Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2020

Asymmetric Organocatalytic Multicomponent Reactions for Efficient Construction of Bicyclic Compounds Bearing

Bisacetal and Isoxazolidine Moieties

Jun-Ping Pei,^a Xue-Jiao Lv,^a Chen-Jun Peng^a and Yan-Kai Liu^{*ab} ^aKey Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and

Pharmacy, Ocean University of China, Qingdao 266003, China

^bLaboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine

Science and Technology, Qingdao 266003, China

E-mail: liuyankai@ouc.edu.cn

Supporting Information

Contents

A. General information	1
B. The synthesis of the start materials	3
C. Optimization of the reaction conditions	5
C1. Optimization of the Michael Addition C2. Optimization of the second step	5 6
D. One-pot synthesis of 5a	7
E. Scope of the reaction	8
F. Synthesis of Bicyclic 1,2-Oxazinane Derivatives	17
G. Synthetic transformation	19
H. 1 mmol Scale synthesis of 5a	21
I. Control experiments	22
I1. Control experiment 1:	22
I2. Control experiment 2:	
I3. Control experiment 3:	
I4. Control experiment 4:	25
I5. Control experiment 5:	26
I6. Control experiment 6:	31
J. Other reactions:	31
J1. The reaction of 1a with (<i>E</i>)-4-oxo-4-phenylbut-2-enoic acid 15 :	
J2. The reaction of crotonaldehyde with benzyl hydroxyl carbamate and 2a	:32
K. NMR spectra and HPLC traces	33
L. Single crystal X-Ray diffraction data	76

A. General information

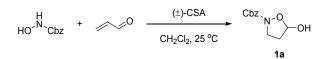
The ¹H and ¹³C NMR spectra were recorded at 400/500 MHz for ¹H and at 100/125 MHz for ¹³C. The chemical shifts (δ) for ¹H and ¹³C are given in ppm relative to residual signals of the solvents (CDCl₃ at 7.26 ppm ¹H NMR, 77.16 ppm ¹³C NMR). Coupling constants are given in Hz. The following abbreviations are used to indicate the multiplicity: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet. High-resolution mass spectra (HRMS) were obtained from the Waters Q-Tof Ultima Global. LC-MS was performed using an Acquity UPLC H-Class coupled to a SQ Detector 2 mass spectrometer (Waters) using a BEH C18 column (1.7 µm, 2.1 × 50 mm). X-ray data were obtained from Zhongke chemical technology service center. Optical rotations are reported as follows: [α]_D²⁰ (c in g per 100 mL, solvent: CHCl₃).

Note: NMR signals containing common solvent contaminants were list. H_2O in CDCl₃ at 1.56 ppm ¹H NMR; Ethyl acetate in CDCl₃ at 2.05 (s), 4.12 (q), 1.26 (t) ppm ¹H NMR; Dichloromethane in CDCl₃ at 5.30 (s) ppm ¹H NMR; Acetone in CDCl₃ at 2.17 (s) ppm ¹H NMR.

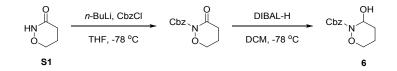
All the reactions were set up under air and using freshly distilled solvents, without any precautions to exclude moisture, unless otherwise noted open air chemistry on the bench-top. Chromatographic purification of products was accomplished using force-flow chromatography (FC) on silica gel (300-400 mesh). For thin layer chromatography (TLC) analysis throughout this work, Merck pre-coated TLC plates (silica gel 60 GF254, 0.25 mm) were used, using UV light as the visualizing agent and an phosphomolybdic acid or basic aqueous potassium permanganate (KMnO₄) as stain developing solutions. Organic solutions were concentrated under reduced pressure on a Büchi rotary evaporator.

HPLC analyses on chiral stationary phase were performed on an Hitachi Chromaste. Daicel Chiralpak IA or IB columns with *n*-hexane/*i*-PrOH as the eluent were used. HPLC traces were compared to racemic samples which prepared by mixture of two enantiomeric final products obtained using (*S*) and (*R*) catalyst.

Commercial reagents and solvents were purchased from Sigma Aldrich, Fluka, and Alfa Aesar used as received, without further purification. All Michael acceptors **2** were


prepared according to literature procedures.^[1] The lactols **1** was prepared according to literature procedures.^[2] The 1,2-oxazinan-3-one **6** was prepared according to literature procedures.^[3]

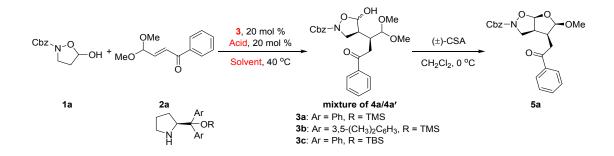
¹ Zhao, Y.-M.; Cheung, M. S.; Lin, Z.; Sun, J. Enantioselective synthesis of β ,γ-unsaturated α -fluoroesters catalyzed by N-heterocyclic carbenes. *Angew. Chem., Int. Ed.* **2012**, *51* (41), 10359-10363.


² Kobayashi, Y.; Taniguchi, Y.; Hayama, N.; Inokuma, T.; Takemoto, Y. A Powerful Hydrogen-Bond-Donating Organocatalyst for the Enantioselective Intramolecular Oxa-Michael Reaction of α ,β-Unsaturated Amides and Esters. *Angew. Chem., Int. Ed.* **2013**, *52* (42), 11114-11118.

³ Wolfe, S.; Wilson, M.-C.; Cheng, M.-H.; Shustov, G. V.; Akuche, C. I. Cyclic hydroxamates, especially multiply substituted [1,2]oxazinan-3-ones. *Can. J. Chem.* **2003**, *81* (8), 937-960.

B. The synthesis of the start materials

Acrolein (1.80 mL, 30.0 mmol) was added dropwise to a mixture of benzyl hydroxycarbamate (5.00 g, 29.9 mmol) and 10-camphorsulfonic acid (1.40 g, 6.03 mmol) in dichloromethane (150 mL), and the mixture was stirred at room temperature for 20 min. The reaction mixture was then diluted with CHCl₃ (100 mL) and washed with saturated aqueous NaHCO₃ solution (100mL x 2). The organic layer was dried over Na₂SO₄, filtered, and concentrated in vacuo. The residue was purified by recrystallization (from petroleum ether/ethyl acetate) to afford benzyl 5-hydroxyisoxazolidine-2-carboxylate **1a** as white solid (4.79 g, 72%).


To a stirred solution of 1,2-oxazinan-3-one (120 mg, 1.19 mmol) in THF (2.5 mL)was added *n*-BuLi (2.5 M solution in hexane, 0.48 mL) at -78 °C. After being stirred at the same temperature for 30 min, benzyl carbonochloridate (243 mg, 1.42 mmol) was added. The reaction mixture was stirred for 1 h and gradually warmed to rt, after which it was quenched with satd aq. NH₄Cl (10 mL) at 0 °C and warmed to rt. The water layer was extracted with EtOAc (3 x 10 mL) and the combined organic layers were dried over Na₂SO₄ and the solvent was evaporated. The product was purified by column chromatography on a silica gel (petroleum ether/ethyl acetate = 3/1) to afford the product a colorless oil (135 mg, 49%).

To a stirred solution of benzyl 3-oxo-1,2-oxazinane-2-carboxylate (70.5 mg, 0.30 mmol) in CH_2Cl_2 (1.5 mL)was added DIBAL-H (1.5 M solution in toluene, 0.36 mL) at -78 °C. After being stirred at the same temperature for 1 h, the reaction mixture was quenched with MeOH and a saturated potassium sodium tartrate solution, and the reaction mixture was warmed up to room temperature. The organic layer was separated and the

aqueous layer was extracted with CH_2Cl_2 twice. The combined organic extracts were washed with brine and dried over Na_2SO_4 and the solvent was evaporated. The product was purified by column chromatography on a silica gel (petroleum ether/ethyl acetate = 3/1) to afford the product **6** a colorless oil (46 mg, 65%)

C. Optimization of the reaction conditions

C1. Optimization of the Michael Addition

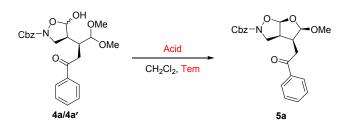
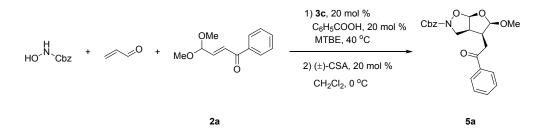

Entry	Cat.	Solvent	Acid	Yield (%) ^b	ee (%) ^c
1	3a	toluene	C ₆ H ₅ COOH	42	91
2	3b	toluene	C ₆ H ₅ COOH	45	93
3	3c	toluene	C ₆ H ₅ COOH	53	97
4	3c	tetrahydrofuran	C ₆ H ₅ COOH	43	96
5	3c	CHCl ₃	C ₆ H ₅ COOH	45	96
6	3c	MTBE	C ₆ H ₅ COOH	61	>99
7	3c	ethyl acetate	C ₆ H ₅ COOH	25	97
8	3c	MeCN	C ₆ H ₅ COOH	50	96
9	3c	acetone	C ₆ H ₅ COOH	53	97
10	3c	MTBE	4-NO ₂ C ₆ H ₄ COOH	58	>99
11	3c	MTBE	CH ₃ COOH	58	99
12	3с	MTBE	4- MeOC₀H₄COOH	56	99

Table S1. Optimization of the Michael Addition^a

[*a*] Unless otherwise specified, all reactions were carried out using 1a (0.10 mmol, 1.0 equiv), 2a (0.13 mmol, 1.3 equiv) in solvent (0.3 mL) with 3 (20 mol %) and acid (20 mol %) at 40 °C. After workup, the mixture was purified by flash chromatography on silica gel to afford 4a/4a'. Compound 4a/4a' was dissolved in redistilled CH₂Cl₂ (0.1 mmol in 1 mL) at 0 °C, and CSA (20 mol %) was added. After full conversion of the second step, the residue was purified by flash chromatography on gel to give product 5a.[*b*] Isolated yield of 5a over two steps. [*c*] Determined by HPLC analyses of isolated compound 5a on chiral stationary phases. TMS = Trimethylsilyl. TBS = *tert*-Butyldimethylsilyl. MTBE = *tert*-Butyl methyl

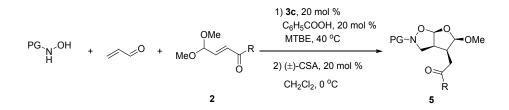
ether. CSA = Camphorsulfonic acid.

C2. Optimization of the second step

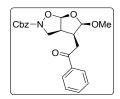


Entry	Acid	Tem (°C)	Yield (%) ^b	ee (%) ^c
1	BF ₃ ·Et ₂ 0 (20 mol %)	0	51	97
2	Trifluoroacetic acid (20 mol %)	0	25	97
3	Diphenylphosphate (20 mol %)	0	-	-
4	Diphenylphosphate (20 mol %)	25	46	97
5	CSA (20 mol %)	0	80	97
6	<i>p-</i> TsOH (20 mol %)	0	46	97
7	CSA (20 mol %)	25	77	97
8	CSA (20 mol %)	40	66	97
9	CSA (20 mol %) + 4Å MS	0	-	-

Table S2. Optimization of the second step^a

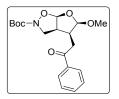

[*a*] Unless otherwise specified, all reactions were carried out using 4a/4a' (0.05 mmol, 1.0 equiv) in redistilled CH₂Cl₂ (0.3 mL) with acid. After workup, the mixture was purified by flash chromatography on silica gel to afford **5a**. [*b*] Isolated yield of **5a**. [*c*] Determined by HPLC analyses of isolated compound **5a** on chiral stationary phases. *p*-TsOH = *p*-Toluenesulfonic acid. CSA = Camphorsulfonic acid.

D. One-pot synthesis of 5a

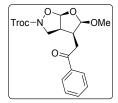


A glass vial equipped with a magnetic stirring bar was charged with benzyl hydroxycarbamate (16.7 mg, 0.10 mmol, 1.0 equiv), acrylaldehyde (8.4 mg, 0.18 mmol, 1.8 equiv), **2a** (26.8 mg, 0.13 mmol, 1.3 equiv), **3c** (7.4 mg, 0.02 mmol, 0.2 equiv) and C₆H₅COOH (2.5 mg, 0.02 mmol, 0.2 equiv) in MTBE (0.3 mL) at 40 °C. The reaction was stirred at 40 °C for 72 h until the consumption of benzyl hydroxycarbamate (monitored by TLC analysis). After completion of the reaction, the reaction mixture was concentrated and the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 2:1) to afford **4a/4a'** colorless oil (36 mg). Then, compound **4a/4a'** (36 mg, 1.0 equiv) was dissolved in anhydrous CH₂Cl₂ (0.5 mL) at 0 °C. CSA (3.89 mg, 0.2 equiv) was added to the reaction mixtures. The reaction was stirred at 0 °C for 12 h until the consumption of **4a/4a'**, then the reaction mixture was concentrated and the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 5:2) to give product **5a** (25 mg, 63% over two steps, >99% ee, dr >20:1).

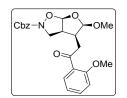
E. Scope of the reaction


General procedure: A glass vial equipped with a magnetic stirring bar was charged with N-protected hydroxylamine (0.10 mmol, 1.0 equiv), acrylaldehyde (0.18 mmol, 1.8 equiv), **2** (0.13 mmol, 1.3 equiv), **3c** (0.02 mmol, 0.2 equiv) and C₆H₅COOH (0.02 mmol, 0.2 equiv) in MTBE (0.3 mL) at 40 °C. The resulting reaction mixture was kept under vigorous stirring until the consumption of N-protected hydroxylamine (monitored by TLC analysis). After completion of the reaction, the reaction mixture was concentrated and the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 6:1 to 2:1) to afford **4/4'**. Then, compound **4/4'** (1.0 equiv) was dissolved in anhydrous CH₂Cl₂ (0.10 mmol in 0.6 mL) at 0 °C. CSA (0.2 equiv) was added to the reaction mixtures. After full conversion of the second step, the reaction mixture was concentrated and the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 11:2 to 5:2) to give product **5** for NMR and HPLC analysis.

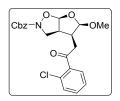
benzyl~(3aS, 4S, 5R, 6aR)-5-methoxy-4-(2-oxo-2-phenylethyl) tetrahydrofuro [3, 2-d] isoxazole-2(3H)-carboxylate~(5a)-2(3H)-carboxylate~


5a was obtained as a colorless oil 24 mg in 61% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 7/2). ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, *J* = 7.7 Hz, 2H), 7.60 (t, *J* = 7.4 Hz, 1H), 7.48 (t, *J* = 7.7 Hz, 2H), 7.39 (t, *J* = 10.1 Hz, 2H), 7.37 – 7.28 (m, 3H), 5.98 (d, *J* = 5.2 Hz, 1H), 5.32 – 5.24 (m, 1H), 5.12 (d, *J* = 12.3 Hz, 1H), 5.01 (d, *J* = 5.1 Hz, 1H), 4.13 (d, *J* = 10.8 Hz, 1H), 3.46 – 3.33 (m, 3H), 3.28 – 3.17 (m, 4H), 2.88 (dt, *J* = 14.8, 7.4 Hz, 1H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 198.1, 156.8, 136.6, 136.1, 133.6, 128.9, 128.7, 128.4, 128.3, 128.2, 109.2, 105.9, 67.9, 56.3, 48.1,

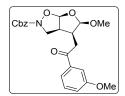
46.7, 40.2, 35.6 ppm. **HRMS**: $[M+H]^+$ *calcd*. For $C_{22}H_{24}NO_6^+$ 398.1598, found 398.1595. $[\alpha]_D^{20}$ 45.21 (c = 0.49 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IB column [n-hexane/i-PrOH = 80/20, 1 mL/min], λ = 210 nm, t_{major} = 22.59 min, t_{minor} = 18.13 min, **ee** >99%. The diastereomeric ratio was determined by NMR dr >20:1.


 $\textit{tert-butyl} (3aS, 4S, 5R, 6aR) - 5 - methoxy - 4 - (2 - oxo - 2 - phenylethyl) \\ tetrahydrofuro [3, 2 - d] \\ is oxazole - 2(3H) - carboxylate (5b) \\ is oxazole -$

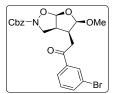
5b was obtained as a white solid 19 mg in 52% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 9/2). ¹H NMR (500 MHz, CDCl₃) δ 8.04 – 7.94 (m, 2H), 7.59 (t, *J* = 7.4 Hz, 1H), 7.49 (t, *J* = 7.7 Hz, 2H), 5.94 (d, *J* = 4.7 Hz, 1H), 5.03 (d, *J* = 5.0 Hz, 1H), 4.02 – 3.92 (m, 1H), 3.44 – 3.36 (m, 3H), 3.32 (s, 3H), 3.21 (dd, *J* = 18.3, 7.2 Hz, 1H), 2.87 (dt, *J* = 14.4, 7.2 Hz, 1H), 1.50 (s, 9H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 198.1, 155.3, 136.5, 133.4, 128.7, 128.0, 108.7, 105.8, 81.4, 56.2, 47.8, 46.5, 40.0, 35.3, 28.4 ppm. HRMS: [M+Na]⁺ calcd. For C₁₉H₂₅NNaO₆⁺ 386.1574, found 386.1578. [α]_p²⁰ 12.75 (*c* = 1.08 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IA column [*n*-hexane/*i*-PrOH = 80/20, 1 mL/min], λ = 210 nm, *t_{major}* = 8.17 min, *t_{minor}* = 7.05 min, **ee** = **97%**. The diastereomeric ratio was determined by NMR *dr* >**20:1**.


2,2,2-trichloroethyl (3aS,4S,5R,6aR)-5-methoxy-4-(2-oxo-2-phenylethyl)tetrahydrofuro[3,2-d]isoxazole-2(3*H*)-carboxylate (5c) **5c** was obtained as a yellow oil 22 mg in 50% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 11/2). ¹H NMR (400 MHz, CDCl₃) δ 8.01 – 7.95 (m, 2H), 7.60 (t, *J* = 7.4 Hz, 1H), 7.49 (t, *J* = 7.7 Hz, 2H), 6.02 (d, *J* = 4.9 Hz, 1H), 5.03 (d, *J* = 5.1 Hz, 1H), 4.89 – 4.78 (m, 1H), 4.66 (s, 1H), 4.14 (d, *J* = 9.1 Hz, 1H), 3.47 (ddd, *J* = 8.6, 6.0, 2.5 Hz, 2H), 3.40 (dd, *J* = 18.4, 7.3 Hz, 1H), 3.31 – 3.21 (m, 4H), 2.93

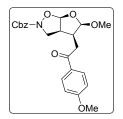
– 2.83 (m, 1H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 198.0, 136.5, 133.7, 128.9, 128.1, 110.1, 109.3, 105.9, 75.7, 47.9, 46.8, 40.1, 35.5, 29.8 ppm. HRMS: [M+Na]⁺ *calcd*. For $C_{17}H_{18}Cl_3NNaO_6^+$ 460.0092, found 460.0095. [α]_D²⁰ 22.42 (*c* = 0.97 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IA column [*n*-hexane/*i*-PrOH = 80/20, 1 mL/min], λ = 210 nm, t_{major} = 10.90 min, t_{minor} = 9.55 min, **ee = 98%**. The diastereomeric ratio was determined by NMR *dr* >20:1.


benzyl (3aS,4S,5R,6aR)-5-methoxy-4-(2-(2-methoxyphenyl)-2-oxoethyl)tetrahydrofuro[3,2-d]isoxazole-2(3H)-carboxylate (5d)

5d was obtained as a colorless oil 20 mg in 47% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 3/1). ¹**H** NMR (500 MHz, CDCl₃) δ 7.67 (dd, *J* = 7.7, 1.7 Hz, 1H), 7.52 – 7.46 (m, 1H), 7.39 (d, *J* = 6.3 Hz, 2H), 7.34 – 7.28 (m, 3H), 7.04 – 6.93 (m, 2H), 5.95 (d, *J* = 4.7 Hz, 1H), 5.26 (d, *J* = 12.3 Hz, 1H), 5.12 (d, *J* = 12.3 Hz, 1H), 4.98 (d, *J* = 5.0 Hz, 1H), 4.22 – 4.12 (m, 1H), 3.86 (s, 3H), 3.40 – 3.35 (m, 2H), 3.32 (d, *J* = 7.3 Hz, 2H), 3.22 (s, 3H), 2.88 – 2.79 (m, 1H) ppm. ¹³**C** NMR (125 MHz, CDCl₃) δ 200.3, 158.7, 136.1, 133.9, 130.2, 128.6, 128.3, 128.2, 127.8, 120.8, 111.7, 109.0, 106.1, 67.8, 56.2, 55.7, 48.1, 46.7, 40.6, 40.5 ppm. HRMS: [M+H]⁺ calcd. For C₂₃H₂₆NO₇⁺ 428.1704, found 428.1709. [α]_D²⁰ 49.22 (*c* = 1.28 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IB column [*n*-hexane/*i*-PrOH = 80/20, 1 mL/min], λ = 210 nm, *t_{major}* = 24.46 min, *t_{minor}* = 21.18 min, **ee = 99%**. The diastereomeric ratio was determined by NMR *dr* >20:1.

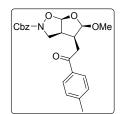

benzyl (3aS,4S,5R,6aR)-4-(2-(2-chlorophenyl)-2-oxoethyl)-5-methoxytetrahydrofuro[3,2-d]isoxazole-2(3H)-carboxylate (5e)

5e was obtained as a colorless oil 18 mg in 42% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 7/2). ¹**H** NMR (400 MHz, CDCl₃) δ 7.48 – 7.29 (m, 9H), 5.97 (d, *J* = 4.8 Hz, 1H), 5.26 (d, *J* = 12.3 Hz, 1H), 5.12 (d, *J* = 12.3 Hz, 1H), 4.99 (d, *J* = 5.0 Hz, 1H), 4.19 – 4.07 (m, 1H), 3.42 – 3.28 (m, 3H), 3.27 – 3.14 (m, 4H), 2.93 – 2.78 (m, 1H) ppm. ¹³**C** NMR (125 MHz, CDCl₃) δ 201.2, 138.9, 136.1, 132.2, 130.9, 128.8, 128.6, 128.3, 128.3, 127.2, 109.1, 105.7, 67.9, 56.3, 48.0, 46.7, 40.3, 40.0 ppm. HRMS: [M+Na]⁺ *calcd*. For C₂₂H₂₂ClNNaO₆⁺ 454.1028, found 454.1029. [**α**]_{**b**}²⁰ 17.97 (*c* = 0.63 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IB column [*n*-hexane/*i*-PrOH = 80/20, 1 mL/min], λ = 210 nm, *t*_{major} = 25.61 min, *t*_{minor} = 20.93 min, **ee = 90%**. The diastereomeric ratio was determined by NMR *dr* >20:1.

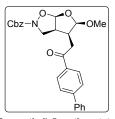

benzyl (3a\$,4\$,5R,6aR)-5-methoxy-4-(2-(3-methoxyphenyl)-2-oxoethyl)tetrahydrofuro[3,2-a]isoxazole-2(3H)-carboxylate (5f)

5f was obtained as a colorless oil 24 mg in 56% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 7/2). ¹**H NMR** (400 MHz, CDCl₃) δ 7.54 (d, *J* = 7.8 Hz, 1H), 7.48 (dd, *J* = 2.6, 1.6 Hz, 1H), 7.44 – 7.27 (m, 6H), 7.14 (ddd, *J* = 8.2, 2.7, 0.9 Hz, 1H), 5.98 (d, *J* = 5.1 Hz, 1H), 5.27 (d, *J* = 12.3 Hz, 1H), 5.12 (d, *J* = 12.3 Hz, 1H), 5.01 (d, *J* = 5.1 Hz, 1H), 4.16 – 4.09 (m, 1H), 3.86 (s, 3H), 3.46 – 3.32 (m, 3H), 3.28 – 3.16 (m, 4H), 2.86 (qd, *J* = 7.4, 5.1 Hz, 1H) ppm. ¹³**C NMR** (125 MHz, CDCl₃) δ 197.9, 160.0, 137.9, 136.1, 129.9, 128.6, 128.3, 128.3, 120.9, 120.0, 112.4, 109.1, 105.9, 67.9, 56.3, 55.6, 48.1, 46.7, 40.2, 35.7 ppm. **HRMS**: [M+H]⁺ *calcd*. For C₂₃H₂₆NO₇⁺ 428.1704, found 428.1706. **[α]**_D²⁰ 52.70 (*c* = 1.17 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IB column [*n*-hexane/*i*-PrOH = 80/20, 1 mL/min], λ = 210 nm, *t*_{major} = 26.62 min, *t*_{minor} = 23.52 min, **ee = 99%**. The diastereomeric ratio was determined by NMR *dr* >20:1.

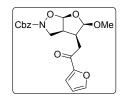
benzyl (3aS,4S,5R,6aR)-4-(2-(3-bromophenyl)-2-oxoethyl)-5-methoxytetrahydrofuro[3,2-d]isoxazole-2(3H)-carboxylate (5g)


5g was obtained as a colorless oil 28 mg in 59% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 7/2). ¹H NMR (500 MHz, CDCl₃) δ 8.10 (t, *J* = 1.8 Hz, 1H), 7.89 (dt, *J* = 7.8, 1.4 Hz, 1H), 7.73 (ddd, *J* = 7.9, 2.0, 1.1 Hz, 1H), 7.45 – 7.29 (m, 6H), 5.99 (d, *J* = 5.2 Hz, 1H), 5.29 (d, *J* = 12.3 Hz, 1H), 5.13 (d, *J* = 12.3 Hz, 1H), 5.01 (d, *J* = 5.0 Hz, 1H), 4.15 – 4.09 (m, 1H), 3.45 – 3.34 (m, 3H), 3.24 (s, 3H), 3.19 (dd, *J* = 18.4, 7.0 Hz, 1H), 2.90 – 2.81 (m, 1H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 196.7, 138.2, 136.5, 136.0, 131.2, 130.5, 128.7, 128.4, 128.3, 126.7, 123.2, 109.2, 105.8, 67.9, 56.3, 48.0, 46.6, 40.0, 35.8 ppm. HRMS: [M+H]⁺ calcd. For C₂₂H₂₃BrNO₆⁺ 476.0703, found 476.0700. [α]_p²⁰ 29.86 (*c* = 1.22 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IB column [*n*-hexane/*i*-PrOH = 80/20, 1 mL/min], λ = 210 nm, t_{major} = 23.64 min, t_{minor} = 18.79 min, **ee = 99%**. The diastereomeric ratio was determined by NMR *dr* >20:1.

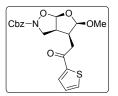
 $benzyl \ (3aS, 4S, 5R, 6aR) - 5 - methoxy - 4 - (2 - (4 - methoxy phenyl) - 2 - oxoethyl) tetrahydrofuro [3, 2 - d] is oxazole - 2 (3H) - carboxylate \ (5h) - 2 - oxoethyl) tetrahydrofuro [3, 2 - d] is oxazole - 2 (3H) - carboxylate \ (5h) - 2 - oxoethyl) tetrahydrofuro [3, 2 - d] is oxazole - 2 (3H) - carboxylate \ (5h) - 2 - oxoethyl) tetrahydrofuro [3, 2 - d] is oxazole - 2 (3H) - carboxylate \ (5h) - 2 - oxoethyl) tetrahydrofuro [3, 2 - d] is oxazole - 2 (3H) - carboxylate \ (5h) - 2 - oxoethyl) tetrahydrofuro [3, 2 - d] is oxazole - 2 (3H) - carboxylate \ (5h) - 2 - oxoethyl) tetrahydrofuro [3, 2 - d] is oxazole - 2 (3H) - carboxylate \ (5h) - 2 - oxoethyl - 2 - oxoethyl) tetrahydrofuro [3, 2 - d] is oxazole - 2 (3H) - carboxylate \ (5h) - 2 - oxoethyl -$


5h was obtained as a colorless oil 26 mg in 61% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 3/1). ¹**H** NMR (400 MHz, CDCl₃) δ7.98 – 7.90 (m, 2H), 7.44 – 7.38 (m, 2H), 7.38 – 7.29 (m, 3H), 6.96 – 6.90 (m, 2H), 5.97 (d, *J* = 5.1 Hz, 1H), 5.28 (d, *J* = 12.3 Hz, 1H), 5.12 (d, *J* = 12.3 Hz, 1H), 4.99 (d, *J* = 5.0 Hz, 1H), 4.12 (dd, *J* = 10.8, 2.1 Hz, 1H), 3.88 (s, 3H), 3.45 – 3.26 (m, 3H), 3.26 – 3.12 (m, 4H), 2.86 (qd, *J* = 7.3, 4.9 Hz, 1H) ppm. ¹³**C** NMR (125 MHz, CDCl₃) δ 196.6, 163.9, 136.1, 130.5, 129.6, 128.6, 128.3, 128.3, 113.9, 109.2, 106.0, 67.8, 56.2, 55.6, 48.1, 46.6, 40.2,

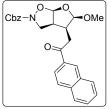
35.1 ppm. **HRMS**: $[M+H]^+$ calcd. For $C_{23}H_{26}NO_7^+$ 428.1704, found 428.1702. $[\alpha]_D^{20}$ 61.86 (c = 1.45 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IA column [*n*-hexane/*i*-PrOH = 80/20, 1 mL/min], $\lambda = 260$ nm, $t_{major} = 22.66$ min, $t_{minor} = 17.93$ min, **ee = 99%**. The diastereomeric ratio was determined by NMR *dr* >20:1.


benzyl~(3aS, 4S, 5R, 6aR) - 5 - methoxy - 4 - (2 - oxo - 2 - (p - tolyl) ethyl) tetrahydrofuro [3, 2 - a] isoxazole - 2 (3H) - carboxylate~(5i) + (2 - oxo - 2 - (p - tolyl)) ethyl) tetrahydrofuro [3, 2 - a] isoxazole - 2 (3H) - carboxylate~(5i) + (2 - oxo - 2 - (p - tolyl)) ethyl) tetrahydrofuro [3, 2 - a] isoxazole - 2 (3H) - carboxylate~(5i) + (2 - oxo - 2 - (p - tolyl)) ethyl) tetrahydrofuro [3, 2 - a] isoxazole - 2 (3H) - carboxylate~(5i) + (2 - oxo - 2 - (p - tolyl)) ethyl) tetrahydrofuro [3, 2 - a] isoxazole - 2 (3H) - carboxylate~(5i) + (2 - oxo - 2 - (p - tolyl)) ethyl) tetrahydrofuro [3, 2 - a] isoxazole - 2 (3H) - carboxylate~(5i) + (2 - oxo - 2 - (p - tolyl)) ethyl) tetrahydrofuro [3, 2 - a] isoxazole - 2 (3H) - carboxylate~(5i) + (2 - oxo - 2 - (p - tolyl)) ethyl tetrahydrofuro [3, 2 - a] isoxazole - 2 (3H) - carboxylate~(5i) + (2 - oxo - 2 - (p - tolyl)) ethyl tetrahydrofuro [3, 2 - a] isoxazole - 2 (3H) - carboxylate~(5i) + (2 - oxo - 2 - (p - tolyl)) ethyl tetrahydrofuro [3, 2 - a] isoxazole - 2 (3H) - carboxylate~(5i) + (2 - oxo - 2 - (p - tolyl)) ethyl tetrahydrofuro [3, 2 - a] isoxazole - 2 (3H) - carboxylate~(5i) + (2 - oxo - 2 - (p - tolyl)) ethyl tetrahydrofuro [3, 2 - a] isoxazole - 2 (3H) - carboxylate~(5i) + (2 - oxo - 2 - (p - tolyl)) ethyl tetrahydrofuro [3, 2 - a] isoxazole - 2 (3H) - (2 - oxo - 2 - (p - tolyl)) ethyl tetrahydrofuro [3, 2 - a] isoxazole - 2 (3H) - (2 - oxo - 2 - (p - tolyl)) ethyl tetrahydrofuro [3, 2 - a] isoxazole - 2 (3H) - (2 - oxo - 2 - (p - tolyl)) ethyl tetrahydrofuro [3, 2 - a] isoxazole - 2 (3H) - (2 - oxo - 2 - (p - tolyl)) ethyl tetrahydrofuro [3, 2 - a] isoxazole - 2 (3H) - (2 - oxo - 2 - (p - tolyl)) ethyl tetrahydrofuro [3, 2 - a] isoxazole - 2 (3H) - (2 - oxo - 2 - (p - tolyl)) ethyl tetrahydrofuro [3, 2 - a] isoxazole - 2 (3H) - (2 - oxo - 2 - (p - tolyl)) ethyl tetrahydrofuro [3, 2 - a] isoxazole - 2 (3H) - (2 - oxo - 2 - (p - tolyl)) ethyl tetrahydrofuro [3, 2 - a] isoxazole - 2 (3H) - (3H) -

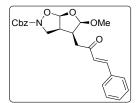
5i was obtained as a colorless oil 24 mg in 58% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 4/1). ¹H NMR (400 MHz, CDCl₃) δ7.90 – 7.82 (m, 2H), 7.43 – 7.38 (m, 2H), 7.37 – 7.30 (m, 3H), 7.27 (d, *J* = 8.2 Hz, 2H), 5.97 (d, *J* = 5.1 Hz, 1H), 5.33 – 5.23 (m, 1H), 5.12 (d, *J* = 12.3 Hz, 1H), 5.00 (d, *J* = 5.0 Hz, 1H), 4.13 (dd, *J* = 10.7, 2.2 Hz, 1H), 3.47 – 3.30 (m, 3H), 3.23 (s, 4H), 2.87 (qd, *J* = 7.3, 4.8 Hz, 1H), 2.43 (s, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 197.7, 156.8, 144.5, 136.1, 134.1, 129.5, 128.6, 128.3, 128.3, 109.2, 106.0, 67.8, 56.2, 48.1, 46.6, 40.2, 35.4, 21.8 ppm. HRMS: [M+H]⁺ calcd. For C₂₃H₂₆NO₆⁺ 412.1755, found 412.1756. [α]_D²⁰ 50.72 (*c* = 1.35 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IB column [*n*-hexane/*i*-PrOH = 80/20, 1 mL/min], λ = 210 nm, *t_{major}* = 20.11 min, *t_{minor}* = 18.58 min, **ee** >**99%**. The diastereomeric ratio was determined by NMR *dr* >**20:1**.


benzyl (3aS,4S,5R,6aR)-4-(2-([1,1'-biphenyl]-4-yl)-2-oxoethyl)-5-methoxytetrahydrofuro[3,2-*d*]isoxazole-2(3*H*)-carboxylate (5j) 5j was obtained as a colorless oil 24 mg in 51% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 7/2). ¹H NMR (400 MHz, CDCl₃) δ 8.08 – 8.00 (m, 2H), 7.73 – 7.67 (m, 2H), 7.67 – 7.61 (m, 2H), 7.53 – 7.46 (m, 2H),

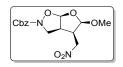
7.42 (ddd, *J* = 8.0, 4.2, 1.5 Hz, 3H), 7.38 – 7.28 (m, 3H), 5.99 (d, *J* = 5.1 Hz, 1H), 5.29 (d, *J* = 12.3 Hz, 1H), 5.13 (d, *J* = 12.3 Hz, 1H), 5.03 (d, *J* = 5.0 Hz, 1H), 4.15 (dd, *J* = 10.7, 2.1 Hz, 1H), 3.51 – 3.32 (m, 3H), 3.32 – 3.13 (m, 4H), 2.90 (qd, *J* = 7.3, 4.9 Hz, 1H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 197.6, 156.8, 146.3, 139.8, 136.1, 135.2, 129.1, 128.8, 128.6, 128.5, 128.3, 128.3, 127.4, 127.4, 109.2, 105.9, 67.9, 56.3, 48.1, 46.7, 40.2, 35.6 ppm. HRMS: [M+H]⁺ *calcd*. For C₂₈H₂₈NO₆⁺ 474.1911, found 474.1915. [α]_D²⁰ 54.98 (*c* = 1.63 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IB column [*n*-hexane/*i*-PrOH = 80/20, 1 mL/min], λ = 210 nm, *t_{major}* = 30.46 min, *t_{minor}* = 33.91 min, **ee >99%**. The diastereomeric ratio was determined by NMR *dr* >20:1.


benzyl~(3aS, 4S, 5R, 6aR) - 4 - (2 - (furan - 2 - yl) - 2 - oxoethyl) - 5 - methoxytetrahydrofuro [3, 2 - d] isoxazole - 2(3H) - carboxylate~(5k) - (5k) -

5k was obtained as a colorless oil 24 mg in 62% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 5/2). ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, *J* = 1.7 Hz, 1H), 7.44 – 7.38 (m, 2H), 7.38 – 7.28 (m, 3H), 7.19 (d, *J* = 3.6 Hz, 1H), 6.55 (dd, *J* = 3.6, 1.7 Hz, 1H), 5.95 (d, *J* = 4.4 Hz, 1H), 5.27 (d, *J* = 12.3 Hz, 1H), 5.12 (d, *J* = 12.3 Hz, 1H), 4.97 (d, *J* = 5.0 Hz, 1H), 4.20 – 4.09 (m, 1H), 3.44 – 3.31 (m, 2H), 3.23 (s, 4H), 3.10 (dd, *J* = 18.1, 7.3 Hz, 1H), 2.88 – 2.73 (m, 1H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 187.1, 156.7, 152.4, 146.7, 136.1, 128.6, 128.3, 117.5, 112.5, 109.1, 105.8, 67.8, 56.3, 48.0, 46.6, 39.8, 35.3 ppm. HRMS: [M+H]⁺ calcd. For C₂₀H₂₂NO₇⁺ 388.1391, found 388.1390. [**α**]_{**n**²⁰} 57.32 (*c* = 1.58 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IB column [*n*-hexane/*i*-PrOH = 80/20, 1 mL/min], λ = 210 nm, *t*_{major} = 27.61 min, *t*_{minor} = 25.12 min, **ee = 99%**. The diastereomeric ratio was determined by NMR *dr* >20:1.


benzyl (3aS,4S,5R,6aR)-5-methoxy-4-(2-oxo-2-(thiophen-2-yl)ethyl)tetrahydrofuro[3,2-d]isoxazole-2(3H)-carboxylate (5l)

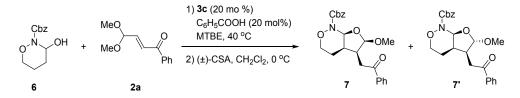
5I was obtained as a colorless oil 17 mg in 42% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 3/1). ¹**H** NMR (400 MHz, CDCl₃) δ 7.71 (s, 1H), 7.66 (d, *J* = 4.9 Hz, 1H), 7.41 (d, *J* = 7.3 Hz, 2H), 7.38 – 7.28 (m, 3H), 7.13 (t, *J* = 4.3 Hz, 1H), 5.96 (d, *J* = 4.3 Hz, 1H), 5.28 (d, *J* = 12.3 Hz, 1H), 5.12 (d, *J* = 12.3 Hz, 1H), 4.97 (d, *J* = 5.0 Hz, 1H), 4.13 (d, *J* = 8.3 Hz, 1H), 3.40 – 3.28 (m, 3H), 3.24 (s, 3H), 3.16 (dd, *J* = 17.8, 7.4 Hz, 1H), 2.90 – 2.82 (m, 1H) ppm. ¹³**C** NMR (125 MHz, CDCl₃) δ 191.0, 156.7, 143.7, 136.1, 134.2, 132.5, 128.7, 128.4, 128.4, 128.3, 109.2, 105.8, 67.9, 56.3, 48.0, 46.6, 40.2, 36.0 ppm. HRMS: [M+H]⁺ calcd. For C₂₀H₂₂NO₆S⁺ 404.1162, found 404.1162. [α]_D²⁰ 50.59 (*c* = 0.92 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IB column [*n*-hexane/*i*-PrOH = 80/20, 1 mL/min], λ = 260 nm, t_{major} = 27.37 min, t_{minor} = 24.43 min, **ee** >**99%**. The diastereomeric ratio was determined by NMR *dr* >**20:1**.



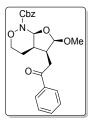
benzyl (3aS,4S,5R,6aR)-5-methoxy-4-(2-(naphthalen-2-yl)-2-oxoethyl)tetrahydrofuro[3,2-*d*]isoxazole-2(3*H*)-carboxylate (5m) **5m** was obtained as a colorless oil 27 mg in 60% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 7/2). ¹H NMR (500 MHz, CDCl₃) δ 8.50 (s, 1H), 8.02 (dd, *J* = 8.6, 1.8 Hz, 1H), 7.99 – 7.94 (m, 1H), 7.94 – 7.85 (m, 2H), 7.61 (dddd, *J* = 23.9, 8.2, 6.9, 1.3 Hz, 2H), 7.46 – 7.38 (m, 2H), 7.35 – 7.26 (m, 3H), 6.00 (d, *J* = 5.2 Hz, 1H), 5.29 (d, *J* = 12.3 Hz, 1H), 5.13 (d, *J* = 12.3 Hz, 1H), 5.05 (d, *J* = 5.1 Hz, 1H), 4.20 (dd, *J* = 10.8, 2.3 Hz, 1H), 3.54 (dd, *J* = 18.2, 7.3 Hz, 1H), 3.50 – 3.32 (m, 3H), 3.26 (s, 3H), 2.94 (qd, *J* = 7.4, 5.0 Hz, 1H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 197.9, 136.1, 135.8, 133.8, 132.6, 130.0, 129.7, 128.8, 128.7, 128.6, 128.3, 128.3, 127.9, 127.1, 123.7, 109.2, 105.9, 67.9, 56.3, 48.1, 46.7, 40.2, 35.6 ppm. HRMS: [M+H]⁺ calcd. For C₂₆H₂₆NO₆⁺

448.1755, found 448.1754. $[\alpha]_D^{20}$ 65.93 (c = 1.68 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IA column [n-hexane/i-PrOH = 80/20, 1 mL/min], $\lambda = 260$ nm, $t_{major} = 28.01$ min, $t_{minor} = 16.74$ min, **ee = 99%**. The diastereomeric ratio was determined by NMR dr > 20:1.

benzyl (3a5,45,5*R*,6a*R*)-5-methoxy-4-((*E*)-2-0x0-4-phenylbut-3-en-1-yl)tetrahydrofuro[3,2-*d*]isoxazole-2(3*H*)-carboxylate (5n) **5n** was obtained as a colorless oil 23 mg in 54% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 3/1). ¹H NMR (500 MHz, CDCl₃) δ 7.61 – 7.51 (m, 3H), 7.47 – 7.38 (m, 5H), 7.38 – 7.27 (m, 3H), 6.73 (d, *J* = 16.2 Hz, 1H), 5.95 (d, *J* = 4.2 Hz, 1H), 5.28 (d, *J* = 10.2 Hz, 1H), 5.13 (d, *J* = 12.3 Hz, 1H), 4.96 (d, *J* = 5.0 Hz, 1H), 4.12 (q, *J* = 8.5 Hz, 1H), 3.37 (d, *J* = 6.5 Hz, 2H), 3.24 (s, 3H), 3.09 (dd, *J* = 18.0, 7.4 Hz, 1H), 2.93 (dd, *J* = 18.0, 7.1 Hz, 1H), 2.85 – 2.76 (m, 1H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 197.9, 156.8, 143.4, 136.1, 134.3, 130.9, 129.1, 128.6, 128.5, 128.3, 128.3, 125.9, 109.1, 105.9, 67.9, 56.2, 48.1, 46.6, 40.1, 37.5 ppm. HRMS: [M+H]⁺ calcd. For C₂₄H₂₆NO₆⁺ 424.1755, found 424.1757. [**α**]_{**b**}²⁰ 47.50 (*c* = 0.90 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IA column [*n*-hexane/*i*-PrOH = 80/20, 1 mL/min], λ = 210 nm, t_{major} = 26.10 min, t_{minor} = 18.63 min, **ee = 95%**. The diastereomeric ratio was determined by NMR **dr >20:1**.

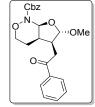


benzyl (3aS,4R,5R,6aR)-5-methoxy-4-(nitromethyl)tetrahydrofuro[3,2-d]isoxazole-2(3H)-carboxylate (5o)


50 was obtained as a colorless oil 13 mg in 40% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 3/1).¹**H NMR** (500 MHz, CDCl₃) δ 7.43 – 7.29 (m, 5H), 5.99 (d, *J* = 5.4 Hz, 1H), 5.25 (d, *J* = 12.3 Hz, 1H), 5.15 (d, *J* = 12.2 Hz, 1H), 5.00 (d, *J* = 5.0 Hz, 1H), 4.70 (dd, *J* = 14.3, 7.0 Hz, 1H), 4.58 (dd, *J* = 14.3, 8.1 Hz, 1H), 4.13 (dd, *J* = 11.8, 2.9 Hz, 1H), 3.46 (dd, *J* = 11.8, 9.8 Hz, 1H), 3.34 (dddd, *J* = 9.8, 8.4, 5.5, 2.9 Hz, 1H), 3.24 (s, 3H), 3.04 (tdd, *J* = 8.3, 7.0, 5.0 Hz, 1H) ppm. ¹³**C NMR** (125)

MHz, CDCl₃) δ 156.4, 135.7, 128.6, 128.4, 128.2, 109.2, 104.2, 72.0, 68.0, 56.3, 46.9, 46.1, 42.5 ppm. **HRMS**: [M+H]⁺ *calcd*. For C₁₅H₁₉N₂O₇⁺ 339.3235, found 339.3233. **[\alpha]**_D²⁰ 20.69 (*c* = 0.83 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IA column [*n*-hexane/*i*-PrOH = 80/20, 1 mL/min], λ = 205 nm, *t_{major}* = 15.10 min, *t_{minor}* = 17.17 min, **ee** >**99%**. The diastereomeric ratio was determined by NMR *dr* >**20:1**.

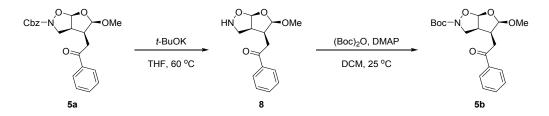
F. Synthesis of Bicyclic 1,2-Oxazinane Derivatives



A glass vial equipped with a magnetic stirring bar was charged with lactols **6** (23.7 mg, 0.10 mmol, 1.0 equiv), **2** (26.7 mg, 0.13 mmol, 1.3 equiv), **3c** (7.4 mg, 0.02 mmol, 0.2 equiv) and C_6H_5COOH (2.4 mg, 0.02 mmol, 0.2 equiv) in MTBE (0.3 mL) at 40 °C. The reaction was stirred at 40 °C for 4 d. After completion of the reaction, the reaction mixture was concentrated and the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 5:2) to afford **S7** and **S7'**. Then, compound **S7** and **S7'** (1.0 equiv) was respectively dissolved in anhydrous CH_2Cl_2 (0.10 mmol in 0.6 mL) at 0 °C. CSA (0.2 equiv) was added to the reaction mixtures. The reaction was stirred at 0 °C for 12 h until the consumption of **S7** and **S7'**, the reaction mixture was concentrated and the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 4:1) to give product **7** and **7'** for NMR and HPLC analysis.

benzyl (4aR,5S,6R,7aS)-6-methoxy-5-(2-oxo-2-phenylethyl)hexahydro-1*H*-furo[2,3-c][1,2]oxazine-1carboxylate (7)

7 was obtained as a colorless oil 12 mg in 29% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 4/1). ¹H NMR (500 MHz, CDCl₃) δ 8.01 – 7.96 (m, 2H), 7.58 (t, *J* = 7.4 Hz, 1H), 7.48 (t, *J* = 7.7 Hz, 2H), 7.36 (ddd, *J* = 13.4, 12.1, 5.0 Hz, 5H), 5.92 (d, *J* = 4.6 Hz, 1H), 5.26 (q, *J* = 12.3 Hz, 2H), 5.03 (d, *J* = 5.4 Hz, 1H), 4.16 (dd, *J* = 11.2, 4.4 Hz, 1H), 3.74 (dd, *J* = 17.4, 6.6 Hz, 1H), 3.38 – 3.27 (m, 4H), 3.16 (dd, *J* = 18.3, 7.4 Hz, 1H), 3.01 – 2.92 (m, 1H), 2.49 – 2.33 (m, 2H), 1.43 (dd, *J* = 12.4, 6.1 Hz, 1H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 198.6, 136.8, 135.9, 133.4, 128.8, 128.7, 128.4, 128.4, 128.1, 104.6, 70.1, 68.1, 55.9, 41.5, 33.6, 33.5, 22.6 ppm. HRMS: [M+Na]⁺ *calcd*. For C₂₃H₂₅NNaO₆⁺ 434.1574, found 434.1577. [α]_D²⁰ 15.57 (*c* = 0.68 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IA column [*n*-hexane/*i*-PrOH = 80/20, 1 mL/min], λ = 210 nm, t_{major} = 17.95 min, t_{minor} = 14.69 min, **ee = 98%**. The diastereomeric ratio was determined by NMR *dr* >20:1.


benzyl (4aR,5S,6S,7aS)-6-methoxy-5-(2-oxo-2-phenylethyl)hexahydro-1*H*-furo[2,3-c][1,2]oxazine-1carboxylate (7')

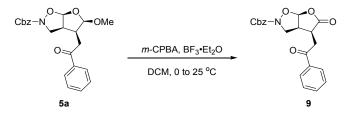
7' was obtained as a colorless oil 14 mg in 34% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 4/1). ¹H NMR (500 MHz, CDCl₃) δ 7.95 (d, *J* = 7.6 Hz, 2H), 7.59 (t, *J* = 7.4 Hz, 1H), 7.48 (t, *J* = 7.7 Hz, 2H), 7.36 (ddd, *J* = 20.1, 13.0, 7.1 Hz, 5H), 6.05 (d, *J* = 3.6 Hz, 1H), 5.25 (q, *J* = 12.3 Hz, 2H), 4.96 (d, *J* = 6.2 Hz, 1H), 4.12 (dd, *J* = 11.4, 3.9 Hz, 1H), 3.77 (t, *J* = 11.6 Hz, 1H), 3.45 (s, 3H), 3.30 (dd, *J* = 17.4, 4.0 Hz, 1H), 3.12 (dd, *J* = 17.4, 11.0 Hz, 1H), 2.79 (td, *J* = 10.6, 6.1 Hz, 1H), 2.67 (td, *J*

= 11.0, 6.1 Hz, 1H), 1.70 (ddd, *J* = 24.8, 12.4, 4.8 Hz, 1H), 1.51 (dd, *J* = 13.4, 6.4 Hz, 1H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 198.2, 136.4, 135.8, 133.6, 128.9, 128.7, 128.4, 128.3, 128.1, 107.5, 69.7, 68.1, 56.9, 44.3, 35.5, 35.3, 22.4 ppm. HRMS: [M+Na]⁺ *calcd*. For $C_{23}H_{25}NNaO_6^+$ 434.1574, found 434.1576. [α]_D²⁰ 58.98 (*c* = 0.61 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IA column [*n*-hexane/*i*-PrOH = 80/20, 1 mL/min], λ = 210 nm, t_{major} = 27.45 min, t_{minor} = 11.99 min, **ee = 99%**. The diastereomeric ratio was determined by NMR *dr* >20:1.

G. Synthetic transformation

2-((3a*S*,4*S*,5*R*,6a*R*)-5-methoxyhexahydrofuro[3,2-*d*]isoxazol-4-yl)-1-phenylethan-1-one (8)

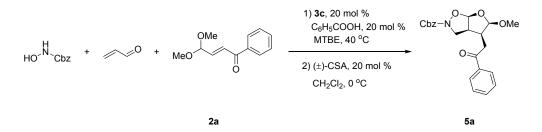
To a solution of **5a** (20 mg, 0.05 mmol) in anhydrous THF (0.4 mL) was added *t*-BuOK (28 mg, 0.25 mmol) at room temperature. The reaction was stirred at 60 °C for 48 h. The mixture was extracted with ethyl acetate. The combine organic layers were dried over Na₂SO₄ and the solvent evaporated. The product was purified by column chromatography on a silica gel (petroleum ether/ethyl acetate = 3/2) to afford the desired product **8** colorless oil (12 mg, 91%). ¹**H NMR** (500 MHz, CDCl₃) δ 7.98 (d, *J* = 8.0 Hz, 2H), 7.59 (t, *J* = 7.1 Hz, 1H), 7.48 (t, *J* = 7.6 Hz, 2H), 6.47 (s, 1H), 6.00 (d, *J* = 5.1 Hz, 1H), 4.99 (d, *J* = 4.9 Hz, 1H), 3.38 (s, 3H), 3.36 – 3.24 (m, 2H), 3.17 (dd, *J* = 18.2, 6.7 Hz, 1H), 3.06 (d, *J* = 12.2 Hz, 1H), 2.87 (dt, *J* = 15.4, 8.2 Hz, 2H) ppm. ¹³**C NMR** (125 MHz, CDCl₃) δ 198.0, 136.6, 133.6, 128.9, 128.1, 109.7, 104.4, 55.6, 49.2, 48.7, 40.2, 35.5 ppm. **HRMS**: [M+Na]⁺ *calcd*. For C₁₄H₁₇NNaO₄⁺ 286.1050, found 286.1052. [α]_D²⁰ -46.43 (*c* = 0.54 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IA column [*n*-hexane/*i*-PrOH = 80/20, 1 mL/min], λ = 240 nm, *t_{major}* = 10.31


min, t_{minor} = 9.63 min, **ee = 93%**. The diastereomeric ratio was determined by NMR *dr* >20:1.

To a solution of **8** (8 mg, 0.03 mmol) and di-*tert*-butyl dicarbonate (17 mg, 0.08 mmol) in anhydrous CH₂Cl₂ (0.2 mL) was added DMAP (0.75 mg, 0.006 mmol) at 0 °C. The reaction was stirred at 25 °C for 2 h before the solvent was removed under vacuum. The product was purified by column chromatography on a silica gel (petroleum ether/ethyl acetate = 3/2) to afford the desired product **5b** colorless oil (10.7 mg, 97%). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IA column [*n*-hexane/*i*-PrOH = 80/20, 1 mL/min], λ = 210 nm, t_{major} = 8.69 min, t_{minor} = 7.58 min, **ee** = **91%**. The diastereomeric ratio was determined by NMR *dr* >20:1.

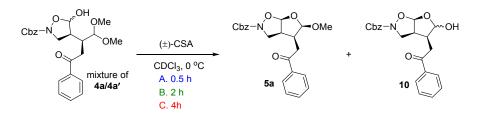
benzyl (3aS,4S,6aR)-5-oxo-4-(2-oxo-2-phenylethyl)tetrahydrofuro[3,2-

d]isoxazole-


2(3H)-carboxylate (9)

To a solution of **5a** (30 mg, 0.07 mmol) and *m*-CPBA (25 mg, 0.15 mmol) in anhydrous CH_2Cl_2 (2 mL) was added $BF_3 \cdot Et_2O$ (19 mg, 0.14 mmol) at 0 °C. The reaction was stirred at 25 °C for 4 h before the solvent was removed under vacuum. The product was purified by column chromatography on a silica gel (petroleum ether/ethyl acetate = 7/2) to afford the desired product **7** colorless oil (20 mg, 70%). ¹H NMR (500 MHz, CDCl₃) δ 8.01 – 7.92 (m, 2H), 7.63 (t, *J* = 7.4 Hz, 1H), 7.50 (t, *J* = 7.7 Hz, 2H), 7.38 (dt, *J* = 9.9, 7.3 Hz, 5H), 6.24 (d, *J* = 5.4 Hz, 1H), 5.25 (d, *J* = 12.1 Hz, 1H), 5.15 (d, *J* = 12.1 Hz, 1H), 3.89 (dt, *J* = 6.0, 5.1 Hz, 2H), 3.74 (dd, *J* = 18.7, 3.0 Hz, 1H), 3.49 – 3.41 (m, 1H), 3.41 – 3.29 (m, 2H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 197.0, 174.7, 158.4, 135.7, 135.1, 134.2, 129.0, 128.8, 128.7, 128.6, 128.3, 105.0, 69.2, 46.9, 46.0, 37.7, 37.1 ppm. HRMS: [M+Na]⁺ calcd. For

 $C_{21}H_{19}NNaO_6^+$ 404.1105, found 404.1106. **[\alpha]**_D²⁰ 113.33 (*c* = 1.00 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IA column [*n*-hexane/*i*-PrOH = 80/20, 1 mL/min], λ = 210 nm, t_{major} = 17.79 min, t_{minor} = 19.19 min, **ee = 94%**. The diastereomeric ratio was determined by NMR *dr* >20:1.


H. 1 mmol Scale synthesis of 5a

A glass vial equipped with a magnetic stirring bar was charged with benzyl hydroxycarbamate (167 mg, 1.0 mmol, 1.0 equiv), acrylaldehyde (84 mg, 1.8 mmol, 1.8 equiv), **2a** (268 mg, 1.3 mmol, 1.3 equiv), **3c** (74 mg, 0.2 mmol, 0.2 equiv) and C₆H₅COOH (25 mg, 0.2 mmol, 0.2 equiv) in MTBE (3 mL) at 40 °C. The reaction was stirred at 40 °C for 4.5 d until the consumption of benzyl hydroxycarbamate (monitored by TLC analysis). After completion of the reaction, the reaction mixture was concentrated and the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 2:1) to afford **4a/4a'** colorless oil (372 mg). Then, compound **4a/4a'** (372 mg, 0.85 mmol, 1.0 equiv) was dissolved in anhydrous CH_2Cl_2 (5 mL) at 0 °C. CSA (39.3 mg, 0.17 mmol, 0.2 equiv) was added to the reaction mixtures. The reaction was stirred at 0 °C for 12 h until the consumption of **4a/4a'**, then the reaction mixture was concentrated and the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 5:2) to give product **5a** (179 mg, 63% over two steps, >99% ee, dr >20:1).

I. Control experiments

I1. Control experiment 1:

A glass vial equipped with a magnetic stirring bar was charged with mixture of 4a/4a' (11 mg, 0.025 mmol, 1.0 equiv), CSA (1.2 mg, 0.005 mmol, 0.2 equiv) in CDCl₃ (0.5 mL) at 0 °C. After 0.5 h/ 2 h/ 4 h, the reaction mixture was transferred directly to the NMR tube for crude ¹H NMR experiments. It is found that compound **10** is gradually consumed, while the amount of **5a** is increased.

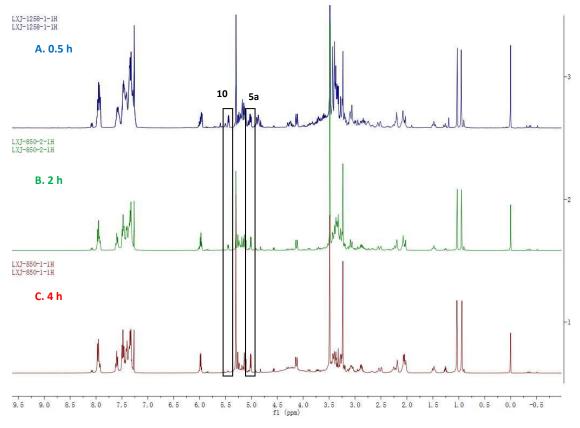
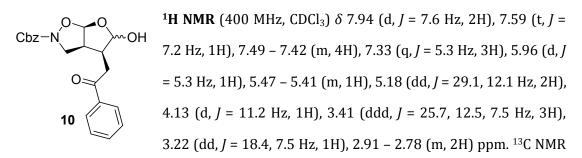
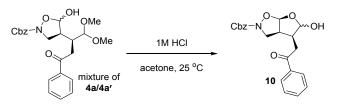
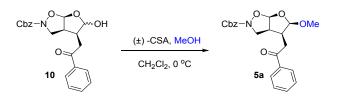
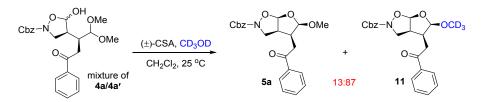




Figure 1. The ¹H NMR spectrum of control experiment 1 (400 MHz, CDCl₃)



(101 MHz, CDCl₃) δ 198.0, 157.9, 136.4, 136.0, 133.5, 128.7, 128.6, 128.6, 128.1, 109.2,
98.7, 67.9, 48.1, 47.2, 40.5, 35.5 ppm. MS: [M+Na]⁺ calcd. For C₂₁H₂₁NNaO₆⁺ 406.13, found 406.11.

I2. Control experiment 2:



Synthesis of compound 10: A glass vial equipped with a magnetic stirring bar was charged with mixture of **4a/4a'** (22 mg, 0.05 mmol, 1.0 equiv), 1 M HCl (0.2 mL) and acetone (0.2 mL). The reaction was stirred at 25 °C for 4 h until the consumptions of **4a** and **4a'**, then the reaction mixture was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 2:1) to give product **10** as a colorless oil (15 mg, 77%).

Transformation between 10 and 5a: Compound **10** (15 mg, 1.0 equiv) was dissolved in anhydrous CH_2Cl_2 (0.4 mL) at 0 °C. Then MeOH (3 µL, 2.0 equiv) and CSA (2.0 mg, 0.2 equiv) was added to the reaction mixture. The reaction was stirred at 0 °C for 15 h until the consumption of **10**, then the reaction mixture was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 5:2) to give product **5a** (11 mg, 71%).

I3. Control experiment 3:

The mixture of **4a**/**4a**' (22 mg, 1.0 equiv) was dissolved in anhydrous CH_2Cl_2 (0.5 mL) at 0 °C. Then CD_3OD (41 µL, 20.0 equiv) and CSA (5.0 mg, 0.4 equiv) was added to the reaction mixture. The reaction was stirred at 25 °C for 2 h until the consumption of **4a**/**4a**', then the reaction mixture was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 5:2) to give mixture of **5a** and **11** (7 mg, 35%).

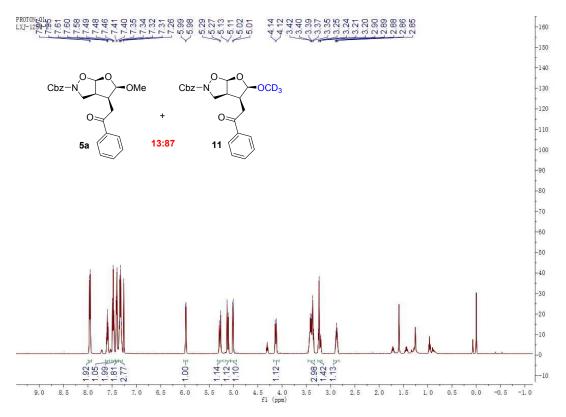
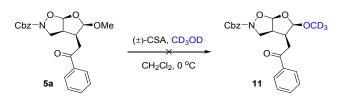



Figure 2. The ¹H NMR spectrum of 5a+11 (500 MHz, CDCl₃)

I4. Control experiment 4:

Compound **5a** (20 mg, 1.0 equiv) was dissolved in anhydrous CH_2Cl_2 (0.3 mL) at 0 °C. Then CD_3OD (20 µL, 10.0 equiv) and CSA (2.3 mg, 0.2 equiv) was added to the reaction mixture. The reaction was stirred at 0 °C for 11 h, then the reaction mixture was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 5:2) for NMR analysis.

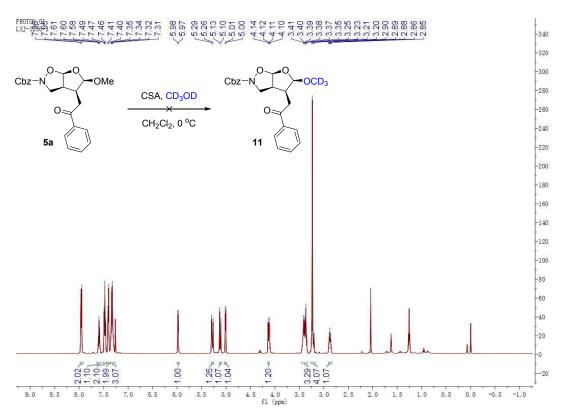
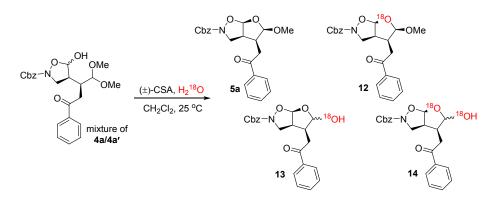
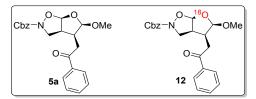
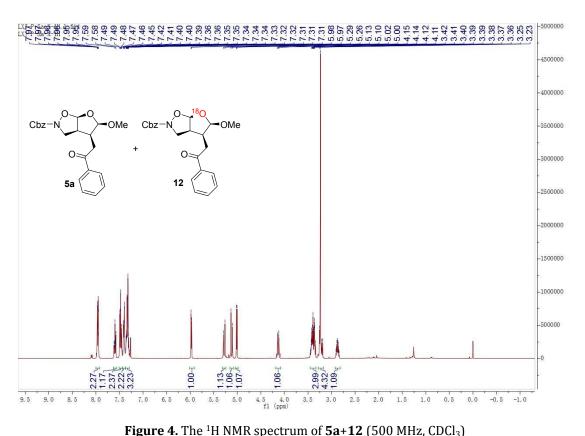
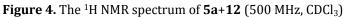




Figure 3. The ¹H NMR spectrum of control experiment 4 (500 MHz, CDCl₃)


I5. Control experiment 5:



The mixture of **4a**/**4a**' (22 mg, 1.0 equiv) was dissolved in anhydrous CH_2Cl_2 (0.5 mL) at 25 °C. Then $H_2^{18}O$ (10 µL, 10.0 equiv) and CSA (5.8 mg, 0.5 equiv) was added to the reaction mixture. The reaction was stirred at 25 °C for 5 h until the consumption of **4a**/**4a**', then the reaction mixture was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 2:1) to give compounds **5a**, **12**, **13** and **14** (11% yield for **5a** and **12**, 37% yield for **13** and **14**).

5a+12 was obtained as a colorless oil 2 mg in 11% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.96 (d, *J* = 7.6 Hz, 2H), 7.60 (t, *J* = 7.3 Hz, 1H), 7.48 (t, *J* = 7.6 Hz, 2H), 7.41 (d, *J* = 6.9 Hz, 2H), 7.38 – 7.29 (m, 3H), 5.98 (d, *J* = 5.2 Hz, 1H), 5.28 (d, *J* = 12.3 Hz, 1H), 5.12 (d, *J* = 12.3 Hz, 1H), 5.01 (d, *J* = 5.0 Hz, 1H), 4.13 (d, *J* = 10.6 Hz, 1H), 3.47 – 3.33 (m, 3H), 3.29 – 3.19 (m, 4H), 2.88 (dd, *J* = 13.4, 6.9 Hz, 1H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 197. 9, 156.6, 136.4, 135.9, 133.5, 128.7, 128.5, 128.2, 128.2, 128.0, 109.0, 109.0, 105.8, 105.8, 67.7, 56.1, 47.9, 46.5, 40.0, 35.4 ppm. **5a: MS**: [M+Na]⁺ *calcd*. For C₂₂H₂₃NNaO₆⁺ 420.14, found 420.17. **12: MS**: [M+Na]⁺ *calcd*. For C₂₂H₂₃NNaO₅¹⁸O⁺ 422.15 found 422.11.

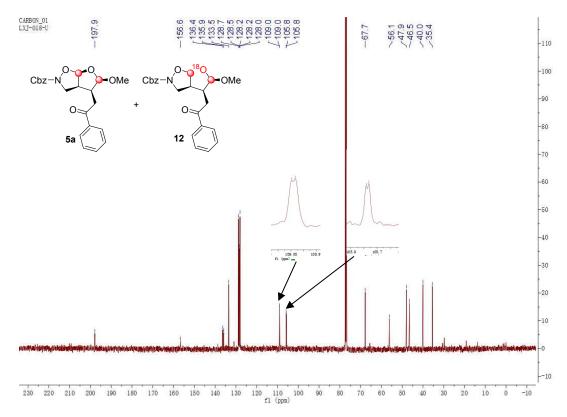


Figure 5. The ¹³C NMR spectrum of 5a+12 (125 MHz, CDCl₃)

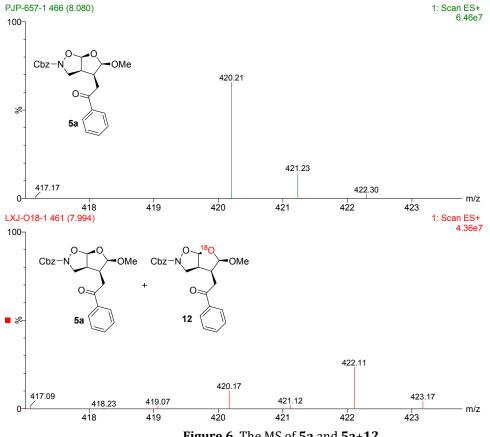
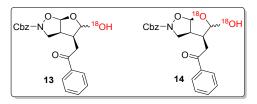



Figure 6. The MS of 5a and 5a+12

13+14 was obtained as a colorless oil 7 mg in 37% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, J = 7.4 Hz, 2H), 7.59 (t, J = 7.3 Hz, 1H), 7.47 (t, J = 7.7 Hz, 3H), 7.42 (d, J = 6.0 Hz, 2H), 7.33 (d, J = 6.6 Hz, 3H), 5.96 (d, J = 5.3 Hz, 1H), 5.45 (d, J = 4.8 Hz, 1H), 5.18 (q, J = 12.0 Hz, 2H), 4.13 (d, J = 11.3 Hz, 1H), 3.47 – 3.34 (m, 3H), 3.22 (dd, J = 18.5, 7.5 Hz, 1H), 2.83 (dt, J = 14.8, 7.4 Hz, 1H) ppm. ¹³C NMR (100 MHz, $CDCl_3$) δ 198.0, 157.9, 136.4, 136.0, 133.5, 128.7, 128.6, 128.6, 128.4, 128.1, 109.2, 109.2, 98.7, 98.6, 67.9, 48.1, 47.2, 40.5, 35.5 ppm. **13: MS**: [M+Na]⁺ *calcd*. For C₂₁H₂₁NNaO₅¹⁸O⁺ 408.13, found 408.08. **14: MS**: [M+Na]⁺ *calcd*. For C₂₁H₂₁NNaO₄¹⁸O₂⁺ 410.13 found 410.14.

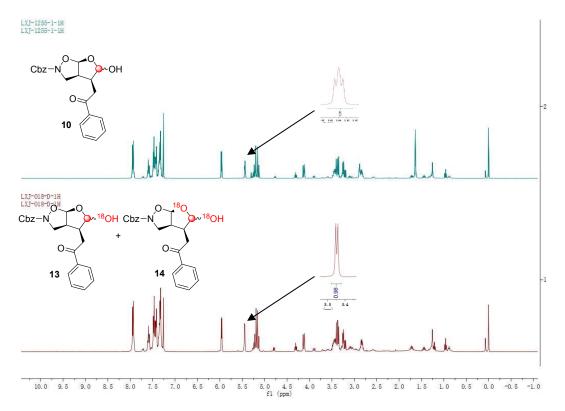
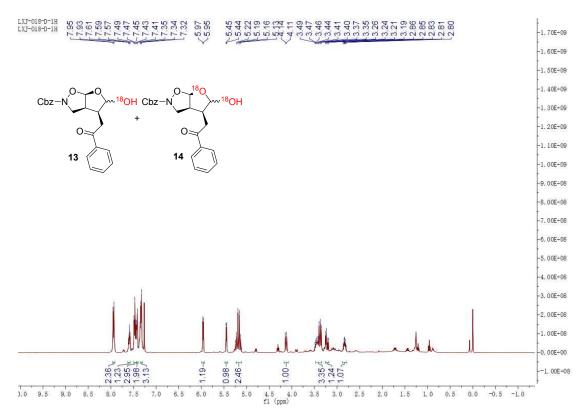
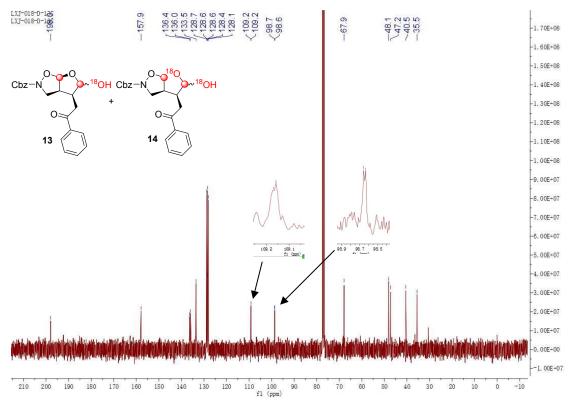
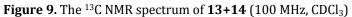
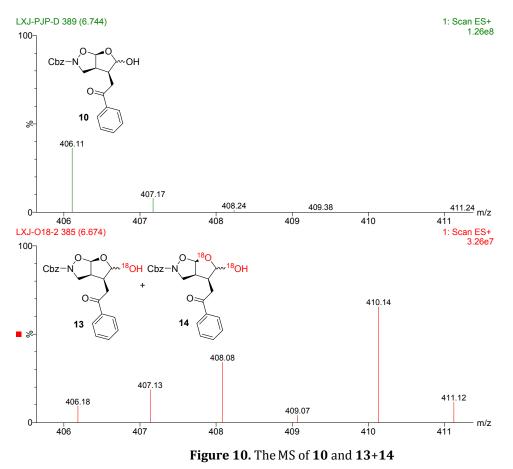
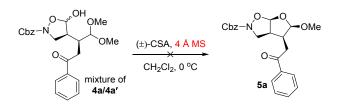
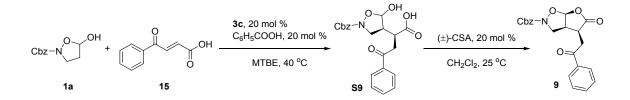


Figure 7. The ¹H NMR spectrum of **10** and **13+14** (400 MHz, CDCl₃)


Figure 8. The ¹H NMR spectrum of 13+14 (400 MHz, CDCl₃)


I6. Control experiment 6:

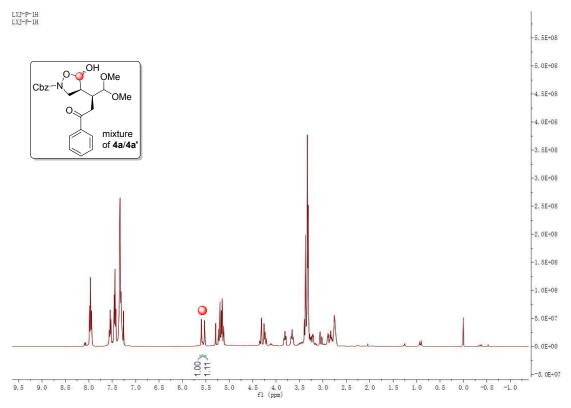
The mixture of **4a/4a'** (11 mg, 1.0 equiv) was dissolved in anhydrous CH_2Cl_2 (0.3 mL) at 0 °C. Then CSA (1.1 mg, 0.2 equiv) and 4 Å MS (5 mg) was added to the reaction mixtures at 0 °C for 3 d. The reaction was detected by TLC.

J. Other reactions:

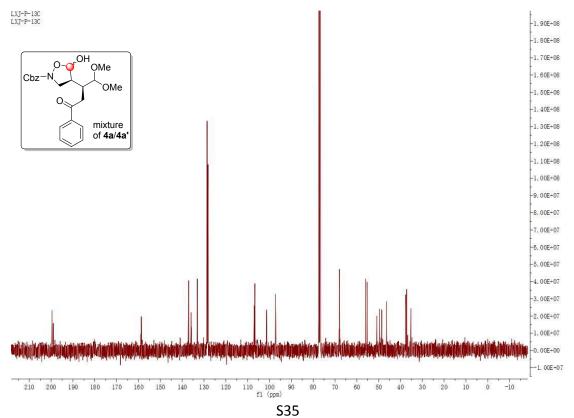
J1. The reaction of **1a** with (*E*)-4-oxo-4-phenylbut-2-enoic acid **15** :

A glass vial equipped with a magnetic stirring bar was charged with lactols **1a** (22.3 mg, 0.10 mmol, 1.0 equiv), **15** (22.9 mg, 0.13 mmol, 1.3 equiv), **3c** (7.4 mg, 0.02 mmol, 0.2 equiv) and C₆H₅COOH (2.4 mg, 0.02 mmol, 0.2 equiv) in MTBE (0.3 mL) at 40 °C. After completion of the reaction, the reaction mixture was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 1:1) to afford **S9** white solid (30 mg). Then, compound **S9** (1.0 equiv) was respectively dissolved in anhydrous CH₂Cl₂ (0.10 mmol in 0.5 mL) at 25 °C. CSA (0.4 equiv) was added to the reaction mixture. The reaction was stirred at 25 °C for 12 h until the consumption of **S9**, the reaction mixture was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 3:1) to give product **9** colorless oil (12 mg, 32%). [α]_D²⁰ 115.62 (*c* = 0.31 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IA column [*n*-hexane/*i*-PrOH = 80/20, 1 mL/min], λ = 210 nm, t_{major} = 17.75 min, t_{minor} = 19.15 min, **ee = 96%**. The diastereomeric ratio was determined by NMR *dr* >20:1.

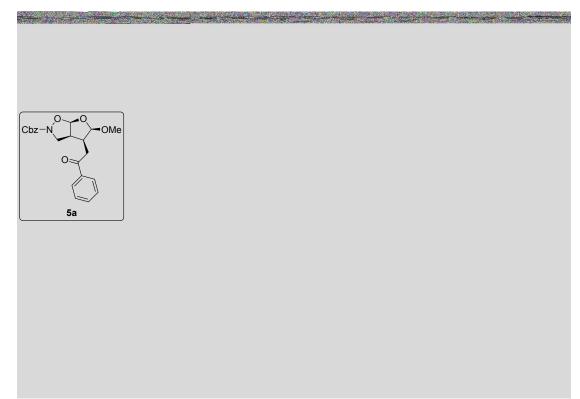
J2. The reaction of crotonaldehyde with benzyl hydroxyl carbamate and **2a**:

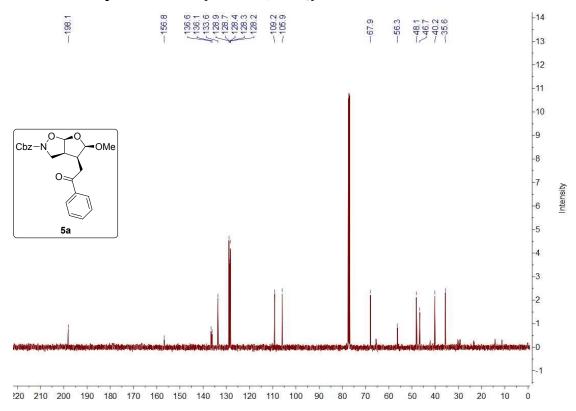

A glass vial equipped with a magnetic stirring bar was charged with benzyl hydroxyl carbamate (16.7 mg, 0.10 mmol, 1.0 equiv), crotonaldehyde (13 mg, 0.18 mmol, 1.8 equiv), **2a** (27 mg, 0.13 mmol, 1.3 equiv), **3c** (7.4 mg, 0.02 mmol, 0.2 equiv) and C₆H₅COOH (2.4 mg, 0.02 mmol, 0.2 equiv) in MTBE (0.3 mL) at 40 °C. The resulting reaction mixture was kept under vigorous stirring until the consumption of benzyl hydroxyl carbamate (monitored by TLC analysis). Instead of the compound **16**, the product **17** was obtained as colorless oil (20 mg, 84%). ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.28 (m, 5H), 5.69 (dd, *J* = 4.7, 2.7 Hz, 1H), 5.19 (q, *J* = 12.3 Hz, 2H), 4.40 (h, *J* = 6.8 Hz, 1H), 2.43 (dd, *J* = 12.5, 7.9 Hz, 1H), 1.95 – 1.82 (m, 1H), 1.31 (d, *J* = 6.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 159.3, 135.9, 128.6, 128.3, 128.0, 98.6, 68.0, 54.1, 43.2, 21.5 ppm. HRMS: [M+Na]⁺ calcd. For C₁₂H₁₅NO₄Na⁺ 260.0893, found 260.0889. The absolute configuration of lactol **19** was confirmed according to the literature.^[4,5]

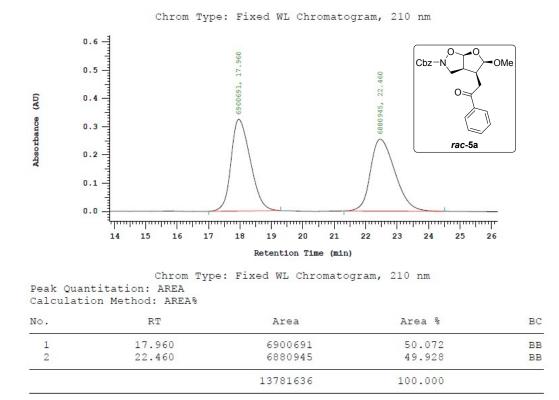
⁴ Ibrahem I., Rios R., Vesely J., Zhao G.-L. and Córdova A., Organocatalytic asymmetric 5hydroxyisoxazolidine synthesis: A highly enantioselective route to b-amino acids. *Chem. Commun.*, **2007**, 849–851.

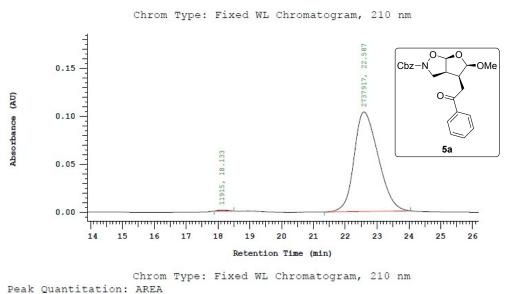

⁵ Dou Q.-Y., Y.-Q. Zhang Tu, Y., Tian J.-M., Zhang F.-M. Wang and S.-H., Spiro-Pyrrolidine-Catalyzed Asymmetric Conjugate Addition of Hydroxylamine to Enals and 2,4-Dienals. *Adv. Synth. Catal.* **2016**, *358*, 874–879

K. NMR spectra and HPLC traces

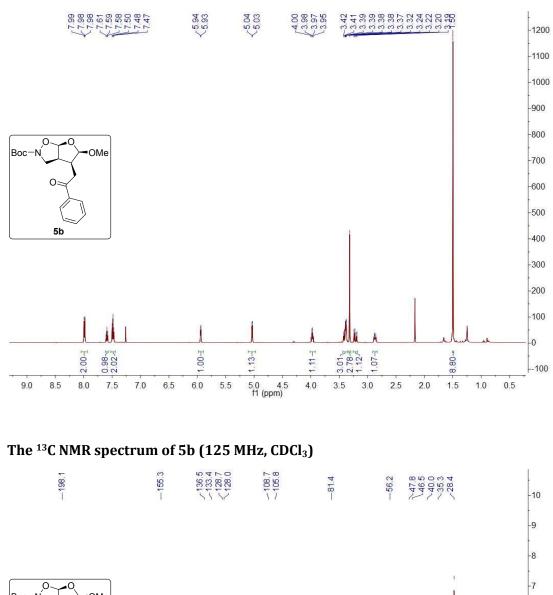

The ¹H NMR spectrum of 4a/4a' (400 MHz, CDCl₃)


The ¹³C NMR spectrum of 4a/4a' (100 MHz, CDCl₃)

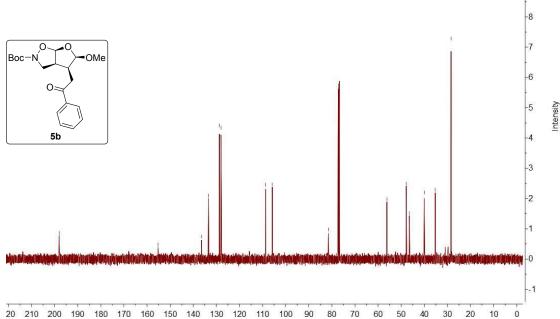

The ¹H NMR spectrum of 5a (400 MHz, CDCl₃)


The ¹³C NMR spectrum of 5a (125 MHz, CDCl₃)

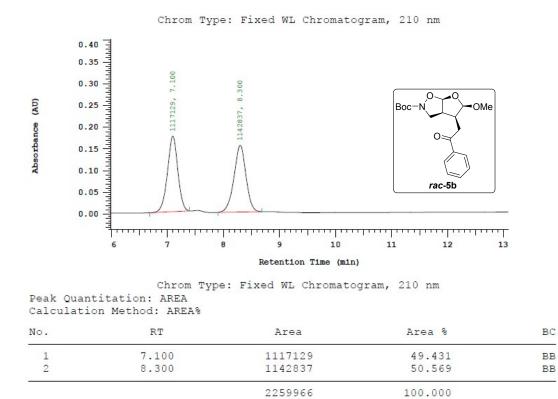
The HPLC of racemic 5a

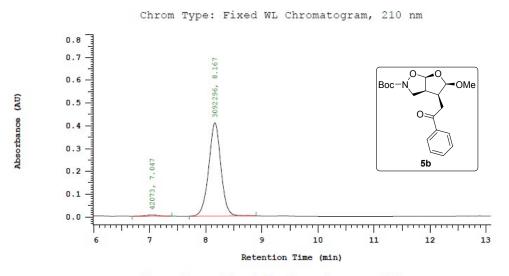


The HPLC of chiral 5a

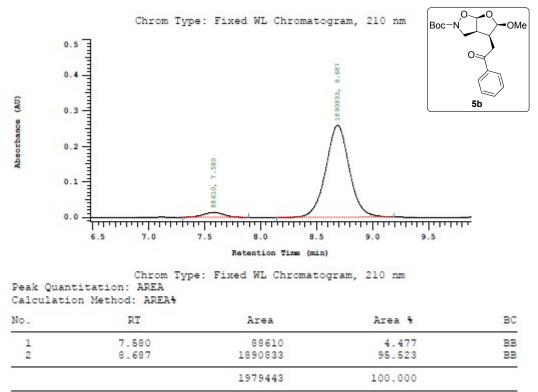


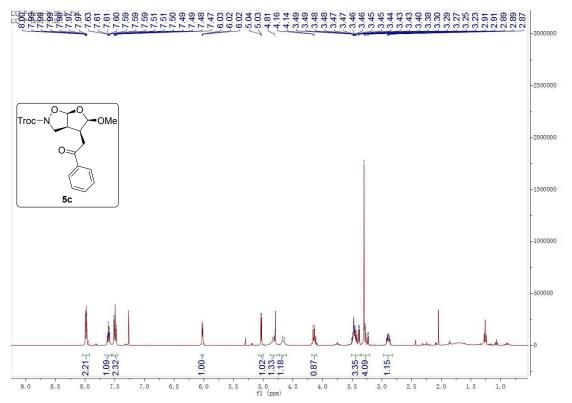
Calculation Method: AREA%


BC	Area %	Area	RT	No.
BB	0.433	11915	18.133	1
BB	99.567	2737917	22.587	2
	100.000	2749832		

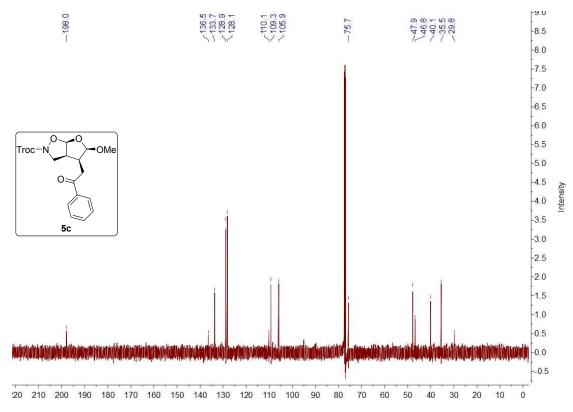

The ¹H NMR spectrum of 5b (500 MHz, CDCl₃)

The HPLC of racemic 5b

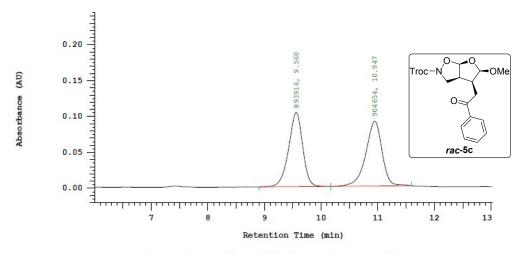

The HPLC of chiral 5b


Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1	7.047	42073	1.342	BB
2	8.167	3092296	98.658	BB
		3134369	100.000	


The HPLC of chiral 5b in transformation

The ¹H NMR spectrum of 5c (400 MHz, CDCl₃)

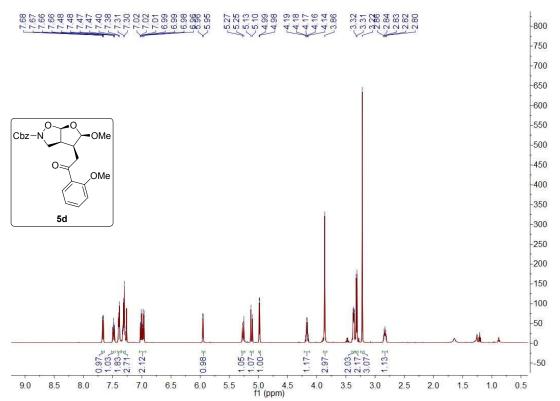


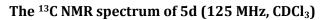
The ¹³C NMR spectrum of 5c (125 MHz, CDCl₃)

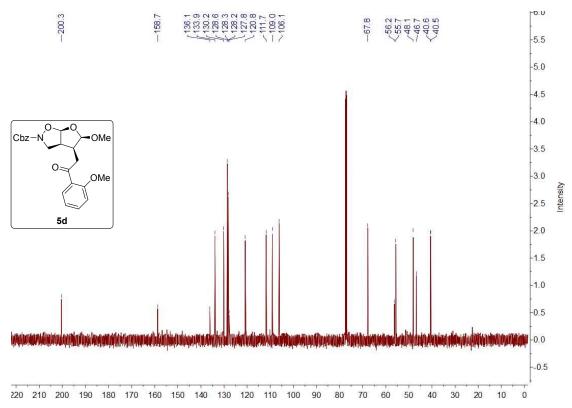
The HPLC of racemic 5c

Chrom Type: Fixed WL Chromatogram, 210 nm

Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA%

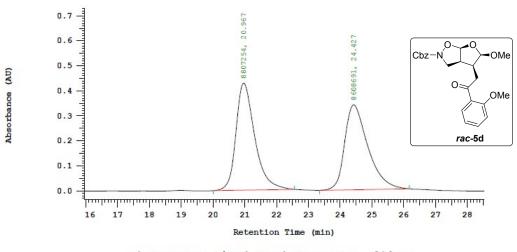

No.	RT	Area	Area %	BC
1	9.560	893916	49.701	BB
2	10.947	904654	50.299	BB
		1798570	100.000	


The HPLC of chiral 5c

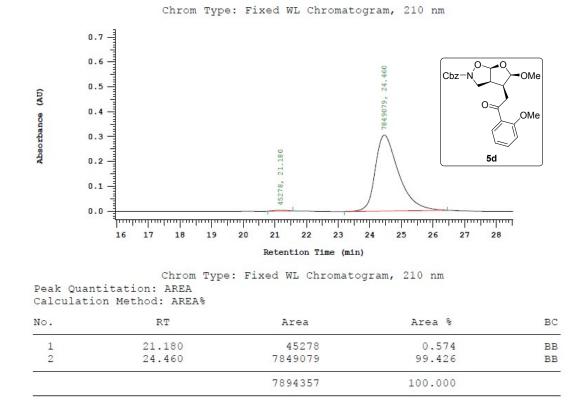

10.900 0.20 0 -0 OMe Troc 1134696, Absorbance (AU) 0.15 0: 0.10 9.547 5c 0.05 14109, 0.00 ----Т П 7 9 10 11 12 13 8 Retention Time (min) Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA% No. RT Area Area % BC 1.228 98.772 1 9.547 14109 BB 2 10.900 1134696 BB 1148805 100.000

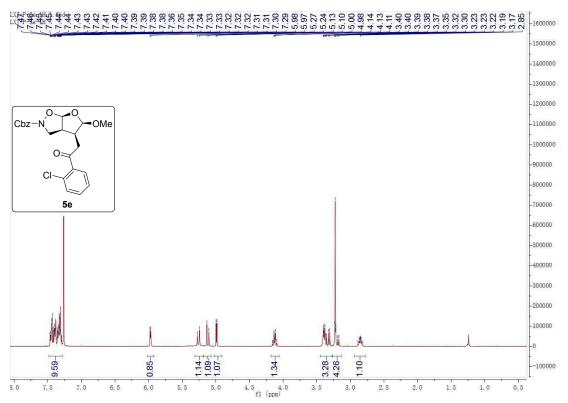
Chrom Type: Fixed WL Chromatogram, 210 nm

The ¹H NMR spectrum of 5d (500 MHz, CDCl₃)

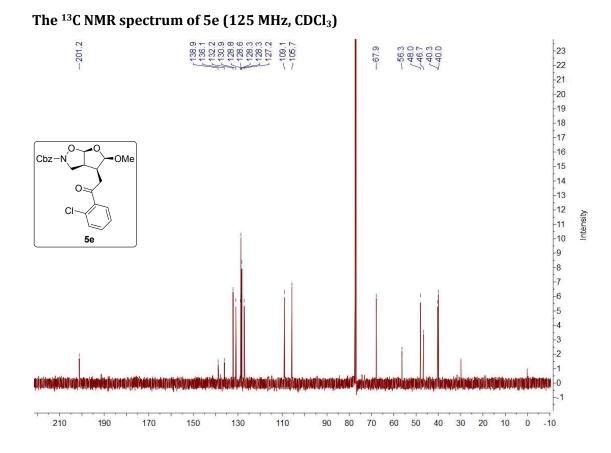


The HPLC of racemic 5d

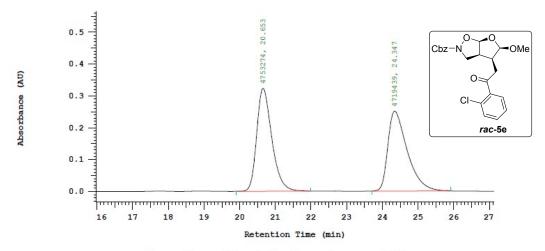

Chrom Type: Fixed WL Chromatogram, 210 nm


Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1	20.967	8807254	50.570	BB
2	24.427	8608691	49.430	BB
		17415945	100.000	

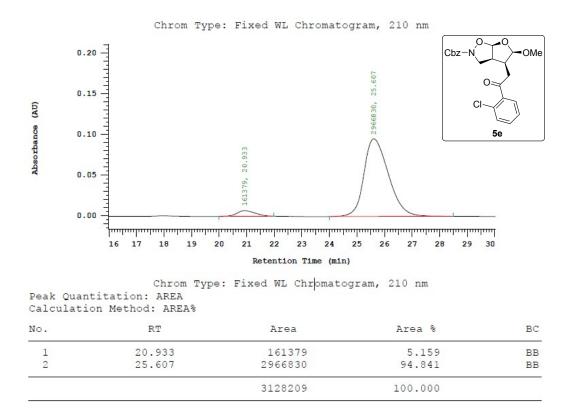

The HPLC of chiral 5d

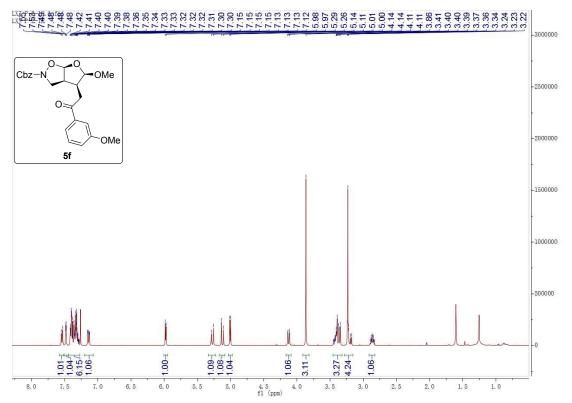
The ¹H NMR spectrum of 5e (400 MHz, CDCl₃)

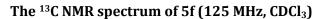


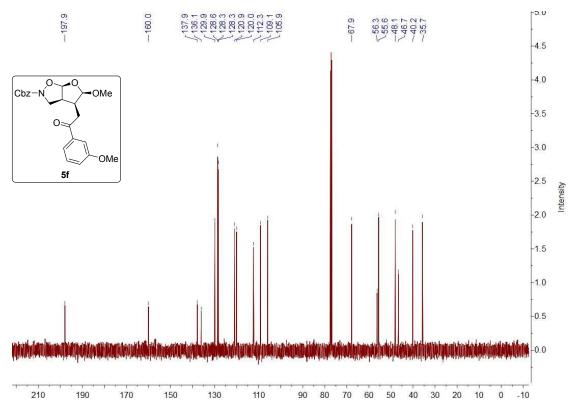
S44

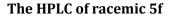
The HPLC of racemic 5e



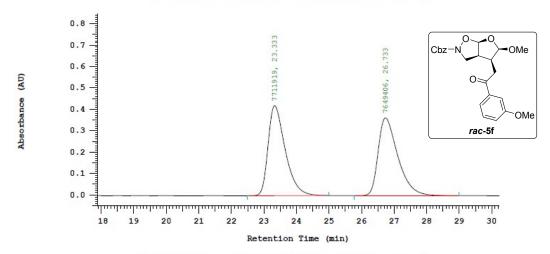

Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA%

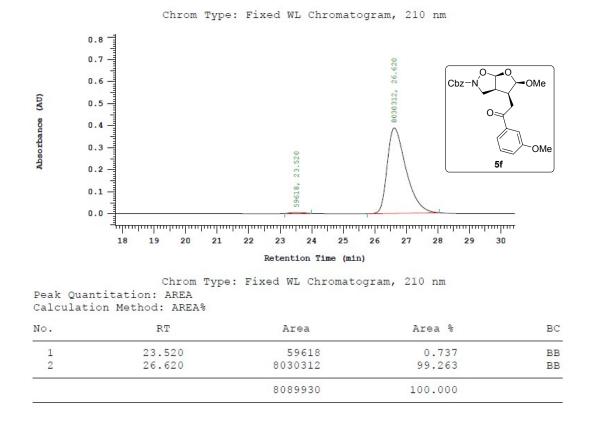

No.	RT	Area	Area %	BC
1	20.653	4753274	50.179	BB
2	24.347	4719439	49.821	BB
		9472713	100.000	


The HPLC of chiral 5e



The ¹H NMR spectrum of 5f (400 MHz, CDCl₃)

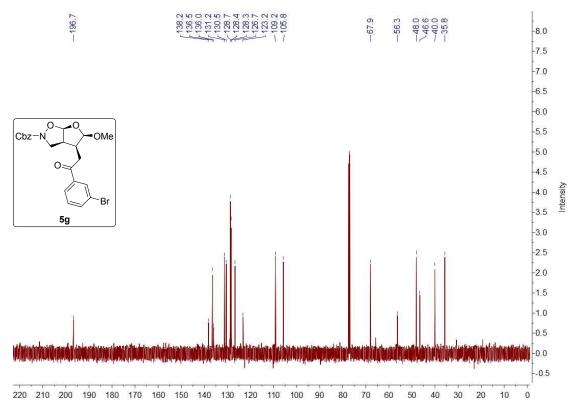



Chrom Type: Fixed WL Chromatogram, 210 nm

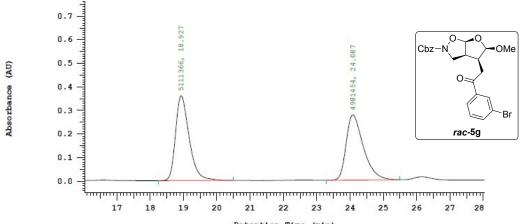
Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1	23.333	7711919	50.203	BB
2	26.733	7649406	49.797	BB
		15361325	100.000	

The HPLC of chiral 5f



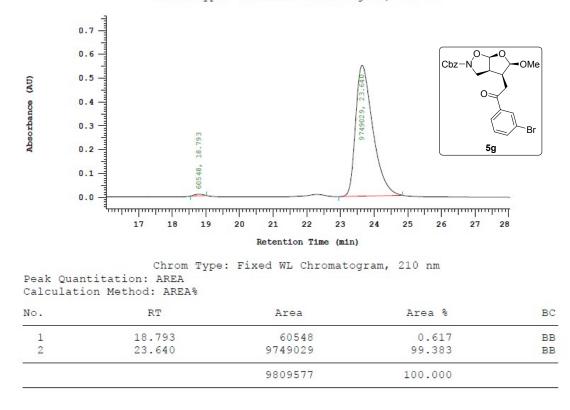
The ¹H NMR spectrum of 5g (500 MHz, CDCl₃)


S48

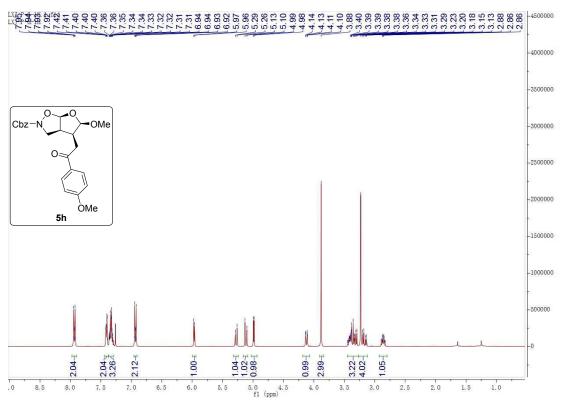
The ¹³C NMR spectrum of 5g (125 MHz, CDCl₃)

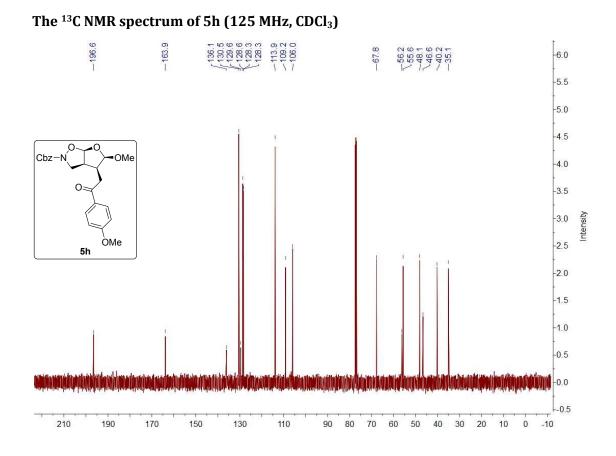
The HPLC of racemic 5g

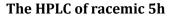
Chrom Type: Fixed WL Chromatogram, 210 nm

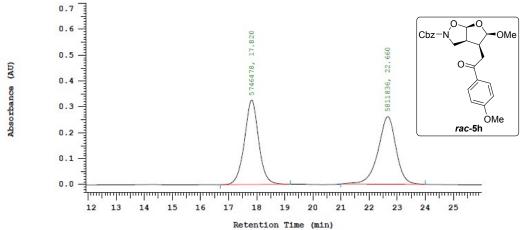

Retention Time (min)

Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA%


No.	RT	Area	Area %	BC
1	18.927	5111366	50.644	BB
2	24.087	4981454	49.356	BB
		10092820	100.000	


The HPLC of chiral 5g

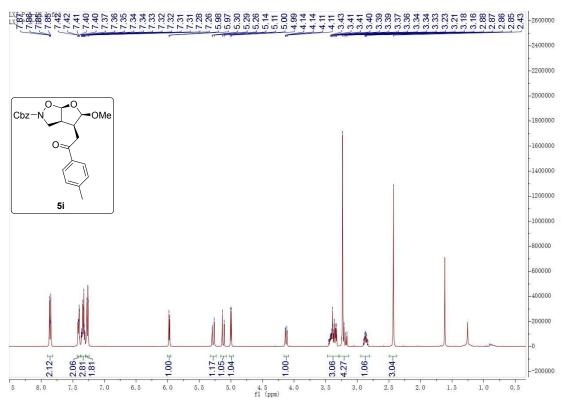

Chrom Type: Fixed WL Chromatogram, 210 nm

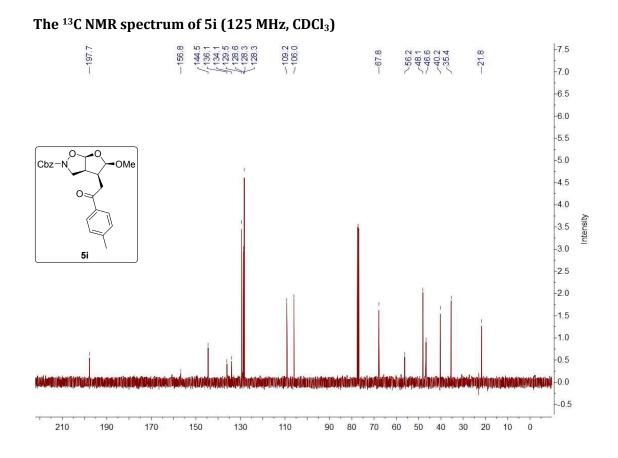

The ¹H NMR spectrum of 5h (400 MHz, CDCl₃)

Chrom Type: Fixed WL Chromatogram, 260 nm

Recención lime (min)

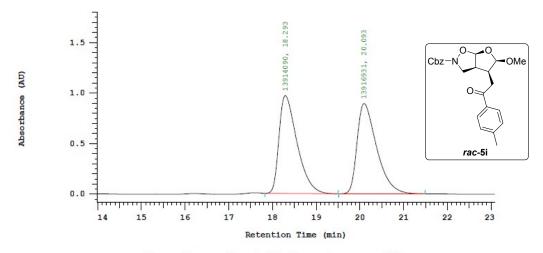
Chrom Type: Fixed WL Chromatogram, 260 nm Peak Quantitation: AREA Calculation Method: AREA%


No.	RT	Area	Area %	BC
1	17.820	5746478	49.717	BB
2	22.660	5811836	50.283	BB
		11558314	100.000	

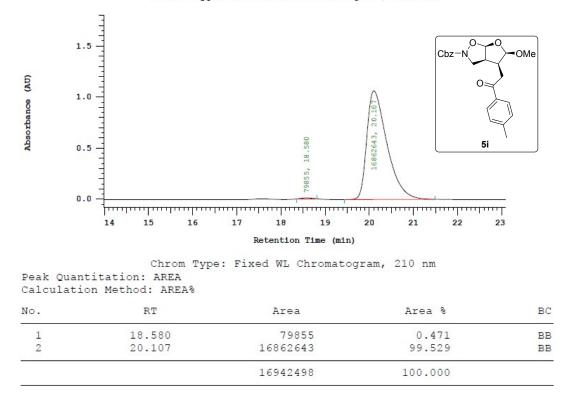

The HPLC of chiral 5h

Chrom Type: Fixed WL Chromatogram, 260 nm

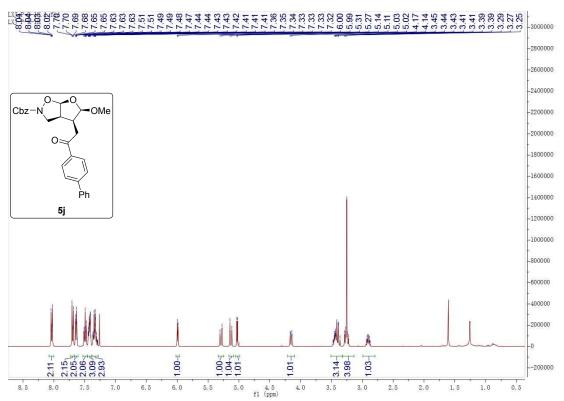


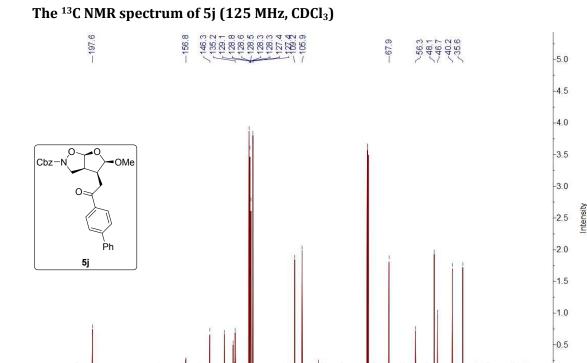

The ¹H NMR spectrum of 5i (400 MHz, CDCl₃)

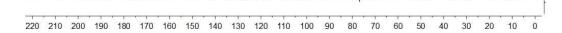
The HPLC of racemic 5i



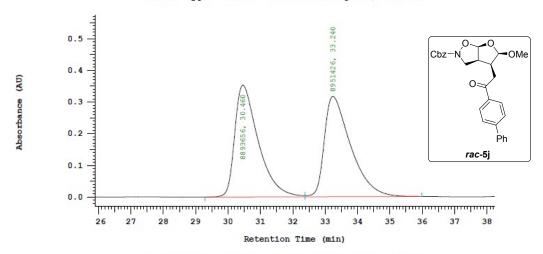
Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA%


BC	Area %	Area	RT	No.
BB	49.995	13914090	18.293	1
BB	50.005	13916931	20.093	2
	100.000	27831021		


The HPLC of chiral 5i

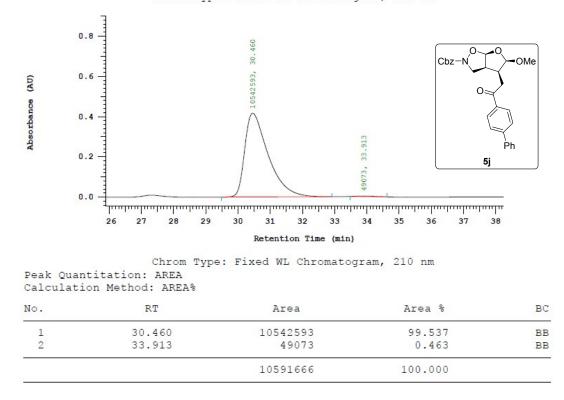

Chrom Type: Fixed WL Chromatogram, 210 nm

The ¹H NMR spectrum of 5j (400 MHz, CDCl₃)

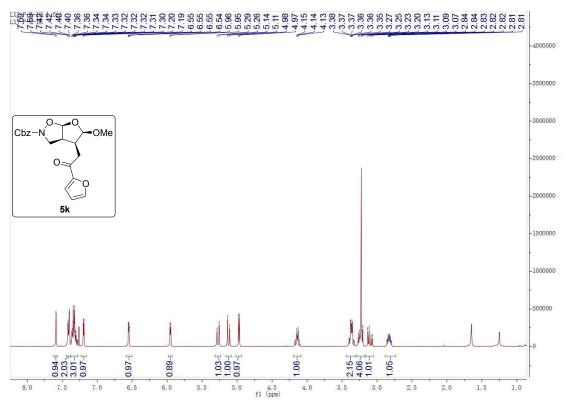


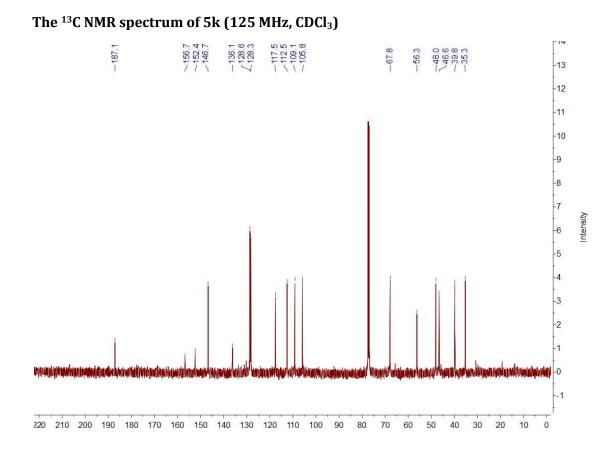
Chrom Type: Fixed WL Chromatogram, 210 nm

-0.0

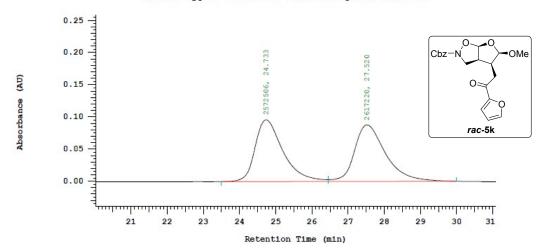


Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA%


No.	RT	Area	Area %	BC
1	30.460	8893656	49.838	BV
2	33.240	8951426	50.162	VB
		17845082	100.000	

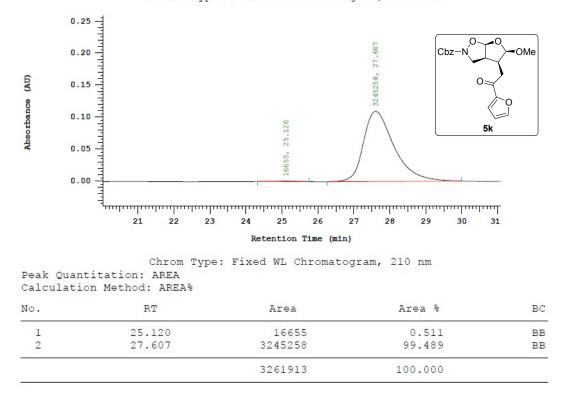

The HPLC of chiral 5j

Chrom Type: Fixed WL Chromatogram, 210 nm

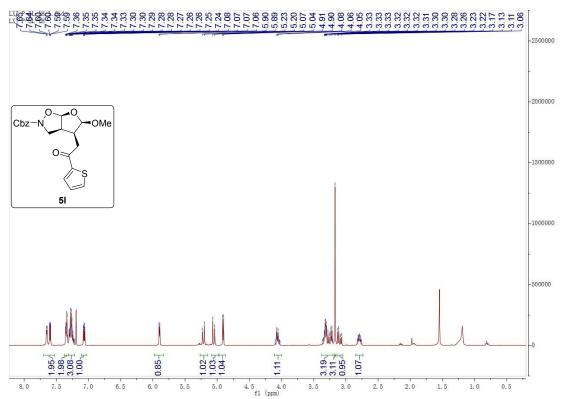

The ¹H NMR spectrum of 5k (400 MHz, CDCl₃)

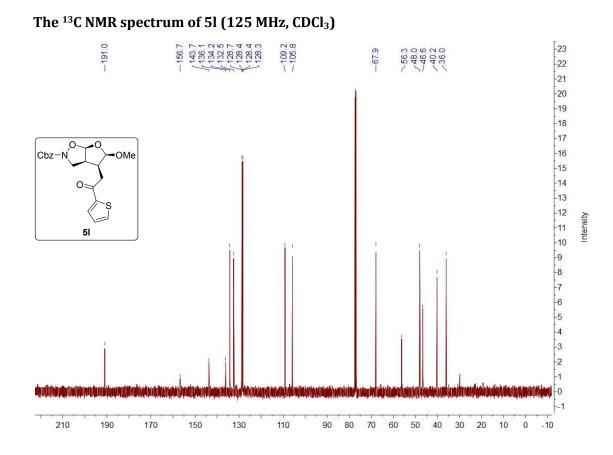
The HPLC of racemic 5k

Chrom Type: Fixed WL Chromatogram, 210 nm

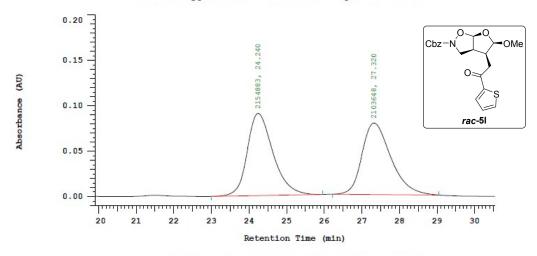

Chrom Type: Fixed WL Chromatogram, 210 nm : AREA

Peak Quantitation: AREA Calculation Method: AREA%


No.	RT	Area	Area %	BC
1	24.733	2572506	49.569	BV
2	27.520	2617220	50.431	VB
		5189726	100.000	


The HPLC of chiral 5k

Chrom Type: Fixed WL Chromatogram, 210 nm

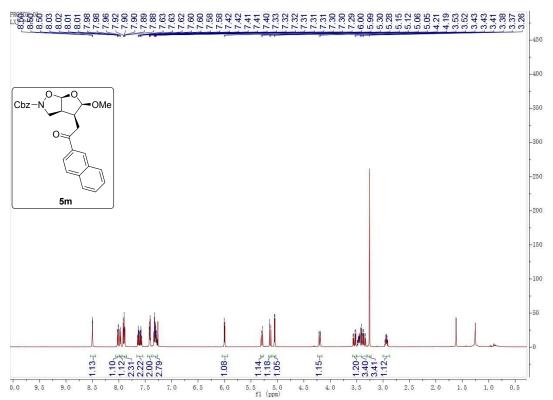

The ¹H NMR spectrum of 5l (400 MHz, CDCl₃)

The HPLC of racemic 5l

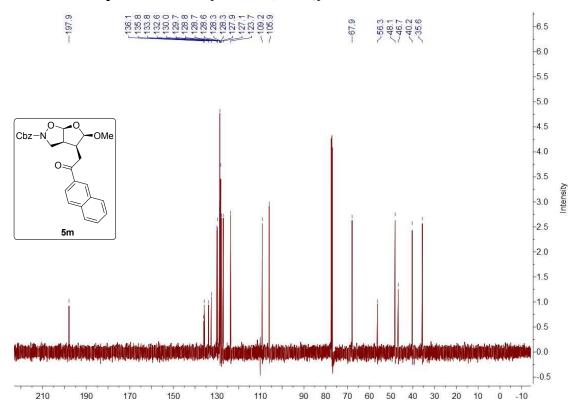
Chrom Type: Fixed WL Chromatogram, 260 nm



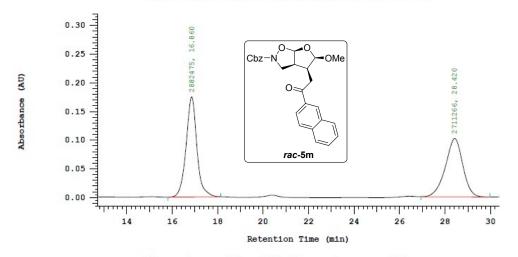
Chrom Type: Fixed WL Chromatogram, 260 nm Peak Quantitation: AREA Calculation Method: AREA%


No.	RT	Area	Area %	BC
1	24.240	2154883	50.602	BB
2	27.320	2103648	49.398	BB
		4258531	100.000	

The HPLC of chiral 51

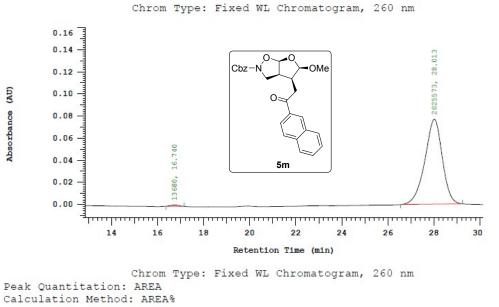

Chrom Type: Fixed WL Chromatogram, 260 nm

The ¹H NMR spectrum of 5m (500 MHz, CDCl₃)

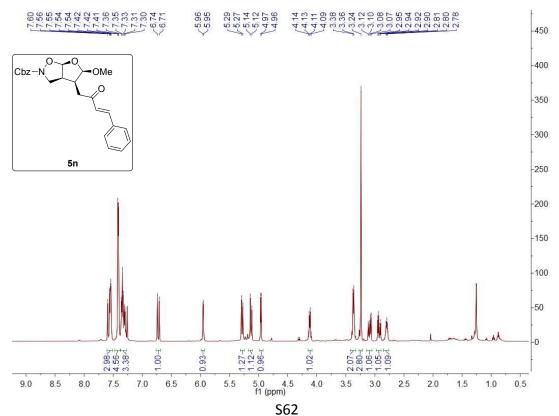


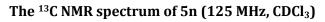
The ¹³C NMR spectrum of 5m (125 MHz, CDCl₃)

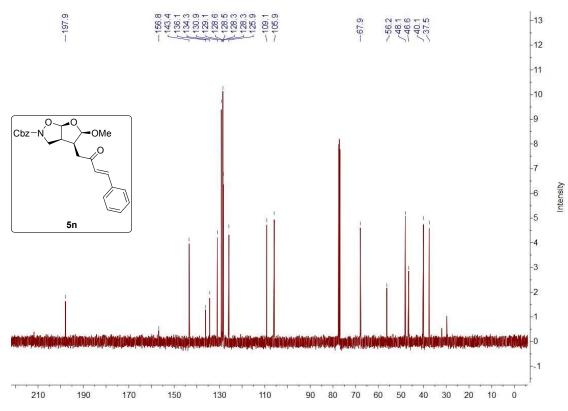
The HPLC of racemic 5m


Chrom Type: Fixed WL Chromatogram, 260 nm

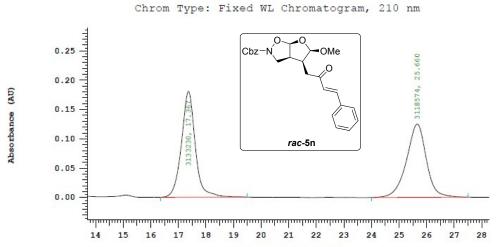
Chrom Type: Fixed WL Chromatogram, 260 nm Peak Quantitation: AREA Calculation Method: AREA%


No.	RT Area		Area %	BC
1	16.860	2882475	51.530	BB
2	28.420	2711266	48.470	BB
		5593741	100.000	

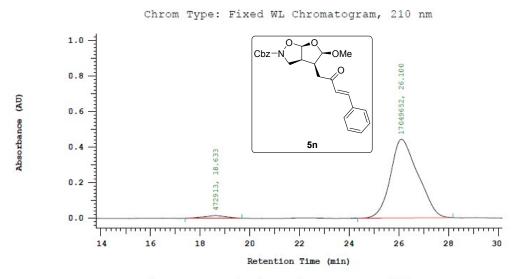

The HPLC of chiral 5m



No.	RT Area		Area %	BC
1	16.740	13680	0.671	BB
2	28.013	2025573	99.329	BB
		2039253	100.000	


The ¹H NMR spectrum of 5n (500 MHz, CDCl₃)

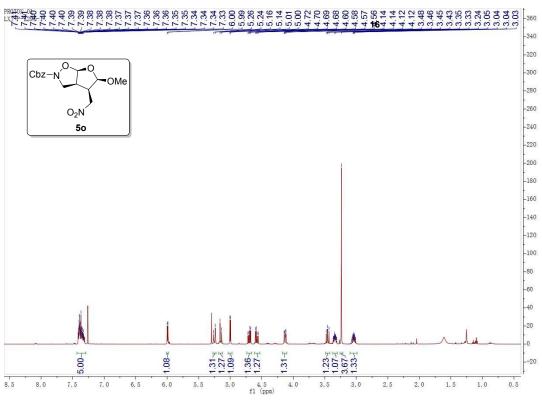
The HPLC of racemic 5n

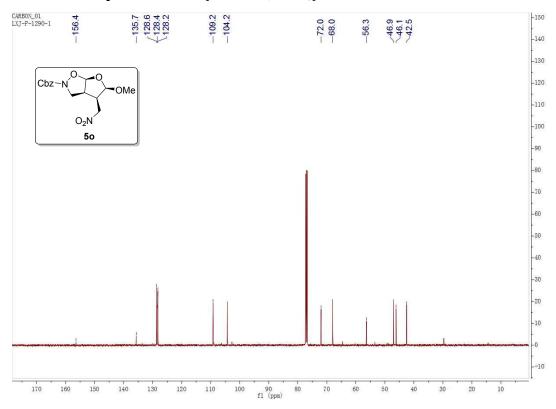


Retention Time (min)

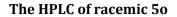
Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA%

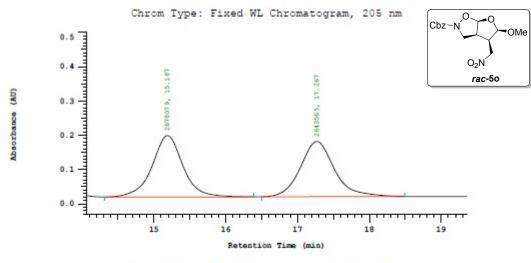
No.	RT	Area	Area %	BC
1	17.367	3133230	50.117	BB
2	25.660	3118574	49.883	BB
		6251804	100.000	


The HPLC of chiral 5n

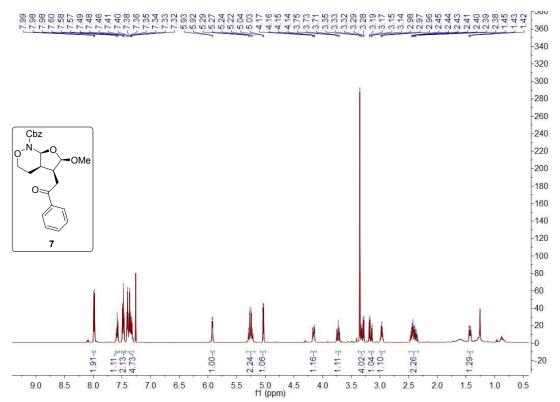


Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA%

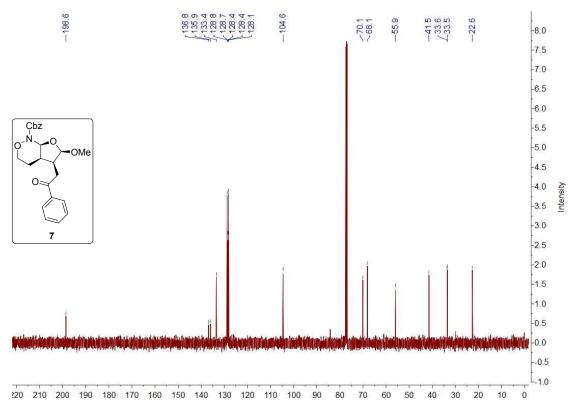

BC	Area %	Area	RT	No.	
BB	2.699	472913	18.633	1	
BB	97.301	17049652	26.100	2	
	100.000	17522565			


The ¹H NMR spectrum of 50 (500 MHz, CDCl₃)

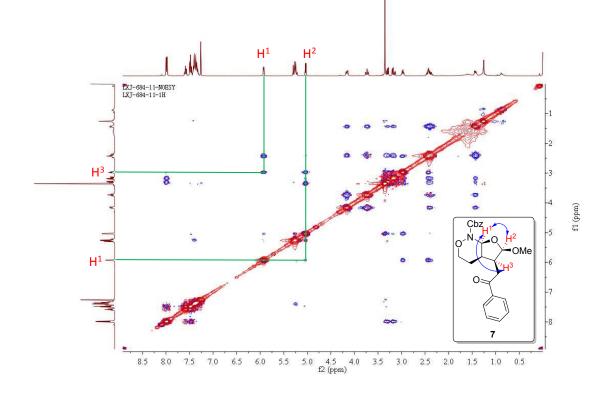
The ¹³C NMR spectrum of 50 (125 MHz, CDCl₃)


Chrom Type: Fixed WL Chromatogram, 205 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	RT Area	Area %	BC
1	15.187	2678079	50.324	BB
2	17.267	2643565	49.676	BB
		5321644	100.000	


The HPLC of chiral 50

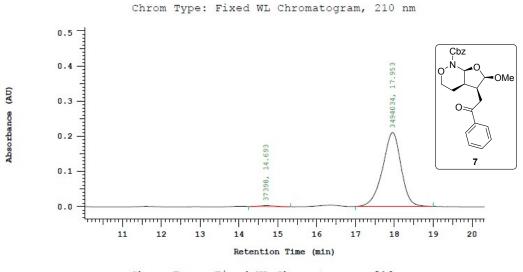
Chrom Type: Fixed WL Chromatogram, 205 nm <u>,</u>0, Cbz-N 0.5 4194847, 15.100 OMe 0.4 O₂N Absorbance (AU) 50 0.3 0.2 17.167 0.1 6054, 0.0 Т Т Т Т 14 17 15 16 18 Retention Time (min) Chrom Type: Fixed WL Chromatogram, 205 nm Peak Quantitation: AREA Calculation Method: AREA% No. RT Area Area 😵 BC 15.100 99.856 4194847 BB 1 2 17.167 BB 6054 0.144 4200901 100.000


The ¹H NMR spectrum of 7 (500 MHz, CDCl₃)

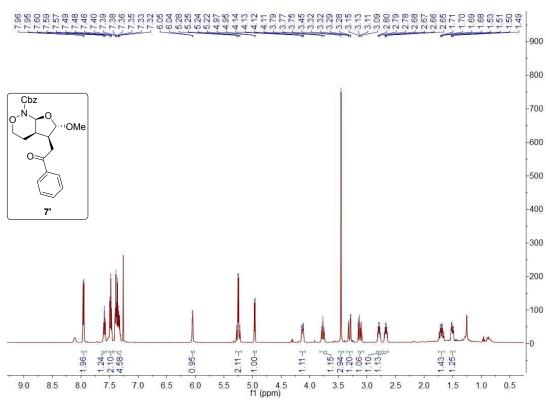
The ¹³C NMR spectrum of 7 (125 MHz, CDCl₃)

The NOESY spectrum of 7 (400 MHz, CDCl₃)

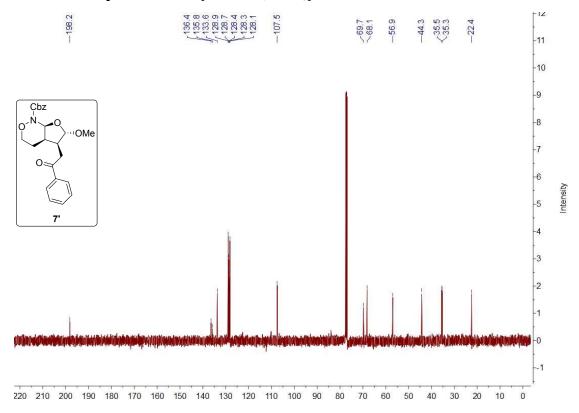
The HPLC of racemic 7


Chrom Type: Fixed WL Chromatogram, 210 nm

Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA%

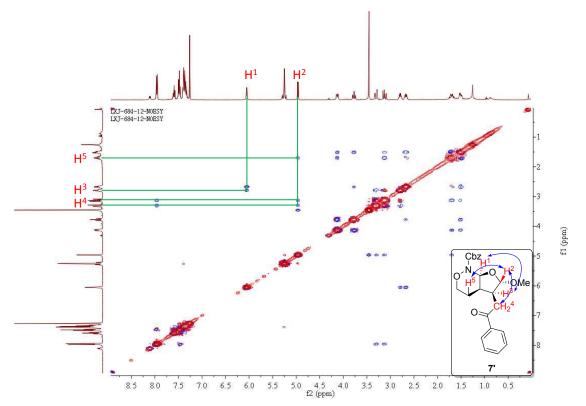

No.	RT	Area	Area %	BC
1	14.907	5377649	50.169	BB
2	17.960	5341366	49.831	BB
		10719015	100.000	

The HPLC of chiral 7

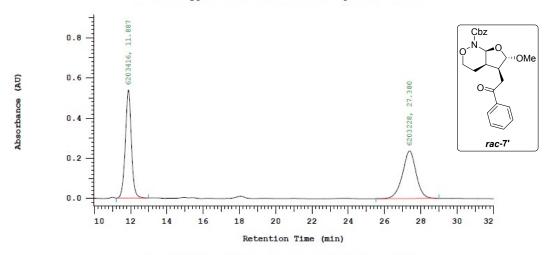


Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1	14.693	37398	1.059	BB
2	17.953	3494034	98.941	BB
		3531432	100.000	



The ¹³C NMR spectrum of 7' (125 MHz, CDCl₃)


The ¹H NMR spectrum of 7' (500 MHz, CDCl₃)

The NOESY spectrum of 7' (400 MHz, CDCl₃)

The HPLC of racemic 7'

Chrom Type: Fixed WL Chromatogram, 210 nm

Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1	11.887	6203416	50.001	BB
2	27.380	6203228	49.999	BB
27		12406644	100.000	0

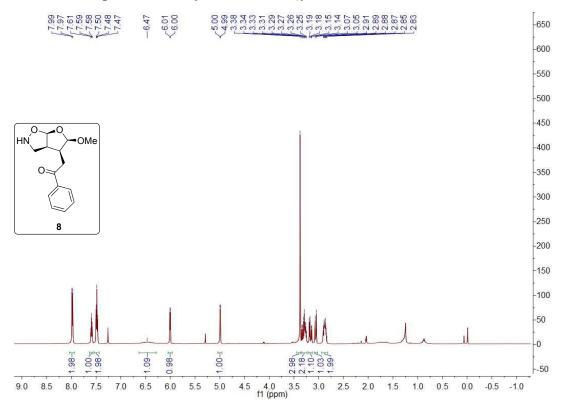
The HPLC of chiral 7'

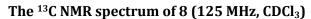
2

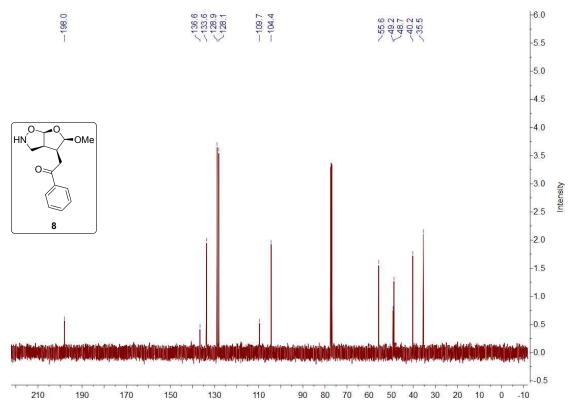
Chrom Type: Fixed WL Chromatogram, 210 nm Cbz 0.25 \cap 27.453 \cap 'OMe 0.20 Absorbance (AU) 2929190, 0 0.15 0.10 86 7 0.05 0.00 12 16 20 22 24 26 28 30 14 18 Retention Time (min) Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA% No. RT Area Area % BC 1 11.987 16869 0.573 BB

2929190

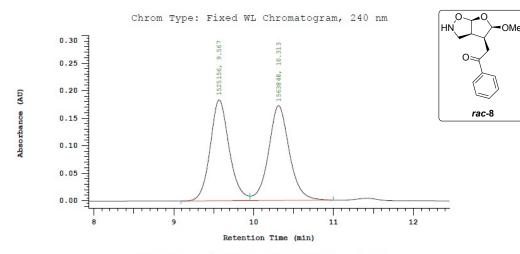
2946059


99.427


100.000

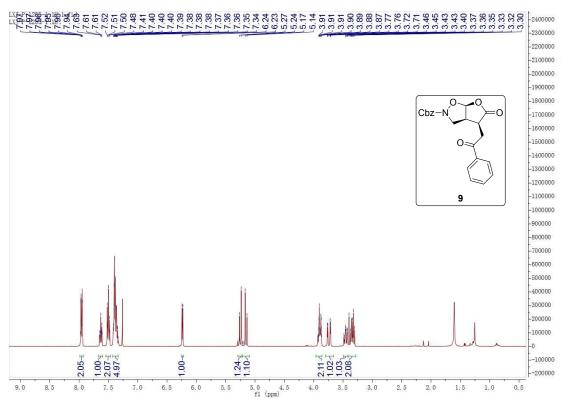

BB

The ¹H NMR spectrum of 8 (500 MHz, CDCl₃)


27.453

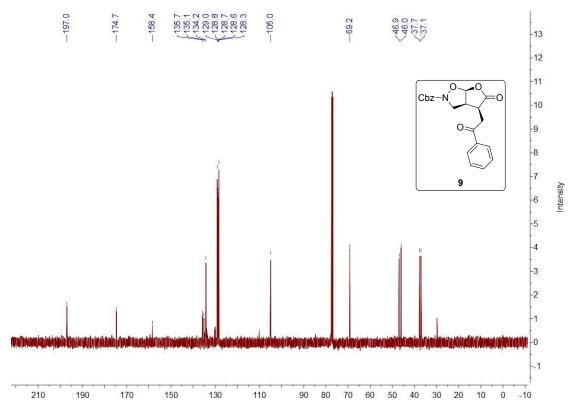
The HPLC of racemic 8

Chrom Type: Fixed WL Chromatogram, 240 nm Peak Quantitation: AREA Calculation Method: AREA%

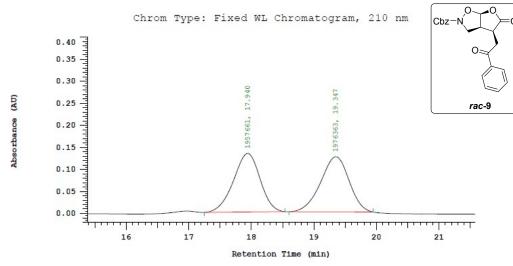

No. RT		Area	Area %	BC
1	9.567	1525156	49.374	BV
2	10.313	1563848	50.626	VB
		3089004	100.000	

The HPLC of chiral 8

Chrom Type: Fixed WL Chromatogram, 240 nm 0 •0 0.30 -ΗN OMe 0.25 0: 0.20 Absorbance (AU) 9 2169193, 0.15 8 0.10 80913, 9.627 0.05 0.00 Т -Ч T Т Т Т 9.0 9.5 10.0 10.5 11.0 11.5 Retention Time (min) Chrom Type: Fixed WL Chromatogram, 240 nm Peak Quantitation: AREA Calculation Method: AREA%

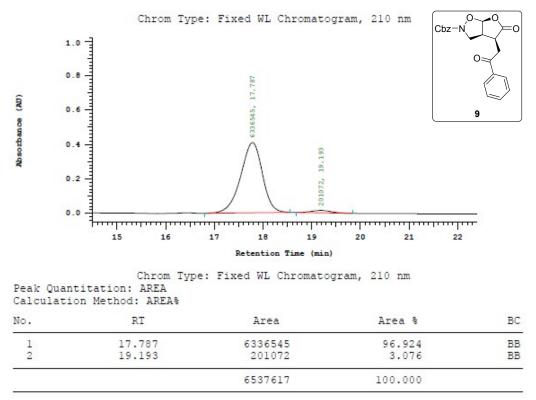

No. RT Area Area % BC 1 9.627 80913 3.596 вv 2 10.307 2169193 96.404 VB 2250106 100.000

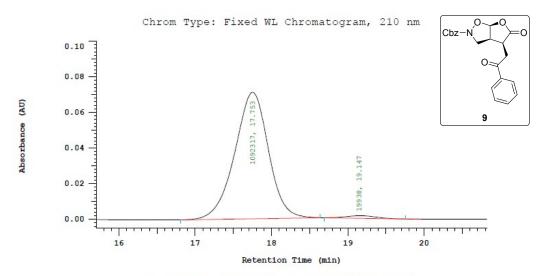
The ¹H NMR spectrum of 9 (500 MHz, CDCl₃)



S73

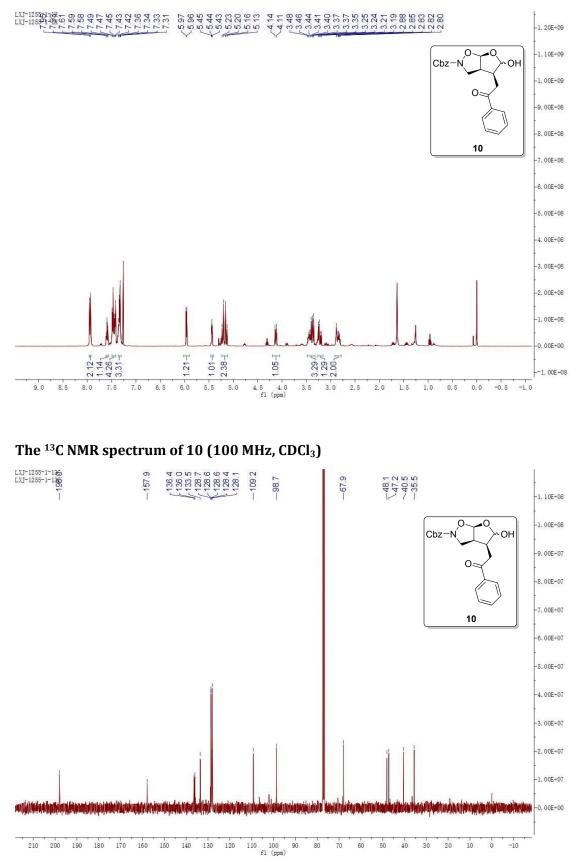
The ¹³C NMR spectrum of 9 (125 MHz, CDCl₃)

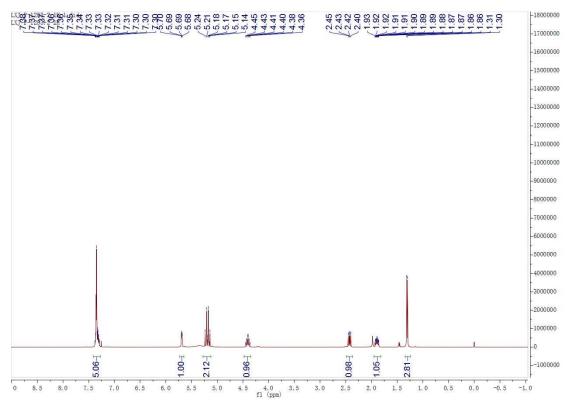

The HPLC of racemic 9


Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA%

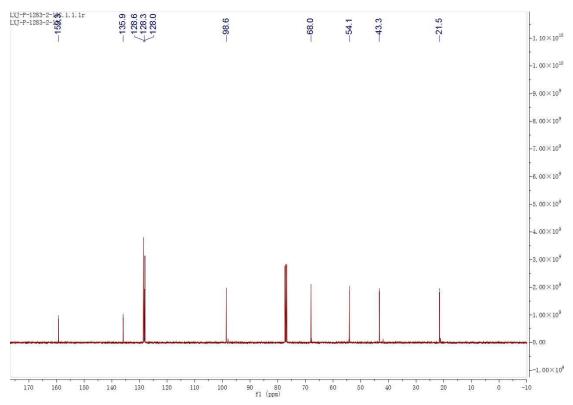
No.	RT	Area	Area %	BC
1	17.940	1957661	49.762	BB
2	19.347	1976363	50.238	BB
		3934024	100.000	

The HPLC of chiral 9 in transformation

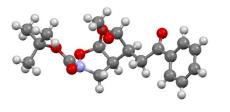

The HPLC of chiral 9 in other reactions

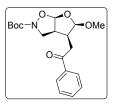

Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area Area %		Area Area %	a Area % BC
1	17.753	1092317	98.207	BB	
2	19.147	19938	1.793	BB	
		1112255	100.000		


The ¹H NMR spectrum of 10 (400 MHz, CDCl₃)

The ¹H NMR spectrum of 17 (400 MHz, CDCl₃)


The ¹³C NMR spectrum of 17 (100 MHz, CDCl₃)



L. Single crystal X-Ray diffraction data

[CCDC 1968770 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via <u>www.ccdc.cam.ac.uk/data_request/cif.</u>].

Absolute configuration of **5b** - CCDC 1968770

Bond precision:	C-C = 0.00	044 A	1	Wavelength=	0.71073	
Cell:	alpha=90			(13) .167(3)	c=12.651(2) gamma=90	
Temperature:	296 K					
Volume Space group Hall group Moiety formula Sum formula Mr Dx,g cm-3 Z	P 2yb C19 H25 N O C19 H25 N O 363.40 1.262 2			Reported 956.6(3) P 1 21 1 P 2yb C19 H25 N 0 363.40 1.262 2		
Mu (mm-1) F000	0.094 388.0			0.094 388.0		
F000' h,k,lmax	388.0 388.21 14,9,16			14,9,16		
Nref	4406 [2381]			3910		
Tmin,Tmax Tmin'				0.694,0.74	6	
Correction method= # Reported T Limits: Tmin=0.694 Tmax=0.746 AbsCorr = MULTI-SCAN						
Data completene	ss= 1.64/0.8	9	Theta(m	ax)= 27.521		
R(reflections) =	0.0406(311	.7)	wR2(ref	lections) =	0.0893(3910)	
S = 1.034	1	Npar=	240			