Supporting Information for:

Mobility of Lewis Acids within the Secondary Coordination Sphere: Toward a Model for Cooperative Substrate Binding

John J. Kiernicki,^a Emily E. Norwine,^a Myles A. Lovasz,^a Matthias Zeller,^b and Nathaniel K. Szymczak^a*

^aDepartment of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States ^bH.C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States

Experimental Procedures	\$4-\$14
Figure S1 ¹ H NMR spectrum of ^{chloroethyl} NN ^{tBu}	S15
Figure S2 ¹³ C NMR spectrum of ^{chloroethyl} NN ^{tBu}	\$15
Figure S3 ¹ H NMR spectrum of ^{vinyl} NN ^{tBu} in CDCl ₂	S16
Figure S4 ¹ H NMR spectrum of $vinylNN^{tBu}$ in CH ₂ Cl ₂	S16
Figure S ¹³ C NMR spectrum of ^{vinyl} NN ^{tBu}	\$17
Figure S6 ¹ H NMR spectrum of ^{butenyl} NN ^{tBu}	,
Figure S7 ¹³ C NMR spectrum of ^{butenyl} NN ^{tBu}	،
Figure S8 ¹ H NMR spectrum of (^{vinyl} NN ^{tBu})7nBr _a	
Eigure SQ 13 C NMR spectrum of (VinvINNt ^{Bu})7p.Br ₂	۲۵۵ ۲۱۵
Figure S10 $^{1}\text{H}_{-1}$ H COSV spectrum of (^{vinyl} NNt ^{BU})7nBr-	S10
Figure S10 ¹¹ H NMR spectra of attempted hydroboration of $(viny!NNt^{Bu})$ 7nRr.	\$20
Figure S12 ¹ H NMR spectrum of $(2^{-BBN}N)t^{Bu}$ / $7nBr_{a}$ in CDCl.	
Eigure S12 ¹ HMMR spectrum of $(2^{-BBN}NI)^{1}BU \ 7nBr_{2}$ in CL-CL	
Figure S15 THNNR spectrum of $(2^{-BBN}N)N^{Bu}/7nBr$.	
Figure S14 $^{\circ}$ C NMR spectrum of /2-BBNNIA/BU/2nBr	
Figure S15 H- H COST Spectrum 11 NMAD spectra of (2-BBNNN/BU/ZaDr	
Figure S16 Variable temperature -H NIVIR spectra of (- SCHNIVSa)ZnBr2	
Figure S19 ⁺ H NMR spectrum of (~ ¹⁰ PNN- ¹⁰)ZnBr ₂	
Figure S20 ¹³ C NMR spectrum of (^{4+00/N} N ¹⁰⁰)ZnBr ₂	
Figure S21 ⁴ H- ² H COSY spectrum of (* ^{-DDNNNC0} /2nBr ₂	
Figure S22 ¹ H NMR spectrum of (^{outyi} NN ¹⁶⁰)ZnBr ₂	S25
Figure S23 ¹³ C NMR spectrum of (^{outyi} NN ^{rBu})ZnBr ₂	S26
Figure S24 ¹ H NMR spectrum of (^{2-bBN} N ^{rb0})ZnBr ₂ (N ₂ H ₄) in CDCl ₃	S26
Figure S25 ¹ H NMR spectrum of (^{2-BBN} NN ^{FBU})ZnBr ₂ (N ₂ H ₄) in THF	S27
Figure S26 ¹³ C NMR spectrum of (^{2-BBN} NN ^{tBu})ZnBr ₂ (N ₂ H ₄)	S27
Figure S27 ¹ H NMR spectrum of $[(^{2-BBN}NN^{tBu})ZnBr_2]_2(N_2H_4)$	S28
Figure S28 ¹³ C NMR spectrum of [(^{2-BBN} NN ^{tBu})ZnBr ₂] ₂ (N ₂ H ₄)	S28
Figure S29 ¹ H NMR spectrum of (^{4-BBN} NN ^{tBu})ZnBr ₂ (N ₂ H ₄)	S29
Figure S30 ¹³ C NMR spectrum of (^{4-BBN} NN ^{tBu})ZnBr ₂ (N ₂ H ₄)	S29
Figure S31 ¹ H- ¹ H COSY spectrum of (^{4-BBN} NN ^{tBu})ZnBr ₂ (N ₂ H ₄)	S30
Figure S32 ¹ H NMR spectrum of [(^{2-BBN} NN ^{tBu})ZnBr(N ₂ H ₄)][PF ₆] in CDCl ₃ at 25 °C	S30
Figure S33 ¹ H NMR spectrum of [(^{2-BBN} NN ^{tBu})ZnBr(N ₂ H ₄)][PF ₆] in CDCl ₃ at -50 °C	S31
Figure S34 ¹ H NMR spectrum of [(^{2-BBN} NN ^{tBu})ZnBr(N ₂ H ₄)][PF ₆] in THF at 25 °C	S31
Figure S35 ¹³ C NMR spectrum of [(^{2-BBN} NN ^{tBu})ZnBr(N ₂ H ₄)][OTf]	S32
Figure S36 ¹ H- ¹ H COSY spectrum of [(^{2-BBN} NN ^{fBu})ZnBr(N ₂ H ₄)][PF ₆] in CDCl ₃ at -50 °C	S32
Figure S37-S39 Variable temperature ¹ H NMR spectra of [(^{2-BBN} NN ^{tBu})ZnBr(N ₂ H ₄)][PF ₆]	
Figure S40 ¹ H NMR spectrum of [(^{3-BBN} NN ^{tBu})ZnBr(N ₂ H ₄)][PF ₆] in CD ₂ Cl ₂ at 25 °C	S34
Figure S41 ¹ H NMR spectrum of [(^{3-BBN} NN ^{tBu})ZnBr(N ₂ H ₄)][PF ₆] in CD ₂ Cl ₂ at -50 °C	S35
Figure S42 ¹ H NMR spectrum of [(^{3-BBN} NN ^{tBu})ZnBr(N ₂ H ₄)][PF ₆] in CDCl ₃ at 25 °C	S35
Figure S43 ¹ H NMR spectrum of $[(^{3-BBN}NN^{tBu})ZnBr(N_2H_4)][PF_6]$ in THF at 25 °C	
Figure S44 ¹³ C NMR spectrum of $[(^{3-BBN}NN^{tBu})ZnBr(N_2H_4)][PF_6]$	
Figure S45-S47 Variable temperature ¹ H NMR spectra of [(^{3-BBN} NN ^{tBu})ZnBr(N ₂ H ₄)][PF ₆]	\$37-\$38
Figure S48 ¹ H- ¹ H COSY spectrum of $[(^{3-BBN}NN^{tBu})7nBr(N_3H_4)][PF_{\epsilon}]$ in CD ₂ Cl ₂ at -60 °C	538
Figure S49 ¹ H NMR spectrum of $[(^{4-BN}N)^{(Bu)}]$ 7 Rr(N ₂ +H ₂)] (PE ₁ in CD ₂ Cl ₂ at 25 °C	539
Figure S50 ¹ H NMR spectrum of $[(4^{-BBN}NN^{tBu})7nBr(N_2H_4)][PE_c]$ in CD ₂ Cl ₂ at 25 °C	539
Figure 551 ¹³ C NMR spectrum of [$(4-BBNNR)(BBV7RR(N_sH_s))$ [DE.]	540
Figure S51 C NVN Spectrum of $[(^{4-BBN}NN^{tBu})_{7}nRr(N_{1}+_{1})][0F_{2}]$ in CD ₂ Cl ₂ at -75 °C	0+0 540
Figure 552 for the construction of $[1 \text{ NMP} \text{ spectra of } [1^{+8}\text{BNN}\text{NN}]^{10}\text{Zyper}(N, H, M)[\text{Dec}]$	۲۸1_۲۸2
Figure S56 ¹ H NMR spectra of conversion $[(^{2\text{-BBN}NIN(Bu})7n\text{Rr}/N_{1}\text{H},1)^{+}$ to $(^{2\text{-BBN}NIN(Bu})7n\text{Rr}_/N_{1}\text{H},1)^{+}$ to $(^{2\text{-BBN}NIN(Bu})7n\text{Rr}_/N_{1}\text{H},1)^{+}$	۲۸۵-۲±-۵۰۰
Eigure S20 IT NIVE Spectra of conversion [($1000 \text{ J} / 100 (102 \text{ J} / 100 (102 \text{ J} / 100 $	
Figure 537 TOWING Spectra of conversion [($13BBNNN(BU)7nPr/NUU)$] LU ($22D4$)] LU ($22D4$) III DUVI	
Figure 550 TO WING Spectra of conversion [(************************************	
Figure 559 The INVERSE of Conversion [(10 C	
Figure Sou -IT INIVIK Spectra of conversion [(****/INIVIC#)ZINBr(N2H4)]* TO (****/INIVIC#)ZINBr ₂ (N ₂ H ₄) IN DCM	
Figure SD1 ⁻ H INIVIK spectra of reaction between $(^{SU2YINIVIOU)/2nBr2 and N2H4$	
Figure 562 ¹ H NIVIK spectrum of (³⁻⁰⁰ NN ¹⁰⁰)/2nBr(N ₂ H ₃)	
Figure 563 ²² C NMR spectrum of (^{3-DBI} NN ^{(DD})ZnBr(N ₂ H ₃)	S46

Figure S64 ¹ H- ¹ H COSY spectrum of (^{3-BBN} NN ^{tBu})ZnBr(N ₂ H ₃)	S46
Figure S65-S67 ¹ H NMR spectrum of attempted synthesis of (^{4-BBN} NN ^{tBu})ZnBr(N ₂ H ₃)	S47-S48
Figure S68 ¹ H NMR spectra of protonation of (^{3-BBN} NN ^{tBu})ZnBr(N ₂ H ₃) to form [(^{3-BBN} NN ^{tBu})ZnBr(N ₂ H ₄)][OTf]	S48
Determination of ΔG [‡] and k _c for [(^{n-BBN} NN ^{tBu})ZnBr(N ₂ H ₄)] ⁺	S49
Figure 69 Parameters extracted from VT-NMR data	S49
Crystallographic Details	\$50-\$78
Table S1 Experimental parameters for (vinyl NNt ^{Bu})ZnBr ₂	S50
Figure S70 Molecular structure of (vinyl NNt ^{Bu})ZnBr ₂	S51
Table S2 Experimental parameters for (butenyl NN ^{tBu})ZnBr ₂	S52
Figure S71 Molecular structure of (^{butenyl} NN ^{tBu})ZnBr ₂	S53
Table S3 Experimental parameters for (butylNN ^{tBu})ZnBr ₂	S54
Figure S72 Molecular structure of (^{butyl} NN ^{rBu})ZnBr ₂	S55
Table S4 Experimental parameters for (2-BBN NN ^{tBu})ZnBr2	S56
Figure S73 Molecular structure of (^{2-BBN} NN ^{tBu})ZnBr ₂	S57
Table S5 Experimental parameters for (4-BBN NN ^{tBu})ZnBr ₂	S58
Figure S74 Molecular structure of (^{4-BBN} NN ^{tBu})ZnBr ₂	S59
Table S6 Experimental parameters for (2-BBN NN ^{tBu})ZnBr ₂ (N ₂ H ₄)	S60
Figure S75 Molecular structure of (^{2-BBN} NN ^{tBu})ZnBr ₂ (N ₂ H ₄)	S61
Table S7 Experimental parameters for [(2-BBN NN ^{tBu})ZnBr ₂] ₂ (N ₂ H ₄)	S62
Figure S76 Molecular structure of [(^{2-BBN} NN ^{tBu})ZnBr ₂] ₂ (N ₂ H ₄)	S63
Table S8 Experimental parameters for (4-BBN NN ^{tBu})ZnBr ₂ (N ₂ H ₄)	S64
Figure S77 Molecular structure of (^{4-BBN} NN ^{tBu})ZnBr ₂ (N ₂ H ₄)	S65
Table S9 Experimental parameters for [(2-BBN NN ^{tBu})ZnBr(N ₂ H ₄)][OTf]	S66
Figure S78 Molecular structure of [(^{2-BBN} NN ^{tBu})ZnBr(N ₂ H ₄)][OTf]	S67
Table S10 Experimental parameters for [(^{3-BBN} NN ^{tBu})ZnBr(N ₂ H ₄)][OTf]	S68
Figure S79 Molecular structure of [(^{3-BBN} NN ^{tBu})ZnBr(N ₂ H ₄)][OTf]	S69
Table S11 Experimental parameters for [(4-BBN NN ^{tBu})ZnBr(N ₂ H ₄)][PF ₆]	S70
Figure S80 Molecular structure of [(^{4-BBN} NN ^{tBu})ZnBr(N ₂ H ₄)][PF ₆]	S71
Table S12 Experimental parameters for (3-BBNNN ^{tBu})ZnBr(N ₂ H ₃)	S72
Figure S81 Molecular structure of (^{3-BBN} NN ^{tBu})ZnBr(N ₂ H ₃)	S73
Table S13 Experimental parameters for [Zn(OPEt ₃) ₄][PF ₆] ₂	S74
Figure S82 Molecular structure of [Zn(OPEt ₃) ₄][PF ₆] ₂	S75
Figure S83 Space fill models comparing (vinyl NN ^{tBu})ZnBr ₂ and (allyl NN ^{tBu})ZnBr ₂	S76
Table S14 Experimentally determined bond distances and angles for hydrazine and hydrazido compounds	S76
Table S15 Experimentally determined bond distances and angles for non-borane containing compounds	S77
Table S16 Experimentally determined bond distances and angles for 3-coordinate borane containing compounds	S77
Table S17-S18 Experimentally determined bond distances and angles for borane-hydrazine adducts	S77-S78
Determination of Acceptor Numbers	S78
Table S19 Experimentally determined Acceptor Numbers	S79
Figure S84 ³¹ P NMR spectra for determination of acceptor numbers	S79
Computational Details	\$80-\$109
Table S20 Wiberg bond index analysis of Zn complexes	S80
Table S21 Natural charge analysis of Zn complexes	S80
Table S22 Thermodynamics of Zn-N2H4 bond forming	S81
Table S23 Acidification of N2H4	S81
Figure S85 pKa values for hydrazine in C-2-4	
Figure S86 Structural overlay of DFT optimized geometries and molecular structures	
Optimized Coordinates	582-5109
Reterences	S110

General Considerations. All air- and moisture-sensitive manipulations were performed using standard Schlenk techniques or in an inert atmosphere drybox with an atmosphere of purified nitrogen. The drybox was equipped with a cold well designed for freezing samples in liquid nitrogen as well as a –35 °C freezer for cooling samples and crystallizations. Solvents were purified using a Glass Contour solvent purification system through percolation through a Cu catalyst, molecular sieves, and alumina. Solvents were then stored over sodium and/or molecular sieves. Benzene- d_6 , THF- d_8 , toluene- d_8 , dichloromethane- d_2 , and chloroform-d were purchased from Cambridge Isotope Laboratories. Benzene- d_6 was dried with molecular sieves and sodium, and degassed by three freeze–pump–thaw cycles. Chloroform-d, dichloromethane- d_2 , and toluene- d_8 were distilled from CaH₂. THF- d_8 was dried over molecular sieves.

Zinc(II) bromide, NaOH, KOH, Na₂CO₃, NaI, tetrabutylammonium bromide, hydroquinone, NaH, iodobutane, 4-bromo-1-butene, 9-borabicyclo[3.3.1]nonane, potassium bis(trimethylsilylamide), diphenylammonium triflate, and thallium salts were purchased from commercial vendors and used as received. Anhydrous hydrazine was purchased from Sigma Aldrich, degassed, and passed through activated alumina prior to use. ^HNN^{tBu},¹ (^{3-BBN}NN^{tBu})ZnBr₂, and (^{3-BBN}NN^{tBu})ZnBr₂(N₂H₄)² were synthesized according to literature procedures.

NMR spectra were recorded on Varian Vnmrs 700 or Varian MR400 spectrometers. ¹H, ¹³C, and ¹¹B chemical shifts are reported in parts per million (ppm) relative to tetramethylsilane and referenced internally to the residual solvent peak. ¹¹B spectra were referenced on a unified scale, where the single primary reference is the frequency of the residual solvent peak in the ¹H NMR spectrum. ¹¹B spectra are reported relative to BF₃(OEt₂). Multiplicities are reported as follows: singlet (s), doublet (d), triplet (t), quartet (q). Infrared spectra were recorded using a Nicolet iS10 FT-IR spectrometer. Samples were diluted into dry KBr and recorded as pellets.

Single crystals of (^{2-BBN}NN^{tBu})ZnBr₂, (^{vinyl}NN^{tBu})ZnBr₂, (^{butenyl}NN^{tBu})ZnBr₂, (^{4-BBN}NN^{tBu})ZnBr₂, [(⁴⁻ $(^{4-BBN}NN^{tBu})ZnBr_2(N_2H_4)$, $(^{3-BPin}NN^{tBu})ZnBr_2$, $[(^{3-BBN}NN^{tBu})ZnBr(N_2H_4)][OTf]$, ^{BBN}NN^{tBu})ZnBr(N₂H₄)][PF₆], (^{3-BBN}NN^{tBu})ZnBr(N₂H₃), $(^{2-BBN}NN^{tBu})ZnBr_2(N_2H_4),$ $[Zn(OPEt_3)_4][PF_6]_2,$ $[(^{2-BBN}NN^{tBu})ZnBr_2]_2(N_2H_4),$ $(^{butyl}NN^{tBu})ZnBr_2$, and $[(^{2-BBN}NN^{tBu})ZnBr(N_2H_4)][OTf]$ suitable for X-ray diffraction were coated with poly(isobutylene) oil and quickly transferred to the goniometer head of a Bruker AXS D8 Quest diffractometer with a fixed chi angle, a sealed tube fine focus X-ray tube, single crystal curved graphite incident beam monochromator and a Photon100 CMOS area detector. Examination and data collection were performed with Mo K α radiation (λ = 0.71073 Å). Data were collected, reflections were indexed and processed, and the files scaled and corrected for absorption using APEX3.³ For all samples, the space groups were assigned and the structures were solved by direct methods using XPREP within the SHELXTL suite of programs⁴ and refined by full matrix least squares against F² with all reflections using Shelxl2017 or Shelxl2018⁵ using the graphical interface Shelxle.⁶ If not specified otherwise, H atoms attached to carbon atoms were positioned geometrically and constrained to ride on their parent atoms, with carbon hydrogen bond distances of 0.95 Å for and aromatic C-H, 1.00, 0.99 and 0.98 Å for aliphatic C-H, CH₂, and CH₃ moieties, respectively. Methyl H atoms were allowed to rotate but not to tip to best fit the experimental electron density. $U_{iso}(H)$ values were set to a multiple of $U_{eq}(C)$ with 1.5 for CH₃, and 1.2 for CH₂, and C-H units, respectively. Additional data collection and refinement details, including description of disorder (where present) can be found in Tables S1-S12 and with the individual structure descriptions below the tables.

Synthesis of 2-(5-(tert-butyl)-1-(2-chloroethyl)-1H-pyrazol-3-yl)-6-methylpyridine (chloroethylNN^{tBu}). A 250 mL round bottom flask was charged with ^HNN^{tBu} (2-(5-(*tert*-butyl)-1*H*-pyrazol-3-yl)-6-methylpyridine) (1.000 g, 4.645 mmol), NaOH (2.415 g, 60.380 mmol), Na₂CO₃ (1.959 g, 18.579 mmol), tetrabutylammonium bromide (0.030 g, 0.093 mmol) and 100 mL 1,2-dichloroethane. The mixture was heated at 50 °C for 20 hr with vigorous stirring. The flask was then cooled to room temperature and the solution was filtered over Celite. The solution was diluted with 50 mL H₂O and the organics were extracted with diethyl ether (3 x 50 mL), washed with water (3 x 50 mL), and dried over Na₂SO₄. Removal of volatiles afforded a viscous, brown oil. The material was purified by column chromatography on silica ($R_f = 0.66$; 3: 1 hexane:ethyl acetate) and dried to afford a viscous yellow oil (0.456 g, 1.641 mmol, 35%) assigned as 2-(5-(*tert*-butyl)-1-(2-chloroethyl)-1*H*-pyrazol-3-yl)-6-methylpyridine (^{chloroethyl}NN^{tBu}). High-Res MS of $C_{15}H_{21}N_3Cl_1 + H$: Calc. 278.1424; Found 278.1417. ¹H NMR (CDCl₃, 25 °C) δ = 1.44 (s, 9H, C(CH₃)₃), 2.61 (s, 3H, CH₃), 4.01 (t, J = 7.8, 2H, N-CH₂), 4.54 (t, J = 7.8, 2H, CH₂Cl), 6.65 (s, 1H, pyrazole-CH), 7.06 (d, J = 7.6, 1H, pyridine-CH), 7.59 (t, J = 7.6, 1H, pyridine-CH), 7.68 (d, J = 7.6, 1H, pyridine-CH). ¹³C NMR (CDCl₃, 25 °C) δ = 24.71(CH₃), 30.18 (C(CH₃)₃), 31.36 (C(CH₃)₃), 41.80 (CH₂CH₂Cl), 52.06 (CH₂CH₂Cl), 102.29 (pyrazole-CH), 117.07, 121.90, 136.65 (p-pyridine-CH), 150.73, 151.80, 153.13, 158.13. Selected IR data (ATR, neat) υ = 2969, 1737, 1593, 1576, 1422, 1366, 1240, 1214, 923, 794 cm⁻¹.

Synthesis of 2-(5-(tert-butyl)-1-vinyl-1H-pyrazol-3-yl)-6-methylpyridine (vinylNN^{tBu}). A 250 mL round bottom flask was charged with ^{chloroethyl}NN^{tBu} (1.177 g, 4.237 mmol), KOH (5.942 g, 105.9 mmol), and hydroquinone (0.023 g, 0.212 mmol) in 100 mL of 2-isopropanol. A water condenser was attached to the flask and the solution was refluxed for 1 hr. The reaction was confirmed to have proceeded to completion by mass spectrometry and was cooled to room temperature. The solution was diluted with deionized water (50 mL) and neutralized by slow addition of a 5% HCl solution. The organic portion was extracted into diethyl ether (3 x 50 mL) and dried over Na₂SO₄. Removal of volatiles afforded a viscous, brown oil. The material was purified by column chromatography on silica(R_f = 0.50; 1:5 hexane:ethyl acetate) and dried to afford a fluffy white solid (1.022 g, 3.029 mmol, 72%) assigned as 2-(5-(tert-butyl)-1-vinyl-1Hpyrazol-3-yl)-6-methylpyridine (^{vinyl}NN^{tBu}). High-Res MS of C₁₅H₂₀N₃ + H: Calc. 242.1657; Found 242.1651. ¹H NMR (CDCl₃, 25 °C) δ = 1.44 (s, 9H, C(CH₃)₃), 2.60 (s, 3H, CH₃), 4.90 (d, J = 8.6, 1H, C=CHH), 5.89 (d, J = 15.0, 1H, C=CHH), 6.78 (s, 1H, pyrazole-CH), 7.06 (d, J = 7.6, 1H, pyridine-CH), 7.29 (dd, J = 15.0, 8.6, 1H, CH=CH₂), 7.60 (t, J = 7.6, 1H, pyridine-CH), 7.86 (d, J = 7.6, 1H, pyridine-CH). ¹H NMR (CH₂Cl₂, 25 °C) δ = 1.43 (s, 9H, C(CH₃)₃), 2.54 (s, 3H, CH₃), 4.87 (d, J = 8.7, 1H, C=CHH), 5.81 (d, J = 15.0, 1H, C=CHH), 6.72 (s, 1H, pyrazole-CH), 7.06 (d, J = 7.6, 1H, pyridine-CH), 7.30 (dd, J = 15.0, 8.7, 1H, CH=CH₂), 7.60 (t, J = 7.6, 1H, pyridine-CH), 7.81 (d, J = 7.6, 1H, pyridine-CH). ¹³C NMR (CDCl₃, 25 °C) δ = 24.83 (CH₃), 30.33 (C(CH₃)₃), 31.58 (C(CH₃)₃), 102.14 (C=CH₂), 103.69 (pyrazole-CH), 117.46, 122.34, 131.90 (C=CH₂), 136 82 (p-pyridine-CH), 151.59, 151.73, 152.85, 158.18. Selected IR data (ATR, neat) υ = 2973, 2955, 1640, 1577, 1474, 1421, 1342, 1230, 882, 794 cm⁻¹.

Revised Synthesis of 2-(5-(*tert***-butyl)-1-butyl-1***H***-pyrazol-3-yl)-6-methylpyridine (^{butyl}NN^{***t***Bu}) ligand. The preparation is analogous that the previous report except for reaction temperature.³ Increasing the reaction temperature resulted in significantly improved yield. Inside a glovebox, a 500 mL Schlenk flask was charged with sodium hydride (0.600 g, 25.000 mmol) and 100 mL THF. The flask was removed from the glovebox and attached to a Schlenk line and chilled to -78 °C. While stirring and against positive N₂ flow, ^HNN^{***t***Bu} (4.000 g, 18.579 mmol) was added. The flask was resealed with a septum containing a gas outlet. The reaction was slowly warmed to room temperature and stirred until all gas evolution subsided. With stirring, 1-iodobutane (13.600 g, 73.905 mmol) was added against a positive flow of N₂. A reflux condenser containing a gas outlet was attached and the flask was refluxed for 20 hr. The light yellow solution was cooled to room temperature and volatiles were removed in vacuo. The material was dissolved in 100 mL chloroform and filtered through Celite and concentrated to a deep orange solid. The material was purified by column chromatography on silica (R_f = 0.57; 2:1 hexane:ethyl acetate), and dried to afford white powder (3.868 g, 14.251 mmol, 77%) identified as ^{butyl}NN^{***t***Bu}.**

Synthesis of 2-(1-(but-3-en-1-yl)-5-(tert-butyl)-1H-pyrazol-3-yl)-6-methylpyridine (butenyl NN^{tBu}). Inside a glovebox, a 500 mL Schlenk flask was charged with sodium hydride (0.355 g, 14.792 mmol) and 100 mL THF. The flask was removed from the glovebox and attached to a Schlenk line and chilled to -78 °C. While stirring and against positive N₂ flow, ^HNN^{tBu} (2.440 g, 11.333 mmol) was added. The flask was resealed with a septum containing a gas outlet. The reaction was slowly warmed to room temperature and stirred until all gas evolution subsided. With stirring, 4-bromo-1-butene (6.120 g, 45.333 mmol) was added against a positive flow of N₂. A reflux condenser containing a gas outlet was attached and the flask was refluxed for 16 hr. The light yellow solution was cooled to room temperature and volatiles were removed in vacuo. The material was dissolved in 100 mL chloroform and filtered through Celite and concentrated to a deep orange solid. The material was purified by column chromatography on silica (R_f = 0.54; 2:1 hexane:ethyl acetate), and dried to afford white powder (0.265 g, 0.983 mmol, 9%) assigned as ^{butenyl}NN^{tBu}. High-Res MS of $C_{17}H_{23}N_3$ + H: Calc. 270.1970; Found 270.2269. ¹H NMR (CDCl₃, 25 °C) δ = 1.43 (s, 9H, C(CH₃)₃), 2.60 (s, 3H, CH₃), 2.75 (q, J = 8.0, 2H, CH₂) 4.28 (t, J = 8.0, 2H, NCH₂), 5.09 (d, J = 10.2, 1H, C=CHH), 5.16 (d, J = 17.1, 1H, C=CHH), 5.87 (m, 1H, CH=CH₂), 6.63 (s, 1H, pyrazole-CH), 7.03 (d, J = 7.6, 1H, pyridine-CH), 7.58 (t, J = 7.6, 1H, p-pyridine-CH), 7.71 (d, J = 7.6, 1H, pyridine-CH). ¹³C NMR (CDCl₃, 25 °C) δ = 24.88 (CH₃), 30.35 (C(CH₃)₃), 31.52 (C(CH₃)₃), 35.30 (CH₂), 50.70 (N-CH₂), 102.02 (pyrazole-CH), 117.11, 121.75, 134.66 (C=CH₂), 136.73 (p-pyridine-CH), 150.21, 152.36, 152.62, 158.16. Selected IR data (ATR, neat) υ = 1593, 1574, 1476, 1424, 1369, 1248, 913, 797 cm⁻¹.

Synthesis of (^{vinyI}**NN**^{tBu}**)ZnBr**₂**.** A 20 mL scintillation vial was charged with ^{vinyI}**NN**^{tBu} (0.181 g, 0.750 mmol), ZnBr₂ (0.169 g, 0.750 mmol), and 15 mL DCM. The reaction was stirred 18 hrs at room temperature then filtered. The volatiles were then removed in vacuo and the product was washed with 15 mL pentane to afford white powder (0.187 g, 0.401 mmol, 53%) assigned by NMR as (^{vinyI}**NN**^{tBu}**)**ZnBr₂. Single, X-ray quality crystals were obtained by diffusion *n*-pentane into a THF solution of (^{vinyI}**NN**^{tBu}**)**ZnBr₂ at room temperature. ¹H NMR (CDCl₃, 25 °C) δ = 1.48 (s, 9H, C(CH₃)₃), 2.97 (s, 3H, CH₃), 5.56 (dd, *J* = 8.7, 2.7, 1H, C=CH*H*), 6.59 (dd, *J* = 15.3, 2.6, 1H, C=CHH), 6.69 (s, 1H, pyrazole-CH), 7.27 (dd, *J* = 15.3, 8.7, 1H, CH=CH₂), 7.40 (d, *J* = 7.8, 1H, pyridine-CH), 7.65 (d, *J* = 7.8, 1H, pyridine-CH), 7.94 (t, *J* = 7.8, 1H, pyridine-CH). ¹³C NMR (CDCl₃, 25 °C) δ = 24.46 (CH₃), 29.66 (C(CH₃)₃), 32.27 (C(CH₃)₃), 102.88, 113.69, 118.50, 126.45, 130.66, 141.03,

146.05, 147.00, 156.92, 159.98. Selected IR data (ATR, neat) υ = 2974, 1639, 1610, 1570, 1342, 1242, 1162, 1096, 1022, 894, 807, 727 cm⁻¹.

Attempted hydroboration of (^{vinyl}NN^{tBu})ZnBr₂ to form (^{2-BBN}NN^{tBu})ZnBr₂. A 20 mL scintillation vial was charged with (^{vinyl}NN^{tBu})ZnBr₂ (0.025 g, 0.054 mmol), 9-borabicyclo[3.3.1]nonane (0.012 g, 0.097 mmol), and 3 mL THF. Upon dissolution, three separate J-Young NMR tubes were each charged with 1 mL of the reaction solution. The tubes were heated at 45, 65, and 85 °C for 16 hr and investigated by ¹H NMR. Spectra can be found below. In none of the cases were resonances consistent with (^{2-BBN}NN^{tBu})ZnBr₂ observed. Observations: 45 °C – primarily (^{vinyl}NN^{tBu})ZnBr₂ with trace formation of a broad, unidentified product; 65 °C – increasing quantity of the broad, unidentified product; 85 °C – minimal (^{vinyl}NN^{tBu})ZnBr₂ remains with multiple, unidentified species.

Synthesis of (^{2-BBN}NN^{tBu})ZnBr₂. A 20 mL scintillation vial was charged with ^{vinyl}NN^{tBu} (0.566 g, 2.347 mmol), 9-borabicyclo[3.3.1]nonane (0.430 g, 3.521 mmol), and 15 mL dichloromethane. The reaction was stirred for 16 hr at room temperature. This solution was transferred to a new 20 mL scintillation vial charged with zinc bromide (0.555 g, 2.464 mmol, crushed into a fine powder). The reaction was stirred an additional 72 hr at room temperature, and dried. The material was dissolved in benzene, filtered, and dried to afford white powder (0.838 g, 1.447 mmol, 62%) assigned as (^{2-BBN}NN^{tBu})ZnBr₂. Single, X-ray quality crystals were obtained by diffusing *n*-pentane into a C₆H₆ solution of (^{2-BBN}NN^{tBu})ZnBr₂ at room temperature. MALDI-TOF of C₂₃H₃₄N₃Br₂B₁Zn₁ - Br: Calc. 506.132; Found 505.562. ¹H NMR (CDCl₃, 25 °C) δ = 1.32 (s, 2H, B-CH), 1.48 (s, 9H, C(CH₃)₃), 1.84-1.93 (m, 12H, BBN-CH), 2.49 (t, J = 8.9, 2H, B-CH₂), 2.94 (s, 3H, CH₃), 4.72 (t, J = 8.9, 2H, N-CH₂), 6.56 (s, 1H, pyrazole-CH), 7.35 (d, J = 7.8, 1H, pyridine-CH), 7.60 (d, J = 7.8, 1H, pyridine-CH), 7.90 (t, J = 7.8, 1H, pyridine-CH). ¹H NMR (CH₂Cl₂, 25 °C) $\delta = 1.30$ (s, 2H, B-CH), 1.46 (s, 9H, C(CH₃)₃), 1.80-1.93 (m, 12H, BBN-CH), 2.45 (t, J = 8.8, 2H, B-CH₂), 2.87 (s, 3H, CH₃), 4.69 (t, J = 8.8, 2H, N-CH₂), 6.63 (s, 1H, pyrazole-CH), 7.36 (d, J = 7.7, 1H, pyridine-CH), 7.64 (d, J = 7.7, 1H, pyridine-CH), 7.93 (t, J = 7.7, 1H, pyridine-CH). ¹³C NMR (CDCl₃, 25 °C) δ = 23.31 (BBN-CH₂), 24.51 (CH₃), 30.15 (C(CH₃)₃), 31.43 (B-CH), 32.21 (C(CH₃)₃), 33.28 (BBN-CH₂), 33.36 (B-CH₂), 50.33 (N-CH₂), 101.58, 117.96, 125.67, 140.94, 145.48, 146.71, 156.56, 159.67. Selected IR data (ATR, neat) υ = 1613, 1482, 1325, 1247, 1160, 1100, 1021, 803 cm⁻¹.

Synthesis of (^{butenyl}**NN**^{tBu}**)ZnBr**₂**.** A 20 mL scintillation vial was charged with zinc bromide (0.155 g, 0.688 mmol), ^{butenyl}**NN**^{tBu} (0.181 g, 0.672 mmol), and 10 mL dichloromethane. The reaction was stirred for 40 hr at room temperature, filtered, and dried. The material was washed with 2 x 10 mL *n*-pentane and dried to afford white powder (0.299 g, 0.605 mmol, 90%) assigned as (^{butenyl}**NN**^{tBu})**ZnBr**₂. Single, X-ray quality crystals were obtained by diffusing diethyl ether into a tetrahydrofuran solution of (^{butenyl}**NN**^{tBu})**ZnBr**₂ at room temperature. High-Res MS of C₁₇H₂₃N₃Br₂Zn₁ - Br: Calc. 412.0367; Found 412.0362. ¹H NMR (CDCl₃, 25 °C) $\delta = 1.47$ (s, 9H, C(*CH*₃)₃), 2.94 (s, 3H, *CH*₃), 3.01 (q, *J* = 8.3, 2H, N-CH₂*CH*₂), 4.48 (t, *J* = 8.3, 2H, N-*CH*₂), 5.18 (d, *J* = 10.2, 1H, C=CHH), 5.33 (d, *J* = 17.0, 1H, C=CHH), 5.88 (m, 1H, CH=CH₂), 6.58 (s, 1H, pyrazole C-H), 7.37 (d, *J* = 7.8, 1H, pyridine C-H), 7.62 (d, *J* = 7.8, 1H, pyridine C-H), 7.92 (t, *J* = 7.8, 1H, *p*-pyridine C-H). ¹³C NMR (CDCl₃, 25 °C) $\delta = 24.54$, 30.12 (C(*C*H₃)₃), 32.24 (*C*(*C*H₃)₃), 34.97, 52.48 (N-*C*H₂), 101.91 (pyrazole *C*-H), 118.22, 118.96, 125.92 (pyridine *C*-H), 132.66, 141.11 (*p*-pyridine *C*-H), 145.93, 146.49, 157.19, 159.67. Selected IR data (ATR, neat) $\upsilon = 1611$, 1481, 1372, 924 cm⁻¹.

Synthesis of (^{4-BBN}**NN**^{tBu}**)ZnBr**₂. A 20 mL scintillation vial was charged with (^{butenyl}**NN**^{tBu}**)ZnBr**₂ (0.281 g, 0.568 mmol), 9-borabicyclo[3.3.1]nonane (0.104 g, 0.852 mmol), and 10 mL tetrahydrofuran. The vial was stirred for 18 hr, volatiles were removed in vacuo, and the resulting material washed with 2 x 15 mL *n*-pentane to afford white powder (0.313 g, 0.508 mmol, 89%) assigned as (^{4-BBN}**NN**^{tBu}**)ZnBr**₂. Single, X-ray quality crystals were obtained by diffusing *n*-hexane into a benzene solution of (^{4-BBN}**NN**^{tBu}**)ZnBr**₂ at room temperature. MALDI-TOF of C₂₅H₃₈N₃B₁Br₂Zn₁ - Br: Calc. 534.163; Found 533.662. ¹H NMR (CDCl₃, 25 °C) δ = 1.22 (m, 2H, B-CH₂), 1.47 (s, 9H, C(CH₃)₃), 1.54 (m, 2H, B-CH), 1.69 (m, 4H, BBN-CH), 1.73 (m, 2H, CH₂CH₂B), 1.84 (m, 8H, BBN-CH), 2.30 (m, 2H, N-CH₂CH₂), 2.94 (s, 3H, CH₃), 4.44 (t, *J* = 7.0, 2H, N-CH₂), 6.57 (s, 1H, pyrazole C-H), 7.35 (d, *J* = 7.0, 1H, pyridine C-H), 7.61 (d, *J* = 7.0, 1H, pyridine C-H), 7.90 (t, *J* = 7.0, 1H, *p*-pyridine C-H). ¹³C NMR (CDCl₃, 25 °C) δ = 22.01, 23.33, 24.51, 27.43 (B-CH₂), 30.08 (C(CH₃)₃), 31.10 (B-CH), 32.22 (C(CH₃)₃), 33.27 (BBN-CH₂), 33.81, 52.71 (N-CH₂), 101.72 (pyrazole C-H), 118.08, 118.96, 125.77 (pyridine C-H), 141.02 (*p*-pyridine C-H), 145.67, 146.59, 156.85, 159.63. ¹¹B NMR (CDCl₃, 25 °C) δ = 87.78. Selected IR data (KBr) υ = 3128, 1610, 1481, 1370, 1022, 808 cm⁻¹.

Synthesis of (^{butyl}**NN**^{*t*Bu}**)ZnBr**₂**.** A 20 mL scintillation vial was charged with zinc bromide (0.835 g, 3.707 mmol), ^{butyl}**NN**^{*t*Bu} (1.000 g, 3.684 mmol), and 20 mL dichloromethane. The reaction was stirred for 40 hr at room temperature, filtered, and dried. The material was washed with 2 x 20 mL *n*-pentane and dried to afford white powder (1.776 g, 3.576 mmol, 97%) assigned as (^{butyl}**NN**^{*t*Bu})ZnBr₂. Single, X-ray quality crystals were obtained by diffusing *n*-pentane into a dichloromethane solution of (^{butyl}**NN**^{*t*Bu})ZnBr₂ at room temperature. High-Res MS of C₁₇H₂₅N₃Br₂Zn₁ - Br: Calc. 414.0523; Found 414.0679. ¹H NMR (CDCl₃, 25 °C) $\delta = 1.07$ (t, *J* = 7.4, 3H, CH₂CH₃), 1.46 (s, 9H, C(CH₃)₃), 1.53 (h, *J* = 7.4, 2H), 2.24 (m, 2H, CH₂CH₂CH₂), 2.94 (s, 3H, CH₃), 4.41 (t, *J* = 8.5, 2H, N-CH₂), 6.56 (s, 1H, pyrazole C-H), 7.35 (d, *J* = 7.8, 1H, pyridine C-H), 7.90 (t, *J* = 7.8, 1H, *p*-pyridine C-H). ¹³C NMR (CDCl₃, 25 °C) $\delta = 13.70$ (CH₃), 20.20, 24.51, 30.06 (C(CH₃)₃), 32.20 (C(CH₃)₃), 32.79 (CH₂CH₂CH₂), 52.48 (N-CH₂), 101.68 (pyrazole C-H), 118.07 (pyridine C-H), 125.78 (pyridine C-H), 141.01 (*p*-pyridine C-H), 145.68, 146.57, 156.88, 159.64. Selected IR data (ATR, neat) $\upsilon = 3131$, 1609, 1471, 1369, 1021, 808 cm⁻¹.

Synthesis of (^{2-BBN}NN^{rBu})ZnBr₂(N₂H₄). A 20 mL scintillation vial was charged with (^{2-BBN}NN^{rBu})ZnBr₂ (0.973 g, 1.653 mmol) and 15 mL THF. While stirring, N₂H₄ (0.060 mL, 1.912 mmol) was added and the reaction was stirred at room temperature for 24 hours. The mixture was filtered and volatiles were removed in vacuo. The material was washed with *n*-pentane (2 x 10 mL) and dried to afford a white powder (0.590 g, 0.950 mmol, 58%) assigned as (^{2-BBN}NN^{rBu})ZnBr₂(N₂H₄). Single, X-ray quality crystals were obtained by diffusing *n*-pentane into a C₆H₆ solution of (^{2-BBN}NN^{rBu})ZnBr₂(N₂H₄) at room temperature. MALDI-TOF of C₂₃H₃₈N₅Br₂B₁Zn₁ - HBr: Calc. 537.162; Found 535.559. For C₂₃H₃₈N₅Br₂Zn₁ - (HBr + N₂H₃): Calc. 506.132; Found 505.561. ¹H NMR (CDCl₃, 25 °C) δ = 0.73 (s, broad, 2H, B-CH₂), 1.44 (m, 2H, B-CH₂), 1.48 (s, 9H, C(CH₃)₃), 1.57 (m, 2H, BBN-CH), 1.68-1.79 (m, 8H, BBN-CH), 1.90 (m, 2H, BBN-CH), 2.92 (s, 3H, CH₃), 4.51 (m, 2H, N-CH₂), 6.53 (s, 1H, pyrazole-CH), 7.34 (d, *J* = 7.8, 1H, pyridine-CH), 7.60 (d, *J* = 7.8, 1H, pyridine-CH), 7.91 (t, *J* = 7.8, 1H, pyridine-CH), 1.36 (m, 2H, B-CH₂), 1.46 (s, 9H, C(CH₃)₃), 2.83 (s, 3H, CH₃), 4.48 (m, 2H, N-CH₂), 5.96 (t, *J* = 5.1, 2H, NH₂NH₂), 6.82 (s, 1H, pyrazole-CH), 7.41 (d, *J* = 7.6, 1H, pyridine-CH), 7.83 (d, *J* = 7.6, 1H, pyridine-CH), ¹³C NMR (CDCl₃, 25 °C) δ = 21.34 (broad), 21.52 (broad), 24.40 (broad), 24.57 (CH₃)₃), 30.05 (C(CH₃)₃), 31.44 (broad), 32.18 (C(CH₃)₃), 52.87 (N-CH₂),

101.33, 117.97, 125.49, 141.16, 144.87, 146.99, 157.00, 159.40. Selected IR data (KBr) υ = 3354 (N-H), 3336 (N-H), 3320 (NH), 3281 (N-H), 3246 (N-H), 3224 (N-H), 3161 (N-H), 1610, 1482, 1320, 796 cm⁻¹.

Synthesis of [(^{2-BBN}NN^{tBu})ZnBr₂]₂(N₂H₄). A 20 mL scintillation vial was charged with (^{2-BBN}NN^{tBu})ZnBr₂ (0.095 g, 0.161 mmol) and 10 mL THF. While stirring, N₂H₄ (0.159 M stock solution in THF, 0.508 mL, 0.081 mmol) was added and the reaction was stirred at room temperature for 20 hours. The mixture was filtered and volatiles were removed in vacuo. The material was washed with *n*-pentane (2 x 10 mL) and dried to quantitatively afford a white powder assigned as [(^{2-BBN}NN^{tBu})ZnBr₂]₂(N₂H₄). Single, X-ray quality crystals were obtained by diffusing *n*-pentane into a THF solution of [(^{2-BBN}NN^{tBu})ZnBr₂]₂(N₂H₄) at room temperature. ¹H NMR (CDCl₃, 25 °C) δ = 1.17 (s, broad, 2H, B-CH), 1.48 (s, 9H, C(CH₃)₃), 1.54 (m, 2H, B-CH₂), 1.78-1.87 (m, 10H, BBN-CH), 1.91 (m, 2H, BBN-CH), 2.92 (s, 3H, CH₃), 4.56 (t, *J* = 9.5, 2H, N-CH₂), 5.51 (broad, 2H, NH₂NH₂), 6.53 (s, 1H, pyrazole-CH), 7.33 (d, *J* = 7.8, 1H, pyridine-CH), 7.59 (d, *J* = 7.8, 1H, pyridine-CH), 7.90 (t, *J* = 7.8, 1H, pyridine-CH). ¹³C NMR (CDCl₃, 25 °C) δ = 22.87 (broad), 23.49 (broad), 24.03, 24.65, 30.13 (C(CH₃)₃), 31.75 (broad), 32.16 (C(CH₃)₃), 51.89 (N-CH₂), 101.37, 117.95, 125.50, 141.10, 144.94, 146.99, 157.10, 159.51. Selected IR data (KBr) ν = 3259 (N-H), 3202 (N-H), 3155 (N-H), 3101 (N-H), 1611, 1574, 1372, 1316, 1247, 795 cm⁻¹.

Synthesis of (^{4-BBN}**NN**^{*t*Bu}**)ZnBr**₂(**N**₂**H**₄). A 20 mL scintillation vial was charged with (^{4-BBN}**NN**^{*t*Bu})**ZnBr**₂ (0.638 g, 1.035 mmol) and 12 mL THF. A separate vial was charged with N₂H₄ (0.0324 mL, 1.032 mmol) and 1 mL THF. While stirring, the solution of N₂H₄ was added dropwise to the vial containing (^{4-BBN}**NN**^{*t*Bu})**ZnBr**₂ and stirred for 15 min. Volatiles were removed in vacuo and the resulting material washed with *n*-pentane (2 x 10 mL) to afford white powder (0.634 g, 0.977 mmol, 94%) assigned as (^{4-BBN}**NN**^{*t*Bu})**ZnBr**₂(N₂H₄). Single, X-ray quality crystals were obtained by diffusing *n*-pentane into a benzene solution of (^{4-BBN}**NN**^{*t*Bu})**ZnBr**₂(N₂H₄) at room temperature. ¹H NMR (CDCl₃, 25 °C) δ = 0.61 (t, *J* = 8.2, 2H, B-CH₂), 0.68 (s, 2H, B-CH), 1.41 (m, 2H, BCH₂CH₂), 1.47 (s, 9H, C(CH₃)₃), 1.50 (m, 2H, BBN-CH), 1.61-1.70 (m, 8H, BBN-CH), 1.83 (m, 4H, BBN-CH), 2.21 (m, 2H, N-CH₂CH₂), 2.93 (s, 3H, CH₃), 4.49 (t, *J* = 8.1, 2H, N-CH₂), 4.52 (broad, 4H, N₂H₄), 6.56 (s, 1H, pyrazole C-H), 7.35 (d, *J* = 7.8, 1H, pyridine C-H), 7.61 (d, *J* = 7.8, 1H, pyridine C-H), 7.91 (t, *J* = 7.8, 1H, *p*-pyridine C-H). ¹³C NMR (CDCl₃, 25 °C) δ = 18.22 (B-CH₂), 22.29 (B-CH), 23.50, 24.54, 24.80 (BBN-CH), 30.08 (C(CH₃)₃), 31.58 (BBN-CH₂), 32.28 (*C*(CH₃)₃), 35.17, 53.69 (N-CH₂), 101.68 (pyrazole *C*-H), 118.11, 125.74 (pyridine *C*-H), 141.11 (*p*-pyridine *C*-H), 145.45, 146.68, 157.09, 159.57. ¹¹B NMR (THF, 25 °C) δ = -4.62. Selected IR data (KBr) ν = 3355 (N-H), 3304 (N-H), 3167 (N-H), 3128 (N-H), 3068 (N-H), 1610, 1534, 1050, 900 cm⁻¹.

Synthesis of $[(^{2-BBN}NN^{tBu})ZnBr(N_2H_4)][PF_6]$. The following is for preparation of the hexafluorophosphate salt. The trifluoromethanesulfonate salt was prepared analogously. This preparation describes a one-pot method. Alternately, (^{2-BBN}NN^{tBu})ZnBr₂(N₂H₄) can be treated directly with a thallium(I) salt. A 20 mL scintillation vial was charged with (2-BBNNN^{tBu})ZnBr₂ (0.150 g, 0.255 mmol) and 2 mL THF. While stirring, hydrazine (0.159 M stock solution in THF; 0.254 mmol) was added and the solution stirred for 5 min. Volatiles were removed in vacuo. The material was redissolved in 8 mL DCM/THF (50:50) and thallium hexafluorophosphate (0.089 g, 0.255 mmol) was added. The reaction was stirred 30 min, filtered, and dried. The material was twice precipitated from minimal dichloromethane with n-pentane and dried to afford white powder (0.142 g, 0.207 mmol, 81%) assigned as [(^{2-BBN}NN^{tBu})ZnBr(N₂H₄)][PF₆]. Single, X-ray quality crystals of the trifluoromethanesulfonate salt were obtained by diffusing n-pentane into a THF solution of $[(^{2-BBN}NN^{tBu})ZnBr(N_2H_4)][OTf]$ at room temperature. MALDI-TOF of $C_{23}H_{38}N_5Br_1B_1Zn_1(SO_3CF_3)$ -HSO₃CF₃: Calc. 537.162; Found 535.607. Sample – (HSO₃CF₃ + N₂H₃): Calc. 506.132; Found 505.608. (NMR data for PF₆ salt) ¹H NMR (THF-D₈, 25 °C) δ = 0.69 (s, 2H, B-CH), 1.50 (s, 9H, C(CH₃)₃), 1.56 (m, 4H, BBN-CH), 1.73 (m, 8H, BBN-CH₂), 1.87 (m, 2H, B-CH₂), 2.82 (s, 3H, CH₃), 4.52 (t, J = 6.6, 2H, N-CH₂), 5.91 (s, broad, 4H, N₂H₄), 7.08 (s, 1H, pyrazole-CH), 7.56 (d, J = 7.6, 1H, pyridine-CH), 7.98 (d, J = 7.6, 1H, pyridine-CH), 8.11 (t, J = 7.6, 1H, pyridine-CH). ¹H NMR (CDCl₃, 25 °C) δ = 0.56 (s, 2H, B-CH₂), 1.51 (s, 9H, C(CH₃)), 1.58 (m, 4H, BBN-CH), 1.73 (m, 4H, BBN-CH), 1.76 (m, 4H, BBN-CH), 1.85 (m, 2H, B-CH₂), 2.86 (s, 3H, CH₃), 4.37 (s, broad, 2H, N-CHH), 4.60 (m, 2H, N-CHH; overlapping with broad NH₂ resonance), 6.10 (broad, 2H, Zn-NH₂), 6.78 (s, 1H, pyrazole-CH), 7.48 (d, J = 6.2, 1H, pyridine-CH), 7.71 (d, J = 6.2, 1H, pyridine-CH), 8.03 (t, J = 6.2, 1H, pyridine-CH). ¹H NMR (CDCl₃, -50 °C) $\delta = 0.31$ (s, 1H, B-CH), 0.64 (s, 1H, B-CH), 1.15-1.34 (m, 4H, BBN-CH), 1.48 (s, 9H, C(CH₃)₃), 1.54-1.64 (m, 2 x 1H, B-CHH and B-CHH), 1.64-1.89 (m, 8H, BBN-CH), 2.82 (s, 3H, CH₃), 4.34 (d, J = 10.7, 1H, NCHH), 4.51 (m, 1H, B-NHH), 4.54 (m, 1H, NCHH), 4.65 (t, J = 7.3, 1H, B-NHH), 6.06 (s, broad, 1H, Zn-NHH), 6.39 (s, broad, 1H, Zn-NHH), 6.80 (s, 1H, pyrazole-CH), 7.51 (d, J = 7.4, 1H, pyridine-CH), 7.71 (d, J = 7.4, 1H, pyridine-CH), 8.07 (t, J = 7.6, 1H, pyridine-CH). Due to low solubility and the dynamic nature of the compound, high resolution ¹³C NMR were challenging to obtain. The following are select resonances associated with the molecule: ¹³C NMR (CD₂Cl₂, 25 °C) δ = 18.18, 21.93, 29.60, 30.62, 32.93, 51.80, 103.52, 118.97, 126.73, 142.09, 147.28, 160.02. Selected IR data for X = OTf (KBr) υ = 3247 (N-H), 3211 (N-H), 3157 (N-H), 3106 (N-H), 1614, 1483, 1029, 796, 632 cm⁻¹.

Synthesis of [(^{3-BBN}NN^{tBu})ZnBr(N₂H₄)][OTf]. A 20 mL scintillation vial was charged with (³⁻ ^{BBN}NN^{tBu})ZnBr₂(N₂H₄) (0.131 g, 0.206 mmol) and 8 mL THF. While stirring, thallium(I) trifluoromethanesulfonate (0.072 g, 0.204 mmol) was added resulting is rapid formation of a colorless precipitate. After 20 min, the solution was filtered and dried. The colorless material was washed with 2 x 10 mL *n*-pentane and dried to afford white powder (0.129 g, 0.183 mmol, 89%) assigned as $[(^3)$ ^{BBN}NN^{tBu})ZnBr(N₂H₄)][OTf]. Single, X-ray quality crystals were obtained by two methods: 1) layering a THF solution of $[(^{3-BBN}NN^{tBu})ZnBr(N_2H_4)][OTf]$ with hexamethyldisiloxane at room temperature, or 2) diffusing diethyl ether into a dichloromethane solution of [(^{3-BBN}NN^{tBu})ZnBr(N₂H₄)][OTf] at room temperature. MALDI-TOF of C₂₄H₄₀N₅Br₁B₁Zn₁(SO₃CF₃) - HSO₃CF₃: Calc. 551.177; Found 549.692. Sample – (HSO₃CF₃ + N₂H₃): Calc. 520.147; Found 519.710. ¹H NMR (THF, 25 °C) δ = 0.40 (s, broad, 2H, B-CH₂ or B-CH), 0.60 (s, broad, 1H, B-CH₂ or B-CH), 1.47 (s, 9H, C(CH₃)₃), 2.82 (s, 3H, CH₃), 4.44 (t, J = 6.4, 2H, N-CH₂), 5.60 (broad, 2H, NH₂NH₂), 6.29 (broad, 2H, NH₂NH₂), 7.00 (s, 1H, pyrazole C-H), 7.52 (d, J = 7.8, 1H, pyridine C-H), 7.93 (d, J = 7.8, 1H, pyridine C-H), 8.06 (t, J = 7.8, 1H, p-pyridine C-H). ¹H NMR (CDCl₃, 25 °C) δ = 0.61 (s, broad, 2H, B-CH₂ or B-CH), 0.73 (s, broad, 1H, B-CH₂ or B-CH), 1.49 (s, 9H, C(CH₃)₃), 1.63 (m, 8H, BBN-CH), 1.69 (m, 4H, BBN-CH), 2.10 (m, 2H, CH₂CH₂CH₂), 2.87 (s, 3H, CH₃), 4.40 (t, J = 7.4, 2H, N-CH₂), 5.13 (broad, 4H, N₂H₄), 6.64 (s, 1H, pyrazole C-H), 7.41 (d, J = 6.9, 1H, pyridine C-H), 7.65 (d, J = 6.9, 1H, pyridine C-H), 7.97 (t, J = 6.9, 1H, p-pyridine C-H). ¹H NMR (CD₂Cl₂, -60 °C) $\delta = -0.26$ (t, J = 14.5, 1H, B-CHH), 0.37 (s, 1H, B-CH), 0.60 (s, 1H, B-CH), 0.67 (t, J = 14.5, B-CHH), 1.38 (m, 2H, BBN-CH), 1.43 (s, 9H, C(CH₃)₃), 1.54 (m, 6H, BBN-CH), 1.68 (m, 4H, BBN-CH), 2.01 (m, 1H, CH₂CHHCH₂), 2.28 (m, 1H, CH₂CHHCH₂), 2.76 (s, 3H, CH₃), 4.27 (d, J = 11.3, N-CHH), 4.49 (t, J = 10.2, N-CHH), 4.55 (s, broad, 1H, B-NHH), 5.46 (s, broad, 1H, B-NHH), 5.52 (s, 1H, Zn-NHH), 6.22 (s, 1H, Zn-NHH), 6.78 (s, 1H, pyrazole C-H), 7.43 (d, J = 7.8, 1H, pyridine C-H), 7.73 (d, J = 7.8, 1H, pyridine C-H), 8.04 (t, J = 7.8, 1H, p-pyridine C-H). Due to low solubility and the dynamic nature of the compound, high resolution ¹³C NMR were challenging to obtain. The following are select resonances associated with the molecule: ¹³C NMR (CDCl₃, 25 °C) δ = 15.41, 22.92, 24.48, 29.78, 31.60, 32.23, 55.08, 102.16, 118.52, 118.82, 120.63, 126.38, 141.86, 146.55, 158.60, 159.99. Selected IR data (KBr) υ = 3224, 3146, 2975, 2922, 2870, 2840, 1615, 1577, 1484, 1028, 799, 638 cm⁻¹.

Synthesis of [(4-BBN NN^{tBu})ZnBr(N₂H₄)][OTf]. The following describes the synthesis of the trifluoromethanesulfonate salt directly from (^{4-BBN}NN^{tBu})ZnBr₂(N₂H₄). We also provide a one-pot method for the synthesis of the hexafluorophosphate salt. [(4-BBNNN^{tBu})ZnBr(N₂H₄)][OTf]: A 20 mL scintillation vial was charged with (^{4-BBN}NN^{tBu})ZnBr₂(N₂H₄) (0.096 g, 0.148 mmol), and 5 mL THF. While stirring, thallium(I) trifluoromethanesulfonate (0.052 g, 0.148 mmol) was added resulting in rapid formation of a white precipitate. After 20 min stirring at room temperature, the solution was filtered and dried. The colorless material was washed with 2 x 10 mL n-pentane and dried to afford white powder (0.110 g, 0.127 mmol, 86%) assigned as [(^{4-BBN}NN^{tBu})ZnBr(N₂H₄)][OTf]. MALDI-TOF of C₂₅H₄₂N₅Br₁B₁Zn₁(SO₃CF₃) - HSO₃CF₃: Calc. 565.193; Found 563.694. Sample – (HSO₃CF₃ + N₂H₃): Calc. 534.163; Found 533.691. [(⁴⁻ BBNNN^{tBu})ZnBr(N₂H₄)][PF₆]: A 20 mL scintillation vial was charged with (^{2-BBN}NN^{tBu})ZnBr₂ (0.150 g, 0.243 mmol) and 2 mL THF. While stirring, hydrazine (0.159 M stock solution in THF; 0.253 mmol) was added and the solution stirred for 5 min. Volatiles were removed in vacuo. The material was redissolved in 8 mL DCM/THF (50:50) and thallium hexafluorophosphate (0.085 g, 0.243 mmol) was added. The reaction was stirred 30 min, filtered, and dried. The material was twice precipitated from minimal dichloromethane with *n*-pentane and dried to afford white powder (0.151 g, 0.212 mmol, 87%) assigned as $[(^2 + 1)^2 + 1)^2$ ^{BBN}NN^{tBu})ZnBr(N₂H₄)][PF₆]. Single, X-ray quality crystals of the trifluoromethanesulfonate salt were obtained by diffusing *n*-pentane into a dichloromethane solution of [(^{4-BBN}NN^{tBu})ZnBr(N₂H₄)][PF₆] at room temperature. ¹H NMR (CD₂Cl₂, 25 °C) δ = 0.66 (s, broad, 2H, B-CH₂), 0.81 (s, broad, 2H, B-CH), 1.63 (s, 9H, C(CH₃)₃), 1.54 (m, 2H, B-CH₂CH₂), 1.63 (m, 8H, BBN-CH), 1.71 (m, 4H, BBN-CH), 1.86 (m, 2H, N-CH₂CH₂), 2.83 (s, 3H, CH₃), 4.64 (s, broad, 2H, N-CH₂), 5.55 (s, broad, 4H, N₂H₄), 6.81 (s, 1H, pyrazole-CH), 7.52 (d, J = 7.7, 1H, pyridine-CH), 7.75 (d, J = 7.7, 1H, pyridine-CH), 8.07 (t, J = 7.7, 1H, pyridine-CH). ¹H NMR (CD₂Cl₂, -75 °C) δ = 0.45 (s, 1H, B-CH), 0.56 (m, 2H, B-CH₂), 0.62 (s, 1H, B-CH), 1.41 (s, 9H, C(CH₃)₃), 1.58 (m, 8H, BBN-CH), 1.63 (m, 2H, B-CH₂CH₂), 1.75 (m, 2H, BBN-CH), 1.81 (m, 2H, BBN-CH), 2.13 (m, 2H, N-CH₂CH₂), 2.72 (s, 3H, CH₃), 4.51 (s, 2H, N-CH₂), 5.09 (s, broad, 2 x 1H, B-NHH and B-NHH), 5.89 (s, broad, 1H, Zn-NHH), 6.09 (s, broad, 1H, Zn-NHH), 6.77 (s, 1H, pyrazole-CH), 7.46 (d, J = 7.7, 1H, pyridine-CH), 7.71 (d, J = 7.7, 1H, pyridine-CH), 8.03 (t, J = 7.7, 1H, pyridine-CH). Due to low solubility and the dynamic nature of the compound, high resolution ¹³C NMR were challenging to obtain. The following are select resonances associated with the molecule: ¹³C NMR (CD₂Cl₂, 25 °C) δ = 17.10, 20.79, 21.72, 24.62, 24.83, 30.46, 31.23, 33.34, 33.73, 50.69, 104.61, 119.47, 127.43, 142.74, 146.65, 159.88. Selected IR data for X = PF₆ (KBr) υ = 3301 (N-H), 3265 (N-H), 3152 (N-H), 1616, 1485, 1373, 1222, 1204, 845, 796, 558 cm⁻¹.

Transformation of $[(^{n-BBN}NN^{tBu})ZnBr(N_2H_4)][PF_6]$ to $(^{n-BBN}NN^{tBu})ZnBr_2(N_2H_4)$ (n = 2, 3, 4) by introduction of bromide. The following is typical for all three reactions, only that with $[(^{2-BBN}NN^{tBu})ZnBr(N_2H_4)][PF_6]$ is described: A 20 mL scintillation vial was charged with $[(^{2-BBN}NN^{tBu})ZnBr(N_2H_4)][PF_6]$ (0.010 g, 0.015 mmol) and 1 mL DCM. While stirring, solid $[Bu_4N][Br]$ (0.007 g, 0.022 mmol) was added. For $[(^{2-BBN}NN^{tBu})ZnBr(N_2H_4)][PF_6]$ only, an immediate fine white precipitate formed (a zinc containing species resulting from demetalation). After ca. 1 min, the solution was filtered into an NMR tube and a spectrum obtained. The data revealed: for $[(^{2-BBN}NN^{tBu})ZnBr(N_2H_4)][PF_6]$, formation of two species $(^{2-BBN}NN^{tBu})ZnBr_2(N_2H_4)$ and $^{2-BBN}NN^{tBu}$ (demetalated ligand) in a 66:34 ratio by ¹H NMR integration. For $[(^{3-BBN}NN^{tBu})ZnBr(N_2H_4)][PF_6]$ and $[(^{4-BBN}NN^{tBu})ZnBr(N_2H_4)][PF_6]$, the conversion to $(^{n-BBN}NN^{tBu})ZnBr_2(N_2H_4)$ is quantitative. If repeating the reactions involving $[(^{2-BBN}NN^{tBu})ZnBr(N_2H_4)][PF_6]$ and $[(^{4-CBN}NN^{tBu})ZnBr(N_2H_4)][PF_6]$ and $[(^{4-CBN}NN^{tBu})ZnBr(N_2H_4)][PF_6]$ and $[(^{4-CBN}NN^{tBu})ZnBr(N_2H_4)][PF_6]$ and $[(^{4-BBN}NN^{tBu})ZnBr(N_2H_4)][PF_6]$ and $[(^{4-CBN}NN^{tBu})ZnBr(N_2H_4)][PF_6]$ and $[(^$

^{BBN}NN^{tBu})ZnBr(N₂H₄)][PF₆] are repeated in THF, the following ratio of product:demetalated ligand is: $\mathbf{n} = \mathbf{2}$ 73:27; $\mathbf{n} = \mathbf{4}$ 79:21.

Reaction between (^{butyl}**NN**^{*t*Bu}**)ZnBr**₂ **and N**₂**H**₄**.** A 20 mL scintillation vial was charged with (^{butyl}**NN**^{*t*Bu})**ZnBr**₂ (0.014 g, 0.028 mmol) and 2 mL THF. While stirring, N₂H₄ (0.159 M stock solution in THF, 0.177 mL, 0.028 mmol) resulting in the immediate precipitation of a fine white powder. After 5 min, the solution was filtered into a J-Young tube and the mixture analyzed by ¹H NMR spectroscopy. Authentic samples of both the starting material and free ligand, ^{butyl}NN^{*t*Bu}, were analyzed by ¹H NMR spectroscopy (THF) and the data are displayed below. Analysis of the reaction mixture revealed a ca. 1:1 ration of starting material:demetallated ligand.

Synthesis of (3-BBNNN^{tBu})ZnBr(N₂H₃). A 20 mL scintillation vial was charged with (3-BBNNN^{tBu})ZnBr₂(N₂H₄) (0.214 g, 0.337 mmol) and 8 mL THF and frozen. A separate vial was charged with potassium bis(trimethylsilyl)amide (0.067 g, 0.336 mmol) and 4 mL THF and frozen. Upon thawing, the solution of KN(SiMe₃)₂ was added dropwise to the solution containing (^{3-BBN}NN^{tBu})ZnBr₂(N₂H₄) and stirred to room temperature for 15 min. The solution was filtered over Celite and dried. The resulting material was twice precipitated from THF (5 mL) with *n*-pentane (15 mL) to afford white powder (0.109 g, 0.197 mmol, 58%) assigned as (^{3-BBN}NN^{tBu})ZnBr(N₂H₃). Single, X-ray quality crystals were obtained by layering a THF solution of (^{3-BBN}NN^{tBu})ZnBr(N₂H₃) with hexamethyldisiloxane at room temperature. MALDI-TOF of C₂₄H₃₉N₅Br₁B₁Zn₁: Calc. 551.177; Found 550.842. Sample – N₂H₃: Calc. 520.147; Found 519.830. ¹H NMR $(CDCl_3, 25 \degree C) \delta = -0.11 (dd, J = 10.6, 13.5, 1H, B-CHH), 0.50 (s, 1H, NH), 0.66 (dt, J = 10.9, 13.3, 1H, B-CHH),$ 0.94 (s, 1H, NH), 1.50 (s, 9H, C(CH₃)₃), 1.57-1.70 (m, 6H, BBN-CH), 1.75-1.94 (m, 6H, BBN-CH), 2.11 (m, 1H, CH₂CHHCH₂), 2.40 (d, J = 4.6, 1H, BBN-CH), 2.69 (q, J = 13.1, 1H, CH₂CHHCH₂), 2.90 (s, 3H, CH₃), 3.62 (m, 1H, BBN-CH), 4.31 (d, J = 12.7, 1H, N-CHH), 4.50 (t, J = 12.7, 1H, N-CHH), 6.98 (s, 1H, pyrazole-CH), 7.45 (d, J = 7.7, 1H, pyridine-CH), 7.87 (d, J = 7.7, 1H, pyridine-CH), 8.00 (t, J = 7.7, 1H, pyridine-CH). ¹³C NMR (THFd₈, 25 °C) δ = 13.08 (broad, B-CH₂), 23.18 (broad, B-CH), 23.47 (broad, B-CH), 23.74, 23.91, 25.92, 26.59, 29.44 (C(CH₃)₃), 31.49, 31.85, 32.52 (C(CH₃)₃), 33.61, 34.16, 55.09 (N-CH₂), 103.01 (pyrazole-CH), 118.64 (pyridine-CH), 125.94 (pyridine-CH), 141.51 (pyridine-CH), 146.72, 147.66, 158.52, 159.64. ¹¹B NMR (THFd₈, 25 °C) δ = -5.56. Selected IR data (ATR, neat) υ = 3325 (N-H), 3301 (N-H), 3261 (N-H), 3217 (N-H), 3141 (N-H), 3075, 1611, 1577, 1481, 1371, 1242, 1201, 797 cm⁻¹. Alternate synthesis from [(³-^{BBN}NN^{tBu})ZnBr(N₂H₄)][OTf]. A 20 mL scintillation vial was charged with [(^{3-BBN}NN^{tBu})ZnBr(N₂H₄)][OTf] (0.020 g, 0.029 mmol) and 2 mL THF and frozen. A separate vial was charged with KN(SiMe₃)₂ (0.006 g, 0.029 mmol) and 1 mL THF and frozen. Upon thawing, the solution of $(K)(SiMe_3)_2$ was added to the vial of $[(^3 - 1)^3 + 1)^3$ ^{BBN}NN^{tBu})ZnBr(N₂H₄)][OTf] and stirred for 15 min. The solution was filtered over Celite and dried. Analysis of ¹H NMR (THF) revealed the desired product, (^{3-BBN}NN^{tBu})ZnBr(N₂H₃), and demetallated ligand, (³⁻ ^{BBN}NN^{tBu}), to be present in approx. 1:1 ratio. Therefore, for bulk preparation of (^{3-BBN}NN^{tBu})ZnBr(N₂H₃), the method from $(^{3-BBN}NN^{tBu})ZnBr_2(N_2H_4)$ was employed.

Attempted Synthesis of (^{2-BBN}NN^{tBu})ZnBr(N₂H₃). A 20 mL scintillation vial was charged with (^{2-BBN}NN^{tBu})ZnBr₂ (0.056 g, 0.095 mmol) and 4 mL THF. While stirring, hydrazine (0.159 M solution in THF, 0.598 mL, 0.095 mmol) was added to generate (^{2-BBN}NN^{tBu})ZnBr₂(N₂H₄) in situ. After stirring for 2 min, the solution was frozen. A separate vial was charged with KN(SiMe₃)₂ (0.019 g, 0.095 mmol) and 2 mL THF and frozen. Upon thawing, the solution containing KN(SiMe₃)₂ was added to the zinc containing solution. After stirring for 15 min, the solution was filtered over Celite and dried. Analysis by ¹H NMR (THF) revealed only resonances consistent with demetallated ligand, (^{2-BBN}NN^{tBu}). There was no evidence of formation of the desired product.

Attempted Synthesis of $(^{4-BBN}NN^{rBu})ZnBr(N_2H_3)$. Two separate routes were attempted to form this compound. Neither route enabled isolation of (^{4-BBN}NN^{tBu})ZnBr(N₂H₃). Route 1: one-pot method. A 20 mL scintillation vial was charged with (4-BBNNN^{tBu})ZnBr₂ (0.176 g, 0.285 mmol) and 6 mL THF. While stirring, N_2H_4 (0.159 M stock solution in THF, 0.285 mmol) was added and the mixture stirred for 5 min then frozen. A separate vial was charged with KN(SiMe₃)₂ (0.056 g, 0.281 mmol) and 2 mL THF and frozen. Upon thawing, the solution containing $KN(SiMe_3)_2$ was added dropwise to the solution containing Zn. The mixture was stirred for 20 min, filtered, and dried. The solid was washed with 10 mL n-pentane. The material was investigated by ¹H NMR (THF- d_8 and C₆D₆, separately) and revealed multiple species. Sample spectra are included below. Notably, attempts to redissolve the dried material in THF after filtration resulted in insoluble materials suggesting that the material was continually degrading. Because of this, recrystallization attempts did not improve purity. Route 2: deprotonation of (4-BBNNNtBU)ZnBr2(N2H4). A 20 mL scintillation vial was charged with (^{4-BBN}NN^{tBu})ZnBr₂(N₂H₄) (0.158 g, 0.244 mmol) and 10 mL THF and frozen. A separate vial was charged with KN(SiMe₃)₂ (0.048 g, 0.241 mmol) and 2 mL THF and frozen. Upon thawing, the solution containing $KN(SiMe_3)_2$ was added to the vial containing Zn. The mixture was stirred 20 min, filtered, and dried. The material was investigated by ¹H NMR spectroscopy (THF) and revealed multiple species. A representative spectrum is included below. The same issues with redissolution described above occurred with material from this reaction.

Protonation of (^{3-BBN}NN^{tBu})ZnBr(N₂H₃) to regenerate [(^{3-BBN}NN^{tBu})ZnBr(N₂H₄)][OTf]. A 20 mL scintillation vial was charged with (^{3-BBN}NN^{tBu})ZnBr(N₂H₃) (0.016 g, 0.029 mmol) and 0.8 mL THF- d_8 . While stirring, diphenylammonium triflate (0.0092 g, 0.029 mmol) was added and stirred 15 min. The solution was transferred to a ¹H NMR tube and a spectrum recorded. The data revealed clean conversion to [(^{3-BBN}NN^{tBu})ZnBr(N₂H₄)][OTf] and the production of diphenylamine. The crude spectrum is included below.

Figure S1 ¹H NMR spectrum (CDCl₃, 25 °C) of 2-(5-(*tert*-butyl)-1-(2-chloroethyl)-1*H*-pyrazol-3-yl)-6-methylpyridine (^{chloroethyl}NN^{tBu}).

Figure S2 ¹³C NMR spectrum (CDCl₃, 25 °C) of 2-(5-(*tert*-butyl)-1-(2-chloroethyl)-1*H*-pyrazol-3-yl)-6-methylpyridine.

Figure S3 ¹H NMR spectrum (CDCl₃, 25 °C) of 2-(5-(*tert*-butyl)-1-vinyl-1*H*-pyrazol-3-yl)-6-methylpyridine (^{vinyl}NN^{tBu}).

Figure S4 ¹H NMR spectrum (CH₂Cl₂, 25 °C) of 2-(5-(*tert*-butyl)-1-vinyl-1*H*-pyrazol-3-yl)-6-methylpyridine (^{vinyl}NN^{tBu}).

Figure S5 ¹³C NMR spectrum (CDCl₃, 25 °C) of 2-(5-(*tert*-butyl)-1-vinyl-1*H*-pyrazol-3-yl)-6-methylpyridine.

Figure S6 ¹H NMR spectrum (CDCl₃, 25 °C) of 2-(1-(but-3-en-1-yl)-5-(*tert*-butyl)-1*H*-pyrazol-3-yl)-6-methylpyridine (^{butenyl}NN^{tBu}).

Figure S7 ¹³C NMR spectrum (CDCl₃, 25 °C) of 2-(1-(but-3-en-1-yl)-5-(*tert*-butyl)-1*H*-pyrazol-3-yl)-6-methylpyridine (^{butenyl}NN^{tBu}).

Figure S8 ¹H NMR spectrum (CDCl₃, 25 °C) of (^{vinyl}NN^{tBu})ZnBr₂.

Figure S9 ¹³C NMR spectrum (CDCl₃, 25 °C) of (^{vinyl}NN^{tBu})ZnBr₂.

Figure S10 1 H- 1 H COSY spectrum (CDCl₃, 25 $^{\circ}$ C) of (vinyl NN tBu)ZnBr₂.

Figure S11 ¹H NMR spectra (THF) recorded at 25 °C of attempted hydroboration of (^{vinyl}NN^{tBu})ZnBr₂. These were three separate sample tubes analyzed at the illustrated temperatures. For more information, see text above.

Figure S12 ¹H NMR spectrum (CDCl₃, 25 °C) of (^{2-BBN}NN^{tBu})ZnBr₂.

Figure S13 ¹H NMR spectrum (CH₂Cl₂, 25 °C) of (^{2-BBN}NN^{tBu})ZnBr₂.

Figure S14 ^{13}C NMR spectrum (CDCl₃, 25 °C) of ($^{2\text{-BBN}}\text{NN}^{\text{fBu}}\text{)ZnBr}_2$.

Figure S15 1 H- 1 H COSY spectrum (CDCl₃, 25 $^{\circ}$ C) of ($^{2-BBN}NN^{tBu}$)ZnBr₂.

Figure S16 Variable temperature ¹H NMR spectra (CDCl₃) of (^{2-BBN}NN^{tBu})ZnBr₂.

Figure S17 ¹H NMR spectrum (CDCl₃, 25 °C) of (^{butenyl}NN^{tBu})ZnBr₂.

Figure S18 ¹³C NMR spectrum (CDCl₃, 25 °C) of (^{butenyl}NN^{rBu})ZnBr₂.

Figure S19 ¹H NMR spectrum (CDCl₃, 25 °C) of (^{4-BBN}NN^{tBu})ZnBr₂.

Figure S20 ¹³C NMR spectrum (CDCl₃, 25 °C) of (^{4-BBN}NN^{tBu})ZnBr₂.

Figure S21 ¹H-¹H COSY spectrum (CDCl₃, 25 °C) of (^{4-BBN}NN^{tBu})ZnBr₂.

Figure S22 ¹H NMR spectrum (CDCl₃, 25 °C) of (^{butyl}NN^{tBu})ZnBr₂.

Figure S23 13 C NMR spectrum (CDCl₃, 25 °C) of (butyl NN^{tBu})ZnBr₂.

Figure S24 ¹H NMR spectrum (CDCl₃, 25 °C) of ($^{2-BBN}NN^{tBu}$)ZnBr₂(N₂H₄).

Figure S25 ¹H NMR spectrum (THF, 25 °C) of (^{2-BBN}NN^{tBu})ZnBr₂(N₂H₄).

Figure S26 ¹³C NMR spectrum (CDCl₃, 25 °C) of (^{2-BBN}NN^{tBu})ZnBr₂(N₂H₄).

Figure S27 ¹H NMR spectrum (CDCl₃, 25 °C) of [(^{2-BBN}NN^{tBu})ZnBr₂]₂(N₂H₄).

Figure S28 ¹³C NMR spectrum (CDCl₃, 25 °C) of [(^{2-BBN}NN^{tBu})ZnBr₂]₂(N₂H₄).

Figure S29 ¹H NMR spectrum (CDCl₃, 25 °C) of ($^{4-BBN}NN^{tBu}$)ZnBr₂(N₂H₄).

Figure S30 ¹³C NMR spectrum (CDCl₃, 25 °C) of (^{4-BBN}NN^{tBu})ZnBr₂(N₂H₄).

Figure S31 ¹H-¹H COSY spectrum (CDCl₃, 25 °C) of (^{4-BBN}NN^{tBu})ZnBr₂(N₂H₄).

Figure S32 ¹H NMR spectrum (CDCl₃, 25 °C) of [(^{2-BBN}NN^{tBu})ZnBr(N₂H₄)][PF₆].

Figure S33 ¹H NMR spectrum (CDCl₃, -50 °C) of [(^{2-BBN}NN^{tBu})ZnBr(N₂H₄)][PF₆].

Figure S34 ¹H NMR spectrum (THF- d_8 , 25 °C) of [(^{2-BBN}NN^{tBu})ZnBr(N₂H₄)][PF₆]. The feature near 4.1 ppm is an artifact of the instrument.

Figure S35 ¹³C NMR spectrum (THF-*d*₈, 25 °C) of [(^{2-BBN}NN^{*t*Bu})ZnBr(N₂H₄)][OTf].

Figure S36 ¹H-¹H COSY spectrum (CDCl₃, -50 °C) of [(^{2-BBN}NN^{tBu})ZnBr(N₂H₄)][PF₆].

Figure S37 Variable temperature ¹H NMR spectra (CDCl₃) of [(^{2-BBN}NN^{tBu})ZnBr(N₂H₄)][PF₆].

Figure S38 Variable temperature ¹H NMR spectra (CDCl₃) of $[(^{2-BBN}NN^{tBu})ZnBr(N_2H_4)][PF_6]$ over a more narrow temperature range.

Figure S39 Variable temperature ¹H NMR spectra (CDCl₃) of $[(^{2-BBN}NN^{tBu})ZnBr(N_2H_4)][PF_6]$ over a more narrow temperature range and zoomed to emphasize the upfield region.

Figure S40 ¹H NMR spectrum (CD₂Cl₂, 25 °C) of [(^{3-BBN}NN^{tBu})ZnBr(N₂H₄)][PF₆].

Figure S41 ¹H NMR spectrum (CD₂Cl₂, -60 °C) of $[(^{3-BBN}NN^{tBu})ZnBr(N_2H_4)][PF_6]$.

Figure S42 ¹H NMR spectrum (CDCl₃, 25 °C) of $[(^{3-BBN}NN^{tBu})ZnBr(N_2H_4)][PF_6]$.

Figure S43 ¹H NMR spectrum (THF, 25 °C) of $[(^{3-BBN}NN^{tBu})ZnBr(N_2H_4)][PF_6]$.

Figure S44 ¹³C NMR spectrum (CDCl₃, 25 °C) of [(^{3-BBN}NN^{tBu})ZnBr(N₂H₄)][PF₆].

Figure S45 Variable temperature ¹H NMR spectrum (CD₂Cl₂) of [(^{2-BBN}NN^{tBu})ZnBr(N₂H₄)][PF₆].

Figure S46 Variable temperature ¹H NMR spectrum (CD_2CI_2) of [(^{2-BBN}NN^{tBu})ZnBr(N₂H₄)][PF₆] over a more narrow temperature range.

Figure S47 Variable temperature ¹H NMR spectrum (CD_2CI_2) of [(^{2-BBN}NN^{tBu})ZnBr(N₂H₄)][PF₆] over a more narrow temperature range and zoomed into upfield region.

Figure S48 ¹H-¹H COSY spectrum (CD₂Cl₂, -60 °C) of [(^{3-BBN}NN^{tBu})ZnBr(N₂H₄)][PF₆].

Figure S49 ¹H NMR spectrum (CD₂Cl₂, 25 °C) of [($^{4-BBN}NN^{tBu}$)ZnBr(N₂H₄)][PF₆].

Figure S50 ¹H NMR spectrum (CD₂Cl₂, -75 °C) of [(^{4-BBN}NN^{tBu})ZnBr(N₂H₄)][PF₆].

Figure S51 ¹³C NMR spectrum (CD₂Cl₂, 25 °C) of [(^{4-BBN}NN^{tBu})ZnBr(N₂H₄)][PF₆].

Figure S52 ¹H-¹H COSY spectrum (CD₂Cl₂, -75 °C) of [(^{4-BBN}NN^{tBu})ZnBr(N₂H₄)][PF₆].

Figure S53 Variable temperature ¹H NMR spectra (CD₂Cl₂) of [(^{4-BBN}NN^{tBu})ZnBr(N₂H₄)][PF₆].

Figure S54 Variable temperature ¹H NMR spectra (CD_2CI_2) of [(^{4-BBN}NN^{tBu})ZnBr(N₂H₄)][PF₆] over a more narrow temperature range.

Figure S55 Variable temperature ¹H NMR spectra (CD_2CI_2) of [(^{4-BBN}NN^{tBu})ZnBr(N₂H₄)][PF₆] over a more narrow temperature range and zoomed to emphasize upfield region.

Figure S56 ¹H NMR spectra (THF, 25 °C) of $[(^{2-BBN}NN^{tBu})ZnBr(N_2H_4)][PF_6]$ prior to (bottom) and after addition of $[Bu_4N][Br]$ (top) to form $(^{2-BBN}NN^{tBu})ZnBr_2(N_2H_4)$. The asterisks are marking resonances associated to demetalation.

Figure S57 ¹H NMR spectra (DCM, 25 °C) of [(^{2-BBN}NN^{tBu})ZnBr(N₂H₄)][PF₆] prior to (bottom) and after addition of [Bu₄N][Br] (top) to form (^{2-BBN}NN^{tBu})ZnBr₂(N₂H₄). The asterisks are marking resonances associated to demetalation.

Figure S58 ¹H NMR spectra (DCM, 25 °C) of $[(^{3-BBN}NN^{tBu})ZnBr(N_2H_4)][PF_6]$ prior to (bottom) and after addition of $[Bu_4N][Br]$ (top) to form $(^{3-BBN}NN^{tBu})ZnBr_2(N_2H_4)$.

Figure S59 ¹H NMR spectra (THF, 25 °C) of $[(^{4-BBN}NN^{tBu})ZnBr(N_2H_4)][PF_6]$ prior to (bottom) and after addition of $[Bu_4N][Br]$ (top) to form $(^{4-BBN}NN^{tBu})ZnBr_2(N_2H_4)$. The asterisks are marking resonances associated to demetalation.

Figure S60 ¹H NMR spectra (THF, 25 °C) of $[(^{4-BBN}NN^{tBu})ZnBr(N_2H_4)][PF_6]$ prior to (bottom) and after addition of $[Bu_4N][Br]$ (top) to form $(^{4-BBN}NN^{tBu})ZnBr_2(N_2H_4)$.

Figure S61 ¹H NMR spectra (THF, 25 °C) of ($^{butyl}NN^{tBu}$)ZnBr₂ prior to (bottom) and after addition of one equivalent of N₂H₄. The ¹H NMR spectrum of the free ligand, $^{butyl}NN^{tBu}$, is also provided (top).

Figure S62 ¹H NMR spectrum (THF-*d*₈, 25 °C) of (^{3-BBN}NN^{tBu})ZnBr(N₂H₃).

Figure S63 ¹³C NMR spectrum (THF- d_8 , 25 °C) of (^{3-BBN}NN^{tBu})ZnBr(N₂H₃).

Figure S64 ¹H-¹H COSY spectrum (THF- d_8 , 25 °C) of (^{3-BBN}NN^{tBu})ZnBr(N₂H₃).

Figure S65 ¹H NMR spectrum (THF, 25 °C) of attempted formation of ($^{4-BBN}NN^{tBu}$)ZnBr(N₂H₃). See experimental section for details.

Figure S66 ¹H NMR spectrum (C_6D_6 , 25 °C) of attempted formation of (^{4-BBN}NN^{tBu})ZnBr(N_2H_3). See experimental section for details.

Figure S67 ¹H NMR spectrum (C₆D₆, 25 °C) of attempted formation of ($^{4-BBN}NN^{tBu}$)ZnBr(N₂H₃). See experimental section for details.

Figure S68 Bottom: ¹H NMR spectrum (THF- d_8 , 25 °C) of crude reaction of protonation of (³⁻ ^{BBN}NN^{tBu})ZnBr(N₂H₃) with [Ph₂NH₂][OTf]. Top: ¹H NMR spectrum of diphenylamine (THF, 25 °C) for comparison.

Determination of ΔG^{\dagger} and k_{c} for $[(^{n-BBN}NN^{tBu})ZnBr(N_{2}H_{4})]^{\dagger}$

The equation used to estimate ΔG^{\ddagger} using the coalescence temperature is: $\Delta G^{\ddagger} = aT_c[9.972 + log(T_c/\Delta v)]$

Where $a = 4.575 \times 10^{-3} \text{ kcal/mol}$

T_c = experimentally determined coalescence temperature (K)

 Δv = maximum peak separation (Hz) in the low-temperature limit.

At the coalescence temperature, $k_c = \pi(\Delta v)/\sqrt{2}$

Figure S69 Parameters extracted from VT-NMR data.

Notes

2-BBN: For the analysis, the resonances attributed to B-CH were used. For these resonances, at -50 °C, in CDCl₃, $\delta = 0.31$ (s, 1H, B-CH), 0.64 (s, 1H, B-CH). The variable temperature profile of these resonances is well resolved and do not overlap with other resonances at the coalescence temperature. The value for Δv shows minimal variation for the two coldest temperatures recorded ($\Delta \Delta v = 7.1$ Hz from -35 and -50 °C). These data suggest at -50 °C, in CDCl₃, the molecule is near the slow-exchange limit and the error associated with the extracted parameters are likely minimal.

3-BBN: For the analysis, the resonances attributed to B-CH were used. For these resonances, at -60 °C, in CD_2Cl_2 , $\delta = 0.37$ (s, 1H, B-CH), 0.60 (s, 1H, B-CH). The variable temperature profile of these resonances is relatively well resolved despite partial overlap with another resonance near the coalescence temperature. The value for Δv shows minimal variation for the two coldest temperatures recorded ($\Delta \Delta v = 4.7$ Hz from -50 and -60 °C). These data suggest at -60 °C, in CD_2Cl_2 , the molecule is near the slow-exchange limit and the error associated with the extracted parameters are likely minimal.

4-BBN: For the analysis, the resonances attributed to B-CH were used. For these resonances, at -75 °C, in CD₂Cl₂, $\delta = 0.45$ (s, 1H, B-CH), 0.62 (s, 1H, B-CH). The variable temperature profile of these resonances is not well resolved from other overlapping resonances. We interpret the data as providing a coalescence temperature of 240 K (-33 °C). Due to overlap, this temperature may range 239-241 K. These temperature discrepancies will not greatly affect the extracted ΔG^{\ddagger} value (+/- 0.1 kcal/mol). However, the value for Δv shows variation for the two coldest temperatures recorded ($\Delta \Delta v = 11.6$ Hz from -65 and -75 °C). These data suggest at -75 °C, in CD₂Cl₂, the molecule may not have reached the slow-exchange limit. Therefore, the extracted rate, 185 s⁻¹, should be viewed as a minimum estimate.

Complex: (vinylNN^{tBu})ZnBr₂

Local name: ML183

CCDC: 2012063

 Table S1 Experimental parameters for (^{vinyl}NN^{tBu})ZnBr₂.

Crystal data		
Chemical formula	$C_{15}H_{19}Br_2N_3Zn$	
M _r	466.52	
Crystal system, space group	Monoclinic, P2 ₁ /n	
Temperature (K)	150	
a, b, c (Å)	13.6806 (8), 9.1444 (4), 14.0282 (8)	
β(°)	100.311 (2)	
V (Å ³)	1726.60 (16)	
Z	4	
Radiation type	Μο Κα	
μ (mm ⁻¹)	6.05	
Crystal size (mm)	0.19 × 0.15 × 0.05	
Data collection		
Diffractometer	Bruker AXS D8 Quest CMOS diffractometer	
Absorption correction	Multi-scan SADABS 2016/2: Krause, L., Herbst-Irmer, R., Sheldrick G.M. & Stalke D., J. Appl. Cryst. 48 (2015) 3-10	
T _{min} , T _{max}	0.596, 0.746	
No. of measured, independent and observed [/ > 2s(/)] reflections	25393, 5157, 3247	
R _{int}	0.075	
$(\sin \theta/\lambda)_{max} (Å^{-1})$	0.715	
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.043, 0.082, 1.00	
No. of reflections	5157	
No. of parameters	194	
H-atom treatment	H-atom parameters constrained	
$\Delta \rho_{max}$, $\Delta \rho_{min}$ (e Å ⁻³)	0.77, -0.66	

Computer programs: Apex3 v2018.1-0 (Bruker, 2018), SAINT V8.38A (Bruker, 2016), SHELXS97

(Sheldrick, 2008), SHELXL2018/3 (Sheldrick, 2015, 2018), SHELXLE Rev988 (Hübschle et al., 2011).

Figure S70 Molecular structure of (^{vinyl}NN^{tBu})ZnBr₂ displayed with 50% probability ellipsoids. Hydrogen atoms not attached to vinyl moiety are omitted for clarity.

Complex: (^{butene}NN^{tBu})ZnBr₂

Local name: JK5218

CCDC: 2012067

 Table S2 Experimental parameters for (^{butene}NN^{tBu})ZnBr₂.

Crystal data		
Chemical formula	$C_{17}H_{23}Br_2N_3Zn$	
<i>M</i> _r	494.57	
Crystal system, space group	Monoclinic, P21/n	
Temperature (K)	150	
a, b, c (Å)	17.2348 (11), 11.4411 (8), 20.0805 (14)	
β (°)	92.729 (3)	
V (Å ³)	3955.1 (5)	
Z	8	
Radiation type	Μο Κα	
μ (mm ⁻¹)	5.29	
Crystal size (mm)	0.55 × 0.53 × 0.45	
Data collection		
Diffractometer	Bruker AXS D8 Quest CMOS diffractometer	
Absorption correction	Multi-scan SADABS 2016/2: Krause, L., Herbst-Irmer, R., Sheldrick G.M. & Stalke D., J. Appl. Cryst. 48 (2015) 3-10	
T _{min} , T _{max}	0.113, 0.269	
No. of measured, independent and observed [/ > 2s(/)] reflections	68979, 12069, 8374	
R _{int}	0.072	
$(\sin \theta/\lambda)_{max} (Å^{-1})$	0.714	
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.046, 0.126, 1.04	
No. of reflections	12069	
No. of parameters	424	
H-atom treatment	H-atom parameters constrained	
$\Delta \rho_{max}, \ \Delta \rho_{min} \ (e \ Å^{-3})$	1.38, -1.08	

Computer programs: Apex3 v2018.1-0 (Bruker, 2018), SAINT V8.38A (Bruker, 2016), SHELXS97

(Sheldrick, 2008), SHELXL2018/3 (Sheldrick, 2015, 2018), SHELXLE Rev988 (Hübschle et al., 2011).

Figure S71 Molecular structure of (^{butene}NN^{rBu})ZnBr₂ displayed with 50% probability ellipsoids. Hydrogen atoms not attached to alkene moiety are omitted for clarity.

Complex: (^{butyl}NN^{tBu})ZnBr₂

Local name: JK5217

CCDC: 2012064

Table S3 Experimental parameters for (^{butyl}NN^{tBu})ZnBr₂.

Crystal data	
Chemical formula	$C_{17}H_{25}Br_2N_3Zn$
<i>M</i> _r	496.59
Crystal system, space group	Monoclinic, P21/n
Temperature (K)	150
a, b, c (Å)	12.8681 (6), 11.5859 (5), 14.3384 (8)
β(°)	103.984 (2)
V (Å ³)	2074.34 (18)
Z	4
Radiation type	Μο Κα
μ (mm ⁻¹)	5.04
Crystal size (mm)	0.55 × 0.45 × 0.06
Data collection	i
Diffractometer	Bruker AXS D8 Quest CMOS diffractometer
Absorption correction	Multi-scan SADABS 2016/2: Krause, L., Herbst-Irmer, R., Sheldrick G.M. & Stalke D., J. Appl. Cryst. 48 (2015) 3-10
T _{min} , T _{max}	0.437, 0.747
No. of measured, independent and observed [<i>l</i> > 2s(<i>l</i>)] reflections	32067, 7525, 4618
R _{int}	0.061
$(\sin \theta/\lambda)_{max} (Å^{-1})$	0.770
Refinement	i
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.053, 0.152, 0.95
No. of reflections	7525
No. of parameters	213
H-atom treatment	H-atom parameters constrained
Δρ _{max} , Δρ _{min} (e Å ⁻³)	1.24, -1.20

Computer programs: Apex3 v2018.1-0 (Bruker, 2018), SAINT V8.38A (Bruker, 2016), SHELXS97

(Sheldrick, 2008), SHELXL2018/3 (Sheldrick, 2015, 2018), SHELXLE Rev988 (Hübschle et al., 2011).

Figure S72 Molecular structure of $(^{butyl}NN^{tBu})ZnBr_2$ displayed with 50% probability ellipsoids. Hydrogen atoms are omitted for clarity.

Complex: (^{2-BBN}NN^{tBu})ZnBr₂

Local name: ML141

CCDC: 2012065

Table S4 Experimental parameters for (^{2-BBN}NN^{tBu})ZnBr₂.

Crystal data		
Chemical formula	C ₂₃ H ₃₄ BBr ₂ N ₃ Zn	
Mr	588.53	
Crystal system, space group	Triclinic, P1	
Temperature (K)	150	
a, b, c (Å)	13.0034 (9), 13.5104 (10), 15.0119 (14)	
α, β, γ (°)	86.957 (3), 87.514 (4), 73.838 (4)	
V (Å ³)	2528.4 (4)	
Z	4	
Radiation type	Μο Κα	
μ (mm ⁻¹)	4.15	
Crystal size (mm)	0.13 × 0.12 × 0.07	
Data collection		
Diffractometer	Bruker AXS D8 Quest CMOS diffractometer	
Absorption correction	Multi-scan SADABS 2016/2: Krause, L., Herbst-Irmer, R., Sheldrick G.M. & Stalke D., J. Appl. Cryst. 48 (2015) 3-10	
T _{min} , T _{max}	0.553, 0.746	
No. of measured, independent and observed [/ > 2s(/)] reflections	47737, 12294, 9973	
R _{int}	0.040	
(sin θ/λ) _{max} (Å ⁻¹)	0.668	
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.041, 0.102, 1.08	
No. of reflections	12294	
No. of parameters	549	
H-atom treatment	H-atom parameters constrained	
Δρ _{max} , Δρ _{min} (e Å ⁻³)	1.79, -1.50	

Computer programs: Apex3 v2018.1-0 (Bruker, 2018), SAINT V8.38A (Bruker, 2016), SHELXS97

(Sheldrick, 2008), SHELXL2018/3 (Sheldrick, 2015, 2018), SHELXLE Rev946 (Hübschle et al., 2011).

Figure S73 Molecular structure of (^{2-BBN}NN^{tBu})ZnBr₂ displayed with 50% probability ellipsoids. Hydrogen atoms are omitted for clarity. The 9-BBN substituent is displayed in wireframe for improved clarity.

Complex: (^{4-BBN}NN^{tBu})ZnBr₂

Local name: JK5219

CCDC: 2012070

 Table S5 Experimental parameters for (4-BBN NN^{tBu})ZnBr₂.

Crystal data	
Chemical formula	$C_{25}H_{38}BBr_2N_3Zn$
Mr	616.58
Crystal system, space group	Monoclinic, P21/c
Temperature (K)	150
a, b, c (Å)	15.0468 (16), 11.2801 (7), 16.7588 (17)
β (°)	103.198 (2)
V (ų)	2769.3 (4)
Ζ	4
Radiation type	Μο Κα
μ (mm ⁻¹)	3.79
Crystal size (mm)	0.22 × 0.11 × 0.07
Data collection	
Diffractometer	Bruker AXS D8 Quest CMOS diffractometer
Absorption correction	Multi-scan SADABS 2016/2: Krause, L., Herbst-Irmer, R., Sheldrick G.M. & Stalke D., J. Appl. Cryst. 48 (2015) 3-10
T _{min} , T _{max}	0.469, 0.746
No. of measured, independent and observed [<i>I</i> > 2s(<i>I</i>)] reflections	25468, 7432, 5650
R _{int}	0.059
(sin θ/λ) _{max} (Å ⁻¹)	0.714
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.040, 0.106, 1.04
No. of reflections	7432
No. of parameters	366
No. of restraints	341
H-atom treatment	H-atom parameters constrained
Δρ _{max} , Δρ _{min} (e Å ⁻³)	0.79, -0.88

Computer programs: Apex3 v2018.1-0 (Bruker, 2018), SAINT V8.38A (Bruker, 2016), SHELXS97

(Sheldrick, 2008), SHELXL2018/3 (Sheldrick, 2015, 2018), SHELXLE Rev988 (Hübschle et al., 2011).

Refinement details:

The 9-BBN fragment is disordered. The two disordered moieties were restrained to have similar geometries. U^{ij} components of ADPs for disordered atoms closer to each other than 2.0 Å were restrained to be similar. Subject to these conditions the occupancy ratio refined to 0.749(4) to 0.251(4).

Figure S74 Molecular structure of (^{4-BBN}NN^{tBu})ZnBr₂ displayed with 50% probability ellipsoids. Hydrogen atoms are omitted for clarity. The 9-BBN substituent is displayed in wireframe and only the major disordered moiety is shown for improved clarity.

Complex: (^{2-BBN}NN^{tBu})ZnBr₂(N₂H₄)

Local name: ML73_2

CCDC: 2012066

Table S6 Experimental parameters for $(^{2-BBN}NN^{tBu})ZnBr_2(N_2H_4)$.

Crystal data	
Chemical formula	$C_{23}H_{38}BBr_2N_5Zn \cdot C_6H_6$
Mr	698.69
Crystal system, space group	Triclinic, P1
Temperature (K)	150
a, b, c (Å)	10.6610 (5), 11.8149 (6), 13.2704 (6)
α, β, γ (°)	105.494 (2), 99.734 (2), 101.500 (2)
<i>V</i> (Å ³)	1534.07 (13)
Z	2
Radiation type	Μο Κα
μ (mm ⁻¹)	3.43
Crystal size (mm)	0.21 × 0.17 × 0.12
Data collection	
Diffractometer	Bruker AXS D8 Quest CMOS diffractometer
Absorption correction	Multi-scan SADABS 2016/2: Krause, L., Herbst-Irmer, R., Sheldrick G.M. & Stalke D., J. Appl. Cryst. 48 (2015) 3-10
T _{min} , T _{max}	0.634, 0.747
No. of measured, independent and observed [/ > 2s(/)] reflections	46054, 11627, 7716
R _{int}	0.045
$(\sin \theta / \lambda)_{max} (Å^{-1})$	0.771
Refinement	· · · · ·
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.038, 0.079, 1.01
No. of reflections	11627
No. of parameters	359
No. of restraints	4
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
Δρ _{max} , Δρ _{min} (e Å ⁻³)	1.07, -0.81

Computer programs: Apex3 v2018.1-0 (Bruker, 2018), SAINT V8.38A (Bruker, 2016), SHELXS97

(Sheldrick, 2008), SHELXL2018/3 (Sheldrick, 2015, 2018), SHELXLE Rev946 (Hübschle et al., 2011).

Figure S75 Molecular structure of ($^{2-BBN}NN^{tBu}$)ZnBr₂(N₂H₄) displayed with 50% probability ellipsoids. Hydrogen atoms not attached to heteroatoms are omitted for clarity. The 9-BBN substituent is displayed in wireframe for improved clarity. Complex: [(^{2-BBN}NN^{tBu})ZnBr₂]₂(N₂H₄)

Local name: ML73

CCDC: 2012074

Table S7 Experimental parameters for $[(^{2-BBN}NN^{tBu})ZnBr_2]_2(N_2H_4)$.

Crystal data	
Chemical formula	$C_{46}H_{72}B_{2}Br_{4}N_{8}Zn_{2}$ ·0.206($C_{6}H_{14}$)·2.044($C_{4}H_{8}O$)
Mr	1374.25
Crystal system, space group	Triclinic, P1
Temperature (K)	150
a, b, c (Å)	15.0988 (7), 20.3399 (10), 21.5241 (10)
α, β, γ (°)	87.7923 (19), 84.8814 (18), 71.6768 (19)
V (Å ³)	6249.7 (5)
Ζ	4
Radiation type	Μο Κα
μ (mm ⁻¹)	3.37
Crystal size (mm)	0.45 × 0.22 × 0.20
Data collection	
Diffractometer	Bruker AXS D8 Quest CMOS diffractometer
Absorption correction	Multi-scan SADABS 2016/2: Krause, L., Herbst-Irmer, R., Sheldrick G.M. & Stalke D., J. Appl. Cryst. 48 (2015) 3-10
T _{min} , T _{max}	0.482, 0.747
No. of measured, independent and observed [<i>l</i> > 2s(<i>l</i>)] reflections	145082, 37943, 24725
R _{int}	0.045
$(\sin \theta/\lambda)_{max} (Å^{-1})$	0.714
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.053, 0.169, 1.03
No. of reflections	37943
No. of parameters	1459
No. of restraints	534
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{max}, \Delta \rho_{min} \ (e \ Å^{-3})$	1.96, -1.04

Computer programs: Apex3 v2018.1-0 (Bruker, 2018), SAINT V8.38A (Bruker, 2016), SHELXS97

(Sheldrick, 2008), SHELXL2018/3 (Sheldrick, 2015, 2018), SHELXLE Rev946 (Hübschle et al., 2011).

Refinement details:

A THF molecule was refined as disordered in a general position, another around an inversion center, and a third to be disordered with a hexane molecule. The hexane molecule is in conflict with its symmetry created counterpart (by an inversion center). All THF moleties were restrained to have similar geometries. Bond distances and angles in the hexane molecule were restrained to target values. Atoms of the THF molecule disordered with hexane and the hexane molecule were both restrained to be close to isotropic. U^{ij} components of ADPs for disordered atoms closer to each other than 2.0 Å were restrained to be similar. Subject to these conditions the occupancy ratio refined to 0.276(7) to 0.724(7) for the THF of O3 and to 0.589(9) to 0.411(9) for the THF-hexane disorder.

Figure S76 Molecular structure of $[(^{2-BBN}NN^{tBu})ZnBr_2]_2(N_2H_4)$ displayed with 50% probability ellipsoids. Hydrogen atoms not attached to heteroatoms are omitted for clarity. The 9-BBN substituents are displayed in wireframe and solvate molecules are omitted for improved clarity.

Complex: (^{4-BBN}NN^{tBu})ZnBr₂(N₂H₄)

Local name: EN2155

CCDC: 2012072

Table S8 Experimental parameters for $(^{4-BBN}NN^{tBu})ZnBr_2(N_2H_4)$.

Crystal data	
Chemical formula	$C_{25}H_{42}BBr_2N_5Zn \cdot 0.5(C_6H_6)$
M _r	687.69
Crystal system, space group	Monoclinic, C2/c
Temperature (K)	150
a, b, c (Å)	12.0353 (8), 24.2453 (15), 21.5350 (12)
β(°)	92.423 (2)
V (Å ³)	6278.3 (7)
Z	8
Radiation type	Μο Κα
μ (mm ⁻¹)	3.35
Crystal size (mm)	0.55 × 0.26 × 0.24
Data collection	
Diffractometer	Bruker AXS D8 Quest CMOS diffractometer
Absorption correction	Multi-scan SADABS 2016/2: Krause, L., Herbst-Irmer, R., Sheldrick G.M. & Stalke D., J. Appl. Cryst. 48 (2015) 3-10
T _{min} , T _{max}	0.371, 0.747
No. of measured, independent and observed [<i>l</i> > 2s(<i>l</i>)] reflections	43551, 11598, 8441
R _{int}	0.046
$(\sin \theta/\lambda)_{max} (Å^{-1})$	0.771
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.036, 0.094, 1.06
No. of reflections	11598
No. of parameters	347
No. of restraints	2
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
Δρ _{max} , Δρ _{min} (e Å ⁻³)	0.93, -0.87

Computer programs: Apex3 v2018.1-0 (Bruker, 2018), SAINT V8.38A (Bruker, 2016), SHELXS97

(Sheldrick, 2008), SHELXL2018/3 (Sheldrick, 2015, 2018), SHELXLE Rev1030 (Hübschle et al., 2011).

Figure S77 Molecular structure of (^{4-BBN}NN^{tBu})ZnBr₂(N₂H₄) displayed with 50% probability ellipsoids. Hydrogen atoms not attached to heteroatoms are omitted for clarity. The 9-BBN substituent is displayed in wireframe for improved clarity.

Complex: [(^{2-BBN}NN^{tBu})ZnBr(N₂H₄)][OTf]

Local name: ML87

CCDC: 2012071

Table S9 Experimental parameters for $[(^{2-BBN}NN^{tBu})ZnBr(N_2H_4)][OTf]$.

Crystal data	
Chemical formula	$C_{28}H_{46}BBrF_3N_5O_4SZn$
<i>M</i> _r	761.85
Crystal system, space group	Triclinic, P1
Temperature (K)	150
a, b, c (Å)	11.5579 (7), 12.4732 (8), 14.2722 (9)
α, β, γ (°)	106.920 (2), 101.436 (2), 113.029 (2)
V (Å ³)	1693.94 (19)
Z	2
Radiation type	Μο Κα
μ (mm ⁻¹)	2.02
Crystal size (mm)	0.45 × 0.42 × 0.29
Data collection	· ·
Diffractometer	Bruker AXS D8 Quest CMOS diffractometer
Absorption correction	Multi-scan SADABS 2016/2: Krause, L., Herbst-Irmer, R., Sheldrick G.M. & Stalke D. (2015). J. Appl. Cryst. 48, 3-10.
T _{min} , T _{max}	0.612, 0.747
No. of measured, independent and observed [I > 2s(I)] reflections	97174, 13028, 10491
R _{int}	0.035
$(\sin \theta / \lambda)_{max} (Å^{-1})$	0.773
Refinement	i
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.033, 0.086, 1.05
No. of reflections	13028
No. of parameters	420
No. of restraints	6
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
Δρ _{max} , Δρ _{min} (e Å ⁻³)	1.00, -0.75

Computer programs: Apex3 v2018.7-2 (Bruker, 2018), SAINT V8.38A (Bruker, 2018), SHELXS97

(Sheldrick, 2008), *SHELXL2018*/3 (Sheldrick, 2015, 2018), SHELXLE Rev1014 (Hübschle *et al.*, 2011).

Refinement details:

Amine H atom positions were refined and N-H distances were restrained to 0.91(2) Å. H atoms of one methylene group (C15) were substantially deflected from their calculated positions (possibly due to a short contact with H14A in a neighboring molecule) and were instead refined with a C-H distance restraint of 0.99(2) Å.

Figure S78 Molecular structure of $[(^{2-BBN}NN^{tBu})ZnBr(N_2H_4)][OTf]$ displayed with 50% probability ellipsoids. Hydrogen atoms not attached to heteroatoms are omitted for clarity. The 9-BBN substituent is displayed in wireframe for improved clarity. Co-crystallized THF and the counter-anion,

trifluoromethanesulfonate, are not displayed but do participate in hydrogen bonding with the hydrazine ligand.

Complex: [(^{3-BBN}NN^{tBu})ZnBr(N₂H₄)][OTf]

Local name: JK5198

CCDC: 2012073

Table S10 Experimental parameters for $[(^{3-BBN}NN^{tBu})ZnBr(N_2H_4)][OTf]$.

Crystal data		
Chemical formula	$C_{24}H_{40}BBrN_5Zn \cdot CF_3O_3S$	
<i>M</i> _r	703.77	
Crystal system, space group	Triclinic, P1	
Temperature (K)	150	
a, b, c (Å)	11.9524 (6), 11.9577 (6), 12.1827 (7)	
α, β, γ (°)	107.2938 (19), 93.865 (2), 110.9613 (18)	
V (Å ³)	1522.69 (14)	
Ζ	2	
Radiation type	Μο Κα	
μ (mm ⁻¹)	2.24	
Crystal size (mm)	$0.21 \times 0.20 \times 0.13$	
Data collection		
Diffractometer	Bruker AXS D8 Quest CMOS diffractometer	
Absorption correction	Multi-scan SADABS 2016/2: Krause, L., Herbst-Irmer, R., Sheldrick G.M. & Stalke D., J. Appl. Cryst. 48 (2015) 3-10	
T _{min} , T _{max}	0.639, 0.747	
No. of measured, independent and observed [I > 2s(I)] reflections	89090, 11665, 8964	
R _{int}	0.038	
$(\sin \theta/\lambda)_{max} (\text{\AA}^{-1})$	0.771	
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.036, 0.093, 1.03	
No. of reflections	11665	
No. of parameters	366	
H-atom treatment	H-atom parameters constrained	
Δρ _{max} , Δρ _{min} (e Å ⁻³)	1.84, -1.05	

Computer programs: Apex3 v2018.1-0 (Bruker, 2018), SAINT V8.38A (Bruker, 2016), SHELXS97

(Sheldrick, 2008), SHELXL2018/3 (Sheldrick, 2015, 2018), SHELXLE Rev985 (Hübschle et al., 2011).

Figure S79 Molecular structure of $[(^{3-BBN}NN^{tBu})ZnBr(N_2H_4)][OTf]$ displayed with 50% probability ellipsoids. Hydrogen atoms not attached to heteroatoms are omitted for clarity. The 9-BBN substituent is displayed in wireframe for improved clarity. The counter-anion, trifluoromethanesulfonate, is not displayed but does participate in hydrogen bonding with the hydrazine ligand.

Complex: [(^{4-BBN}NN^{tBu})ZnBr(N₂H₄)][PF₆]

Local name: EN2199

CCDC: 2012075

Table S11 Experimental parameters for $[(^{4-BBN}NN^{tBu})ZnBr(N_2H_4)][PF_6]$.

Crystal data	
Chemical formula	$C_{25}H_{42}BBrN_5Zn\cdot F_6P\cdot CH_2Cl_2$
<i>M</i> r	798.62
Crystal system, space group	Monoclinic, <i>C</i> 2/ <i>c</i>
Temperature (K)	150
a, b, c (Å)	27.6433 (13), 15.2931 (8), 18.2871 (9)
β (°)	119.6838 (15)
V (Å ³)	6716.4 (6)
Ζ	8
Radiation type	Μο Κα
μ (mm ⁻¹)	2.19
Crystal size (mm)	0.33 × 0.21 × 0.19
Data collection	
Diffractometer	Bruker AXS D8 Quest CMOS diffractometer
Absorption correction	Multi-scan SADABS 2016/2: Krause, L., Herbst-Irmer, R., Sheldrick G.M. & Stalke D., J. Appl. Cryst. 48 (2015) 3-10
T _{min} , T _{max}	0.630, 0.747
No. of measured, independent and observed [I > 2s(I)] reflections	84422, 12839, 9789
R _{int}	0.035
$(\sin \theta/\lambda)_{max} (Å^{-1})$	0.771
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.041, 0.117, 1.04
No. of reflections	12839
No. of parameters	478
No. of restraints	295
H-atom treatment	H-atom parameters constrained
Δρ _{max} , Δρ _{min} (e Å ⁻³)	1.39, -1.05

Computer programs: Apex3 v2018.7-2 (Bruker, 2018), SAINT V8.38A (Bruker, 2018), SHELXS97

(Sheldrick, 2008), *SHELXL2018*/3 (Sheldrick, 2015, 2018), SHELXLE Rev1030 (Hübschle *et al.*, 2011).

Refinement details:

A methylene chloride molecule was refined as disordered with four alternative orientations. The disordered moieties were restrained to have similar geometries. U^{ij} components of ADPs for disordered atoms closer to each other than 2.0 Å were restrained to be similar. Subject to these conditions the occupancy rates refined to 0.312(3), 0.319(2), 0.253(2) and 0.115(2).

Figure S80 Molecular structure of $[(^{4-BBN}NN^{tBu})ZnBr(N_2H_4)][PF_6]$ displayed with 50% probability ellipsoids. Hydrogen atoms not attached to heteroatoms are omitted for clarity. The 9-BBN substituent is displayed in wireframe for improved clarity. The counter-anion, hexafluorophosphate, is not displayed but does participate in hydrogen bonding with the hydrazine ligand. Complex: (^{3-BBN}NN^{tBu})ZnBr(N₂H₃)

Local name: JK5157

CCDC: 2012068

Table S12 Experimental parameters for $(^{3-BBN}NN^{tBu})ZnBr(N_2H_3)$.

Crystal data	
Chemical formula	C₂₄H₃9BBrN₅Zn
<i>M</i> r	553.69
Crystal system, space group	Triclinic, $P\overline{1}$
Temperature (K)	150
a, b, c (Å)	10.8931 (6), 11.4206 (7), 12.3188 (7)
α, β, γ (°)	83.305 (2), 63.943 (2), 73.559 (2)
V (Å ³)	1320.42 (13)
Z	2
Radiation type	Μο Κα
μ (mm ⁻¹)	2.46
Crystal size (mm)	0.40 × 0.18 × 0.13
Data collection	
Diffractometer	Bruker AXS D8 Quest CMOS diffractometer
Absorption correction	Multi-scan SADABS 2016/2: Krause, L., Herbst-Irmer, R., Sheldrick G.M. & Stalke D., J. Appl. Cryst. 48 (2015) 3-10
T _{min} , T _{max}	0.543, 0.746
No. of measured, independent and observed [<i>l</i> > 2s(<i>l</i>)] reflections	22737, 6327, 5117
R _{int}	0.035
$(\sin \theta/\lambda)_{max} (Å^{-1})$	0.668
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.037, 0.097, 1.08
No. of reflections	6327
No. of parameters	303
No. of restraints	3
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
Δρ _{max} , Δρ _{min} (e Å ⁻³)	1.15, -0.73

Computer programs: Apex3 v2018.1-0 (Bruker, 2018), SAINT V8.38A (Bruker, 2016), SHELXS97

(Sheldrick, 2008), SHELXL2018/3 (Sheldrick, 2015, 2018), SHELXLE Rev946 (Hübschle et al., 2011).

Figure S81 Molecular structure of (^{3-BBN}NN^{tBu})ZnBr(N₂H₃) displayed with 50% probability ellipsoids. Hydrogen atoms not attached to heteroatoms are omitted for clarity. The 9-BBN substituent is displayed in wireframe for improved clarity.

Complex: [Zn(OPEt₃)₄][PF₆]₂

Local name: JK5220B

CCDC: 2012069

Table S13 Experimental parameters for [Zn(OPEt₃)₄][PF₆]₂.

Crystal data	
Chemical formula	$C_{24}H_{60}O_4P_4Zn\cdot 2(F_6P)$
<i>M</i> _r	891.91
Crystal system, space group	Triclinic, P1
Temperature (K)	150
a, b, c (Å)	12.4190 (12), 12.4357 (12), 30.319 (3)
α, β, γ (°)	89.995 (3), 90.007 (3), 119.911 (3)
V (Å ³)	4058.8 (7)
Ζ	4
Radiation type	Μο Κα
μ (mm ⁻¹)	0.93
Crystal size (mm)	0.52 × 0.39 × 0.11
Data collection	
Diffractometer	Bruker AXS D8 Quest CMOS diffractometer
Absorption correction	Multi-scan SADABS 2016/2: Krause, L., Herbst-Irmer, R., Sheldrick G.M. & Stalke D., J. Appl. Cryst. 48 (2015) 3-10
T _{min} , T _{max}	0.561, 0.746
No. of measured, independent and observed [/ > 2s(/)] reflections	87108, 24707, 20212
R _{int}	0.073
$(\sin \theta/\lambda)_{max} (Å^{-1})$	0.716
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.064, 0.186, 1.06
No. of reflections	24707
No. of parameters	1454
No. of restraints	5191
H-atom treatment	H-atom parameters constrained
Δρ _{max} , Δρ _{min} (e Å ⁻³)	1.17, -1.00

Computer programs: Apex3 v2018.1-0 (Bruker, 2018), SAINT V8.38A (Bruker, 2016), SHELXS97

(Sheldrick, 2008), SHELXL2018/3 (Sheldrick, 2015, 2018), SHELXLE Rev988 (Hübschle et al., 2011).

Refinement details:

The structure emulates a trigonal setting, approximate $P\overline{3}$ symmetry. Application of this symmetry does introduce substantial additional disorder. The structure was instead refined in a triclinic setting as a 3-component twin, by 120° rotations around the a-axis (twin transformation matrix 0 1 0 / -1 -1 0 / 0 0 1, applied twice). Twin ratios refined to 0.4652(9), 0.2518(9), and 0.283(1). The deviation from the expected values of 0.33 for perfect twinning or actual three-fold symmetry indicates the triclinic symmetry to be correct.

Extensive disorder remains, even in the triclinic setting. For the cation of Zn1, three of the triethyl phosphine oxides moieties were refined as disordered. For the cation of Zn2, two of the triethyl phosphine oxides moieties and the zinc atom were refined as disordered. A common disorder ratio was used for each of the cations. The three PF₆ anions in general positions were each refined as disordered.

All triethyl phosphine oxides moieties were restrained to have similar geometries. All disordered Zn-O bond lengths were restrained to be similar. All P-F distances and all F-P-F close to 90 degree were each restrained to be similar. U^{ij} components of ADPs for disordered atoms closer to each other than 2.0 Å were restrained to be similar. Subject to these conditions the occupancy ratio refined to 0.541(5) to 0.459(5) for the phosphine oxide of P1, P2 and P3; to 0.526(4) to 0.474(4) for the phosphine oxide of P6 and P8; to 0.535(6) to 0.465(6) for the PF₆ anions of P11; to 0.745(7) to 0.255(7) for the PF₆ anions of P12; and to 0.646(10) to 0.354(10) for the PF₆ anions of P13.

Figure S82 Molecular structure of the cationic portion of [Zn(OPEt₃)₄][PF₆]₂ displayed with 50% probability ellipsoids. Hydrogen atoms are omitted for clarity.

Figure S83 Spacefill model for (^{vinyl}NN^{tBu})ZnBr₂ (top) compared to the previously reported compound, (^{allyl}NN^{tBu})ZnBr₂ (bottom).

Table S14 Experimentally determined bond distances and angles of cationic hydrazine compounds andhydrazido compound.

Compound	[(^{2-BBN} NN ^{tBu})ZnBr(N₂H₄)]⁺	[(^{3-BBN} NN ^{tBu})ZnBr(N₂H₄)]⁺	[(^{4-BBN} NN ^{tBu})ZnBr(N ₂ H ₄)] ⁺	(^{3-BBN} NN ^{tBu})ZnBr(N ₂ H ₃)
Local name	ML87	JK5198	EN2199	jk5157
Zn-Br1	2.3097(2)	2.3225(3)	2.3177(3)	2.3516(4)
Zn-Br2	n/a	n/a	n/a	n/a
Zn-N _{hydrazine}	2.0256(11)	2.0576(13)	2.0892(15)	1.973(2)
Zn-N _{pyridine}	2.0726(11)	2.0513(12)	2.0504(14)	2.092(2)
Zn-N _{pyrazole}	2.0190(11)	2.0269(13)	2.0299(14)	2.061(2)
B-N	1.6463(18)	1.675(2)	1.668(2)	1.630(4)
N-N	1.4647(15)	1.4666(17)	1.4601(19)	1.476(3)
τ ₄	0.84	0.851	0.829	0.857
ΣΒα	322.05(10)	319.22(12)	318.69(14)	322.8(2)

Compound	(^{vinyl} NN ^{tBu})ZnBr ₂	(^{allyl} NN ^{tBu})ZnBr ₂	(^{butenyl} NN ^{tBu})ZnBr ₂	(^{butyl} NN ^{tBu})ZnBr ₂
Local name	ML183		jk2518	jk2517
Previously reported?		yes		
Zn-Br1	2.3516(5)	2.3427(4)	2.3535(5)	2.3473(5)
Zn-Br2	2.3435(6)	2.3466(4)	2.3413(5)	2.3332(5)
Zn-N _{pyridine}	2.065(3)	2.0808(19)	2.081(3)	2.070(3)
Zn-N _{pyrazole}	2.077(3)	2.0481(19)	2.059(2)	2.057(3)
τ4	0.8815	0.897	0.85	0.882
notes			2 / unit cell*	

Table S15 Experimentally determined bond distances and angles of non-borane containing complexes.

*data for molecule labeled Zn1.

Table S16 Experimentally determined bond distances and angles of three-coordinate borane containing complexes.

Compound	(^{2-BBN} NN ^{tBu})ZnBr ₂	(^{3-BBN} NN ^{tBu})ZnBr ₂	(^{4-BBN} NN ^{tBu})ZnBr ₂
Local name	ML141	EEN131	jk2519
Previously reported?		yes	
Zn-Br1	2.3719(5)	2.3500(4)	2.3527(5)
Zn-Br2	2.3393(5)	2.3323(4)	2.3448(5)
Zn-N _{pyridine}	2.074(3)	2.0758(19)	2.078(2)
Zn-N _{pyrazole}	2.063(3)	2.055(2)	2.060(2)
τ4	0.878	0.865	0.88
ΣΒα	358.4(3)	359.70(3)	359.9(3)
notes	2 / unit cell		

Table S17 Experimentally determined bond distances and angles of borane-hydrazine adducts.

Compound	(^{2-BBN} NN ^{tBu})ZnBr ₂ (N ₂ H ₄)	(^{3-BBN} NN ^{tBu})ZnBr ₂ (N ₂ H ₄)	(^{4-BBN} NN ^{tBu})ZnBr ₂ (N ₂ H ₄)
Local name	ML73_2	JK4287	EN2155
Previously reported?		yes	
Zn-Br1	2.3619(3)	2.3769(6)	2.3572(3)
Zn-Br2	2.3569(3)	2.3420(5)	2.3425(3)
Zn-N _{hydrazine}	n/a	n/a	n/a
Zn-N _{pyridine}	2.0860(15)	2.074(3)	2.0773(15)
Zn-N _{pyrazole}	2.0519(14)	2.042(3)	2.0427(15)
B-N	1.651(3)	1.651(5)	1.649(3)
ZnNH₂(B)	4.352	4.642	4.425*
ZnNH ₂ (terminal)	4.156	4.252	4.348*
τ ₄	0.815	0.901	0.833
ΣΒα	321.95(14)	322.0(3)	320.22(16)

*Measured as an intermolecular distance to adjacent molecule. Within the same molecule, the distances are 7.504 and 7.882 Å.

Compound	[(^{2-BBN} NN ^{tBu})ZnBr ₂] ₂ (N ₂ H ₄)	[(^{3-BBN} NN ^{tBu})ZnBr ₂] ₂ (N ₂ H ₄)
Local name	ML73	JK4288
Previously reported?		yes
Zn-Br1	2.3609(5)/2.3487(5)	2.3253(9)/2.3101(9)
Zn-Br2	2.3604(6)/2.3696(5)	2.3604(8)/2.3635(8)
Zn-N _{hydrazine}	n/a	n/a
Zn-N _{pyridine}	2.063(3)/2.080(3)	2.083(4)/2.075(4)
Zn-N _{pyrazole}	2.050(3)/2.051(3)	2.069(4)/2.061(4)
B-N	1.697(4)/1.678(4)	1.688(7)/1.676(7)
τ ₄	0.863/0.842	0.893/0.884
ΣΒα	320.8(2)/322.1(2)	320.3(5)/320.3(4)
notes	2 / unit cell	

Table S18 Experimentally determined bond distances and angles of borane-hydrazine adducts.

Determination of Acceptor Numbers

Acceptor numbers were determined by the Gutmann-Beckett method⁷ via the equation:

acceptor number = $2.21 \times (\delta_{sample} - 41.0)$

where δ_{sample} is the experimentally determined chemical shift in the ³¹P NMR.

For each determination of a zinc complex, 0.250 mL of a triethylphosphine oxide stock solution (0.1242 M, THF) were combined with an equimolar amount of substrate in 0.500 mL THF and stirred at room temperature for 10 minutes. In a separate vial, an equimolar amount of TIPF₆ was dissolved in 0.250 mL THF. The solution containing Zn was transferred to the TIPF₆ solution, resulting in an immediate white precipitate. The reaction was stirred 5 minutes, then filtered into a screw cap NMR tube. A sealed triethylphosphine oxide capillary was added and the ³¹P NMR spectra were referenced to this internal standard (+43.36 ppm). The ³¹P resonances are reported relative to phosphoric acid. Multiple attempts were made to grow single, X-ray qualtity crystals of these adducts. Unfortunately, all attempts resulted in single crystals of [Zn(OPEt₃)₄][PF₆]₂ (see crystallography section above).

For each determination of PhCH₂CH₂BPin⁸ and PhCH₂CH₂BBN,⁹ 0.500 mL of a triethylphosphine oxide stock solution (0.1242 M, THF) was combined with an equimolar amount of substrate in 0.500 mL THF. The solutions stirred at room temperature for 20 minutes, then were transferred to a screw-cap NMR tube. A sealed triethylphosphine oxide capillary was added and the ³¹P NMR spectra were referenced to this internal standard (+43.36 ppm). The ³¹P resonances are reported relative to phosphoric acid.

Compound	³¹ Ρ δ (ppm)	Full Width at	Acceptor
		Half Max (Hz)	Number
No Substrate	43.4	5.6	5.2
PhCH ₂ CH ₂ BPin ^a	43.2 ± 0.04	14.1	4.8 ± 0.1
PhCH ₂ CH ₂ BBN ^a	52.3 ± 0.06	19.2	25.0 ± 0.1
(^{butyl} NN ^{tBu})ZnBr ₂ ^b	71.0 ± 0.1	51	66.3 ± 0.2
(^{2-BBN} NN ^{tBu})ZnBr ₂ ^b	70.2 ± 0.3	39	64.6 ± 0.7
(^{3-BBN} NN ^{tBu})ZnBr ₂ ^a	70.6 ± 0.2	60	65.4 ± 0.4
(^{4-BBN} NN ^{tBu})ZnBr ₂ ^a	70.8 ± 0.01	75	65.8 ± 0.1

Table S19. Acceptor numbers of zinc complexes and model substrates

^a average of two trials. ^b average of three trials.

Figure S84. ³¹P NMR spectra (THF, 25 °C) for determination of acceptor number. The resonance at +43.36 ppm corresponds to an internal (sealed capillary) OPEt₃ reference.

Computational Details

DFT calculations were performed using the Gaussian 09 revD01 software package¹⁰ using the B3LYP functional¹¹ and an ultrafine integration grid for all atoms. Charges and Wiberg bond indices were determined using NBO version 3.1.¹² All reported compounds underwent geometry optimization with the 6-31G(d) basis set,¹³ followed by vibrational frequency calculations. These were used to verify that the structures were truly local energetic minima by the absence of imaginary vibrational modes and to provide entropies of formation at 25 °C. Energies were determined by applying the free energy and enthalpy corrections from the frequency calculations to the scf energies from single point calculations of the optimized geometries using the higher-level $6-311+G(2d,p)^{14}$ basis set for all atoms except Zn, which was treated with 6-311+G(2d),¹⁵ with a polarizable continuum model of dichloromethane solvent correction. The single point calculations were used in charge and Wiberg bond index analysis. For determination of Brønsted acidity (see below), an acetonitrile solvation model was used with the same 6-311+G(2d,p) basis set for all atoms except Zn, which was treated with 6-311+G(2d). The calculated pKa values were calibrated to those of pyridine/pyridinium.¹⁶

Table S20. Wiberg bond index analysis of Zn complexes

Compound	Zn-N _β	Ν _α - Ν _β	Να-Β	N_{α} - $H_{\alpha 1}$	N_{α} - $H_{\alpha 2}$	$N_{\beta}-H_{\beta 1}$	$N_{\beta}-H_{\beta 2}$
$[(^{2-BBN}NN^{tBu})ZnBr(N_2H_4)]^+$	0.24	1.01	0.51	0.70	0.69	0.70	0.71
$[(^{3-BBN}NN^{tBu})ZnBr(N_2H_4)]^+$	0.24	1.01	0.50	0.69	0.68	0.71	0.70
$[(^{4-BBN}NN^{tBu})ZnBr(N_2H_4)]^+$	0.24	1.01	0.50	0.75	0.78	0.81	0.81
(^{3-BBN} NN ^{tBu})ZnBr ₂ (N ₂ H ₄)		1.01	0.55	0.79	0.77	0.85	0.85

Table S21. Natural charge analysis of Zn complexes

Compound	Zn	В	Να	Νβ	$H_{\alpha 1}$	$H_{\alpha 2}$	H _{β1}	H _{β2}
$[(^{2-BBN}NN^{tBu})ZnBr(N_2H_4)]^+$	1.07	0.81	-0.57	-0.68	0.42	0.42	0.42	0.42
$[(^{3-BBN}NN^{tBu})ZnBr(N_2H_4)]^+$	1.07	0.83	-0.58	-0.68	0.42	0.43	0.41	0.42
$[(^{4-BBN}NN^{tBu})ZnBr(N_2H_4)]^+$	1.08	0.82	-0.59	-0.68	0.43	0.42	0.42	0.41
(^{3-BBN} NN ^{tBu})ZnBr ₂ (N ₂ H ₄)	0.91	0.79	-0.60	-0.64	0.40	0.41	0.37	0.37

Table S22. Thermodynamics of $Zn-N_2H_4$ bond forming

Compound	ΔG (kcal/mol)
B-2	-159.9
B-3	-158.4
B-4	-161.7

Table S23. Acidification of N₂H₄

Compound	SCF (CH₃CN)	G _{corr}	ΔG	K _{eq}	р <i>К</i> _{еq}	р <i>К</i> а
Pyridine	-248.363	0.061514				
[Pyridinium] ⁺	-248.809	0.061514				12.33
NH ₂ NH ₂	-111.92	0.030744				
NH₂NH ⁻	-111.375	0.01306	60.9	1.29E-45	44.9	57.2
MethylBBN-NH ₂ NH ₂	-490.109	0.269219				
MethylBBN-NH ₂ NH ⁻	-489.58	0.25365	51.4	1.24E-38	37.9	50.2
MethylBBN-NHNH ₂ -	-489.608	0.252936	33.6	1.63E-25	24.8	37.1
[(^{butyl} NN ^{tBu})ZnBr(N ₂ H ₄)] ⁺	-5289.85	0.39605				
(^{butyl} NN ^{tBu})ZnBr(NH ₂ NH)	-5289.33	0.379341	48.9	8.99E-37	36.0	48.4
(^{butyl} NN ^{tBu})ZnBr(NHNH ₂)	-5289.36	0.379755	28.6	7.88E-22	21.1	33.4
$[(^{2-BBN}NN^{tBu})ZnBr(N_2H_4)]^+$	-5548.84	0.542420				
(^{2-BBN} NN ^{tBu})ZnBr(NH ₂ NH)	-5548.37	0.527752	19.2	7.25E-15	14.1	26.5
(^{2-BBN} NN ^{tBu})ZnBr(NHNH ₂)	-5548.37	0.528555	18.0	5.54E-14	13.3	25.6
$[(^{3-BBN}NN^{tBu})ZnBr(N_2H_4)]^+$	-5588.17	0.569517				
(^{3-BBN} NN ^{tBu})ZnBr(NH ₂ NH)	-5587.69	0.553965	19.7	2.97E-15	14.5	26.9
(^{3-BBN} NN ^{tBu})ZnBr(NHNH ₂)	-5587.7	0.555253	17.0	2.77E-13	12.6	24.9
$[(^{4-BBN}NN^{tBu})ZnBr(N_2H_4)]^+$	-5627.49	0.597666				
(^{4-BBN} NN ^{tBu})ZnBr(NH ₂ NH)	-5627.01	0.581453	20.6	6.48E-16	15.2	27.5
(^{4-BBN} NN ^{tBu})ZnBr(NHNH ₂)	-5627.02	0.583888	17.0	3.05E-13	12.5	24.8

Figure S85. pKa values for hydrazine protons in C-2 (left), C-3 (center), and C-4 (right)

Figure S86. Structural overlays of DFT optimized geometries and molecular structures. Molecular structure is in red, with the DFT optimized geometries in blue. Overlay similarities (RMS) are included. Hydrogen atoms not attached to heteroatoms are omitted for clarity.

Optimized Coordinates

 N_2H_4

Ν	3.41827900	-0.60260000	0.65862700
Н	4.06537400	-1.32008700	0.97220600
Н	3.11230800	-0.09249500	1.48733000
Ν	4.13455500	0.23839300	-0.25820200
Н	4.59303500	1.01738100	0.21462800
Н	3.44974300	0.63680500	-0.89392700

$N_2H_3^-$

Ν	0.76655600	0.10485000	0.05812500
Н	1.12829300	-0.49328200	-0.71696400
Ν	-0.70398400	-0.06181700	-0.17584000

Н	-1.11698500	0.88656800	-0.25463100
Н	-1.12755100	-0.37402500	0.71786100

MethylBBN-N₂H₄

В	7.38318800	3.69251400	9.40842400
С	8.30029500	2.58900700	10.19288400
Н	7.98537500	2.46224700	11.24357100
С	9.75069800	3.13695000	10.23825600
Н	9.75535900	4.02105200	10.88794900
Н	10.42180000	2.41034000	10.72080100
С	10.35175400	3.52566000	8.86649000
Н	10.73001600	2.62731600	8.36894200
Н	11.23834200	4.15197800	9.03248200
С	9.38662300	4.27038500	7.91375500
Н	9.82632600	4.27533500	6.90489300
Н	9.33365800	5.32301300	8.21972200
С	7.93713200	3.71901100	7.87363200
Н	7.36877000	4.41732900	7.23367500
С	7.83227900	2.32111100	7.20934900
Н	6.76629900	2.08366200	7.04219500
Н	8.26857000	2.33527100	6.19966400
С	8.47358400	1.16095400	8.00554700
Н	9.55292200	1.16745300	7.83374800
Н	8.12399900	0.20404200	7.59485500
С	8.20652500	1.18976400	9.52861100
Н	8.89251700	0.48219700	10.01722500
Н	7.20457600	0.76647700	9.72000700
Ν	5.83065500	3.07908400	9.39449400
Н	5.81310800	2.12733000	9.02682400
Н	5.49420300	2.99914300	10.35584000
Ν	4.78766500	3.80411600	8.66487000
Н	4.86054400	4.75968200	9.01642900
Н	5.14915200	3.86487300	7.71186800
С	7.22589300	5.13418700	10.15120000
Н	8.19681500	5.61403300	10.31116800
Н	6.63425600	5.87191600	9.58586100
Н	6.76705100	5.05659600	11.15021100

MethylBBN-NHNH2⁻

В	7.29022300	3.65271100	9.41801000
С	8.29679400	2.59310400	10.20470200
н	7.97412600	2.47370900	11.25369100

С	9.73690700	3.15527000	10.24812400
Н	9.72493700	4.05878800	10.87232500
Н	10.43030000	2.45447000	10.75050700
С	10.34542800	3.52171900	8.87313400
Н	10.72490000	2.61133600	8.39439200
Н	11.23682200	4.15116000	9.02798200
С	9.37945600	4.24131400	7.90083200
н	9.84311000	4.23477200	6.89577700
Н	9.32328000	5.29887300	8.19236100
С	7.93599900	3.68609300	7.87091800
Н	7.36991000	4.36827400	7.20747500
С	7.83063400	2.28267200	7.22887100
н	6.76199600	2.05407400	7.10877300
Н	8.25597600	2.26312700	6.20798200
С	8.48145000	1.13601900	8.03925200
н	9.56249900	1.13868000	7.85830000
Н	8.13109600	0.16896100	7.64327900
С	8.22282100	1.18534000	9.56496800
н	8.92291300	0.48070800	10.05229000
Н	7.22136200	0.77651500	9.76295900
N	5.82546200	3.10173100	9.48005200
N	4.82600000	3.82867300	8.70415300
Н	4.53801400	4.60447000	9.30072400
Н	5.29721600	4.29378100	7.91796600
С	7.26467200	5.14897100	10.12214000
Н	8.23623900	5.66098000	10.17730800
Н	6.59393100	5.84520800	9.59037600
Н	6.88389000	5.08691100	11.15437600
Н	5.75187900	2.14777900	9.13574800

MethylBBN-NH₂NH⁻

В	7.34278100	3.66830900	9.39298900
С	8.29831800	2.57399200	10.18583000
Н	7.96950800	2.42244800	11.23258000
С	9.73670900	3.14110500	10.26409600
Н	9.70966700	4.04155400	10.89418900
Н	10.41836600	2.43606900	10.77600200
С	10.36477100	3.51503000	8.90085100
Н	10.72621800	2.60249300	8.41169800
Н	11.26815600	4.12244600	9.07597300
С	9.41750300	4.27138100	7.93760400
Н	9.88370300	4.27902900	6.93477500
Н	9.37719900	5.32430500	8.25392400

С	7.96821400	3.73532900	7.88115900
Н	7.38186300	4.43308000	7.26406100
С	7.82716200	2.35356000	7.20316500
Н	6.74423400	2.19746800	7.08609100
Н	8.24988800	2.35869500	6.18105300
С	8.46810800	1.17280700	7.97124500
Н	9.54722400	1.15617300	7.77337600
Н	8.09030000	0.22166400	7.56121600
С	8.24155800	1.18116600	9.50506700
Н	8.96253200	0.48247200	9.96840100
Н	7.25417900	0.73538100	9.71038100
Ν	5.81696200	3.09185600	9.32635400
Н	5.85787600	2.08466700	9.17277500
Н	5.44838300	3.17279100	10.29531800
Ν	4.84594100	3.56268300	8.31644900
С	7.21086000	5.11521300	10.15704300
Н	8.15053400	5.68326600	10.21503800
Н	6.48379000	5.77029800	9.65180700
Н	6.85804700	5.00505800	11.19889800
Н	5.13205100	4.54994900	8.22041800

[(^{Butyl}NN^{tBu})ZnBr(N₂H₄)]⁺

Br	4.68476700	4.94739400	4.89158800
Zn	6.23634800	3.98429200	3.45322300
Ν	7.89094500	4.99188200	2.75382000
Ν	7.60318400	2.56764200	3.89476500
Ν	7.68795400	1.30197500	4.36085500
Ν	3.72436100	2.86625200	2.24781000
Н	2.94694700	3.21689700	1.68414400
Н	3.56405400	3.18079400	3.21439800
Ν	4.96318600	3.49488500	1.81383500
Н	4.74028100	4.37017700	1.33527700
Н	5.35458200	2.85911100	1.11292200
С	6.67349500	7.01386200	2.10560200
С	7.96067800	6.25425500	2.27456200
С	9.19550800	6.81685200	1.93736100
С	10.36021100	6.06990800	2.09502700
С	10.27950500	4.77265700	2.59583600
С	9.02569200	4.26059300	2.92259000
С	8.83618200	2.92076300	3.48902800
С	9.72562500	1.86654600	3.70965100
С	8.97355700	0.83514000	4.27376700
С	9.47075900	-0.54239600	4.70745000
С	10.99807700	-0.60476500	4.47830900

С	9.21535100	-0.78417900	6.21598500
С	8.82378300	-1.65729500	3.84762400
С	6.50650700	0.68176300	5.00164200
н	6.86423600	8.07478900	1.92879700
н	6.11206300	6.63769900	1.23927300
Н	6.03668700	6.91802000	2.99169500
Н	9.23278800	7.83163800	1.55708300
Н	11.32447300	6.49682300	1.83682300
Н	11.16988500	4.17254000	2.74355400
Н	10.77950600	1.83812800	3.48619100
Н	11.36776100	-1.58684300	4.78779900
Н	11.25803600	-0.47325800	3.42240200
Н	11.52902200	0.14997900	5.06845200
Н	9.24596300	-2.62571800	4.13568700
Н	7.73914200	-1.72671300	3.96918900
Н	9.03240000	-1.50133700	2.78384100
Н	9.67298600	0.00428400	6.82329200
Н	8.15453900	-0.83780200	6.47240300
Н	9.66832900	-1.73719300	6.50833500
С	5.43358148	0.39749301	3.93411149
С	4.12833007	-0.04274891	4.62266491
С	3.97008267	-1.56925002	4.49478945
Н	6.79542493	-0.23581567	5.47012447
Н	6.10904314	1.34852782	5.73808423
Н	5.77440143	-0.38141443	3.28446160
Н	5.25418277	1.28477054	3.36362513
Н	4.16253824	0.22683006	5.65758373
Н	3.29717755	0.44241065	4.15500510
н	4.84507187	-1.98144551	4.03719929
н	3.84078207	-1.99710576	5.46696270
Н	3.11444295	-1.78981967	3.89135785

(^{Butyl}NN^{tBu})ZnBr(NH₂NH)

Br	4.68476700	4.94739400	4.89158800
Zn	6.23634800	3.98429200	3.45322300
Ν	7.89094500	4.99188200	2.75382000
Ν	7.60318400	2.56764200	3.89476500
Ν	7.68795400	1.30197500	4.36085500
Ν	3.72436100	2.86625200	2.24781000
Ν	4.96318600	3.49488500	1.81383500
С	6.67349500	7.01386200	2.10560200
С	7.96067800	6.25425500	2.27456200
С	9.19550800	6.81685200	1.93736100
С	10.36021100	6.06990800	2.09502700

С	10.27950500	4.77265700	2.59583600
С	9.02569200	4.26059300	2.92259000
С	8.83618200	2.92076300	3.48902800
С	9.72562500	1.86654600	3.70965100
С	8.97355700	0.83514000	4.27376700
С	9.47075900	-0.54239600	4.70745000
С	10.99807700	-0.60476500	4.47830900
С	9.21535100	-0.78417900	6.21598500
С	8.82378300	-1.65729500	3.84762400
С	6.50650700	0.68176300	5.00164200
Н	6.86423600	8.07478900	1.92879700
Н	6.11206300	6.63769900	1.23927300
Н	6.03668700	6.91802000	2.99169500
Н	9.23278800	7.83163800	1.55708300
Н	11.32447300	6.49682300	1.83682300
Н	11.16988500	4.17254000	2.74355400
Н	10.77950600	1.83812800	3.48619100
Н	11.36776100	-1.58684300	4.78779900
Н	11.25803600	-0.47325800	3.42240200
Н	11.52902200	0.14997900	5.06845200
Н	9.24596300	-2.62571800	4.13568700
Н	7.73914200	-1.72671300	3.96918900
Н	9.03240000	-1.50133700	2.78384100
Н	9.67298600	0.00428400	6.82329200
Н	8.15453900	-0.83780200	6.47240300
Н	9.66832900	-1.73719300	6.50833500
С	5.43358148	0.39749301	3.93411149
С	4.12833007	-0.04274891	4.62266491
С	3.97008267	-1.56925002	4.49478945
Н	6.79542493	-0.23581567	5.47012447
Н	6.10904314	1.34852782	5.73808423
Н	5.77440143	-0.38141443	3.28446160
Н	5.25418277	1.28477054	3.36362513
Н	4.16253824	0.22683006	5.65758373
Н	3.29717755	0.44241065	4.15500510
Н	4.84507187	-1.98144551	4.03719929
Н	3.84078207	-1.99710576	5.46696270
Н	3.11444295	-1.78981967	3.89135785
Н	5.44865651	2.85804526	1.21487463
Н	4.73663965	4.33793512	1.32604073
Н	3.93547211	2.06185296	2.80312458

(^{Butyl}NN^{tBu})ZnBr(NHNH₂)

Br 4.68476700 4	4.94739400	4.89158800
-----------------	------------	------------

Zn	6.23634800	3.98429200	3.45322300
Ν	7.89094500	4.99188200	2.75382000
Ν	7.60318400	2.56764200	3.89476500
Ν	7.68795400	1.30197500	4.36085500
Ν	3.72436100	2.86625200	2.24781000
Н	2.94694700	3.21689700	1.68414400
Н	3.56405400	3.18079400	3.21439800
Ν	4.96318600	3.49488500	1.81383500
С	6.67349500	7.01386200	2.10560200
С	7.96067800	6.25425500	2.27456200
С	9.19550800	6.81685200	1.93736100
С	10.36021100	6.06990800	2.09502700
С	10.27950500	4.77265700	2.59583600
С	9.02569200	4.26059300	2.92259000
С	8.83618200	2.92076300	3.48902800
С	9.72562500	1.86654600	3.70965100
С	8.97355700	0.83514000	4.27376700
С	9.47075900	-0.54239600	4.70745000
С	10.99807700	-0.60476500	4.47830900
С	9.21535100	-0.78417900	6.21598500
С	8.82378300	-1.65729500	3.84762400
С	6.50650700	0.68176300	5.00164200
Н	6.86423600	8.07478900	1.92879700
Н	6.11206300	6.63769900	1.23927300
Н	6.03668700	6.91802000	2.99169500
Н	9.23278800	7.83163800	1.55708300
Н	11.32447300	6.49682300	1.83682300
Н	11.16988500	4.17254000	2.74355400
Н	10.77950600	1.83812800	3.48619100
Н	11.36776100	-1.58684300	4.78779900
Н	11.25803600	-0.47325800	3.42240200
Н	11.52902200	0.14997900	5.06845200
Н	9.24596300	-2.62571800	4.13568700
Н	7.73914200	-1.72671300	3.96918900
Н	9.03240000	-1.50133700	2.78384100
Н	9.67298600	0.00428400	6.82329200
Н	8.15453900	-0.83780200	6.47240300
Н	9.66832900	-1.73719300	6.50833500
С	5.43358148	0.39749301	3.93411149
С	4.12833007	-0.04274891	4.62266491
С	3.97008267	-1.56925002	4.49478945
Н	6.79542493	-0.23581567	5.47012447
Н	6.10904314	1.34852782	5.73808423
Н	5.77440143	-0.38141443	3.28446160

Н	5.25418277	1.28477054	3.36362513
Н	4.16253824	0.22683006	5.65758373
Н	3.29717755	0.44241065	4.15500510
Н	4.84507187	-1.98144551	4.03719929
Н	3.84078207	-1.99710576	5.46696270
Н	3.11444295	-1.78981967	3.89135785
Н	5.19110301	3.67640090	0.85722337

(^{2-BBN}NN^{tBu})ZnBr₂(N₂H₄)

Br	-0.90131000	8.18735800	3.13964100
Br	1.70152400	10.34380900	0.88721200
Zn	0.30501600	8.45013400	1.11643900
Ν	-0.57279200	8.16316200	-0.76508700
Ν	1.11995300	6.63874300	0.61224200
Ν	1.89431100	5.69559500	1.16963200
Ν	2.31357400	8.45603900	4.78553500
Н	1.40062600	8.20458900	4.38103400
Н	2.13874900	8.54757600	5.78672800
Ν	2.62450800	9.81058900	4.32788300
Н	2.10789700	9.96941300	3.46016800
Н	3.60618300	9.78231500	4.05782200
С	-1.94126600	10.16284400	-0.57604400
С	-1.43717100	8.99562900	-1.37676100
С	-1.82418900	8.76815200	-2.70212300
С	-1.30172400	7.67614200	-3.39103200
С	-0.40718900	6.82337200	-2.74989700
С	-0.06244400	7.09452100	-1.42536200
С	0.84510600	6.25189600	-0.64009800
С	1.48080400	5.03022600	-0.89993100
С	2.14639500	4.68519000	0.27755500
С	2.96385600	3.42643900	0.54856200
С	4.37912900	3.77167800	1.06730500
С	3.12567100	2.64905200	-0.77658900
С	2.22724000	2.50162800	1.54963200
С	2.22076700	5.86970800	2.61101800
С	3.32116900	6.88836700	2.92303700
С	3.13050100	6.04597200	5.59611400
С	4.18938100	4.92812700	5.39887300
С	5.66003200	5.38302100	5.52006200
С	5.97762000	6.71725600	4.80914700
С	4.91589300	7.83434100	4.98591600
С	4.85910700	8.39302300	6.43285600
С	4.31714200	7.41176700	7.49911500
С	3.09596600	6.56871700	7.05815900

В	3.45373600	7.25283700	4.53209600
Н	-1.10610600	10.82029300	-0.30527000
Н	-2.67912900	10.74143900	-1.13747100
Н	-2.40005800	9.82072800	0.35891800
Н	-2.52430900	9.44579300	-3.17860000
Н	-1.58960700	7.48997000	-4.42173600
Н	0.01760800	5.96602300	-3.26000900
Н	3.72846200	1.75226200	-0.59972800
Н	2.15968400	2.32382100	-1.17821400
Н	3.63440400	3.25080200	-1.53766000
Н	4.96223700	2.85023100	1.17668400
Н	4.90590200	4.42442400	0.36261300
Н	4.36465800	4.26878100	2.03957100
Н	2.10592200	2.95535200	2.53694100
Н	1.23174100	2.23778000	1.17614500
Н	2.79783200	1.57516300	1.68134800
Н	1.45649800	4.45730000	-1.81288100
Н	1.26787900	6.15057200	3.06925700
Н	2.47924200	4.88461800	2.99219600
Н	4.27108500	6.50548100	2.52996300
Н	3.12678900	7.80789000	2.35073500
Н	5.26481900	8.66356200	4.34353800
Н	2.14799600	5.57373700	5.42024000
Н	5.85585700	8.73467900	6.75200600
Н	4.23489000	9.29974600	6.43233700
Н	5.12218000	6.73833200	7.80782600
Н	4.05387300	7.97559100	8.40507100
Н	2.18032700	7.16719800	7.20085300
Н	2.97866700	5.72861700	7.76006700
Н	4.01439200	4.10497200	6.10953200
Н	4.04902500	4.48709100	4.40072600
Н	5.92919200	5.45820500	6.57804400
Н	6.31236000	4.59652300	5.11431000
Н	6.96295900	7.07099400	5.15028800
Н	6.09274600	6.52183500	3.73386300

(^{3-BBN}NN^{tBu})ZnBr₂(N₂H₄)

С	6.26249500	-1.28349900	8.11970900
С	6.44659800	-0.22742600	7.06703300
С	5.43999100	0.10839100	6.15406500
С	5.67449200	1.10444500	5.20969000
С	6.90909500	1.74807900	5.18305000
С	7.87626400	1.36862000	6.11387100
С	9.21859600	1.95806100	6.16444400
С	9.87499900	2.90676000	5.36669200

С	11.16683400	3.01549400	5.88167400
С	12.30720900	3.89302500	5.37764300
С	11.77450700	4.78534100	4.23499200
С	13.45339200	3.02484300	4.80145400
С	12.83460000	4.82482800	6.49532200
С	12.31557300	1.77739000	7.86882800
С	12.08632200	2.27411600	9.30109500
С	13.13759300	1.71893400	10.27827900
С	12.62965100	3.57232400	12.28536300
С	12.21790500	3.71632300	13.77541100
С	13.12116300	2.97949700	14.79404400
С	13.59489300	1.57397000	14.35400000
С	14.03638300	1.45853800	12.87262800
С	15.34235900	2.23827600	12.56658300
С	15.21824900	3.78076600	12.59237600
С	13.93113800	4.34458200	11.94608600
В	12.86612100	2.00456400	11.87462900
N	7.63646600	0.40292600	7.03365400
N	10.05251000	1.52032900	7.11581200
N	11.22692300	2.14866700	6.94182800
N	11.44156000	1.20489400	12.23360400
н	11.19948800	1.41856800	13.20083100
Н	10.67281000	1.57412700	11.65762600
N	11.46449000	-0.24380000	12.14583400
Н	12.11722000	-0.47106200	11.39831500
Н	10.54150700	-0.53486000	11.81775500
Zn	9.22175600	0.12496700	8.38715000
Br	8.43757900	0.98272800	10.47480800
Br	10.41417700	-1.89009000	8.33012300
н	7.04862100	-2.04369400	8.04272400
н	6.34096500	-0.83816800	9.11876300
Н	5.28910000	-1.77157700	8.02654900
Н	4.48832900	-0.41047500	6.19324800
Н	4.90129300	1.37731700	4.49727900
Н	7.12265100	2.52631600	4.45885400
Н	9.47665900	3.44274900	4.52030500
Н	13.60382300	5.48852000	6.08468800
Н	12.02839500	5.44889500	6.89603100
Н	13.28305900	4.28053900	7.33009400
Н	13.92100800	2.38245300	5.55263300
Н	13.08653400	2.38244900	3.99357600
Н	14.23485900	3.67442200	4.39111700
Н	12.58113700	5.43033100	3.87153800
Н	11.41897200	4.18945800	3.38729700
Н	10.95698400	5.43068200	4.57449600
Н	13.24867600	2.16077100	7.46041500
Н	12.36548800	0.68372500	7.85156800
Н	12.08853700	3.37159300	9.31376400

Н	11.07434300	1.97169500	9.59633900
Н	13.24964400	0.63689700	10.08583300
Н	14.11566000	2.13795700	10.00448900
Н	11.82568200	4.04899600	11.69687400
Н	14.26419100	0.39403200	12.69885300
Н	14.40881800	1.25802000	15.02520900
Н	12.78790900	0.84508600	14.53043800
Н	13.99669400	3.60028500	15.00728800
Н	12.58820900	2.89845900	15.75238500
Н	12.16560400	4.77947200	14.05832400
Н	11.18190000	3.35407800	13.89273000
Н	14.05487500	4.33960200	10.85315800
Н	13.83405800	5.40537400	12.22788500
Н	15.28240900	4.13278500	13.62714200
Н	16.09170600	4.21867900	12.08793500
Н	16.14018600	1.94179700	13.26603600
Н	15.69637600	1.93192700	11.57233500
(^{4-BBN} NN ^{tBu})ZnBr₂(N₂H₄)		
Br	4.14588300	2.57190200	14.27434400
Br	1.95148200	-0.88526600	15.01241900
Zn	3.16953300	0.54783600	13.59497900
Ν	4.42494400	-0.64587700	12.38376500
Ν	2.30421400	0.82777400	11.72389300
Ν	1.33657200	1.57618200	11.17100000
Ν	-3.66127300	3.39857200	15.51785700
Н	-2.83767900	2.96458700	15.93881700
Н	-4.07914000	4.01003000	16.22257900
Ν	-4.55116600	2.32774200	15.13205900
Н	-5.19675200	2.14117200	15.89801500
Н	-5.09246200	2.68786700	14.34856700
С	5.80278400	-1.27747600	14.28037400
С	5.46968700	-1.37473200	12.81885100
С	6.19462600	-2.17755300	11.92983700
С	5.82583100	-2.21981400	10.58770100
С	4.74357700	-1.46116000	10.14900600
С	4.06101400	-0.67802200	11.08066300
С	2.91772300	0.17269100	10.73231000
С	2.31530800	0.50230200	9.50783300
С	1.30098200	1.40917900	9.80907600
С	0.36111300	2.11931000	8.84045800
С	-1.12382200	1.86371400	9.19299000
С	0.65929600	3.63919300	8.80983700
С	0.60728700	1.56381600	7.42036200
С	0.51957300	2.38733200	12.08990300
С	-0.48261000	1.54918400	12.89387600
С	-1.30469300	2.40871900	13.87247900
С	-2.35389300	3.33824700	13.22958300

С	-4.44014600	5.11736000	13.61473500
С	-3.94127700	6.03746500	12.46846000
С	-2.83026700	7.04065800	12.85880500
С	-1.72707900	6.47086200	13.78163300
С	-2.22917400	5.54766400	14.92323200
С	-3.02143400	6.32392200	16.00990200
С	-4.40733800	6.85366900	15.57166800
С	-5.23747400	5.87652500	14.70689400
В	-3.13113100	4.36451000	14.24046800
н	6.01325700	-0.23659900	14.55372300
н	4.94606200	-1.60081900	14.88389500
н	6.67055700	-1.89223000	14.53306900
н	7.03508900	-2.75717500	12.29636200
н	6.37766200	-2.83974100	9.88678400
н	4.43078500	-1.47430900	9.11075400
н	2.58531200	0.14666000	8.52652000
Н	1.63349500	1.74890500	7.08493800
Н	0.41358400	0.48673200	7.36958000
Н	-0.06688600	2.05956900	6.71412600
Н	1.70257100	3.82527300	8.53289500
Н	0.01717000	4.12528100	8.06633300
Н	0.47727400	4.12786900	9.77104600
Н	-1.41579200	2.29243400	10.15463300
Н	-1.76289200	2.31564800	8.42577800
Н	-1.33921800	0.78983500	9.22211600
Н	1.22549000	2.88984400	12.75988600
Н	0.02044800	3.15241000	11.49933800
Н	-1.15627700	1.02252800	12.20479000
Н	0.06983000	0.78482700	13.45205400
Н	-1.80962500	1.70392100	14.54860600
Н	-0.60689900	2.98824000	14.49584600
Н	-1.86852600	3.94406200	12.45093600
Н	-3.07546200	2.70569400	12.68502100
Н	-5.15198000	4.41812200	13.13594100
Н	-1.32445300	5.15613200	15.41920600
Н	-3.56591500	5.39146600	11.66310600
Н	-4.78252900	6.59860000	12.03198600
Н	-2.36330500	7.42632500	11.94161200
Н	-3.28400000	7.91630700	13.33434900
H	-1.01695800	5.89/41400	13.1/089200
H	-1.14804800	7.310/1/00	14.19562800
н	-6.0//45600	6.43129000	14.26127900
н	-5./1945300	5.13511400	15.3/02//00
н	-4.98803400	7.13020400	16.46319000
н	-4.2/228900	/./8/42400	15.01877200
н	-3.15242000	5.6/408200	16.89426200
Н	-2.42751200	/.16999400	16.38749200

С	3.19428900	-0.35826800	6.54089700
С	4.52948500	-1.03742900	6.66676600
С	4.88481400	-1.76194400	7.80977900
С	6.13592700	-2.36830200	7.88221200
С	7.01904700	-2.24790700	6.81108000
С	6.61492100	-1.52065800	5.69387500
С	7.45493000	-1.36035200	4.50080500
С	8.73188300	-1.82844500	4.18527600
С	9.00151300	-1.38564600	2.88805200
С	10.25999900	-1.65772400	2.06499200
С	11.19177700	-2.57672500	2.88749700
С	9.91739000	-2.39649400	0.74749400
С	11.03186700	-0.34709600	1.77480700
С	7.57596000	-0.10998800	1.15283000
С	6.61492700	1.08740400	1.12590400
С	8.55658000	3.03093400	1.66592100
С	8.84517400	3.23538800	0.15232800
С	7.87949400	4.19680300	-0.57703200
С	6.38603000	4.02349500	-0.21461100
С	6.08734200	3.78173800	1.29267100
С	6.33589800	5.04609100	2.15923700
С	7.81688700	5.47102400	2.29245600
С	8.81765900	4.31065300	2.50810300
В	7.01543900	2.53310800	1.78635200
Ν	5.39291800	-0.92673600	5.63229000
Ν	6.96027100	-0.65891500	3.46203600
Ν	7.90384100	-0.66626500	2.49164800
Ν	6.71800400	2.37965900	3.47165100
Н	7.32750300	1.66259300	3.87032900
Н	6.94668000	3.27911000	3.90022700
Ν	5.35075900	2.00583800	3.78406500
Н	4.77496000	2.39657700	3.03120000
Н	5.05746400	2.46277500	4.64999900
Zn	5.03149500	-0.09585500	3.77034300
Br	3.10303500	-0.59119300	2.63232400
Н	5.00033100	3.57465400	1.33830700
Н	9.27851000	2.27530700	2.02144800
Н	5.76012900	5.89536900	1.76693900
Н	5.91429200	4.88610500	3.17094700
Н	8.10421100	6.02694300	1.39711000
Н	7.91427100	6.18888900	3.11743200
Н	5.83231400	4.90480600	-0.56726200
Н	5.97762100	3.17824400	-0.78377400
Н	8.18572500	5.22922600	-0.38581200
Н	7.99671000	4.06149600	-1.65973400
Н	9.87502500	3.59300800	0.00971200

 $[(^{2-BBN}NN^{tBu})ZnBr(N_2H_4)]^+$

Н	8.80230500	2.25432000	-0.34331300
Н	8.82686000	4.03818200	3.58016200
Н	9.83394200	4.68557300	2.32300600
Н	3.31002200	0.73365100	6.54521100
Н	2.69957900	-0.63513200	5.60331600
Н	2.53913700	-0.62206900	7.37399800
Н	4.17816200	-1.84558200	8.62794500
Н	6.42099500	-2.93384500	8.76406900
Н	7.99701600	-2.71466300	6.83611500
Н	9.38649400	-2.41903900	4.80512700
Н	12.09526200	-2.78372200	2.30638300
Н	11.50537400	-2.10643800	3.82591000
Н	10.71796800	-3.53744700	3.11611000
Н	11.96028100	-0.58597300	1.24549500
Н	10.47356700	0.35510600	1.14996600
Н	11.29893900	0.16615300	2.70505800
Н	10.84732700	-2.66975500	0.23814200
Н	9.36079900	-3.31901500	0.94528900
Н	9.33406300	-1.78771000	0.05286900
Н	7.16479100	-0.94190800	0.56918200
Н	8.52786300	0.17127900	0.70758100
Н	6.49763200	1.27537900	0.05085700
н	5.60994200	0.74294000	1.41146800

[(^{3-BBN}NN^{tBu})ZnBr(N₂H₄)]⁺

Br	4.68476700	4.94739400	4.89158800
Zn	6.23634800	3.98429200	3.45322300
Ν	7.89094500	4.99188200	2.75382000
Ν	7.60318400	2.56764200	3.89476500
Ν	7.68795400	1.30197500	4.36085500
Ν	3.72436100	2.86625200	2.24781000
Н	2.94694700	3.21689700	1.68414400
Н	3.56405400	3.18079400	3.21439800
Ν	4.96318600	3.49488500	1.81383500
Н	4.74028100	4.37017700	1.33527700
Н	5.35458200	2.85911100	1.11292200
С	6.67349500	7.01386200	2.10560200
С	7.96067800	6.25425500	2.27456200
С	9.19550800	6.81685200	1.93736100
С	10.36021100	6.06990800	2.09502700
С	10.27950500	4.77265700	2.59583600
С	9.02569200	4.26059300	2.92259000
С	8.83618200	2.92076300	3.48902800
С	9.72562500	1.86654600	3.70965100
С	8.97355700	0.83514000	4.27376700
С	9.47075900	-0.54239600	4.70745000

С	10.99807700	-0.60476500	4.47830900
С	9.21535100	-0.78417900	6.21598500
С	8.82378300	-1.65729500	3.84762400
С	6.50650700	0.68176300	5.00164200
С	5.17629500	1.01101700	4.31788600
С	5.08070500	0.65135600	2.82643300
С	3.71938000	0.89504500	0.44224800
С	2.54002500	1.62853900	-0.25034600
С	1.14843600	1.37776700	0.37625700
С	1.11686300	1.37864600	1.92255000
С	2.29831600	0.64683000	2.61647700
С	2.25914700	-0.89361400	2.41665400
С	2.53330800	-1.38035100	0.97424000
С	3.67872000	-0.64600100	0.23749400
В	3.73240000	1.15503700	2.05123200
Н	6.86423600	8.07478900	1.92879700
Н	6.11206300	6.63769900	1.23927300
н	6.03668700	6.91802000	2.99169500
Н	9.23278800	7.83163800	1.55708300
Н	11.32447300	6.49682300	1.83682300
Н	11.16988500	4.17254000	2.74355400
Н	10.77950600	1.83812800	3.48619100
Н	11.36776100	-1.58684300	4.78779900
Н	11.25803600	-0.47325800	3.42240200
Н	11.52902200	0.14997900	5.06845200
Н	9.24596300	-2.62571800	4.13568700
Н	7.73914200	-1.72671300	3.96918900
Н	9.03240000	-1.50133700	2.78384100
Н	9.67298600	0.00428400	6.82329200
Н	8.15453900	-0.83780200	6.47240300
Н	9.66832900	-1.73719300	6.50833500
Н	6.67700000	-0.39196600	4.97985800
Н	6.49218000	1.00416000	6.04917000
Н	4.41094600	0.46367200	4.88188500
Н	4.94667100	2.06642700	4.51140700
Н	5.98894000	1.00216500	2.30655900
Н	5.13381100	-0.44117600	2.73717500
Н	2.18112700	0.82203100	3.69921100
Н	4.64445100	1.23148700	-0.06924300
Н	1.08281100	2.42371100	2.28077700
Н	0.44320400	2.13034100	-0.00042300
Н	0.15920300	0.95264300	2.25284500
Н	0.76587400	0.42141800	0.01168600
Н	3.00319400	-1.34272000	3.08959400
Н	1.28811200	-1.29182700	2.74420400
Н	2.76388000	-2.45334100	0.99972000
Н	1.61514300	-1.30250200	0.38480300
Н	3.61738300	-0.88239200	-0.83459100

Н	4.63980800	-1.05669800	0.57533100
Н	2.74090100	2.71835500	-0.25240900
Н	2.49985800	1.36753300	-1.31723300

$[(^{4-BBN}NN^{tBu})ZnBr(N_2H_4)]^+$

Br	4.48748100	5.96345300	2.88652300
Zn	2.43639900	5.89784700	3.97737900
С	2.77114100	2.64035200	4.72004200
С	1.41233900	2.98323900	4.17046500
С	0.43282000	2.00340500	3.98319000
С	-0.81524700	2.36373900	3.48133100
С	-1.06401900	3.69531700	3.15778600
С	-0.04991200	4.63075900	3.35298500
С	-0.18909200	6.04396900	2.98704100
С	-1.18804900	6.73396800	2.29609800
С	-0.72707000	8.04294500	2.14445000
С	-1.40626200	9.17374600	1.37216800
С	-1.57942800	10.45489200	2.22196700
С	-0.60643900	9.48307000	0.08065900
С	-2.81621200	8.69886300	0.95262200
С	1.43301500	9.21440700	2.94777000
С	1.27535500	9.93247400	4.30046800
С	1.85858700	9.18958900	5.51484500
С	3.40081300	9.18513600	5.57909500
С	3.39742700	8.27309200	8.23553900
С	3.36281900	9.71781100	8.81137400
С	4.73299300	10.42679600	8.90939600
С	5.65296600	10.23576800	7.68229100
С	5.68336500	8.79777400	7.09572300
С	6.39096500	7.79002600	8.04312300
С	5.62459600	7.44854300	9.34332200
С	4.09865400	7.25721500	9.17711600
В	4.14143600	8.36525100	6.78884700
Ν	1.16000400	4.27508600	3.86411500
Ν	0.82738100	6.87922800	3.26654900
Ν	0.50076300	8.08739800	2.75361400
Ν	4.27404700	6.75823400	6.19960600
Ν	3.00011800	6.07181100	6.01464800
Н	-0.63191600	10.94062300	2.46582100
Н	-2.17562500	11.17876100	1.65697300
Н	-2.10972500	10.24400300	3.15710400
Н	-2.77429600	7.82781000	0.29022900
Н	-3.43675600	8.45149600	1.82090700
Н	-3.31699500	9.50210100	0.40413600
н	0.39904600	9.86598500	0.27969200
н	-0.50832600	8.58934800	-0.54442200

Н	-1.13680800	10.24544800	-0.49967300
Н	-2.11721300	6.33881300	1.91953300
Н	-1.58521100	1.61249800	3.33481800
Н	-2.02170000	4.00462400	2.75535100
Н	0.65716600	0.97094300	4.22755200
Н	3.56129500	3.20030700	4.20836300
Н	2.82459000	2.85833200	5.79617000
Н	2.98088600	1.57409000	4.60593700
Н	2.44060300	8.80796200	2.82356500
Н	1.26316800	9.90359900	2.12284600
Н	1.78062900	10.90225400	4.20194500
Н	0.21307600	10.14973700	4.45997100
Н	1.46554800	9.66815300	6.41944400
Н	1.43464200	8.17368900	5.52783200
Н	3.81435000	8.85625800	4.60926600
Н	3.70850800	10.23752100	5.64799200
Н	2.33473200	7.96164300	8.17838600
Н	6.29157600	8.85181500	6.17722400
Н	3.63224600	7.27014800	10.17248700
Н	3.90732500	6.23183400	8.80355300
Н	6.05414300	6.54212100	9.79063500
Н	5.80117400	8.23810100	10.07746200
Н	6.60197000	6.85438100	7.49175800
Н	7.38934700	8.16113400	8.31369300
Н	5.33172700	10.92317900	6.88882500
Н	6.67091600	10.55310100	7.95062000
Н	4.56104500	11.50036600	9.06121100
Н	5.25159800	10.09276800	9.81285900
Н	2.70394300	10.32084900	8.17140500
Н	2.89193500	9.71710000	9.80520300
Н	4.75006300	6.73505600	5.28547100
Н	4.84790500	6.23492800	6.86359300
Н	2.33972900	6.57794400	6.61190000
Н	3.07482100	5.12908300	6.40188900

(^{2-BBN}NN^{tBu})ZnBr(NH₂NH)

С	3.31027800	-0.15872200	6.56443800
С	4.59408100	-0.93091400	6.68057200
С	4.93773000	-1.65472300	7.82867500
С	6.14674700	-2.34508300	7.86612000
С	6.99834400	-2.29692800	6.76565200
С	6.60101000	-1.55608600	5.65069200
С	7.42695600	-1.42017600	4.44567800
С	8.71116300	-1.88810500	4.13452700
С	8.98996500	-1.42263800	2.85164600
С	10.25718100	-1.66437100	2.03436100

С	11.18222000	-2.61048400	2.83253600
С	9.93724400	-2.35592300	0.68676600
С	11.03147200	-0.34462200	1.79888300
С	7.57683800	-0.09990400	1.13734600
С	6.60177500	1.08676100	1.13091600
С	8.51718500	3.02357300	1.75368900
С	8.86277800	3.21777800	0.25409700
С	7.93005200	4.18064000	-0.51550600
С	6.42385000	4.01037600	-0.20815800
С	6.07050100	3.77342000	1.28318700
С	6.28473200	5.04124900	2.15132100
С	7.76047500	5.46735200	2.34311800
С	8.75727000	4.30838400	2.59221600
В	6.95947700	2.52078900	1.86140900
Ν	5.41955600	-0.90026400	5.61795000
Ν	6.94105000	-0.71087900	3.41628200
Ν	7.88946300	-0.69862600	2.46090000
Ν	6.60744600	2.35192800	3.46565000
Ν	5.26174600	1.95098700	3.88712200
Zn	4.98650600	0.05040300	3.75629900
Br	3.20145300	-1.12807100	2.78986800
Н	4.98759800	3.55904500	1.30428500
Н	9.22914100	2.27140200	2.14151100
Н	5.73154500	5.89491400	1.72996400
Н	5.82555300	4.87557200	3.13980300
Н	8.08354100	6.03024200	1.46243600
Н	7.82556000	6.18083200	3.17711600
Н	5.88802700	4.89227200	-0.59325600
Н	6.04116200	3.16203600	-0.79172500
Н	8.23109700	5.21254700	-0.30805000
Н	8.09287600	4.04764200	-1.59452300
Н	9.90083900	3.56954500	0.13852900
Н	8.82762600	2.23525500	-0.24019500
Н	8.72880300	4.04070500	3.66208300
Н	9.77905700	4.68776800	2.43257200
Н	3.52119200	0.88725500	6.31218500
Н	2.69456000	-0.56924400	5.75506300
Н	2.74028800	-0.19020400	7.49669900
Н	4.25995600	-1.66970200	8.67553400
Н	6.42628500	-2.91412600	8.74824600
н	7.94842500	-2.81963900	6.76700100
Н	9.36175200	-2.48146500	4.75649600
Н	12.09309900	-2.79897800	2.25492800
Н	11.48251200	-2.17176700	3.79035500

Н	10.70306800	-3.57629200	3.02675700
Н	11.96276800	-0.55791200	1.26152000
Н	10.46972300	0.38342600	1.20844000
Н	11.29156300	0.12899500	2.75184000
Н	10.87364700	-2.60411900	0.17432000
Н	9.38286900	-3.28745000	0.84646600
Н	9.35259700	-1.72501800	0.01380100
Н	7.18657400	-0.91956200	0.52065000
Н	8.53363900	0.20544400	0.71655500
Н	6.48016000	1.28493500	0.05767600
Н	5.60933200	0.72621500	1.43215600
Н	6.82820200	3.22434200	3.95047700
Н	7.24584000	1.66340400	3.86741100
Н	4.64670200	2.46748000	3.25901400

(^{2-BBN}NN^{tBu})ZnBr(NHNH₂)

С	3.26247100	-0.20662300	6.56576500
С	4.55316800	-0.97132200	6.66654300
С	4.87935500	-1.72753400	7.79723900
С	6.09096500	-2.41386100	7.83788300
С	6.95770600	-2.33606500	6.75244500
С	6.57927300	-1.56675400	5.65029800
С	7.41689300	-1.42214900	4.45722900
С	8.71522200	-1.85290700	4.16183900
С	8.99218200	-1.38468000	2.87755400
С	10.27100300	-1.60312200	2.07170600
С	11.20577200	-2.53091100	2.88019900
С	9.97207700	-2.30429600	0.72416400
С	11.02334500	-0.27074100	1.83820900
С	7.56403100	-0.08924500	1.14805000
С	6.59090600	1.09696100	1.15360000
С	8.53707800	3.01680300	1.70221700
С	8.82922800	3.17752400	0.18914100
С	7.87656000	4.13239800	-0.56607100
С	6.38123400	3.98887100	-0.19740800
С	6.08595500	3.79055800	1.31115800
С	6.35004300	5.06769600	2.14836000
С	7.83642000	5.47483500	2.26913900
С	8.81595600	4.30451800	2.51910300
В	6.98089100	2.53852200	1.92205000
Ν	5.39838600	-0.90161700	5.61810200
Ν	6.92295600	-0.73614500	3.41485500
Ν	7.87715300	-0.69640200	2.47081000

Ν	6.72703200	2.45568100	3.48668500
Ν	5.34873300	2.00195900	3.77188700
Н	4.77759700	2.42523800	3.03542800
Н	5.05028600	2.47118500	4.62906600
Zn	5.04766500	0.01507400	3.72585800
Br	3.11379600	-0.89759300	2.78237700
Н	4.99154100	3.60943800	1.36460500
Н	9.25470900	2.26299400	2.07891900
Н	5.78605300	5.92394100	1.74181300
Н	5.96201400	4.89715800	3.16110200
Н	8.13733000	6.01667700	1.36578700
Н	7.94021300	6.20434700	3.08599800
Н	5.84460000	4.87121300	-0.58274700
Н	5.96443700	3.13521400	-0.75037800
Н	8.19510100	5.16477100	-0.39077100
Н	7.99551200	3.97593600	-1.64845200
Н	9.86454700	3.52079600	0.02553000
Н	8.77099500	2.18689500	-0.28936300
Н	8.76429900	4.03961100	3.58259900
Н	9.84317000	4.66541000	2.33928200
Н	3.45608200	0.87140800	6.49928500
Н	2.71507500	-0.49739600	5.66175500
Н	2.62988000	-0.38202900	7.43950000
Н	4.18545600	-1.77098100	8.62970900
Н	6.35694200	-3.00626100	8.70854900
Н	7.90548500	-2.86250100	6.75036200
Н	9.37897800	-2.41992500	4.79413100
Н	12.12348700	-2.70519200	2.30924600
Н	11.49299500	-2.08324300	3.83793600
Н	10.74278800	-3.50476700	3.07465100
Н	11.96250300	-0.47188200	1.30997000
Н	10.45461800	0.44618700	1.24192800
Н	11.26649500	0.21144200	2.79106600
Н	10.91658100	-2.53435700	0.21842600
Н	9.43592500	-3.24691700	0.88224300
Н	9.37943500	-1.68603300	0.04666200
Н	7.18814000	-0.91412200	0.52784600
Н	8.52099000	0.22752700	0.73774200
Н	6.47053400	1.29955100	0.08072900
Н	5.59237600	0.71879600	1.43235400
Н	7.31706600	1.72319800	3.88392300

(^{3-BBN}NN^{tBu})ZnBr(NH₂NH)

Br	5.26942200	5.23590500	5.37048800
Zn	6.12626500	4.01533300	3.57244600
Ν	7.83223100	4.96845500	2.72603500
Ν	7.56318600	2.59227400	3.94850200
Ν	7.64095200	1.34171800	4.43636300
N	3.60053900	2.84704300	2.35899300
Ν	4.86595700	3.55461600	2.06559200
Н	4.60778800	4.40231000	1.55589200
Н	5.33410000	2.96789200	1.36945400
С	6.61422700	6.98923300	2.11137000
С	7.89655600	6.20823300	2.19949900
С	9.11505400	6.73179800	1.75438600
С	10.27169500	5.96242500	1.85810000
С	10.19785600	4.68755300	2.41085400
С	8.95548300	4.21919400	2.84226400
С	8.77298800	2.90255600	3.45940600
С	9.64838800	1.82566500	3.64802900
С	8.90268400	0.83050900	4.27755600
С	9.37361900	-0.55800300	4.70014900
С	10.88434400	-0.67702100	4.39869600
С	9.18541400	-0.77944300	6.22110700
С	8.64705700	-1.65663100	3.88450800
С	6.45252400	0.76838700	5.10819400
С	5.13843900	1.07678600	4.38244800
С	5.06565100	0.68017600	2.90339500
С	3.81898600	1.00388800	0.47883600
С	2.64002400	1.69586200	-0.24783800
С	1.23598100	1.33817700	0.29111000
С	1.12532700	1.29229200	1.83226800
С	2.30615400	0.59983900	2.55875400
С	2.36590000	-0.92795900	2.31095000
С	2.75486300	-1.35076900	0.87370000
С	3.89133700	-0.52303500	0.22659700
В	3.72720400	1.28545100	2.10147500
Н	6.79894900	8.01661500	1.78800400
Н	5.92884800	6.52944800	1.38807200
Н	6.10686900	7.00629900	3.08277100
Н	9.14602000	7.73128600	1.33430700
Н	11.22457500	6.35566000	1.51603500
н	11.08166200	4.06867800	2.51716900
н	10.68420800	1.76209600	3.35666300
н	11.23666400	-1.66845800	4.70111400
н	11.09464000	-0.56316800	3.32975500
н	11.46783900	0.06791200	4.95095300

Н	9.03179500	-2.64103900	4.17419500
Н	7.56506200	-1.66512500	4.03835500
Н	8.82515200	-1.52382600	2.81212100
Н	9.70805100	-0.00652200	6.79559000
Н	8.13725700	-0.77655200	6.52894300
Н	9.60704200	-1.75117100	6.50145000
Н	6.61109200	-0.30678100	5.14662700
Н	6.44286000	1.15213000	6.13613700
Н	4.35506000	0.55919400	4.95177600
Н	4.90973100	2.14153700	4.52530600
Н	5.99052900	1.01506500	2.39839600
Н	5.10749100	-0.41623600	2.84145100
Н	2.11676200	0.72793200	3.64128800
Н	4.74582200	1.41777600	0.02426800
Н	1.06515200	2.32431000	2.20071300
Н	0.51001300	2.06830500	-0.09690900
Н	0.16744600	0.81323200	2.09789300
Н	0.92132000	0.37541500	-0.12700700
Н	3.09392100	-1.36267700	3.01193800
Н	1.40142400	-1.40132800	2.56015700
Н	3.04439500	-2.41258200	0.87757400
Н	1.86788900	-1.30106000	0.23368300
Н	3.90492600	-0.74249200	-0.85443700
Н	4.85448900	-0.88807200	0.61223000
Н	2.77440900	2.78130500	-0.14468700
Н	2.66395800	1.48282800	-1.33052500
Н	3.42373200	3.04239100	3.34528200

(^{3-BBN}NN^{tBu})ZnBr(NHNH₂)

Br	5.12924500	4.97628300	5.34824100
Zn	6.12468800	4.01404600	3.43403400
Ν	7.86091700	4.97754200	2.77543200
Ν	7.60309400	2.58087700	3.94757900
Ν	7.69065900	1.31522200	4.39294600
Ν	3.75766000	2.88321200	2.26189400
Н	2.99668100	3.29600000	1.71788300
Н	3.52262000	3.10500000	3.23337900
Ν	4.97501700	3.62643300	1.94406800
С	6.57551700	6.91550100	2.07791000
С	7.89346200	6.21068900	2.23416900
С	9.11094600	6.78159500	1.84607700
С	10.29180800	6.06492900	2.02706100
С	10.24480000	4.79115000	2.58761200

С	9.00168300	4.27177700	2.95332900
С	8.82749900	2.93836500	3.53922100
С	9.72539300	1.87901100	3.74075000
С	8.97727200	0.84294300	4.29210300
С	9.46505400	-0.54590400	4.69460000
С	10.99187900	-0.61520300	4.46817000
С	9.20635500	-0.82472700	6.19552600
С	8.81348700	-1.63790500	3.80999500
С	6.50006800	0.69251300	5.01355200
С	5.17564900	1.03897500	4.32244000
С	5.07414200	0.67203900	2.83406700
С	3.75030000	0.92627500	0.43934600
С	2.58255800	1.65136800	-0.27773900
С	1.17984000	1.40299000	0.32668800
С	1.12155700	1.40876000	1.87314300
С	2.29800700	0.69137700	2.58801900
С	2.26442800	-0.84754800	2.40294000
С	2.56235900	-1.34631300	0.96887600
С	3.71618600	-0.61217700	0.24460800
В	3.74550300	1.23896800	2.04755100
Н	6.68871000	7.85437900	1.52964000
Н	5.85919400	6.27144800	1.55417900
Н	6.14417300	7.13110400	3.06335700
Н	9.12178100	7.77425600	1.40893000
Н	11.24441600	6.49592900	1.73235700
Н	11.14775400	4.21107600	2.74231600
Н	10.77674100	1.85482900	3.50338900
Н	11.35715500	-1.60619600	4.75704900
Н	11.25273200	-0.45931000	3.41583100
Н	11.52434400	0.12714900	5.07274100
Н	9.21670800	-2.61995400	4.08266700
Н	7.72655600	-1.68658000	3.91616900
Н	9.03433400	-1.46131000	2.75188500
Н	9.67396300	-0.05607100	6.82082200
Н	8.14391500	-0.86257600	6.44718600
Н	9.64280600	-1.79257800	6.46725600
Н	6.66219500	-0.38323000	4.98090500
Н	6.47853400	1.00469500	6.06477900
Н	4.40140800	0.51092600	4.89527000
Н	4.97635400	2.10115700	4.50361600
Н	5.97734400	1.02818000	2.31582600
Н	5.11493600	-0.42335300	2.75359700
Н	2.15823400	0.87460800	3.66889300
Н	4.67897400	1.27152700	-0.05096400

Н	1.08220800	2.45459800	2.22138600
Н	0.48033100	2.15694900	-0.06245700
Н	0.15742100	0.97773100	2.18649100
Н	0.79912900	0.44510900	-0.04062200
Н	3.00294200	-1.28782900	3.08803900
Н	1.28977100	-1.25442200	2.71773900
Н	2.79082600	-2.42141900	1.00517100
Н	1.65168300	-1.27077600	0.36561400
Н	3.67059200	-0.86577400	-0.82700400
Н	4.67153700	-1.01984300	0.60325300
Н	2.78752000	2.73514900	-0.27389700
Н	2.55359600	1.37951400	-1.34497400
Н	5.40653900	3.07959000	1.20045600

(^{4-BBN}NN^{tBu})ZnBr(NH₂NH)

Br	4.25905600	6.10945000	2.53191600
Zn	2.47816400	5.91533300	4.08468600
С	2.75998700	2.74012700	4.81745400
С	1.40060200	3.02512700	4.24544600
С	0.42090800	2.03485800	4.09966900
С	-0.81465600	2.36606500	3.54976500
С	-1.06026700	3.67855200	3.15384300
С	-0.04695800	4.62253400	3.32364300
С	-0.18806900	6.03088500	2.93982700
С	-1.17649500	6.71532500	2.21763900
С	-0.72997400	8.02956500	2.10279300
С	-1.39274300	9.16859400	1.33118100
С	-1.61228700	10.42615300	2.20468900
С	-0.55487900	9.52282200	0.07677800
С	-2.78092500	8.69114300	0.84875900
С	1.39975800	9.20350200	2.99872700
С	1.21780600	9.89179900	4.36573000
С	1.83340500	9.15167000	5.56793000
С	3.37432900	9.18565600	5.61970800
С	3.41768000	8.22242300	8.25112700
С	3.37783700	9.65557300	8.84456800
С	4.74107200	10.37921000	8.93280700
С	5.64299300	10.21199300	7.68863600
С	5.67813300	8.78261600	7.09022600
С	6.41494500	7.77974700	8.01928800
С	5.66438700	7.40311100	9.32048800
С	4.13780000	7.19878200	9.16681800
В	4.13548100	8.29824700	6.78208200
Ν	1.15190600	4.29156000	3.85772900

N	0.79999500	6.87379200	3.26534600
Ν	0.47626800	8.07849700	2.75966500
Ν	4.25874100	6.76842900	6.15731200
Ν	3.04835200	5.98718300	5.91307800
Н	-0.67799300	10.89893800	2.51501200
Н	-2.18025300	11.16873900	1.63295500
Н	-2.18610600	10.18466100	3.10619600
Н	-2.70318100	7.83373700	0.17182900
Н	-3.42686600	8.41403300	1.68913300
Н	-3.27279300	9.50117400	0.30038900
Н	0.43944600	9.90566600	0.32406200
Н	-0.42402900	8.64482600	-0.56461900
Н	-1.07085200	10.29606600	-0.50397000
Н	-2.08487400	6.30859300	1.80355300
Н	-1.58354000	1.60769200	3.43253100
Н	-2.01505800	3.96968400	2.73022400
Н	0.63683300	1.01985500	4.41560300
Н	3.52246300	2.81747400	4.03187300
Н	3.01182300	3.48737300	5.58056000
Н	2.80633600	1.73584000	5.24696400
Н	2.40887200	8.79757800	2.88762300
Н	1.24510300	9.91161500	2.18585500
Н	1.68652400	10.88244200	4.28157800
Н	0.14631000	10.06731900	4.52730500
Н	1.43181100	9.61257100	6.47962800
Н	1.46468300	8.11954700	5.57775800
Н	3.77757000	8.88677400	4.63532100
Н	3.66316700	10.24314100	5.71493900
Н	2.36367800	7.89476300	8.19462400
Н	6.27866200	8.85091900	6.16532100
Н	3.68808100	7.19100000	10.17285100
Н	3.95066700	6.18890400	8.76607700
Н	6.10934100	6.48962300	9.74151700
Н	5.84448200	8.17842000	10.07132200
Н	6.62980900	6.85727200	7.45382500
Н	7.40954800	8.16711800	8.29195100
Н	5.29550400	10.90292200	6.90885300
Н	6.66094500	10.54652800	7.94662000
Н	4.56465500	11.45080700	9.10626000
Н	5.27889600	10.03279600	9.82154300
Н	2.70661000	10.26150100	8.21920000
Н	2.92167100	9.64696700	9.84807300
Н	4.86787900	6.20371000	6.75262600
Н	4.75020200	6.83276900	5.25911800

(^{4-BBN}NN^{tBu})ZnBr(NHNH₂)

Br	4.25954500	5.82251300	2.46199500
Zn	2.52928400	5.91440100	4.02135900
С	2.82047300	2.65052000	4.67410400
С	1.43736100	2.99177700	4.18995300
С	0.44179500	2.01879200	4.04967200
С	-0.82044000	2.38910500	3.59165800
С	-1.06614100	3.71913900	3.26362100
С	-0.03179000	4.64439000	3.41341200
С	-0.16579400	6.05510200	3.03883800
С	-1.17196200	6.74171300	2.34727000
С	-0.70580800	8.04343600	2.17622100
С	-1.37742300	9.16614500	1.38688900
С	-1.53527800	10.46686800	2.20831700
С	-0.58235500	9.44439600	0.08601900
С	-2.79384100	8.69913000	0.98188700
С	1.46844300	9.21069900	2.95797700
С	1.30383700	9.95201300	4.29687800
С	1.87144000	9.21118100	5.52170100
С	3.41241800	9.16898000	5.59284000
С	3.38102700	8.24135200	8.23685300
С	3.33075700	9.69003400	8.78743200
С	4.69668100	10.40464100	8.89951600
С	5.63438000	10.20090400	7.68769200
С	5.67430900	8.76005700	7.12299200
С	6.37107100	7.75857100	8.07879500
С	5.59434800	7.43746900	9.37740200
С	4.07042800	7.24183800	9.19929700
В	4.15005600	8.23738600	6.77579000
Ν	1.18608500	4.28061300	3.88366500
Ν	0.85454000	6.88704100	3.29665900
Ν	0.52894600	8.08688800	2.77531500
Ν	4.31912300	6.74155400	6.26062200
Ν	3.01552400	6.10578800	5.95629600
Н	-0.58054300	10.93903800	2.44828100
Н	-2.11977700	11.18918600	1.62772700
Н	-2.06828300	10.28025900	3.14699800
Н	-2.76248100	7.81383300	0.33791600
Н	-3.41043700	8.47178400	1.85851400
Н	-3.29086600	9.49687200	0.42073700
Н	0.42943500	9.81326600	0.27751800

Н	-0.49796300	8.53717000	-0.52164000
Н	-1.10355200	10.20470500	-0.50668600
Н	-2.10441500	6.34275600	1.98259900
Н	-1.60460000	1.64552300	3.48331000
Н	-2.03493800	4.03740200	2.89542500
Н	0.66490800	0.98628400	4.29586400
Н	3.57995600	3.12530300	4.04320300
Н	2.97478000	3.00087500	5.70239100
Н	2.98313200	1.56982900	4.66823300
Н	2.47282300	8.78938000	2.86377300
Н	1.31860400	9.88284900	2.11401000
Н	1.82883300	10.91103400	4.18886100
Н	0.24144400	10.18864900	4.43932000
Н	1.48383600	9.70942700	6.41879900
Н	1.41964800	8.20829000	5.54408700
Н	3.81290200	8.83507100	4.61649200
Н	3.73420500	10.21943900	5.66703800
Н	2.31862200	7.91968800	8.17765000
Н	6.29792600	8.80447400	6.21107000
Н	3.59689500	7.26454400	10.19631700
Н	3.90387100	6.22819500	8.80724200
Н	6.01714200	6.52843300	9.83152100
Н	5.77086900	8.22933300	10.11382700
Н	6.52043600	6.82131800	7.52966100
Н	7.37604300	8.11919500	8.35815100
Н	5.31802100	10.88186400	6.88479000
Н	6.64627000	10.53488800	7.97254800
Н	4.52361700	11.48170300	9.04583500
Н	5.20323500	10.07157000	9.81128600
Н	2.68599800	10.28737100	8.12596300
Н	2.84335000	9.71589500	9.77698100
Н	2.32012300	6.64717700	6.47592900
Н	3.02351900	5.19568500	6.42158200
Н	4.80118400	6.75841200	5.35979200

Pyridine

С	-2.33899300	-0.68746900	0.00002700
С	-0.94259100	-0.69301000	-0.00006900
С	-0.27421200	0.53126300	-0.00028400
С	-1.03002300	1.70357300	-0.00040600
С	-2.42230300	1.59628500	-0.00031500
Ν	-3.07878900	0.42893800	-0.00009100
Н	0.81192000	0.57086200	-0.00035200
Н	-2.89233000	-1.62554000	0.00018300
---	-------------	-------------	-------------
Н	-0.39850300	-1.63292200	0.00004100
Н	-0.55590500	2.68065000	-0.00054800
Н	-3.04252300	2.49154100	-0.00037600

Pyridinium

С	-2.57110400	-0.73236500	0.00001300
С	-1.18675400	-0.70557000	-0.00005900
С	-0.53018300	0.53003400	-0.00025200
С	-1.27129000	1.71707100	-0.00039200
С	-2.65399000	1.64751000	-0.00032100
Ν	-3.25489800	0.43507300	-0.00011600
Н	0.55478500	0.56777800	-0.00032300
Н	-3.15885000	-1.64272000	0.00016900
Н	-0.63606600	-1.63941400	0.00003900
Н	-0.78687100	2.68694500	-0.00055500
Н	-3.30396000	2.51452000	-0.00041000
Н	-4.27229500	0.39960400	-0.00006900

References

¹ Polezhaev, A. V.; Chen, C.-H.; Losovyj, Y.; Caulton, K. G., A Multifunctional Pincer Ligand Supports Unsaturated Cobalt: Five Functionalities in One Pincer. *Chem. Eur. J.* **2017**, *23*, 8039-8050.

³ Bruker Advanced X-ray Solution, Apex3, SAINT, SADABS, Bruker AXS Inc.: Madison (WI), USA, 2018.

⁵ Bruker Advanced X-ray Solutions, Saint v8.34A, (2014).

⁷ Beckett, M. A.; Strickland, G. C.; Holland, J. R.; Sukumar Varma, K. A Convenient Method for the Measurement of Lewis Acidity at Boron Centres: Correlation of Reaction Rates of Lewis Acid Initiated Epoxide Polymerizations with Lewis Acidity. *Polymer* **1996**, *37*, 4629-4631.

⁸ Yang, K.; Song, Q. Transition-metal-free regioselective synthesis of alkylboronates from arylacetylenes and vinyl arenes. *Green Chem.* **2016**, *18*, 932-936. Note: in our hands PhCH₂CH₂BPin is a fluffy white solid rather than the described colorless oil.

⁹ Ohmiya, H.; Yokobori, U.; Makida, Y.; Sawamura, M. Copper-Catalyzed γ-selective Allyl-Alkyl Coupling Between Allylic Phosphates and Alkylboranes. *J. Am. Chem. Soc.* **2010**, *132*, 2895-2897.

¹⁰ Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R.

Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K.

Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

¹¹ Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. *Ab Initio* Calculation of Vibrational Absorption and Circular Dichroism Spectra using Density Functional Force Fields. *J. Phys. Chem.* **1994**, *98*, 11623-11627.

¹² NBO Version 3.1, E. D. Glendening, A. E. Reed, J. E. Carpenter, and F. Weinhold.

¹³ Rassolov, V. A.; Pople, J. A.; Ratner, M. A.; Windus, T. L. 6-31G* Basis Set for Atoms K through Zn. *J. Chem. Phys.* **1998**, *109*, 1223-1229.

¹⁴ Ditchfield, R.; Hehre, W. J.; Pople, J. A. Self-Consistent Molecular-Orbital Methods. IX. An Extended Gaussian-Type Basis for Molecular-Orbital Studies of Organic Molecules. *J. Chem. Phys.* **1971**, *54*, 724-728.

¹⁵ Rassolov, V. A.; Ratner, M. A.; Pople, J. A.; Redfern, P. C.; Curtiss, L. A. 6-31G* basis set for third-row atoms. *J. Comput. Chem.* **2001**, *22*, 976-984.

¹⁶ Lathem, A. P.; Heiden, Z. M. Quantification of Lewis Acid Induced Brønsted Acidity of Protogenic Lewis bases. *Dalton Trans.* **2017**, *46*, 5976-5985.

² Kiernicki, J. J.; Norwine, E. E.; Zeller, M.; Szymczak, N. K.* "Tetrahedral Iron Featuring an Appended Lewis Acid: Distinct Pathways for the Reduction of Hydroxylamine and Hydrazine" *Chem. Commun.* **2019**, *55*, 11896-11899.

⁴ van der Sluis, P.; Spek, A. L., BYPASS: an Effective Method for the Refinement of Crystal Structures Containing Disordered Solvent Regions. *Acta Crystallogr., Sect. A.* **1990**, *46*, 194-201.

⁶ Sheldrick, G. M., A Short History of SHELX. Acta Crystallogr., Sect. A. **2008**, 64, 112-122.