD₃OD) contain 5% of benzene, and the chemical shift differences between the inner and outer benzene were used to determine the magnetic susceptibility of the complex. Since no differences in the benzene chemical shift were observed for 1-6, the Fe complexes in this work were confirmed to be diamagnetic.

Scheme S1. Labeling scheme for H and C atoms of the complexes in this work.

Synthesis of [Fe(CH₃CN)₂(OTf)₂]

The metal precursor was synthesized from a modified literature procedure². To a solution of FeCl₂ (0.50 g, 3.94 mmol) in anhydrous CH₃CN (20 mL) was added (CH₃)₃SiOTf (4 mL in 10 mL anhydrous CH₃CN, 22.09 mmol) in dropwise manner. The reaction mixture was stirred under argon for 16 h, during which

the color of the reaction mixture changed from pale yellow to colorless. The colorless solution was concentrated to about 5 mL by reduced pressure, and then added to Et_2O (150 mL) to give white precipitates. The solids were collected by suction filtration, washed with Et_2O (10 mL × 3) and dried by reduced pressure to give [Fe(CH₃CN)₂(OTf)₂] (yield: 1.20 g, 70 %).

Synthesis of 1(OTf)₂

A mixture of $[Fe(CH_3CN)_2(OTf)_2]$ (0.39 g, 0.89 mmol) and $[15]ane(phenN_2)S_3$ (0.32 g, 0.89 mmol) was stirred in CH₃CN (30 mL) under ambient condition for 16 h, during which the color of the reaction mixture changed from red to deep red with pale yellow precipitates. Upon centrifugation for removal of these precipitates, the supernatant was collected and concentrated to give deep red precipitates. The solids were collected by suction filtration and washed with Et₂O (10 mL × 3). Recrystallization by slow diffusion of Et₂O solution into a (CH₃)₂CO solution of the deep red solids under argon gave analytically pure $1(OTf)_2$ as orange crystals.

Complex 1(OTf)₂. Yield: 0.46 g, 71 %. Anal. Calcd for C₂₀H₂₀F₆FeN₂O₇S₅: C, 32.88; H, 2.76; N, 3.83. Found: C, 32.98; H, 2.74; N, 3.74. ¹H NMR (600 MHz, CD₃CN): δ 2.27–2.37 (m, 2H, *CH*₂ on [15]ane(phenN₂)S₃), 2.89–2.91 (m, 2H, *CH*₂ on [15]ane(phenN₂)S₃), 2.95–3.04 (m, 2H, *CH*₂ on [15]ane(phenN₂)S₃), 3.14–3.22 (m, 2H, *CH*₂ on [15]ane(phenN₂)S₃), 4.77 (d, *J* = 18.0 Hz, 2H, *CH*₂ on [15]ane(phenN₂)S₃), 5.06 (d, *J* = 18.0 Hz, 2H, *CH*₂ on [15]ane(phenN₂)S₃), 8.13 (d, *J* = 6.0 Hz, 2H, H_b), 8.27 (s, 2H, H_f), 8.66 (d, *J* = 6.0 Hz, 2H, H_c). ¹³C{¹H} NMR (150 MHz, CD₃CN): δ 36.40, 39.65, 49.38 (*C*H₂ on [15]ane(phenN₂)S₃), 123.82 (C_b), 127.99 (C_f), 129.85 (C_d), 136.81 (C_c), 150.01 (C_e), 167.41 (C_a). ¹⁹F{¹H} NMR (564 MHz, CD₃CN): δ –79.31. ESI-MS found (calcd): m/z 563.30 (563.46) [C₁₉H₁₈F₃FeN₂O₃S₄]⁺. IR (KBr, cm⁻¹): *v*_{0-H} 3380 (broad).

Synthesis of 2–6(OTf)₂

A mixture of $1(OTf)_2$ (0.10 g, 0.14 mmol) and pyridine-tethered alkynes (0.03 g for 2-(pyridine-2-yl)but-3-yn-2-ol, 0.03 g for 4-phenyl-2-(pyridine-2-yl)but-3-yn-2-ol, 0.04 g for 2-(quinoline-2-yl)but-3-yn-2-ol, 0.03 g for 1-(2-pyridinyl)-2-propyn-1-one, 0.04 g for 3-phenyl-1-(2-pyridinyl)-2-propyn-1-one, 0.21 mmol) was stirred in MeOH (30 mL) under ambient condition for 16 h, during which the color of reaction mixture changed from brown to deep purple with white precipitates. Upon centrifugation for removal of these precipitates, the supernatant was collected and concentrated to give deep purple precipitates. The solids were collected by suction filtration and washed with Et₂O (10 mL × 3). Recrystallization by slow diffusion of Et₂O solution into a MeOH solution of the deep purple solids gave analytically pure **2**– **6**(OTf)₂ as purple crystals.

Complex **2**(OTf)₂. Yield: 0.09 g, 73 %. Anal. Calcd for C₂₉H₂₇F₆FeN₃O₇S₅: C, 40.52; H, 3.17; N, 4.89. Found: C, 40.54; H, 3.15; N, 4.91. ¹H NMR (600 MHz, CD₃OD): δ 1.32 (s, 3H, *C*H₃), 2.35–2.50 (m, 2H, *CH*₂ on [15]ane(phenN₂)S₃), 2.98–3.12 (m, 4H, *CH*₂ on [15]ane(phenN₂)S₃), 3.15–3.25 (m, 2H, *CH*₂ on [15]ane(phenN₂)S₃), 4.65–4.81 (m, 4H, *CH*₂ on [15]ane(phenN₂)S₃), 5.63 (s, 1H, H_s), 7.61 (t, *J* = 6.0 Hz, 1H, H_n), 7.87 (d, *J* = 6.0 Hz, 1H, H_p), 7.93 (d, *J* = 6.0 Hz, 1H, H_k), 8.01 (t, *J* = 6.0 Hz, 1H, H_o), 8.05 (d, *J* = 6.0 Hz, 1H, H_b), 8.18–8.20 (m, 2H, H_g + H_m), 8.23 (d, *J* = 6.0 Hz, 1H, H_f), 8.46 (d, *J* = 6.0 Hz, 1H, H_j), 8.56 (d, *J* = 6.0

Hz, 1H, H_c). ¹³C{¹H} NMR (150 MHz, CD₃OD): δ 24.74 (*C*H₃), 34.20, 34.56, 42.13, 42.61, 50.36 (*C*H₂ on [15]ane(phenN₂)S₃), 90.60 (C_r), 121.77 (C_p), 121.94 (C_k), 122.15 (C_b), 127.11 (C_n), 127.91 (C_g), 129.97 (C_f), 130.13 (C_i), 130.38 (C_d), 130.94 (C_s), 132.28 (C_m), 133.80 (C_j), 134.04 (C_c), 139.81 (C_o), 149.48 (C_h), 149.79 (C_e), 165.65 (C_i), 165.93 (C_a), 167.85 (C_q), 189.74 (Fe–C). ¹⁹F{¹H} NMR (564 MHz, CD₃OD): δ –80.02. ESI-MS found (calcd): m/z 710.30 (710.64) [C₂₈H₂₇F₃FeN₃O₄S₄]⁺. IR (KBr, cm⁻¹): *v*_{O-H} 3457 (broad).

Complex **3**(OTf)₂. Yield: 0.08 g, 61 %. Anal. Calcd for C₃₅H₃₁F₆FeN₃O₇S₅: C, 44.92; H, 3.34; N, 4.49. Found: C, 44.95; H, 3.37; N, 4.52. ¹H NMR (600 MHz, CD₃OD): δ 1.95–2.03 (m, 1H, CH₂ on [15]ane(phenN₂)S₃), 2.055 (s, 3H, CH₃), 2.35–2.43 (m, 1H, CH₂ on [15]ane(phenN₂)S₃), 2.46–2.52 (m, 1H, CH₂ on [15]ane(phenN₂)S₃), 2.52–2.59 (m, 1H, CH₂ on [15]ane(phenN₂)S₃), 2.91–2.99 (m, 1H, CH₂ on [15]ane(phenN₂)S₃), 3.12–3.17 (m, 2H, CH₂ on [15]ane(phenN₂)S₃), 3.30–3.40 (overlapped with CD₃OD; 1H, CH₂ on [15]ane(phenN₂)S₃), 4.65 (m, 1H, CH₂ on [15]ane(phenN₂)S₃), 4.73–4.79 (m, 3H, CH₂ on [15]ane(phenN₂)S₃), 5.54 (d, *J* = 6.0 Hz, 1H, H_u), 6.44 (d, *J* = 6.0 Hz, 1H, H_v), 6.68 (d, *J* = 6.0 Hz, 1H, H_v), 6.90 (d, *J* = 6.0 Hz, 1H, H_k), 6.96 (d, *J* = 6.0 Hz, 1H, H_w), 7.08 (d, *J* = 6.0 Hz, 1H, H_m), 7.52 (m, 1H, H_n), 7.83 (d, *J* = 6.0 Hz, 1H, H_k), 8.80 (d, *J* = 6.0 Hz, 1H, H_k), 8.15–8.10 (m, 3H, H_p + H_j + H₀), 8.52 (d, *J* = 6.0 Hz, 1H, H_c). ¹³C{¹H} NMR (150 MHz, CD₃OD): δ 25.89 (CH₃), 32.61, 33.12, 38.35, 40.36, 49.52, 51.06 (CH₂ on [15]ane(phenN₂)S₃), 90.43 (C_r), 121.45 (C_p), 121.66 (C_k), 122.39 (C_b), 127.01 (C_n), 127.47 (C_f), 128.00 (C_g), 128.92 (C_v), 129.39 (C_i), 129.66 (C_x), 130.00 (C_d + C_m + C_w), 130.10 (C_t), 130.51 (C_y), 130.56 (C_u), 133.72 (C_c), 134.12 (C_j), 140.34 (C_o), 143.39 (C_s), 150.06 (C_h), 150.45 (C_e), 166.00 (C_a), 166.36 (C_i), 167.30 (C_q), 177.33 (Fe–C). ¹⁹F¹H} NMR (564 MHz, CD₃OD): δ –79.98. ESI-MS found (calcd): m/z 786.40 (786.73) [C₃₄H₃₁F₃FeN₃O₄S4]⁺. IR (KBr, cm⁻¹): v_{O+H} 3412 (broad).

Complex **4**(OTf)₂. Yield: 0.08 g, 61 %. Anal. Calcd for $C_{33}H_{29}F_6FeN_3O_7S_5$: C, 43.57; H, 3.21; N, 4.62. Found: C, 43.67; H, 3.24; N, 4.64. ¹H NMR (600 MHz, CD₃NO₂): δ 1.23 (s, 3H, CH₃), 2.48–2.61 (m, 2H, CH₂ on [15]ane(phenN₂)S₃), 3.05–3.28 (m, 6H, CH₂ on [15]ane(phenN₂)S₃), 3.59 (s, 1H, OH), 4.62–4.90 (m, 4H, CH₂ on [15]ane(phenN₂)S₃), 6.53 (s, 1H, H_w), 7.83 (t, *J* = 7.7 Hz, 1H, H_p), 7.88 (d, *J* = 8.9 Hz, 1H, H_n), 7.93–7.98 (m, 3H, H_k+H₀+H_s/H_t), 8.08 (d, *J* = 8.4 Hz, 1H, H_b), 8.18 (d, 1H, *J* = 8.0 Hz, H_q), 8.21–8.27 (m, 2H, H_g+H_f), 8.47 (d, *J* = 8.3 Hz, 1H, H_j), 8.58–8.68 (m, 2H, H_t/H_s+H_c). ¹³C{¹H} NMR (150 MHz, CD₃NO₂): δ 24.55 (CH₃), 34.52, 34.98, 42.35, 42.46, 50.03, 50.77 (CH₂ on [15]ane(phenN₂)S₃), 92.70 (C_v), 117.62 (C_s/C_t), 118.84 (C_n), 122.05 (C_k), 122.35 (C_b), 127.79 (C_w), 128.14 (C_g), 128.21 (C_f), 130.32 (C_d), 130.48 (C_m), 130.54 (C_i), 130.79 (C_p), 131.04 (C_q), 131.49 (C_r), 134.20 (C_j), 134.37 (C_c), 135.69 (C_o), 141.22 (C_t/C_s), 149.85 (C_h), 150.21 (C_e), 165.48 (C_i), 165.77 (C_a), 170.84 (C_u), 187.63 (Fe–C). ¹⁹F{¹H} NMR (564 MHz, CD₃OD): δ –80.07. ESI-MS found (calcd): m/z 760.30 (760.69) [C₃₂H₂₉F₃FeN₃O₄S₄]⁺. IR (KBr, cm⁻¹): v_{O-H} 3422 (broad).

Complex **5**(OTf)₂. Yield: 0.07 g, 59 %. Anal. Calcd for C₂₈H₂₃F₆FeN₃O₇S₅: C, 39.86; H, 2.75; N, 4.98. Found: C, 39.95; H, 2.77; N, 5.02. ¹H NMR (600 MHz, CD₃NO₂): δ 2.60–2.65 (m, 2H, CH₂ on [15]ane(phenN₂)S₃), 3.07–3.14 (m, 4H, CH₂ on [15]ane(phenN₂)S₃), 3.17–3.22 (m, 2H, CH₂ on [15]ane(phenN₂)S₃), 4.57–4.64 (m, 4H, CH₂ on [15]ane(phenN₂)S₃), 7.47 (s, 1H, H_m), 7.72 (d, *J* = 7.5 Hz, 1H, H_j), 7.85 (t, *J* = 6.8 Hz, 1H, H_h), 7.98 (d, *J* = 8.4 Hz, 2H, H_c), 8.15 (d, *J* = 5.7 Hz, 1H, H_g), 8.22 (t, *J* = 7.8 Hz, 1H, H_i), 8.24 (s, 2H, H_f), 8.52 (d, *J* = 8.4 Hz, 2H, H_b). ¹³C{¹H} NMR (150 MHz, CD₃NO₂): δ 35.06, 41.76, 50.23 (CH₂ on [15]ane(phenN₂)S₃),

122.19 (C_j), 122.36 (C_c), 128.01 (C_f), 130.18 (C_e), 131.86 (C_h), 134.18 (C_g), 134.67 (C_b), 140.90 (C_k), 144.85 (C_i), 150.03 (C_d), 154.32 (C_m), 164.80 (C_a), 167.19 (C_l), 192.34 (Fe–C). ¹⁹F{¹H} NMR (564 MHz, CD₃OD): δ –79.65. ESI-MS found (calcd): m/z 694.40 (694.59) [C₂₇H₂₃F₃FeN₃O₄S₄]⁺. IR (KBr, cm⁻¹): $v_{C=O}$ 1704.

Complex **6**(OTf)₂. Yield: 0.09 g, 75%. Anal. Calcd for $C_{34}H_{27}F_6FeN_3O_7S_5$: C, 44.40; H, 2.96; N, 4.57. Found: C, 44.48; H, 2.98; N, 4.60. ¹H NMR (600 MHz, CD₃NO₂): δ 2.45–2.50 (m, 2H, CH₂ on [15]ane(phenN₂)S₃), 2.78–2.82 (m, 2H, CH₂ on [15]ane(phenN₂)S₃), 2.89–2.93 (m, 2H, CH₂ on [15]ane(phenN₂)S₃), 3.36–3.40 (m, 2H, CH₂ on [15]ane(phenN₂)S₃), 4.51–4.59 (m, 4H, CH₂ on [15]ane(phenN₂)S₃), 5.95 (d, *J* = 7.0 Hz, 2H, H₀), 6.54 (t, *J* = 7.7 Hz, 2H, H_p), 6.88 (t, *J* = 7.5 Hz, 1H, H_q), 7.31 (d, *J* = 5.8 Hz, 1H, H_g), 7.72 (t, *J* = 6.6 Hz, 1H, H_h), 7.92 (s, 2H, H_f), 7.98 (d, *J* = 8.3 Hz, 2H, H_c), 8.14 (d, *J* = 7.5 Hz, 2H, H_j), 8.33 (t, *J* = 8.3 Hz, 1H, H_i), 8.34 (d, *J* = 8.3 Hz, 2H, H_b). ¹³C{¹H} NMR (150 MHz, CD₃NO₂): δ 34.15, 39.84, 50.28 (CH₂ on [15]ane(phenN₂)S₃), 122.06 (C_j), 122.47 (C_c), 128.08 (C_f), 128.10 (C_n), 128.63 (C_o), 129.41 (C_p), 130.13 (C_e), 131.12 (C_q), 131.54 (C_h), 131.88 (C_g), 134.64 (C_b), 141.81 (C_k), 144.83 (C_i), 149.68 (C_d), 160.44 (C_m), 164.99 (C_a), 165.34 (C_i), 192.36 (Fe–C). ¹⁹F{¹H} NMR (564 MHz, CD₃OD): δ –80.07. ESI-MS found (calcd): m/z 770.50 (770.69) [C₃₃H₂₇F₃FeN₃O₄S₄]⁺. IR (KBr, cm⁻¹): v_{C=0} 1704.

X-Ray Crystallography

Complex $1(OTf)_2$ (CCDC 2017986): A specimen of $C_{20}H_{20}F_6FeN_2O_7S_5$ was used for the X-ray crystallographic analysis. A total of 1193 frames were collected. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using a monoclinic unit cell yielded a total of 24565 reflections to a maximum θ angle of 74.47° (0.80 Å resolution), of which 5543 were independent (average redundancy 4.432, completeness = 99.5%, R_{int} = 6.62%, R_{sig} = 5.47%) and 4312 (77.79%) were greater than $2\sigma(F^2)$. The final cell constants of <u>a</u> = 24.4848(7) Å, <u>b</u> = 11.4726(3) Å, <u>c</u> = 20.4806(6) Å, β = 108.7380(10)°, volume = 5448.2(3) Å³, are based upon the refinement of the XYZ-centroids of 8828 reflections above 20 $\sigma(I)$ with 8.599° < 2 θ < 148.8°. Data were corrected for absorption effects using the Multi-Scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.534.

The structure was solved and refined using the Bruker SHELXTL Software Package, using the space group C2/c, with Z = 8 for the formula unit, $C_{20}H_{20}F_6FeN_2O_7S_5$. The final anisotropic full-matrix least-squares refinement on F² with 442 variables converged at R1 = 5.95%, for the observed data and wR2 = 18.71% for all data. The goodness-of-fit was 1.178. The largest peak in the final difference electron density synthesis was 0.604 e⁻/Å³ and the largest hole was -0.671 e⁻/Å³ with an RMS deviation of 0.092 e⁻/Å³. On the basis of the final model, the calculated density was 1.781 g/cm³ and F(000), 2960 e⁻.

Complex **3**(OTf)₂ (CCDC 2017987): A specimen of $C_{35}H_{31}F_6FeN_3O_7S_5$ was used for the X-ray crystallographic analysis. A total of 196 frames were collected. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using an orthorhombic unit cell yielded a total of 54076 reflections to a maximum θ angle of 26.37° (0.80 Å resolution), of which 7689 were independent (average redundancy 7.033, completeness = 99.9%, R_{int} = 11.15%, R_{sig} = 6.82%) and 5467 (71.10%) were greater than $2\sigma(F^2)$. The final cell constants of <u>a</u> = 14.2635(4) Å, <u>b</u> = 17.4695(6) Å, <u>c</u> = 30.1975(10) Å, volume = 7524.5(4) Å³, are based upon the refinement of the XYZ-centroids of 8513 reflections above 20 $\sigma(I)$ with 4.663° < 2 θ < 52.65°. Data were corrected for absorption effects using the Multi-Scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.812.

The structure was solved and refined using the Bruker SHELXTL Software Package, using the space group Pbca, with Z = 8 for the formula unit, $C_{35}H_{31}F_6FeN_3O_7S_5$. The final anisotropic full-matrix least-squares refinement on F² with 516 variables converged at R1 = 5.04%, for the observed data and wR2 = 12.24% for all data. The goodness-of-fit was 1.026. The largest peak in the final difference electron density synthesis was 0.742 e⁻/Å³ and the largest hole was -0.529 e⁻/Å³ with an RMS deviation of 0.087 e⁻/Å³. On the basis of the final model, the calculated density was 1.652 g/cm³ and F(000), 3824 e⁻.

Complex $4(OTf)_2$ (CCDC 2017988): A specimen of $C_{33}H_{29}F_6FeN_3O_7S_5$ was used for the X-ray crystallographic analysis. A total of 919 frames were collected. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using a triclinic unit cell yielded a total of 53395 reflections to a maximum θ angle of 26.44° (0.80 Å resolution), of which 14806 were independent (average redundancy 3.606, completeness = 99.4%, R_{int} = 7.72%, R_{sig}

= 7.10%) and 11317 (76.44%) were greater than $2\sigma(F^2)$. The final cell constants of <u>a</u> = 13.0248(8) Å, <u>b</u> = 13.4754(9) Å, <u>c</u> = 21.3868(13) Å, α = 86.090(2)°, β = 76.878(2)°, γ = 81.685(2)°, volume = 3614.8(4) Å³, are based upon the refinement of the XYZ-centroids of 9964 reflections above 20 $\sigma(I)$ with 4.740° < 20 < 52.60°. Data were corrected for absorption effects using the Multi-Scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.723. The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.5374 and 0.7454.

The structure was solved and refined using the Bruker SHELXTL Software Package, using the space group P-1, with Z = 4 for the formula unit, $C_{33}H_{29}F_6FeN_3O_7S_5$. The final anisotropic full-matrix least-squares refinement on F² with 1139 variables converged at R1 = 9.37%, for the observed data and wR2 = 27.45% for all data. The goodness-of-fit was 1.018. The largest peak in the final difference electron density synthesis was 1.786 e⁻/Å³ and the largest hole was -1.215 e⁻/Å³ with an RMS deviation of 0.124 e⁻/Å³. On the basis of the final model, the calculated density was 1.672 g/cm³ and F(000), 1856 e⁻.

Complex **6**(OTf)₂ (CCDC 2017989): A specimen of C₄₀H₄₂F₆FeN₃O_{8.5}S₅ was used for the X-ray crystallographic analysis. A total of 936 frames were collected. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using a triclinic unit cell yielded a total of 68716 reflections to a maximum θ angle of 26.42° (0.80 Å resolution), of which 9071 were independent (average redundancy 7.575, completeness = 99.7%, R_{int} = 14.34%, R_{sig} = 8.90%) and 6005 (66.20%) were greater than 2 σ (F²). The final cell constants of <u>a</u> = 10.2770(5) Å, <u>b</u> = 14.2819(8) Å, <u>c</u> = 15.9309(9) Å, α = 88.000(2)°, β = 71.475(2)°, γ = 89.017(2)°, volume = 2215.7(2) Å³, are based upon the refinement of the XYZ-centroids of 9488 reflections above 20 σ (I) with 5.011° < 2 θ < 51.75°. Data were corrected for absorption effects using the Multi-Scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.677.

The structure was solved and refined using the Bruker SHELXTL Software Package, using the space group P-1, with Z = 2 for the formula unit, $C_{40}H_{42}F_6FeN_3O_{8.50}S_5$. The final anisotropic full-matrix least-squares refinement on F² with 599 variables converged at R1 = 7.56%, for the observed data and wR2 = 23.04% for all data. The goodness-of-fit was 1.031. The largest peak in the final difference electron density synthesis was 1.039 e⁻/Å³ and the largest hole was -0.629 e⁻/Å³ with an RMS deviation of 0.107 e⁻/Å³. On the basis of the final model, the calculated density was 1.545 g/cm³ and F(000), 1062 e⁻.

Figure S1. Perspective views of **1**, **3**, **4** and **6** (from left to right) as represented by 30 % probability ellipsoids (hydrogen atoms on $[15]ane(phenN_2)S_3$ of **3**, **4** and **6** are omitted for clarity).

Complex	1 (OTf) ₂	3 (OTf) ₂	4 (OTf) ₂ ^{<i>a</i>}	6 (OTf) ₂
Fe-N(1)	2.145(3)	1.920(3)	1.910(5), 1.918(5)	1.908(4)
Fe–N(2)	2.141(3)	1.914(3)	1.910(5), 1.908(5)	1.921(4)
Fe-S(1)	2.536 (1)	2.285(1)	2.248(2), 2.266(2)	2.250 (1)
Fe–S(2)	2.569(1)	2.310(1)	2.315 (2), 2.310(2)	2.310(1)
Fe–S(3)	2.549(1)	2.292(1)	2.271(2), 2.267 (2)	2.249(1)
Fe-O(1)	2.050(3)	_	_	_
Fe-C(1)	_	2.005(3)	1.976(5), 1.982(6)	1.977(5)
C(1)-C(2)	_	1.555(5)	1.530(8), 1.527(9)	1.493(7)
C(2)–C(3)	_	1.501(5)	1.515(8), 1.522(9)	1.498(7)
C(3)–N(3)	_	1.352(4)	1.339(8), 1.323(8)	1.359(7)
N(3)–C(4)	_	1.477(4)	1.437(7), 1.437(7)	1.482(6)
C(4)-C(1)	_	1.346(5)	1.352(7), 1.342(8)	1.340(7)
C(2)–C(9)	_	1.509(5)	1.503(8), 1.470(8)	_
C(2)-O(1)	_	1.441(4)	1.450(7), 1.457(8)	1.216(6)
N(1)-Fe-N(2)	76.95(13)	82.78(12)	82.4(2), 82.6(2)	82.38(18)
N(2)–Fe–S(3)	78.29(10)	82.65(9)	84.57(15), 83.31(17)	84.37(15)
S(1)–Fe–S(3)	124.61(5)	110.09(4)	108.59(7), 109.60(7)	108.37(6)
N(1)-Fe-S(1)	78.64(9)	84.01(9)	84.40(17), 84.53(16)	84.83(12)
O(1)-Fe-S(2)	168.07(11)	_	_	_
Fe-C(1)-C(2)	_	124.9(2)	131.4(4), 131.5(4)	121.2(3)
Fe-C(1)-C(4)	_	128.6(3)	121.9(4), 122.2(5)	133.4(4)
C(2)-C(1)-C(4)	_	106.5(3)	106.7(5), 106.3(5)	105.3(4)

Table S1. Selected bond lengths (Å) and bond angles (deg) for 1(OTf)₂, 3(OTf)₂, 4(OTf)₂ and 6(OTf)₂.

^{*a*} The crystal contains two crystallographically independent cations in the asymmetric unit; structural data are listed in the order of Fe(1) moiety and then Fe(2) moiety.

Computational Methodology

Three reaction pathways were modelled by Density Functional Theory (DFT) calculations using the ORCA software package (version 4.2.1):⁹ (a) cycloisomerizations of alkynes L2 and L5 to give zwitterions 2' and 5' respectively; (b) {[Fe([15]ane(phenN₂)S₃)]²⁺-L2} and {[Fe([15]ane(phenN₂)S₃)]²⁺-L5} Fe-alkyne π complexes (denoted as $2-\pi$ and $5-\pi$ respectively) to give Fe–indolizine and –indolizinone complexes 2 and **5** respectively, and (c) $2-\pi$ and $5-\pi$ to give Fe–vinylidene complexes 2v and 5v respectively. All the calculated structures were optimized in the gas phase using the PBEO functional.¹⁰ The def2-SVP basis sets were used for all atoms.¹¹ The combination of the resolution of the identity and the "chain of spheres exchange" algorithms (RIJCOSX)¹² was used to accelerate the calculations with the use of appropriate auxiliary basis sets. Dispersion effects were accounted for using the semiempirical van der Waals corrections by Grimme.¹³ Tight SCF convergence criteria were used throughout. The nature of all the optimized stationary points was characterized by frequency calculations; that is, local minima were confirmed by the absence of imaginary vibrational frequencies, and only one imaginary frequency was found for each transition state. The effect of solvent (methanol) on the energies of the optimized structures was treated by the employment of the conductor-like polarizable continuum model (CPCM).¹⁴ The energies depicted in Figures 2 and S2 are zero-point and thermal energy corrected (temperature = 298.15 K).

Figure S2. Potential energy surfaces calculated at the DFT level (functional = PBE0; solvent = MeOH; 298.15 K) for the *5-endo-dig* cycloisomerizations of alkynes **L2** and **L5** to give zwitterions **2'** and **5'** respectively. Important bond distances (Å) are depicted in red.

Structure	Vibrational Frequencies ^α			
L 2	0:	0.00 cm**-1	5:	0.00 cm**-1
	1:	0.00 cm**-1	6:	42.53 cm**-1
	2:	0.00 cm**-1	7:	94.83 cm**-1
	3:	0.00 cm**-1	8:	165.55 cm**-1
	4:	0.00 cm**-1	9:	177.12 cm**-1
2'-TS	0:	0.00 cm**-1	5:	0.00 cm**-1
	1:	0.00 cm**-1	6:	-340.80 cm**-1 ***imaginary mode***
	2:	0.00 cm**-1	7:	130.63 cm**-1
	3:	0.00 cm**-1	8:	154.24 cm**-1
	4:	0.00 cm**-1	9:	261.67 cm**-1
2'	0:	0.00 cm**-1	5:	0.00 cm**-1
	1:	0.00 cm**-1	6:	80.21 cm**-1
	2:	0.00 cm**-1	7:	127.01 cm**-1
	3:	0.00 cm**-1	8:	239.77 cm**-1
	4:	0.00 cm**-1	9:	257.34 cm**-1
L5	0:	0.00 cm**-1	5:	0.00 cm**-1
	1:	0.00 cm**-1	6:	56.01 cm**-1
	2:	0.00 cm**-1	7:	124.84 cm**-1
	3:	0.00 cm**-1	8:	146.11 cm**-1
	4:	0.00 cm**-1	9:	242.46 cm**-1
5'-TS	0:	0.00 cm**-1	5:	0.00 cm**-1
	1:	0.00 cm**-1	6:	-310.57 cm**-1 ***imaginary mode***
	2:	0.00 cm**-1	7:	100.01 cm**-1
	3:	0.00 cm**-1	8:	139.32 cm**-1
	4:	0.00 cm**-1	9:	292.33 cm**-1
5′	0:	0.00 cm**-1	5:	0.00 cm**-1
	1:	0.00 cm**-1	6:	90.28 cm**-1
	2:	0.00 cm**-1	7:	151.05 cm**-1
	3:	0.00 cm**-1	8:	248.54 cm**-1
	4:	0.00 cm**-1	9:	295.21 cm**-1
2-π	0:	0.00 cm**-1	5:	0.00 cm**-1
	1:	0.00 cm**-1	6:	4.47 cm**-1
	2:	0.00 cm**-1	7:	32.92 cm**-1
	3:	0.00 cm**-1	8:	43.95 cm**-1
	4:	0.00 cm**-1	9:	54.46 cm**-1
2-TS	0:	0.00 cm**-1	5:	0.00 cm**-1
	1:	0.00 cm**-1	6:	-205.97 cm**-1 ***imaginary mode***

Table S2. Characterization of the DFT-optimized geometries (by frequency calculations, only the first 10 frequencies are listed for each geometry).

	2:	0.00 cm**-1	7:	17.18 cm**-1
	3:	0.00 cm**-1	8:	36.37 cm**-1
	4:	0.00 cm**-1	9:	48.43 cm**-1
2	0:	0.00 cm**-1	5:	0.00 cm**-1
	1:	0.00 cm**-1	6:	26.70 cm**-1
	2:	0.00 cm**-1	7:	35.41 cm**-1
	3:	0.00 cm**-1	8:	51.01 cm**-1
	4:	0.00 cm**-1	9:	60.92 cm**-1
2v-TS	0:	0.00 cm**-1	5:	0.00 cm**-1
	1:	0.00 cm**-1	6:	-494.66 cm**-1 ***imaginary mode***
	2:	0.00 cm**-1	7:	9.83 cm**-1
	3:	0.00 cm**-1	8:	17.15 cm**-1
	4:	0.00 cm**-1	9:	23.47 cm**-1
2v	0:	0.00 cm**-1	5:	0.00 cm**-1
	1:	0.00 cm**-1	6:	8.56 cm**-1
	2:	0.00 cm**-1	7:	19.00 cm**-1
	3:	0.00 cm**-1	8:	25.38 cm**-1
	4:	0.00 cm**-1	9:	34.94 cm**-1
5-π	0:	0.00 cm**-1	5:	0.00 cm**-1
	1:	0.00 cm**-1	6:	12.75 cm**-1
	2:	0.00 cm**-1	7:	30.81 cm**-1
	3:	0.00 cm**-1	8:	39.91 cm**-1
	4:	0.00 cm**-1	9:	45.40 cm**-1
5-TS	0:	0.00 cm**-1	5:	0.00 cm**-1
	1:	0.00 cm**-1	6:	-74.12 cm**-1 ***imaginary mode***
	2:	0.00 cm**-1	7:	50.13 cm**-1
	3:	0.00 cm**-1	8:	76.22 cm**-1
	4:	0.00 cm**-1	9:	81.83 cm**-1
5	0:	0.00 cm**-1	5:	0.00 cm**-1
	1:	0.00 cm**-1	6:	25.50 cm**-1
	2:	0.00 cm**-1	7:	30.56 cm**-1
	3:	0.00 cm**-1	8:	46.47 cm**-1
	4:	0.00 cm**-1	9:	57.22 cm**-1
5v-TS1	0:	0.00 cm**-1	5:	0.00 cm**-1
	1:	0.00 cm**-1	6:	-72.87 cm**-1 ***imaginary mode***
	2:	0.00 cm**-1	7:	19.10 cm**-1
	3:	0.00 cm**-1	8:	33.93 cm**-1
	4:	0.00 cm**-1	9:	35.31 cm**-1
	0.	0.00 cm** 1	Г.	0.00 are ** 1
5v-INT	0:	0.00 cm · · -1	5:	0.00 cm**-1

	2:	0.00 cm**-1	7:	28.64 cm**-1
	3:	0.00 cm**-1	8:	43.46 cm**-1
	4:	0.00 cm**-1	9:	49.51 cm**-1
5v-TS2	0:	0.00 cm**-1	5:	0.00 cm**-1
	1:	0.00 cm**-1	6:	-521.34 cm**-1 ***imaginary mode***
	2:	0.00 cm**-1	7:	12.04 cm**-1
	3:	0.00 cm**-1	8:	15.24 cm**-1
	4:	0.00 cm**-1	9:	21.09 cm**-1
5v	0:	0.00 cm**-1	5:	0.00 cm**-1
	1:	0.00 cm**-1	6:	4.45 cm**-1
	2:	0.00 cm**-1	7:	12.77 cm**-1
	3:	0.00 cm**-1	8:	22.35 cm**-1
	4:	0.00 cm**-1	9:	43.45 cm**-1

 $^{\alpha}$ The first six frequencies correspond to the rotations and translations of the molecule.

Table S3. Cartesia	n coordinates of	L2 at the PBE0	optimized	geometry	•
--------------------	------------------	----------------	-----------	----------	---

Coordinates in Å					
	Х	Y	Z		
Ν	6.78992598556942	12.09079860693826	6.22805680539528		
С	5.36873613911340	9.67778832125617	5.49691167746119		
С	5.84536978933481	9.94500585806346	6.86443154639802		
С	5.96510563503899	11.46067653042484	7.06103194171425		
С	5.27270196246811	12.11126056830530	8.08333120878244		
Н	4.62312851565797	11.53719313861385	8.74387879055245		
С	5.46334212545580	13.48198106614620	8.24026684630167		
Н	4.94205056001672	14.02740492778132	9.03083996843310		
С	6.33253876149245	14.14249944013088	7.37710555924218		
Н	6.52878484971833	15.21237705434918	7.47449908421723		
С	6.96812495975411	13.39670194554612	6.38332797097413		
Н	7.65729087496873	13.88191906350447	5.68223255417962		
С	4.93557005632421	9.44412656785650	4.39095230394401		
Н	4.56174451792935	9.23181085856170	3.40657597858004		
0	4.96195536688522	9.37948207550606	7.81033920137213		
Н	4.06719394248164	9.45565866502568	7.45995083629817		
С	7.21824008843398	9.31320373308353	7.08185806603288		
Н	7.50854846842765	9.45384637992313	8.13314442776385		
Н	7.17334077302045	8.23849901948289	6.85739915931815		
Н	7.95231041790870	9.80209241950031	6.43028053303922		

Table S4. Cartesian coordinates of 2'-TS at the PBEO o	optimized geometry	/.
--	--------------------	----

	Coordinates in Å					
	Х	Y	Z			
Ν	6.03722282970659	11.92909799110468	5.91232146893728			
С	5.50756546893520	9.51836142064352	5.44080708444115			
С	5.66026088195639	9.76894644727035	6.90366366222595			
С	5.84345966258557	11.29507836090178	7.06173005340365			
С	5.81654728227379	11.99568893652195	8.26404929817742			
Н	5.62955268531766	11.45699690549979	9.19458082657602			
С	5.99793185149616	13.37640645402838	8.23546586662650			
Н	5.97248973476612	13.95667381631201	9.16102382869556			
С	6.20372773822833	14.01733648995796	7.01199626055255			
Н	6.35273563564032	15.09714111441017	6.95164590093603			
С	6.21834746295933	13.24518516910084	5.85617736265383			
Н	6.37758309271312	13.68348610920935	4.86584015710550			
С	5.74028498129042	10.52479382039679	4.69068910711421			
Н	5.85706065674475	10.95153552871693	3.70160998173614			
0	4.57066112288999	9.34475489569073	7.69141192007458			
Н	3.80338030374929	9.33399032328656	7.10902350225535			
С	6.91172804568709	9.07950918029439	7.44598715242435			
Н	7.01656668739373	9.28112707216710	8.52367972771948			
Н	6.80894215411822	7.99668416965535	7.29455105429859			
Н	7.80995551154793	9.43153203483128	6.92016024404586			

Table S5. Cartesian coordinates of 2' at the PBEO optimized geometry.

	Coordinates in Å					
	Х	Υ	Z			
Ν	5.94906304567363	11.85426250563332	5.95558240568100			
С	5.53113897988756	9.61727428877219	5.42730407463004			
С	5.61844145133779	9.78722400981041	6.92953440058438			
С	5.80002386044541	11.27810615474920	7.17297906650840			
С	5.86306857863390	12.05114434276394	8.31537515887776			
Н	5.73495298515811	11.57175569564113	9.28708109032775			
С	6.06759618553472	13.42858209759529	8.19548348425813			
Н	6.10963768659729	14.06128041502584	9.08427857721290			
С	6.21859753281440	13.98883761928476	6.92664926743775			
Н	6.39178733294550	15.05818549726448	6.79502627169964			
С	6.16004313887971	13.17254199902465	5.80831706542362			
Н	6.27689112869107	13.53724634795942	4.78647641561436			
С	5.79408393600819	10.84445256961392	4.92870641863029			
Н	5.86086925724560	11.22711882521116	3.90660732454850			
0	4.44553763188804	9.34023797964399	7.57234096250025			
Н	4.01020654771683	8.80787909333080	6.89134152405147			
С	6.85309497840319	9.05775200825004	7.46766895103926			
Н	6.90622183318246	9.15281356088106	8.56406507535210			
Н	6.76615391762108	7.99567028801697	7.20110493176556			
Н	7.77859378133549	9.45196094152743	7.02049199385685			

Table S6. Cartesiar	n coordinates o	f L5 at the PBEO o	optimized	geometry	/.
---------------------	-----------------	---------------------------	-----------	----------	----

	Coordinates in Å					
	Х	Υ	Z			
0	5.72743003103140	8.89536096756190	8.28105670035871			
N	5.87651361575996	12.03595583483611	6.67105152288069			
С	5.62731011671964	9.37167019268828	5.99581762751510			
С	5.73931515811767	9.72778343071073	7.40026624457718			
С	5.86685112247282	11.19047730608902	7.70079363507003			
С	5.96582376944296	11.59147385542884	9.03573162465905			
Н	5.95420931638328	10.83024595246906	9.81762178243915			
С	6.07195941438277	12.95075915504285	9.30498485469314			
Н	6.15065711664235	13.31456483234238	10.33248035780700			
С	6.07910060760642	13.84117392231654	8.23413990120166			
Н	6.16244763720886	14.91789940712994	8.39889037093383			
С	5.98213806119982	13.33186625186572	6.93634160204576			
Н	5.98992078808099	14.00970325374078	6.07541479233208			
С	5.52756648044007	9.04695831490334	4.83281592152998			
Н	5.43663247935104	8.75481916803188	3.80222616075164			

Table S7. Cartesian coordinates of 5'-TS at the PBEO optimized geometry.

		Coordinates in Å	
	Х	Y	Z
0	5.61684068802061	9.24341552655893	7.95209101718149
Ν	5.88067609853268	12.00594508847035	5.87227085273445
С	5.61370837590421	9.52550254472740	5.52589872111420
С	5.68512878107189	9.90451114676638	6.94718334523876
С	5.86302711986659	11.43399164044098	7.06628216981915
С	5.97537879312045	12.17904678591976	8.22658588069729
Н	5.96300238949528	11.66427659573503	9.18934306358313
С	6.09659949144648	13.56544780249810	8.10254526399284
Н	6.18725418557025	14.19356924186119	8.99156527893372
С	6.10373491160829	14.14479719996172	6.83424214624957
Н	6.19601166258341	15.22477648288678	6.70265614645330
С	5.99711486499010	13.31641707723173	5.71688277745491
Н	6.00209430897360	13.70580560961036	4.69396027175843
С	5.70234608274841	10.57983209997578	4.78649904497700
Н	5.71448684261593	10.95977357311363	3.76865079741009

Table S8. Cartesian coordinates of 5' at the PBEO optimized geometry.

		Coordinates in Å	
	Х	Y	Z
0	5.62790678552080	9.14489374104444	7.89016172040870
Ν	5.86751455498170	11.92637735167848	5.90392834737959
С	5.61474604356801	9.58587823266735	5.46769206413304
С	5.68465698466964	9.86744639741391	6.92711086843897
С	5.85503774472148	11.39212044949694	7.13553711971833
С	5.96817189502748	12.18307880870941	8.25289897011940
Н	5.95647487111635	11.70727975400241	9.23566640644628
С	6.09407986944253	13.56909404306765	8.07503864461928
Н	6.18915725373316	14.23070056532596	8.93861053828343
С	6.10220304033932	14.09546988242277	6.78665933777320
Н	6.20155930945735	15.16839960508233	6.61265895502460
С	5.98873641133649	13.23605224633110	5.69471454858674
Н	5.99040673758901	13.57573969566304	4.65619926909803
С	5.72472606454778	10.80393354326701	4.91711248439153
Н	5.73202703049720	11.16064409958553	3.88266750317732

Table S9. Cartesian coordinates of $\textbf{2-}\pi$ at the PBEO optimized geometry.

Coordinates in Å				
	Х	γ	Z	
Fe	5.63315974560747	7.26456924232953	5.35933292718258	
S	7.38291526970667	6.75798115855020	6.78842543479091	
S	5.28393761906858	5.00928369409688	5.04821279437264	
S	3.72565596506530	7.37452007381342	6.63333663509000	
Ν	6.97966792701495	7.11677036775765	3.97796435357367	
Ν	4.41997112380543	7.41172599317703	3.85505631207515	
Ν	4.58524825541618	11.33527426125640	7.55279404836286	
С	6.00779731794030	9.27554606560520	6.18890304011851	
С	6.42568066900085	9.76708007841965	7.53347048649124	
С	5.91114066605898	11.21450753033474	7.54577235826021	
С	6.78771643331426	12.29391707095408	7.55180762045763	
Н	7.86568556814842	12.12909645621220	7.52134530756258	
С	6.23873061926365	13.57616296603606	7.59441658472622	
Н	6.88828524876057	14.45402802232701	7.60977119141003	
С	4.85530429894327	13.71487503588971	7.61765260590747	
Н	4.38320511277494	14.69827870604904	7.65615547985800	
С	4.07101226835454	12.55979544436214	7.59216793067633	
Н	2.97816521348693	12.63325864528352	7.60787524946874	
С	5.76504620846492	9.35064847145707	4.98201685434995	
С	8.74270131815051	6.97735731338472	5.59012445810670	
Н	9.13315210582161	7.97779786841182	5.84949661371850	
Н	9.54367477200349	6.25107549181327	5.79502871264152	
С	8.28233098947323	6.96312916968037	4.16229354350576	
С	9.14253618643088	6.85208804519637	3.04789431632318	
Н	10.21560476517089	6.72436850189711	3.20601116228655	
С	8.62782602549893	6.90842154098813	1.76355802289246	
Н	9.29593331317855	6.82301322782487	0.90299499999249	
С	7.23549947620557	7.06919812743940	1.56429801017127	
С	6.54952134171717	7.13370239265759	0.30403887623153	
Н	7.13370310665875	7.06656255896460	-0.61641311375192	
С	5.18815887611553	7.27067264334379	0.23904235348250	
Н	4.69120792011331	7.31368534545236	-0.73278304971186	
С	4.38803768519052	7.36299605466076	1.42833145182487	
С	2.97999376863444	7.49730917110568	1.49334696744794	
Н	2.39340000704986	7.54097453587133	0.57244395038830	
С	2.34739273902253	7.57684620002962	2.72223494864188	
Н	1.26250179810294	7.68787235853532	2.77650493214502	

С	3.10278165319401	7.53703327432250	3.91561132367846
С	2.51578782009120	7.68602246357027	5.29110203463894
Н	1.62590924293605	7.05758031593696	5.44488245762063
Н	2.19259375020457	8.72890235142055	5.44916515926743
С	5.05165904535290	7.31646825310711	2.66276869559812
С	6.46153849953653	7.16508524220688	2.73059396710375
С	7.24685201234916	4.96226478535240	7.03724663043353
Н	8.23584417241951	4.57725683906633	7.33162318869439
Н	6.60270051927614	4.87852836836714	7.92586243497812
С	6.68096175928546	4.19484022186322	5.86709060664373
Н	6.38195472180803	3.17293511941944	6.14869790536330
Н	7.41736333719465	4.09390491634560	5.05395139535837
С	3.77144355482458	4.64778382961422	5.99843492361472
Н	2.98585566142355	4.65393778629100	5.22633009615929
Н	3.82771562977310	3.61686271748949	6.38250914527091
С	3.45921983064057	5.63946663746278	7.09518377468482
Н	4.11562987646983	5.51356664940481	7.96924679600826
Н	2.42551694515407	5.51850062920395	7.45603165031230
Н	5.57608874316725	9.74805711969486	3.99634480857902
0	7.83306649414313	9.69293565758328	7.51983051730212
Н	8.14948847883549	9.76955729309649	8.42931966203841
С	5.82946429805206	9.03503701306340	8.73029956383921
Н	4.73756570858070	9.13379873707803	8.72525760891615
Н	6.12681840987544	7.97804305349951	8.74875279109760
Н	6.20238720067660	9.51435271437052	9.64876958172665

Table S10. Cartesian coordinates of 2-TS at the PBEO (optimized g	geometry	
--	-------------	----------	--

Coordinates in Å				
	Х	Υ	Z	
Fe	5.47525184177440	7.14861361338198	5.50987857221344	
S	7.24961439365087	6.68814110822062	6.91791415153103	
S	5.40260120753598	4.92002873437663	4.94368215745317	
S	3.57187065602580	6.88769558637897	6.76242290792266	
Ν	6.83179930610890	7.31165194166523	4.14925586645517	
Ν	4.26131136158831	7.30019045772646	4.00847489634679	
Ν	5.28074821976089	11.69490804953761	6.35254392667456	
С	5.71289654956785	9.09469456889672	6.29561688902073	
С	6.30513266958117	9.76335755004159	7.49711163938502	
С	6.15083574848602	11.28078394915512	7.26219248619144	
С	6.90662348341136	12.16632626492589	8.03173441021910	
Н	7.63538892011218	11.79803030099902	8.75573067153033	
С	6.71851949121094	13.53261730824128	7.83999640453636	
Н	7.29583091431616	14.25338880022534	8.42269556103143	
С	5.78994375114334	13.96259590531812	6.89382915730177	
Н	5.60979792401718	15.02379148490950	6.71117935231010	
С	5.09495356297686	12.99993722860499	6.16799781375297	
Н	4.36580321320835	13.29316427860361	5.40599227196659	
С	5.03820140832434	9.45091399987785	5.31638956065158	
С	8.59413117516365	7.15065623807085	5.76457624804856	
Н	8.89230091828097	8.14840144321482	6.13047917589608	
Н	9.44914888547830	6.47118325453750	5.89975121583239	
С	8.14195500802142	7.24689968842944	4.33769256540111	
С	9.01553521002768	7.30113908161804	3.22937443593882	
Н	10.09471935639341	7.25889346460017	3.39277659563306	
С	8.50739579400902	7.40421153764861	1.94511815503908	
Н	9.18627236697198	7.44013674500370	1.08952192278919	
С	7.10747389857861	7.44789062832767	1.73965803092981	
С	6.42481020538800	7.50652650668992	0.47693479129982	
Н	7.01795140926404	7.55465716565737	-0.43894636778734	
С	5.05712482482011	7.49410525606442	0.40235941827120	
Н	4.56434777048153	7.53336618674893	-0.57168322356886	
С	4.24492691910010	7.42167108663438	1.58472873518567	
С	2.83156011904270	7.36352348710880	1.64014600579723	
Н	2.24805753049558	7.38977309321326	0.71666261176449	
С	2.18882519967200	7.26705746484764	2.86370993268490	
Н	1.09877167015095	7.22061728544736	2.91099298617402	

С	2.93856167037628	7.23203760306549	4.05958781231938
С	2.33601789083280	7.18276197261184	5.43627465958462
Н	1.52376099579563	6.44454392448963	5.52248319919406
Н	1.88777835636465	8.16003341266924	5.68381502183844
С	4.90446261914856	7.38479317664526	2.82190777993536
С	6.32171666590683	7.40062546870453	2.90076361636321
С	7.31269150432237	4.87146508927722	6.97364574732721
Н	8.33109314324429	4.56887840239368	7.26442305944823
Н	6.65808718562924	4.61641453645491	7.82096613233821
С	6.87476804145762	4.18458990233158	5.70377360590232
Н	6.69970948005771	3.10664199034555	5.84868357719374
Н	7.63529074665650	4.27559400841886	4.91124692365527
С	3.93977686066746	4.27656868059621	5.81470853899944
Н	3.16028393909156	4.28044301172191	5.03611397248522
Н	4.11748113097870	3.22168355591035	6.07744460320121
С	3.51274412859111	5.08847734754062	7.01747337281337
Н	4.18014089701388	4.93340805991242	7.87839927069329
Н	2.50032406714078	4.80627551684209	7.34676767111132
Н	4.47862100033095	9.76171206013511	4.45175600257166
0	7.67477509195257	9.44419971861352	7.60217512173528
Н	7.87015282831152	9.18368897336439	8.50911241291875
С	5.55678253683543	9.35826163435838	8.76579087559605
Н	4.49102173517088	9.61366219945451	8.69445421336172
Н	5.65385213782586	8.27600395982228	8.94341553903757
Н	5.97538155215547	9.90280686937049	9.62615642855124

 Table S11. Cartesian coordinates of 2 at the PBE0 optimized geometry.

Coordinates in Å				
	Х	Y	Z	
Fe	5.18814121127023	7.72045643067907	4.82100635945887	
S	6.90206293170014	6.87378849568498	6.08912490707605	
S	4.96104740255259	5.66359526631486	3.77115497924548	
S	3.29475975469869	7.33220272153433	6.00518417053110	
Ν	6.56197095953330	8.07836272916004	3.52339344092992	
Ν	4.01597211714978	8.37805166452596	3.45325254194184	
Ν	5.15194893118460	11.80199721890069	5.80014989457804	
С	5.31917791356013	9.50654001608025	5.58579904759575	
С	6.09253566317400	9.94625762950260	6.84008621241693	
С	5.99389718304344	11.46390393802897	6.80397999185306	
С	6.58344800994958	12.44701275427514	7.57051872410413	
Н	7.27718219357511	12.17497612857178	8.36828804043657	
С	6.28047070776525	13.78478428548188	7.29569172683522	
Н	6.74316613372657	14.58153640409223	7.88126137356315	
С	5.38161033867344	14.09707885313668	6.27352171803686	
Н	5.11621359579330	15.13015811950346	6.04277426604092	
С	4.81953746897429	13.07526954711763	5.52643860008911	
Н	4.12310907416866	13.24142262090313	4.70307811948369	
С	4.75155246543619	10.62794125851294	5.08787689488971	
С	8.30001782191670	7.29602342022129	4.98666370531142	
Н	8.84700291669932	8.08688092776036	5.52106356499877	
Н	8.97200302854671	6.42835165564650	4.89902275329210	
С	7.85531836847704	7.81836084654718	3.65158757833770	
С	8.73498942409235	8.06022374664292	2.57380594881712	
Н	9.79890350456317	7.84356852500446	2.69143037229262	
С	8.25014151400911	8.55783391040872	1.37647991040248	
Н	8.93208191486234	8.73918986747046	0.54229525814471	
С	6.86658891978078	8.81747138954755	1.22980966827336	
С	6.19995241347455	9.29381963979373	0.04908492222127	
Н	6.79801613470199	9.51710248719075	-0.83729676486678	
С	4.84072816088380	9.46441873278087	0.01437766762246	
Н	4.36032026154413	9.82295010851335	-0.89876405326512	
С	4.01948056543257	9.17448780810361	1.15740031950339	
С	2.61052035272858	9.28222705872038	1.24202432176688	
н	2.03624321884981	9.63456824136722	0.38174270687926	
С	1.95962995071277	8.93470029291068	2.41530717352100	
н	0.87341034362512	9.02198511076636	2.48702101118420	

С	2.69492328021912	8.46159309152313	3.52416798180182
С	2.07944287524512	8.06501916681755	4.83776449088908
Н	1.23494663891932	7.36965716427480	4.71151262137257
Н	1.67498190216477	8.95139273454747	5.35212813009961
С	4.66524374056335	8.72222009044134	2.31836088817005
С	6.07445480655065	8.55363955073872	2.35665619997342
С	6.74237204415294	5.07648181725701	5.85105441542054
Н	7.69685351354202	4.60065928530859	6.12730082724006
Н	6.01279414159623	4.77616832970088	6.61814763512191
С	6.30399261135223	4.66032229960855	4.46441247866773
Н	6.01752910018391	3.59762145944432	4.41842227636191
Н	7.11866029865827	4.79423781619378	3.73456099968214
С	3.39640020890224	5.02040782285108	4.42954465556355
Н	2.65921788114507	5.33679656368916	3.67449940410569
Н	3.41703054509735	3.91939970655284	4.39752229270215
С	3.02355608494083	5.54223527735820	5.80041160505334
Н	3.64221141251781	5.09446401933522	6.59255650659791
Н	1.97643411913042	5.30743251709839	6.04878952388128
Н	4.10149383048236	10.78777094224304	4.22912562847616
0	7.43348289262402	9.53129115133321	6.77926197005026
Н	7.76061871324025	9.38099328794499	7.67456691790470
С	5.40836234293597	9.42716385335314	8.10651514415558
Н	4.36272564527854	9.75953702884197	8.16859387690738
Н	5.42424346858731	8.32862140443769	8.10681568425923
Н	5.93501717113960	9.79485862770157	9.00256544199857

Table S12. Cartesian	coordinates of	f 2v-TS at the	PBE0 optimized	geometry.
----------------------	----------------	-----------------------	----------------	-----------

Coordinates in Å				
	Х	Υ	Z	
Fe	5.25275078727917	6.72825238893465	5.49330757426379	
S	6.80190318252306	6.10045827112101	7.05038332126728	
S	5.23818470958443	4.60217402475852	4.62440496624728	
S	3.23618963090861	6.37947201974017	6.46928140620244	
Ν	6.76684324421676	7.05757060770017	4.35358860771771	
Ν	4.24324472033924	7.22262472307599	3.92921597921802	
Ν	5.08423552668246	12.07764271114855	8.17655627147830	
С	5.94813380047823	9.35975058106794	7.01817706993484	
С	6.74103223474408	10.34445015315023	7.75551884362010	
С	6.14719833389628	11.73506410596930	7.45995573145417	
С	6.71930012999588	12.54550441852626	6.47974665781584	
Н	7.59225008935517	12.20842138380997	5.91947989474419	
С	6.14990423434069	13.80092073023674	6.26530401196581	
Н	6.56927976754365	14.47952634869502	5.51898849656907	
С	5.04801657484071	14.17741154799699	7.02643555640405	
Н	4.57777732467070	15.15352984313598	6.89516861915380	
С	4.54974165425143	13.27777723133969	7.97165280625283	
Н	3.68371569561807	13.54096480819408	8.58810895452004	
С	5.44560834345210	8.47861483854365	6.27937621747406	
С	8.29541310571754	6.68823532815185	6.15696419693903	
Н	8.54233952231351	7.64575787433300	6.65257944894481	
Н	9.13364658666954	6.00042255099125	6.34254064622932	
С	8.04103364412286	6.94529846016461	4.69987554171242	
С	9.04890188748724	7.11968523990409	3.72744640987417	
Н	10.09791824219458	7.02966397442339	4.01824437584606	
С	8.70766342779263	7.39654984126915	2.41349387219537	
Н	9.49093498545522	7.51829204544897	1.66130555122940	
С	7.34629187772024	7.52157213050417	2.04440060191934	
С	6.82391445622325	7.77984148648408	0.73057712512531	
Н	7.52333452146550	7.91639238721217	-0.09699150180406	
С	5.47536483682116	7.85120417741026	0.49891891583840	
Н	5.10643717832474	8.04500702513467	-0.51078054091233	
С	4.52081947202814	7.67596841261274	1.55869607068294	
С	3.10958989376080	7.69515059825322	1.44750137047012	
Н	2.63964765228653	7.88060594014254	0.47850186995044	
С	2.32232949296696	7.47196314961205	2.56516001916501	
Н	1.23355694293949	7.48449136746954	2.47993854006768	

С	2.92277259305012	7.21794359663286	3.81895659185921
С	2.16128656131571	6.94871929842947	5.08761733944097
Н	1.34155945159211	6.22848558371498	4.94005993824182
Н	1.69309902024271	7.87639219128186	5.45767840587968
С	5.02274529529579	7.43586400929121	2.84576594545379
С	6.41984804130699	7.35059459058485	3.08255439450329
С	6.85380475603262	4.28979309691977	6.90183942999140
Н	7.81943432515025	3.92791331563094	7.28834619144413
Н	6.08695877179260	3.95624809223493	7.61751827832453
С	6.58797419029517	3.77041701803995	5.50543662276410
Н	6.40171677653471	2.68457380989624	5.49746202385509
Н	7.45334842073265	3.94214920421843	4.84549417324287
С	3.66168932137748	3.90340447958578	5.20251871885361
Н	2.99601816305923	4.03824407603335	4.33514384331776
Н	3.77869297416772	2.81660567186095	5.33849210525085
С	3.08994196528916	4.56495056364762	6.43731392312636
Н	3.62237304920625	4.25803356752887	7.35045442566777
Н	2.03308627853836	4.29056892162945	6.58186179285794
Н	5.33383910014109	9.50186656401123	5.68880000341624
0	8.05040176112137	10.20242920292897	7.24808941885374
Н	8.63305343916644	10.77217836718086	7.76945255305452
С	6.67267302259269	10.00994021253271	9.24762881285432
Н	5.64765497192173	10.11602035597344	9.62020501405562
Н	7.05554986694893	8.99612426904105	9.43081146383019
Н	7.30373926211133	10.73141903449528	9.78730618007757

Table S13. Cartesian coordinates of 2v at the PBEO optimized	d geometry	/.
--	------------	----

Coordinates in Å			
	Х	γ	Z
Fe	5.19110845139703	6.90045376735977	5.43851180073561
S	6.69435707982005	6.36615379783138	7.06109749943126
S	5.23194693731383	4.66842988246629	4.70035052123932
S	3.14516299636015	6.56124297564659	6.37417021414043
Ν	6.73596209307090	7.15900359057183	4.32412452435950
Ν	4.22396450335342	7.18560517320773	3.79298331552177
Ν	4.73840142690311	11.83077250469938	8.89686123667930
С	5.37208479430816	9.77388464087358	6.45400385335662
С	6.12298572182052	10.21758695260736	7.72699511744161
С	5.73714549950077	11.66346551804871	8.03613543667726
С	6.40904989271776	12.72693585848903	7.42800524684998
Н	7.22014809188209	12.53999780142137	6.72145086772491
С	6.02060409767528	14.02385790607425	7.76110547838087
Н	6.52612218161984	14.88197940219769	7.31254416280390
С	4.98638396996827	14.20260554023517	8.67624327018784
Н	4.65319798785163	15.19859212444165	8.97489477684876
С	4.37323840554275	13.06972632071077	9.21358509873766
Н	3.55171873282540	13.17088288392035	9.93119894829382
С	5.23148360670438	8.56258036540820	6.01500826169651
С	8.18153265235289	7.02011021107522	6.21286818271697
Н	8.26772599151307	8.04155876158157	6.63736588674355
Н	9.06679792192687	6.44341427993775	6.51712890853732
С	7.99624800987059	7.11974629547671	4.72848551607569
С	9.03608605670038	7.21776282402062	3.77943321804838
Н	10.07505296525962	7.18726373963326	4.11425697770723
С	8.73745785057704	7.34822503848187	2.43221628759487
Н	9.54671787395950	7.41198223394849	1.70056882438690
С	7.38842779291705	7.39593168202816	2.00268962083447
С	6.90852192483799	7.50314978759484	0.65211975973430
Н	7.63482612569262	7.57281898157804	-0.16055370175423
С	5.56799301620513	7.51257671479192	0.36724246085209
Н	5.23309755098797	7.59022968745118	-0.66970427819202
С	4.57920550684143	7.41664065924763	1.40555108087180
С	3.17255103435801	7.38236895255457	1.24641499234649
Н	2.73344822703332	7.45739490993926	0.24832780881258
С	2.34968977675983	7.24550547566399	2.35262766480562
Н	1.26494361677656	7.21735984177171	2.22922488731049

С	2.90931519509148	7.13174671194946	3.64484436904969
С	2.11242190026318	6.97706890881374	4.91017016194521
Н	1.29928799311118	6.24141796831223	4.80964364740358
Н	1.63075441769639	7.93446565913012	5.17289726377398
С	5.04010775131679	7.31970227260127	2.72523405699062
С	6.42819152519424	7.30637059499798	3.01957961265142
С	6.83096733016606	4.55192554830955	6.99434136535007
Н	7.80971880361020	4.26632317466385	7.41148845515264
Н	6.07461928052946	4.22110708171102	7.72285942769045
С	6.60530616989000	3.94199782727549	5.63153133660741
Н	6.45872817430774	2.85151838279269	5.68970134226116
Н	7.46748270437581	4.10681161001845	4.96637930721177
С	3.67097073229807	3.98923438954181	5.33814408928948
Н	3.00858567748802	4.01482326352408	4.45803769578951
Н	3.81568988264929	2.92567284401972	5.58620834441534
С	3.06582083004671	4.74767293684646	6.49992090535709
Н	3.59632200722369	4.54666536241419	7.44345919672212
Н	2.01687046197559	4.45196339223993	6.66107515771045
Н	4.97971336325913	10.56124914978268	5.79170703318721
0	7.49268795364360	10.12540101641564	7.36584860732211
Н	8.00287029983767	10.59643074780052	8.03961008172653
С	5.81914923113759	9.31635390476153	8.91221598881246
Н	4.75132257790657	9.32929986259301	9.15627154798042
Н	6.15635730154851	8.29307337799352	8.70095292137810
Н	6.35893606022749	9.68843727850272	9.79479658568141

Table S14. Cartesian coordinates of $\text{5-}\pi$ at the PBEO optimized geometry.

		Coordinates in Å	
	Х	Y	Z
Fe	5.33206384258777	7.21001494266633	5.46034870020182
S	7.30085442759029	6.98525207425778	6.65233327026278
S	5.07742083607601	4.92030653073887	5.54153379427721
S	3.57750491439063	7.40963295890072	6.96408736593854
0	5.76698214320321	8.78507010054108	8.41485277241939
Ν	6.47662852230215	6.90583833360206	3.92103720532548
Ν	3.91514125462056	7.21049645622042	4.12898955735089
Ν	5.88716484323854	11.85549499038255	6.67505212118110
С	5.61385826098088	9.24972594295070	6.11388499036618
С	5.76178635390026	9.62396001297906	7.54047307379761
С	5.88000923504413	11.08343950408668	7.76555722668896
С	5.96543765550326	11.57167963949587	9.07226256677433
Н	5.95692207023065	10.87851419311578	9.91506897141661
С	6.05364433375882	12.95055269585538	9.24240191041579
Н	6.11794032394361	13.38826252211780	10.24104990081764
С	6.06086670376497	13.76120499468925	8.11118801397246
Н	6.13067838900277	14.84764891600005	8.20034495680824
С	5.98030365822987	13.16537567117009	6.84603662875975
Н	5.98994513597933	13.78379986744447	5.94249716809332
С	5.51759119076362	9.26545372748823	4.88301295464522
С	8.46045534638299	6.67579222237888	5.26389986713101
Н	9.22490939099937	7.46698139659750	5.32596258862556
Н	8.99141156442330	5.72458659815396	5.43065757905087
С	7.78585312088398	6.70118282301703	3.92447836230281
С	8.48069285175314	6.52939641955305	2.70636898303266
Н	9.56082456915900	6.37153324419619	2.72361827639416
С	7.79745859097194	6.55525645300850	1.50517536988074
Н	8.33691646359047	6.42546960090840	0.56376623209585
С	6.39302940392142	6.73219959189116	1.49697929479770
С	5.54734943206062	6.74726316905207	0.33764803185751
Н	6.00555617660684	6.63056255992748	-0.64707240335712
С	4.19046822540782	6.89126853598642	0.44901190671975
Н	3.56642257198530	6.89115507941035	-0.44736841367771
С	3.56095869068889	7.04069460295215	1.73010698176554
С	2.17270712086699	7.17731743869224	1.97042723114843
Н	1.47057310026323	7.17358415625996	1.13301767180683
С	1.70725156532062	7.31415589484464	3.26557437371216

Н	0.63771946953229	7.42194136759870	3.45960734541958
С	2.61401452296758	7.33325632788965	4.34801075689106
С	2.19236092019539	7.53488004202552	5.77250467648638
Н	1.38687537289107	6.84616154770179	6.07130315880412
Н	1.78617293036150	8.55206870975838	5.90209068138667
С	4.38361125964301	7.05507691350178	2.86799027243486
С	5.78922173241698	6.89761640620944	2.75335381275215
С	7.09939390470186	5.36114779913765	7.43199311199445
Н	8.07100674079476	5.02602359167543	7.82884393703436
Н	6.46411374262678	5.59231841043837	8.30054114831189
С	6.49059873173243	4.32120073812546	6.52053005482329
Н	6.17388062207681	3.42359673891203	7.07411485691424
Н	7.21083698389577	3.97951062595611	5.76174442099233
С	3.61098798451079	4.66167446503032	6.58492349247722
Н	2.78244313259958	4.63388594869698	5.85898835468232
Н	3.67046602110398	3.65669844166372	7.03228322789787
С	3.39114310201961	5.73312032133794	7.62420078220108
Н	4.12554129472903	5.68966450402579	8.44232066205431
Н	2.39579020350709	5.64558501194097	8.08787235100303
Н	5.47474541729620	9.60052906684049	3.85594984263843

Table S15. Cartesian coordinates of 5-TS at the PBEO optimized geometry.

		Coordinates in Å	
	Х	Y	Z
Fe	5.32662599215567	8.02617438736446	4.50311458509804
S	7.20212533659804	7.42445432118020	5.71179599644915
S	4.98827973493014	5.82738308376891	3.95285544109430
S	3.53318540099267	7.92550108361672	5.93724371644482
0	5.70583100404031	9.18977404436525	7.76263289617547
Ν	6.54748220103948	8.11247856184895	3.00782937869533
Ν	3.99394568494126	8.41879463548632	3.15599730941996
Ν	5.96252735333953	12.34665802898497	6.19382705720620
С	5.63868752032734	9.81550042109064	5.46354421127533
С	5.75257634533622	10.05542074025503	6.92904644507809
С	5.91911387401851	11.51222502557880	7.23008600097107
С	6.00586567843997	11.93169164776752	8.55686205063784
Н	5.96673432328852	11.19305023664496	9.35968223706727
С	6.13121343779915	13.29775201136266	8.80126292237168
Н	6.19662817667262	13.67743069675264	9.82354194348605
С	6.17101819869778	14.16897154972076	7.71790604399484
Н	6.26861297854376	15.24647145680865	7.86653947072631
С	6.08821153781604	13.64567129296949	6.42154425771810
н	6.12361240897494	14.30612558482619	5.54995332960158
С	5.67101184815486	10.58635610268944	4.48492831713166
С	8.45358769154445	7.65574450587481	4.39456625319206
Н	9.03512349781696	8.54077847168789	4.70393277255875
Н	9.15704193983706	6.80827057635507	4.40784622526311
С	7.85364628667608	7.88271696815897	3.03827776640400
С	8.60185735517647	7.87693649597684	1.84120718148311
Н	9.67778359555814	7.69569657137450	1.88260182375914
С	7.97230475232058	8.07501240881645	0.62488150973054
Н	8.54982988042028	8.05022301509372	-0.30238740255520
С	6.57367842936451	8.28712510124770	0.58282729220189
С	5.77098160684234	8.44321533818134	-0.59694100443135
н	6.26460790130641	8.43704508202997	1.57135624237683
С	4.41069481665309	8.57765740369226	0.52000193987373
Н	3.82115410034649	8.67790731158296	1.43377448960335
С	3.73048773243808	8.57933344434246	0.74424561175105
С	2.33187733009644	8.65547722300060	0.94586761775000
н	1.66093729995932	8.74890698013408	0.08857113416776
С	1.81582760868733	8.59353208249279	2.22839597588939

Н	0.73698921136572	8.64106261430301	2.39231404554671
С	2.68038760634494	8.45966875794686	3.33590639890424
С	2.20271775943271	8.36631933508837	4.75498741946975
Н	1.36263444624576	7.66337862692443	4.86915804791838
Н	1.82836250306675	9.34567157354725	5.09683169615534
С	4.51051503622911	8.46256523293547	1.90517804728850
С	5.91873657025042	8.30509933464320	1.82400644474404
С	7.05794489607528	5.61866672068514	5.82712797856482
Н	8.04964097113252	5.19787407684113	6.05657761222399
Н	6.43408674324164	5.46375700980956	6.72018584004810
С	6.45832927511401	4.97951468474686	4.59685101968315
Н	6.21162746594369	3.91789541585542	4.75760012335441
Н	7.15868952485822	5.01435193853928	3.74615423578044
С	3.57428234163986	5.29530653553120	4.97314353781087
Н	2.72383379689051	5.34197257907633	4.27502033090772
Н	3.70835089624743	4.23323421275256	5.23377317972246
С	3.32713738135601	6.14227119687657	6.20123470418085
Н	4.05097887222696	5.93278613507538	7.00362777075971
Н	2.32606321954652	5.95354906710662	6.62069148833666
Н	5.67878062164103	11.11099105859018	3.54177638264617

 Table S16. Cartesian coordinates of 5 at the PBE0 optimized geometry.

Coordinates in Å			
	Х	γ	Z
Fe	5.35310242101401	7.88646399237546	4.72211579707898
S	7.18226153211986	7.16090833889152	5.87050445176449
S	5.05719236306145	5.76605072927532	3.82865575728149
S	3.56743121395403	7.53872430566527	6.11066349130365
0	5.65397221228059	9.10718255038112	7.87644094773522
Ν	6.58039727104077	8.16722405610592	3.26972144604277
Ν	4.03707805962218	8.45072274788082	3.43795636220531
Ν	5.87099199411340	11.90999917469697	5.90003280076466
С	5.59892657395063	9.63573183271241	5.48187093690426
С	5.69305755634881	9.88851073749520	6.96451518831362
С	5.85596312720807	11.37951083585006	7.14588173906609
С	5.96384331805778	12.17439729665505	8.25894331024933
Н	5.94783107617660	11.71440923657148	9.24934304398592
С	6.08774789985934	13.56150942122625	8.06880117667032
Н	6.17317500168883	14.22821175919274	8.92944803324067
С	6.10466504578026	14.08025302048128	6.77782612861373
Н	6.20553504077529	15.15247244514582	6.59945589131990
С	5.99654333723460	13.22252157362538	5.68517949656992
Н	6.00494260339177	13.56338698398496	4.64793339416788
С	5.72131425424115	10.85802673995828	4.91785526914893
С	8.46218732966437	7.54270727729012	4.61347509913137
Н	9.01953208936373	8.39950592463539	5.02806708337019
Н	9.18100001906062	6.71074912927191	4.55171899752518
С	7.88087180713741	7.90649771536638	3.27806790231909
С	8.62925971960738	7.98746924531037	2.08391911535265
Н	9.69847103317469	7.76755621066070	2.10514255778025
С	8.00746121737950	8.31431355230171	0.89059933090393
Н	8.58482893470784	8.35380502544931	-0.03631985822743
С	6.61644618155114	8.57255282264747	0.87162590891698
С	5.81446380404062	8.85713456811349	-0.28556489186417
Н	6.30634129986900	8.93102504212468	-1.25816149836932
С	4.45784117588138	9.01835657818168	-0.19305039969598
Н	3.87204541306802	9.22149129549824	-1.09199100107765
С	3.77508152478758	8.90749559691516	1.06593670994792
С	2.37893037542826	8.99094855240978	1.28068318103824
Н	1.70863625135859	9.19695570451528	0.44286774392195
С	1.86392440283602	8.79505845712408	2.55153573055258

Н	0.78727448809463	8.85538751285178	2.72477021139741
С	2.72586553148774	8.50004227942512	3.62914464701177
С	2.25763975676823	8.23905612942728	5.03273795149996
Н	1.36700284204046	7.59302226397932	5.06666073121561
Н	1.96822487056990	9.18689748770765	5.51615322139264
С	4.55388593649809	8.64954075890672	2.20442535358673
С	5.96141588090573	8.48797518591806	2.11015205364232
С	7.03132168053840	5.35078122394114	5.78808043793683
Н	8.01262448891145	4.90084161449781	6.00652929403395
Н	6.37937843801340	5.11430245290799	6.64231972510158
С	6.46770423557488	4.82808035702873	4.48473948357370
Н	6.19109253099126	3.76385244266041	4.55236788203283
Н	7.21056164569084	4.90491998911740	3.67401317564806
С	3.54462567685226	5.16113620883211	4.62814504529872
Н	2.75840356034458	5.45101156831596	3.91270350049405
Н	3.55895985518132	4.05982430594015	4.64231070309921
С	3.27558257784848	5.74475778667799	5.99769727595922
Н	3.94429590870130	5.32545645594439	6.76460799284441
Н	2.24675005871009	5.53168869215127	6.32871551942980
н	5.71889555544119	11.17098480778138	3.87312942084807

Table S17. Cartesian coordinates of 5v-TS1 at the PBE0	optimized	geometry
--	-----------	----------

Coordinates in Å			
	X	Υ	Z
Fe	5.30127546027103	7.19559948720365	5.65996576348602
S	7.22862797104149	6.85510672276470	6.87215107921079
S	5.02661394044410	4.91786868558354	5.50907337448383
S	3.52155250682562	7.29536512011357	7.11841040750355
0	5.59582153597151	8.24368926095157	8.95188461506838
Ν	6.48422862444168	7.09866379996234	4.12596154154020
Ν	3.92908417677151	7.39086855248808	4.29771952034165
Ν	5.95674949682824	11.45174050270499	7.86063308251584
С	5.66408704944374	9.52732910811796	6.92556790397024
С	5.70988886470058	9.30702252685472	8.40078294795739
С	5.90638128938831	10.66232355228092	8.93783662871320
С	6.01409813129134	11.11560864016457	10.24425467410654
н	5.96897539665448	10.42107921831118	11.08507068693012
С	6.17451055639966	12.49233513157037	10.41193488083262
н	6.26376796249153	12.92319009553970	11.41191096235984
С	6.22226798311396	13.31744316623463	9.28901235876184
н	6.34980876153631	14.39667040590101	9.39812592116873
С	6.11315530614313	12.75747245340460	8.00881183264342
н	6.15302954858123	13.37528633526539	7.10734225588764
С	5.55916170189113	9.23599503645098	5.69870538560194
С	8.43410855134432	6.75321465603577	5.49233640054528
н	9.16128850197512	7.56296797208289	5.66495552193912
н	9.00041449857016	5.81155694207876	5.57128044486903
С	7.79511481887310	6.90426273582118	4.14271468469694
С	8.52563706516623	6.86172496877147	2.93479999924066
Н	9.60655751266138	6.71166596253861	2.96732835232741
С	7.87448079519871	6.99544725729935	1.72235529549789
Н	8.43823343302859	6.95371671624766	0.78725553719891
С	6.47118271585202	7.17310070255497	1.69504625236463
С	5.65341156825043	7.28902580393436	0.52137675298262
н	6.13524506407417	7.26068512462945	-0.45855500059932
С	4.29418503327551	7.42100556370516	0.61199611670664
Н	3.69197466686627	7.49829741061490	-0.29581273464968
С	3.63223921220480	7.45837999233217	1.88472359442416
С	2.23802481102489	7.56417405919125	2.09977334018891
н	1.55765531748681	7.63774539318655	1.24795484040913
С	1.74073263343809	7.57077897586912	3.38999323601317

Н	0.66618069794481	7.65285201564761	3.56776921157174
С	2.62052902414420	7.47856275068737	4.49024422957914
С	2.15619704999666	7.50361175575677	5.91583836129611
Н	1.37348264830267	6.75399479163745	6.11146698957058
Н	1.70319335443383	8.48181939020455	6.14760880407596
С	4.42640377333224	7.37130215931056	3.03949399052428
С	5.83419481117425	7.22092758512627	2.94507503548204
С	7.06231297556449	5.13635797281744	7.42985145510128
Н	8.04396398110683	4.76735617123883	7.76609555113315
Н	6.43294510232695	5.23076276735123	8.32746292000918
С	6.45565562218426	4.21819015767480	6.39320692993636
Н	6.15725527215008	3.25099426770262	6.82671531946651
Н	7.17202187928515	3.99096361192017	5.58894527845187
С	3.57613415717844	4.57529065994817	6.55577169049471
Н	2.74046089082757	4.57723287094381	5.83749357620818
Н	3.65469615307426	3.54732312425797	6.94380385946629
С	3.34153096379246	5.57710812910259	7.66117678788531
Н	4.07668782289756	5.49053720877663	8.47509736996124
Н	2.34630269257827	5.44431295013174	8.11418681859234
Н	5.58582482418384	9.80688275100141	4.77170943395448

 Table S18. Cartesian coordinates of 5v-INT at the PBEO optimized geometry.

Coordinates in Å			
	Х	Y	Z
Fe	5.33596438929104	7.13158770844779	5.46912380587077
S	7.25876646009000	6.88121893911393	6.66467556306759
S	5.06880847494263	4.81374803609890	5.47099623593608
S	3.62575054599335	7.29717918884064	6.97432230813204
0	5.77599101193172	8.45387131022701	8.86245030907310
Ν	6.48115440452251	6.96359020644217	3.92861379666794
Ν	3.94411134969394	7.27226688312079	4.14058755661133
Ν	5.82221936115057	11.14737112739557	7.05879485155927
С	5.70404649800557	9.71649321433126	6.70090917010362
С	5.78676486486862	9.42056309951253	8.16733125096975
С	5.88867893652941	10.93314322036588	8.40385772145579
С	5.98468211675063	11.97690958019812	9.28697768774484
н	6.03634923929286	11.80772735396844	10.36445123995795
С	6.01327974936669	13.26861254597280	8.72232874717806
н	6.08759141438852	14.14173665832844	9.37459622226511
С	5.95164591085278	13.44868211170207	7.34195903669208
н	5.97834577511089	14.45005697147462	6.90812529604564
С	5.85422795430542	12.34273855952954	6.48980717653537
н	5.79895086620591	12.40965393623026	5.40091463599825
С	5.54756028529951	9.04470746844933	5.55101365128254
С	8.44214730731451	6.62870566919899	5.28050668068321
н	9.23373104895803	7.38401948735694	5.40404327531927
н	8.93397851715969	5.64926306227655	5.39502100076928
С	7.79036129325993	6.75752153379454	3.93279252328236
С	8.49975319128956	6.67178261933152	2.71481660143368
Н	9.57980673018486	6.51355849266289	2.73368750595994
С	7.82971775302096	6.77151887122712	1.50827711094662
Н	8.37917218997628	6.69682836283474	0.56685907943622
С	6.42689874486121	6.95356563649485	1.49743254638510
С	5.58363428509432	7.03665089759457	0.33789510074179
Н	6.04426734927932	6.97280474768814	-0.65054472900431
С	4.22676452894949	7.17940680462018	0.45118161527252
Н	3.60815143692819	7.23019620568399	-0.44740125859642
С	3.58872980341232	7.26196630508208	1.73518066171011
С	2.20170584557105	7.38968240047850	1.98214470067849
н	1.49916290122337	7.43778421051993	1.14670750619753
С	1.73780873977909	7.45465125431367	3.28480430036623
Н	0.66915418478557	7.55970919135917	3.48511209511025
---	------------------	------------------	------------------
С	2.64394924370382	7.39591230069880	4.36535641929478
С	2.23043217236077	7.51342346352679	5.80376400107741
Н	1.42208550094037	6.81334772154903	6.06532196543252
Н	1.83331096888952	8.52341657923723	5.99804801157133
С	4.40855502495201	7.20469687528969	2.87296004769468
С	5.81329604408504	7.04554729437859	2.75565694643637
С	7.08027850782761	5.22836806803593	7.39400258269277
Н	8.05449557834083	4.88669181972868	7.77840367015682
Н	6.44538619892642	5.42719341995404	8.27076451394650
С	6.47264906913835	4.20590517763844	6.45838147927875
Н	6.15611888434420	3.29990532999986	6.99809345097774
Н	7.20039829875277	3.87674915633096	5.70140239124329
С	3.59429571018860	4.55930750734261	6.50486705170460
Н	2.76967298144513	4.57326251664842	5.77390535352433
Н	3.62498109612014	3.54220502958607	6.92676139119544
С	3.38427227228222	5.60339354209934	7.57549166040555
Н	4.10925218610940	5.51399203335668	8.39827927754258
Н	2.38242402051561	5.52052355760338	8.02576374567071
Н	5.52081715143565	9.66076557472512	4.63585549031331

Table S19. Cartesian coordinates of 5v-TS2 at the PBE) optimized	l geometry.
---	-------------	-------------

Coordinates in Å			
	Х	Υ	Z
Fe	5.37540288090661	7.23661614546457	5.50044445446956
S	7.29195865612749	6.99556553222751	6.70984145241712
S	5.06591437807914	4.95657711094361	5.52364662085444
S	3.70161839020391	7.47601704548697	7.03492363642469
0	5.83858343038660	11.16662380878186	8.27499320411643
Ν	6.50798079061470	7.00942891601307	3.96351500401685
Ν	3.97383852557454	7.36239737518210	4.18823726001050
Ν	5.80897313790174	12.56988994313334	5.06649660218866
С	5.72088735917417	10.25141185848312	6.19813159351582
С	5.81736645611889	11.41642917104651	7.09702332365189
С	5.85754087006932	12.70721383040527	6.39613740878430
С	5.92974889254586	13.92558431103942	7.06478526283509
Н	5.96779198659209	13.95149217594945	8.15622740972480
С	5.95125965213328	15.07985162783476	6.28449509691920
Н	6.00686612061843	16.06514007785971	6.75259249221520
С	5.90422728181516	14.95082128755749	4.89850358069176
Н	5.92163678908948	15.83141693547104	4.25340499028913
С	5.83456173527634	13.67190741688388	4.33031208798802
Н	5.79741442443278	13.54678253927017	3.24316487916173
С	5.60568753235220	9.14621574384695	5.60396894301437
С	8.48123735355734	6.79520711915564	5.31957918425962
Н	9.18646156986433	7.63783305243733	5.40663965719034
Н	9.07375935012485	5.88053363149359	5.48162140460230
С	7.81668596519312	6.80754891686441	3.97093596908442
С	8.51217207389841	6.65397650317543	2.75078100056821
Н	9.59144071408309	6.48971154923274	2.76429761858142
С	7.82917299584280	6.70510236162161	1.54784324596890
Н	8.37068339407894	6.58403489294774	0.60649989537305
С	6.42722426620615	6.90338086647015	1.53819379937684
С	5.57366771694171	6.96511210854633	0.38414131294521
Н	6.02292760388780	6.86007178398861	-0.60605967964477
С	4.22083182891252	7.14388463169698	0.50440424167313
Н	3.59682117896091	7.18365180058306	-0.39106359616552
С	3.59601561504302	7.28266459479706	1.79097128981502
С	2.21673887752177	7.46709092823371	2.05216079636950
Н	1.50519117336921	7.51333847169329	1.22404195648423
С	1.76879038354117	7.59540054825603	3.35668893931063

Н	0.70702976818685	7.74986833572586	3.56149217370369
С	2.68482819520472	7.54379955959245	4.43038520449959
С	2.30519381192918	7.74191577431888	5.87130282516159
Н	1.45652640453053	7.11047407860315	6.17625509272698
Н	1.98365911809090	8.78424807785693	6.03479523351813
С	4.42508866317845	7.23510546902239	2.92115397892312
С	5.82617326442513	7.04572867155164	2.79684876230958
С	7.12335387914377	5.32232713617529	7.40191926033694
Н	8.10767498252361	4.97491480228562	7.75391513026131
Н	6.51256376391978	5.49121626101162	8.30200034696201
С	6.49040489372943	4.32060184371048	6.46274043781405
Н	6.18354283859866	3.40442916053511	6.99103076552734
Н	7.19462843993965	4.00581583828055	5.67742015701798
С	3.60045980737987	4.73095666282275	6.57768222466485
Н	2.76981607681286	4.75006150911935	5.85379724571558
Н	3.62166427431432	3.71673427342465	7.00729471581312
С	3.41805790376482	5.78744706129434	7.64004627059357
Н	4.13728481907563	5.67951058729332	8.46567983042250
Н	2.41407490196900	5.73596495160931	8.09037012209090
Н	5.63657553224235	9.90732515169089	4.70911988285446

Table S20. Cartesian coordinates of 5v at the PBEO optimized geometry.

Coordinates in Å				
	Х	Y	Z	
Fe	5.36475008045202	7.36530334116288	5.42617014606331	
S	7.28502708385692	7.19273726041718	6.64621987796458	
S	5.06813809377343	5.04216848950113	5.56798029588702	
S	3.68633363010841	7.65789580374387	6.94679942110394	
0	5.88861901142995	10.32165539086070	8.06984377579911	
Ν	6.49736075648877	7.03014399090688	3.90514270073989	
Ν	3.95497942742860	7.37615955264548	4.11233560971935	
Ν	5.97157364572224	13.00341583613434	5.78271374413348	
С	5.74293770452292	10.36644558792653	5.66338864870261	
С	5.87478731258675	10.96072997239402	7.05125457094791	
С	5.97970051582348	12.45085952955550	6.99257983924119	
С	6.07541425304887	13.18586901488598	8.17490894658625	
Н	6.08021944433578	12.66734677260053	9.13501704532746	
С	6.16227631435899	14.57144833644372	8.06732804867321	
Н	6.23760699586710	15.19288105849889	8.96196079981512	
С	6.15700212194491	15.14980556714192	6.80066412951107	
н	6.22872213744690	16.23196130177792	6.67170925007605	
С	6.06370704247982	14.32143646776749	5.67840064162691	
Н	6.06292345795078	14.74361946887868	4.66867769697912	
С	5.58217129253545	9.10597223070936	5.44219506954389	
С	8.47336180952772	6.93774544701316	5.26652384548414	
Н	9.14972872879070	7.80770298255474	5.29640630227484	
Н	9.09464614553257	6.05488753522840	5.48676906121830	
С	7.80801587309207	6.84668592546143	3.92301247199108	
С	8.50245274485616	6.62876108558451	2.71214517343889	
Н	9.58289470991094	6.47299113697599	2.73217313334191	
С	7.81800146322927	6.61544346255395	1.50922705601207	
Н	8.36031586379926	6.45309220316962	0.57451168526994	
С	6.41481954459420	6.80468201436049	1.48962320472601	
С	5.56376367267218	6.81597368075610	0.33228407676218	
Н	6.01554268945723	6.67258821352877	-0.65189708594546	
С	4.21023556662632	6.99609904421902	0.44288297777845	
Н	3.58744314736862	6.99918852588417	-0.45437066615342	
С	3.58353632624007	7.18415361691832	1.72214062208211	
С	2.20352037971182	7.37811436044293	1.97297532841291	
Н	1.49377985698603	7.38851782290203	1.14201984395164	
С	1.75211196400862	7.56154760430004	3.26939951732552	

Н	0.68961848543870	7.72234418638484	3.46508075071459
С	2.66630985446164	7.56452389191971	4.34591465211316
С	2.28492426518026	7.83211998786007	5.77340198484085
Н	1.45022391590948	7.20072360462181	6.11509787857865
Н	1.94545248107565	8.87592883584300	5.88121757713519
С	4.41061440506437	7.18729594708931	2.85460378088184
С	5.81196332760159	6.99940041166849	2.74042296268796
С	7.12696018067755	5.55139033010184	7.41308913188182
Н	8.11513627903531	5.23691606413250	7.78587784855664
Н	6.51167265739426	5.75581873116414	8.30266435176251
С	6.51641021319589	4.49367219670440	6.52241338203384
Н	6.24385480033453	3.59146871169896	7.09232743226926
Н	7.22320597611260	4.16608579566314	5.74426924964905
С	3.61875328361829	4.87670045535501	6.65226743120080
Н	2.77838598025729	4.83624303875470	5.94049939870137
Н	3.65522138219616	3.89390131799024	7.14927046722765
С	3.43992644261285	5.99843012235333	7.64652458675349
Н	4.16870520058851	5.95132220634646	8.46966967313116
Н	2.44225517205520	5.96563295714545	8.11280723679204
Н	5.78921840862369	11.16767939139547	4.89405262667532

References

- 1. A. J. Blake, F. Demartin, F. A. Devillanova, A. Garau, F. Isaia, V. Lippolis, M. Schröder and G. Verani, *J. Chem. Soc., Dalton. Trans.*, 1996, 3705.
- 2. S.-C. Chan, P. Gupta, X. Englemann, Z. Z. Ang, R. Ganguly, E. Bill, K. Ray, S. Yee and J. England, *Angew. Chem. Int. Ed.*, 2018, **57**, 15717.
- (*a*) C. R. Smith, E. M. Bunnelle, A. J. Rhodes and R. Sarpong, *Org. Lett.*, 2007, 9, 1169; (*b*) Y. Xia, A. S. Dudnik, Y. Li and V. Geovrgyan, *Org. Lett.*, 2010, 12, 5538.
- 4. D. K. Friel, M. L. Snapper and A. H. Hoveyda, J. Am. Chem. Soc., 2008, 130, 9942.
- 5. D. F. Evans, J. Chem. Soc., 1959, 2003.
- 6. D. F. Evans, G. V. Fazakerley, P. R. F. Phillips, J. Chem. Soc. A, 1971, 1931.
- 7. H. D. Crawford, J. Swanson, J. Chem. Educ. 1971, 48, 382.
- 8. D. H. Grant, J. Chem. Educ. 1995, 72, 39.
- 9. F. Neese, WIREs Comput. Mol. Sci., 2012, 2, 73.
- 10. (*a*) J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, **77**, 3865; (*b*) C. Adamo and V. Barone, *J. Chem. Phys.*, 1999, **110**, 6158.
- 11. (*a*) F. Weigend and R. Ahlrichs, *Phys. Chem. Chem. Phys.*, 2005, **7**, 3297. (b) F. Weigend, *Phys. Chem. Chem. Phys.*, 2006, **8**, 1057.
- 12. (*a*) F. Neese, J. Comput. Chem., 2003, **24**, 1740; (*b*) F. Neese, F. Wennmohs, A. Hansen and U. Becker, Chem. Phys., 2009, **356**, 98; (*c*) S. Kossmann and F. Neese, Chem. Phys. Lett., 2009, **481**, 240.
- 13. (*a*) S. Grimme, J. Antony, S. Ehrlich and H. Krieg, *J. Chem. Phys.*, 2010, **132**, 154104. (*b*) S. Grimme, S. Ehrlich and L. Goerigk, *J. Comput. Chem.*, 2011, **32**, 1456.
- 14. V. Barone and M. Cossi, J. Phys. Chem. A, 1998, 102, 1995.

NMR Spectra

Figure S3. ¹H NMR of **1** in CD₃CN at 298 K.

Figure S4. $^{13}C{^{1}H}$ NMR of **1** in CD₃CN at 298 K.

Figure S5. ¹H-¹H COSY NMR of **1** in CD₃CN at 298 K.

Figure S6. ¹H-¹H ROESY NMR of **1** in CD₃CN at 298 K.

Figure S7. $^{1}H^{-13}C$ HSQC NMR of 1 in CD₃CN at 298 K.

Figure S8. ¹H-¹³C HMBC NMR of **1** in CD₃CN at 298 K.

Figure S9. $^{19}F{^1H}$ NMR of **1** in CD₃CN at 298 K.

Figure S10. ¹H NMR of 2 in CD_3OD at 298 K.

Figure S11. ¹³C{¹H} NMR of **2** in CD₃OD at 298 K.

bpm

Figure S12. 1 H- 1 H COSY NMR of **2** in CD₃OD at 298 K.

Figure S13. ¹H-¹H ROESY NMR of **2** in CD₃OD at 298 K.

Figure S14. 1 H- 13 C HSQC NMR of **2** in CD₃OD at 298 K.

Figure S15. ¹H-¹³C HMBC NMR of **2** in CD₃OD at 298 K.

Figure S16. ${}^{19}F{}^{1}H$ NMR of 2 in CD₃OD at 298 K.

Figure S17. ¹H NMR of **3** in CD_3OD at 298 K.

Figure S18. ¹³C{¹H} NMR of **3** in CD₃OD at 298 K.

Figure S19. 1 H- 1 H COSY NMR of **3** in CD₃OD at 298 K.

Figure S20. ¹H-¹H ROESY NMR of **3** in CD₃OD at 298 K.

Figure S21. 1 H- 13 C HSQC NMR of **3** in CD₃OD at 298 K.

Figure S22. ¹H-¹³C HMBC NMR of **3** in CD₃OD at 298 K.

Figure S23. ${}^{19}F{}^{1}H{}$ NMR of **3** in CD₃OD at 298 K.

Figure S24. ¹H NMR of 4 in CD₃NO₂ at 298 K.

Figure S25. ¹³C{¹H} NMR of **4** in CD₃NO₂ at 298 K.

Figure S26. 1 H- 1 H COSY NMR of **4** in CD₃NO₂ at 298 K.

S66

Figure S27. 1 H- 1 H ROESY NMR of **4** in CD₃NO₂ at 298 K.

Figure S28. ^{1}H - ^{13}C HSQC NMR of 4 in CD₃NO₂ at 298 K.

Figure S29. $^{1}H^{-13}C$ HMBC NMR of 4 in CD₃NO₂ at 298 K.

Figure S30. ${}^{19}F{}^{1}H{}$ NMR of **4** in CD₃OD at 298 K.

Figure S31. ¹H NMR of 5 in CD₃NO₂ at 298 K.

Figure S32. ¹³C{¹H} NMR of 5 in CD₃NO₂ at 298 K.

Figure S33. ¹H-¹H COSY NMR of **5** in CD₃NO₂ at 298 K.

mdd

Figure S34. 1 H- 1 H ROESY NMR of **5** in CD₃NO₂ at 298 K.

Figure S35. ^{1}H - ^{13}C HSQC NMR of 5 in CD₃NO₂ at 298 K.

Figure S36. 1 H- 13 C HMBC NMR of **5** in CD₃NO₂ at 298 K.

Figure S37. ${}^{19}F{}^{1}H{}$ NMR of **5** in CD₃OD at 298 K.

Figure S38. ¹H NMR of **6** in CD₃NO₂ at 298 K.

Figure S39. ¹³C{¹H} NMR of **6** in CD₃NO₂ at 298 K.

mdd

Figure S40. ¹H-¹H COSY NMR of 6 in CD₃NO₂ at 298 K.

bpm

Figure S41. 1 H 1 H ROESY NMR of **6** in CD₃NO₂ at 298 K.

Figure S42. ^{1}H - ^{13}C HSQC NMR of 6 in CD₃NO₂ at 298 K.

Figure S43. 1 H- 13 C HMBC NMR of **6** in CD₃NO₂ at 298 K.

Figure S44. $^{19}F{^{1}H}$ NMR of 6 in CD₃OD at 298 K.

IR Spectra

Figure S45. Infrared spectra of 1 on KBr plate.

Figure S46. Infrared spectra of 2 on KBr plate.

Figure S47. Infrared spectra of 3 on KBr plate.

Figure S48. Infrared spectra of 4 on KBr plate.

Figure S49. Infrared spectra of 5 on KBr plate.

Figure S50. Infrared spectra of 6 on KBr plate.