Supporting Information

Visible-light-induced triple catalysis for a ring-opening cyanation of cyclopropyl ketones

Jing Liu,^a Xiao-Peng Liu,^a Hong Wu,^a Yi Wei,^a Fu-Dong Lu^a, Kai-Rui Guo^a, Ying Cheng,^{*a} Wen-Jing Xiao^{*a,b}

^{*a*}CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education; College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China.

^bState Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.

E-mail: ycheng@mail.ccnu.edu.cn; wxiao@mail.ccnu.edu.cn.

J.L. and X.P.L. contributed equally to this work.

CONTENTS:

1.	General Information	S2
2.	Preparation of Substrates	S2
3.	Details for the Condition Optimization	S10
4.	General Procedures	S13
5.	Spectral Data of Products	S16
6.	Preliminary Mechanistic Investigation	
7.	References	S27
8.	Copies of NMR Spectra	S28
9.	Copies of HPLC Spectra	S110

1. General Information

Unless otherwise noted, materials were purchased from commercial suppliers and used without further purification. All reactions were monitored by thin-layer chromatography (TLC) on silica gel plates using UV light as visualizing agent (if applicable). Flash column chromatography was performed using 200-300 mesh silica gel. All the solvents were treated according to general methods. ¹H NMR spectra were recorded on 400 MHz spectrometers. Chemical shifts were reported on the delta (δ) scale in parts per million (ppm) relative to the singlet (0 ppm) for tetramethylsilane (TMS). Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, dd = doublet of doublets, m = multiplet), coupling constants (Hz) and integration. ¹³C NMR spectra were recorded at 100 MHz with complete proton decoupling. The high resolution mass spectra (HRMS) were recorded on Bruker microTOF II ESI-TOF using a positive electrospray ionization (ESI⁺).

2. Preparation of Substrates

The cyclopropyl ketones (1a~1t, 4a~4f, 6a~6i) are prepared by the following procedure according to literature reports¹. Substrates 4g~4h were prepared according to literature².

$$R^{1} \xrightarrow{\bigcirc} R^{2} \xrightarrow{Me_{3}S=O} \stackrel{\bigcirc}{I} \stackrel{(1.2 eq.)}{(1.2 eq.)} R^{1} \xrightarrow{\bigcirc} R^{2}$$

Procedure A: To a two-necked round flask, sodium hydride (60% in mineral oil, 1.0 equiv.) was added. Then, dry DMSO and trimethylsulfoxonium iodide (1.2 equiv.) were added to the flask at room temperature under an Ar atmosphere. After hydrogen evolution ceased, the reaction mixture was stirred for an additional 15 mins, during which time the solution became clear. Chalcone (1.0 equiv.) was then added in one portion to the clear solution. The reaction solution was stirred at room temperature for 5 h. After completion of the reaction (TLC), the reaction was quenched with ice cold water and the mixture was diluted with ethyl acetate. The combined organic layer was washed with brine, dried over Na₂SO₄. The product was purified by flash silica gel column chromatography using (petroleum ether/ethyl acetate) as eluent to afford cyclopropyl ketone products.

Phenyl(2-phenylcyclopropyl)methanone (1a)

White solid; 82% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, J = 8.0 Hz, 2H), 7.57-7.54 (m, 1H), 7.48-7.44 (m, 2H), 7.31 (t, J = 7.7 Hz, 2H), 7.23 (t, J = 6.7 Hz, 1H), 7.18 (d, J = 8.0 Hz, 2H), 2.93-2.88 (m, 1H), 2.73-2.68 (m,

1H), 1.95-1.91 (m, 1H), 1.62-1.54 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 198.6, 140.4, 137.7, 132.9, 128.5, 128.1, 126.6, 126.2, 30.0, 29.3, 19.2. HRMS (ESI) for: m/z [M + Na]⁺ calcd for C₁₆H₁₄NaO: 245.0937, found: 245.0945.

Phenyl(2-(p-tolyl)cyclopropyl)methanone (1b)

White solid; 72% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, J = 8.0 Hz, 2H), 7.56-7.52 (m, 1H), 7.44 (t, J = 7.6 Hz, 2H), 7.12-7.05 (m, 4H), 2.88-2.84 (m, 1H), 2.69-2.64 (m, 1H), 1.93-1.88 (m, 1H), 1.55-1.50 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 198.7, 137.8, 137.5, 136.3, 132.9, 129.3, 128.6, 128.2, 126.2, 30.0, 29.4, 21.1, 19.2. HRMS (ESI) for: m/z [M + Na]⁺ calcd for C₁₇H₁₆NaO: 259.1093, found: 259.1096.

(2-(4-(Methylthio)phenyl)cyclopropyl)(phenyl)methanone (1c)

White solid; 85% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.00-7.97 (m, 2H), 7.58-7.53 (m, 1H), 7.46 (dd, J = 8.4, 7.0 Hz, 2H), 7.21 (d, J = 8.4 Hz, 2H), 7.10 (d, J = 8.4 Hz, 2H), 2.88-2.84 (m, 1H), 2.68-2.63 (m,

1H), 2.47 (s, 3H), 1.94-1.89 (m, 1H), 1.55-1.50 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 198.4, 137.7, 137.5, 136.6, 133.0, 128.6, 128.1, 127.1, 126.8, 29.7, 29.4, 19.1, 16.2. HRMS (ESI) for: m/z [M + Na]⁺ calcd for C₁₆H₁₄NaOS: 291.0814, found: 291.0810.

(2-([1,1'-Biphenyl]-4-yl)cyclopropyl)(phenyl)methanone (1d)

White solid; 90% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, J = 7.6 Hz, 2H), 7.56 (dd, J = 13.9, 7.7 Hz, 5H), 7.49-7.42 (m, 4H), 7.34 (t, J = 7.5 Hz, 1H), 7.25 (d, J = 7.3 Hz, 2H), 2.97-2.92 (m, 1H), 2.77-2.72 (m,

1H), 1.99-1.94 (m, 1H), 1.63-1.58 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 198.5, 140.8, 139.7, 139.6, 137.7, 133.0, 128.8, 128.6, 128.2, 127.3, 127.3, 127.0, 126.7, 29.8, 29.5, 19.3. HRMS (ESI) for: m/z [M + Na]⁺ calcd for C₂₂H₁₈NaO: 321.1250, found: 321.1247.

(2-(4-Fluorophenyl)cyclopropyl)(phenyl)methanone (1e)

White solid; 65% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, J = 7.6 Hz, 2H), 7.57 (t, J = 7.4 Hz, 1H), 7.46 (t, J = 7.6 Hz, 2H), 7.14 (dd, J = 8.3, 5.3 Hz, 2H), 6.99 (t, J = 8.5 Hz, 2H), 2.87-2.83 (m, 1H), 2.71-2.66

(m, 1H), 1.93-1.88 (m, 1H), 1.52-1.49 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 198.4, 161.7 (d, J = 246.4 Hz), 137.7, 136.1 (d, J = 3.0 Hz), 133.0, 128.6, 128.1, 127.8 (d, J = 8.1 Hz), 115.4 (d, J = 21.2 Hz), 29.2, 29.2, 19.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -116.1. HRMS (ESI) for: m/z [M + Na]⁺ calcd for C₁₆H₁₄FNaO: 263.0843, found: 263.0841.

(2-(4-Chlorophenyl)cyclopropyl)(phenyl)methanone (1f)

White solid; 80% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.00-7.97 (m, 2H), 7.57 (*t*, *J* = 7.4 Hz, 1H), 7.46 (dd, *J* = 8.4, 6.9 Hz, 2H), 7.28-7.25 (m, 2H), 7.10 (d, *J* = 8.4 Hz, 2H), 2.88-2.84 (m, 1H), 2.69-2.64 (m, 1H),

1.94-1.89 (m, 1H), 1.54-1.49 (m , 1H). ¹³C NMR (100 MHz, CDCl₃) δ 198.2, 139.0, 137.6, 133.1, 132.3, 128.7, 128.7, 128.1, 127.6, 29.3, 29.2, 19.2. HRMS (ESI) for: m/z [M + Na]⁺ calcd for C₁₆H₁₄ClNaO: 279.0547, found: 279.0545.

(2-(4-Bromophenyl)cyclopropyl)(phenyl)methanone (1g)

White solid; 90% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, J = 7.6 Hz, 2H), 7.57 (t, J = 7.4 Hz, 1H), 7.45 (dd, J = 21.2, 7.8 Hz, 4H), 7.05 (d, J = 8.0 Hz, 2H), 2.89-2.84 (m, 1H), 2.68-2.63 (m, 1H), 1.94-1.90 (m,

1H), 1.54-1.50 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 198.2, 139.6, 137.6, 133.1, 131.6, 128.7, 128.1, 127.97, 120.3, 29.3, 29.3, 19.2. HRMS (ESI) for: m/z [M + Na]⁺ calcd for C₁₆H₁₄BrNaO: 323.0042, found: 323.0043.

Phenyl(2-(4-(trifluoromethyl)phenyl)cyclopropyl)methanone (1h)

White solid; 70% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, J = 7.7 Hz, 2H), 7.56 (d, J = 8.2 Hz, 3H), 7.47 (t, J = 7.6 Hz, 2H), 7.27 (d, J = 8.1 Hz, 2H), 2.97-2.92 (m, 1H), 2.77-2.72 (m, 1H), 1.99-1.95 (m, 1H),

1.61-1.56 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 198.0, 144.7, 137.5, 133.2, 128.7, 128.2, 126.5, 125.5 (q, J = 4.0 Hz), 124.5 (q, J = 273.7 HZ), 29.5, 29.2, 19.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.3. HRMS (ESI) for: m/z [M + Na]⁺ calcd for C₁₇H₁₄F₃NaO: 313.0811, found: 313.0813.

4-(2-Benzoylcyclopropyl)-N, N-dipropylbenzenesulfonamide (1i)

Yellow oil; 65% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.01-7.98 (m, 2H), 7.74 (d, J = 8.4 Hz, 2H), 7.60-7.56 (m, 1H), 7.50-7.46 (m, 2H), 7.28 (d, J = 8.6 Hz, 2H), 3.09-3.05 (m, 4H), 2.98-2.94

(m, 1H), 2.77-2.72 (m, 1H), 1.99-1.94 (m, 1H), 1.62-1.52 (m, 5H), 0.88 (t, J = 7.4 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 197.9, 145.4, 138.3, 137.4, 133.2, 128.7, 128.1, 127.4, 126.6, 50.1, 29.6, 29.1, 22.1, 19.7, 11.2. HRMS (ESI) for: m/z [M + Na]⁺ calcd for C₂₂H₂₇NNaO₃S: 408.1604, found: 408.1608.

(2-(2-Fluorophenyl)cyclopropyl)(phenyl)methanone (1j)

Ph F 2

Yellow oil; 78% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, J = 7.4 Hz, 2H), 7.56 (t, J = 7.4 Hz, 1H), 7.47 (t, J = 7.6 Hz, 2H), 7.23-7.18 (m, 1H), 7.10 (dd, J = 5.4, 3.3 Hz, 2H), 7.03 (dd, J = 10.4, 8.2 Hz, 1H), 2.96-2.92 (m,

1H), 2.86-2.81 (m, 1H), 1.93-1.88 (m, 1H), 1.61-1.56 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 198.6, 161.8 (d, J = 247.5 Hz), 137.7, 133.0, 128.6, 128.2, 128.1 (d, J = 8.1 Hz), 127.5 (d, J = 13.1 Hz), 127.3 (d, J = 4.0 Hz), 124.1 (d, J = 4.0 Hz), 115.5 (d, J = 22.2 Hz), 27.4, 23.8, 23.7, 17.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -118.3. HRMS (ESI) for: m/z [M + Na]⁺ calcd for C₁₆H₁₄FNaO: 263.0843, found: 263.0842.

(2-(2-Methoxyphenyl)cyclopropyl)(phenyl)methanone (1k)

Colorless oil; 65% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.04-8.00 (m, 2H), 7.54 (t, J = 7.4 Hz, 1H), 7.45 (t, J = 7.6 Hz, 2H), 7.21 (d, J = 8.5 Hz, 1H), 7.05 (t, J = 4.5 Hz, 1H), 6.92 (q, J = 5.5, 3.9 Hz, 1H), 6.86 (d, J = 8.2 Hz,

1H), 3.76 (s, 3H), 2.90-2.79 (m, 2H), 1.92-1.88 (m, 1H), 1.58-1.53 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 199.4, 158.5, 138.1, 132.7, 128.8, 128.5, 128.2, 127.8, 126.3, 120.5, 110.4, 55.3,

27.9, 25.6, 17.4. HRMS (ESI) for: m/z $[M + Na]^+$ calcd for $C_{17}H_{14}NaO_2$: 275.1043, found: 275.1044.

(2-(3-Methoxyphenyl)cyclopropyl)(phenyl)methanone (11)

Colorless oil; 69% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.01-7.98 (m, 2H), 7.55 (t, J = 8.1 Hz, 1H), 7.45 (t, J = 7.7 Hz, 2H), 7.23 (t, J = 7.1 Hz, 1H), 6.79-6.72 (m, 3H), 3.80 (s, 3H), 2.93-2.88 (m, 1H), 2.71-2.66

(m, 1H), 1.95-1.90 (m, 1H), 1.58-1.52 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 198.5, 159.9, 142.2, 137.7, 133.0, 129.7, 128.6, 128.2, 118.5, 112.3, 111.8, 55.3, 30.1, 29.4, 19.3. HRMS (ESI) for: m/z [M + Na]⁺ calcd for C₁₇H₁₄NaO₂ : 275.1043, found: 275.1041.

(2-(Naphthalen-1-yl)cyclopropyl)(phenyl)methanone (1m)

White solid; 90% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.13 (d, J = 7.8 Hz, 1H), 8.05-8.03 (m, 2H), 7.86 (dd, J = 7.5, 1.7 Hz, 1H), 7.77 (d, 1H), 3.28-3.23 (m, 1H), 2.91-2.86 (m, 1H), 2.00-1.95 (m, 1H), 1.77-1.73 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 199.2, 137.8, 136.2, 133.6, 133.0, 128.6, 128.6,

128.3, 127.7, 126.3, 126.0, 125.4, 124.1, 123.9, 27.7, 27.4, 17.9. HRMS (ESI) for: m/z $[M + Na]^+$ calcd for $C_{20}H_{16}Na$: 295.1093, found: 295.1090.

(2-(Benzo[d][1,3]dioxol-5-yl)cyclopropyl)(phenyl)methanone (1n)

White solid; 80% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, J = 7.5 Hz, 2H), 7.58-7.54 (m, 1H), 7.48-7.44 (m, 2H), 6.74 (d, J = 7.9 Hz, 1H), 6.69-6.64 (m, 2H), 5.93 (s, 2H), 2.84-2.80 (m, 1H), 2.66-2.61 (m, 1H),

1.90-1.86 (m, 1H), 1.50-1.46 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 198.5, 147.9, 146.4, 137.8, 134.4, 132.9, 128.6, 128.1, 119.8, 108.3, 106.6, 101.1, 30.1, 29.2, 19.0. HRMS (ESI) for: m/z [M + Na]⁺ calcd for C₁₈H₁₆NaO₃: 287.1043, found: 287.1045.

(2-(3,4-Dichlorophenyl)cyclopropyl)(phenyl)methanone (10)

White solid; 75% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, J = 8.4 Hz, 2H), 7.58 (t, J = 7.4 Hz, 1H), 7.48 (t, J = 7.8 Hz, 2H), 7.36 (d, J = 8.3 Hz, 1H), 7.24 (s, 1H), 7.02 (dd, J = 8.4, 1.9 Hz, 1H), 2.90-2.85 (m, 1H),

2.68-2.63 (m, 1H), 1.94-1.89 (m, 1H), 1.54-1.49 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 197.9, 140.9, 137.4, 133.2, 132.7, 130.5, 130.5, 128.7, 128.2, 128.1, 125.9, 29.2, 28.5, 19.2. HRMS (ESI) for: m/z [M + Na]⁺ calcd for C₁₆H₁₂Cl₂NaO: 313.0157, found: 313.0157.

(2-(3,5-Dimethoxyphenyl)cyclopropyl)(phenyl)methanone (1p)

OME Yellow oil; 77% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, J = 8.5Hz, 2H), 7.56 (t, J = 6.7 Hz, 1H), 7.46 (t, J = 7.5 Hz, 2H), 6.34 (s, 3H), OME 3.79 (s, 6H), 2.92-2.87 (m, 1H), 2.66-2.61 (m, 1H), 1.92-1.87 (m, 1H), 1.56-1.51 (m, 1H).¹³C NMR (100 MHz, CDCl₃) δ 198.5, 161.0, 143.0, 137.7, 133.0, 128.6, 128.2, 104.4, 98.4, 55.4, 30.2, 29.3, 19.2. HRMS (ESI) for: m/z [M + Na]⁺ calcd for C₁₈H₁₈NaO₃: 305.1148, found: 305.1149.

(3-(4-(Allyloxy)phenyl)cyclopropyl)(phenyl)methanone (1q)

White solid; 76% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.99-7.96 (m, 2H), 7.32-7.28 (m, 2H), 7.24-7.19 (m, 1H), 7.18-7.15 (m, 2H), 6.96-6.92 (m, 2H), 6.08-5.99 (m, 1H), 5.44-5.39 (m, 1H), 5.32-5.29 (m, 1H),

4.60-4.57 (m, 2H), 2.87-2.83 (m, 1H), 2.69-2.64 (m, 1H), 1.91-1.86 (m, 1H), 1.53-1.48 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 196.9, 162.5, 140.8, 132.5, 130.9, 130.4, 128.6, 126.5, 126.2, 118.2, 114.5, 68.91, 29.6, 28.9, 19.0. HRMS (ESI) for: m/z [M + Na]⁺ calcd for C₁₉H₁₈NaO₂: 301.1199, found: 301.1191.

Phenyl(2-(4-(prop-2-yn-1-yloxy)phenyl)cyclopropyl)methanone (1r)

White solid; 79% yield. ¹H NMR (400 MHz, CDCl₃)
$$\delta$$
 8.02-7.98 (m,
2H), 7.31 (dd, $J = 8.2$, 6.8 Hz, 2H), 7.25-7.16 (m, 3H), 7.03-7.00 (m,
2H), 4.75 (d, $J = 2.4$ Hz, 2H), 2.87-2.83 (m, 1H), 2.69-2.64 (m, 1H),

2.54 (t, J = 2.4 Hz, 1H), 1.92-1.87 (m, 1H), 1.54-1.50 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 196.9, 161.2, 140.7, 131.5, 130.3, 128.6, 126.6, 126.2, 114.6, 77.8, 76.2, 55.9, 29.7, 29.0, 19.0. HRMS (ESI) for: m/z [M + Na]⁺ calcd for C₁₉H₁₆NaO₂: 299.1043, found: 299.1042.

(2-(Furan-2-yl)cyclopropyl)(phenyl)methanone (1s)

Yellow solid; 85% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.02-7.99 (m, 2H), 7.56 (dd, J = 8.1, 6.6 Hz, 1H), 7.46 (t, J = 7.6 Hz, 2H), 7.29 (d, J = 1.8 Hz, 1H), 6.32-6.30 (m, 1H), 6.12 (d, J = 3.2 Hz, 1H), 3.05-3.00 (m, 1H), 2.72-

2.67 (m, 1H), 1.84-1.79 (m, 1H), 1.62-1.58 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 198.2, 153.8, 141.1, 137.6, 133.0, 128.6, 128.2, 110.6, 105.2, 26.6, 22.8, 17.2. HRMS (ESI) for: m/z [M + Na]⁺ calcd for C₁₄H₁₂NaO₂: 235.0730, found: 235.0731.

Phenyl(2-(thiophen-2-yl)cyclopropyl)methanone (1t)

White solid; 73% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.02-7.99 (m, 2H), 7.59-7.55 (m, 1H), 7.49-7.45 (m, 2H), 7.12 (dd, J = 5.0, 1.2 Hz, 1H), 6.93 (dd, J = 5.1, 3.5 Hz, 1H), 6.89-6.88 (m, 1H), 2.96-2.85 (m, 2H), 1.97-1.92 (m,

1H), 1.57-1.55 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 198.0, 144.8, 137.6, 133.1, 128.6, 128.2, 127.1, 124.1, 123.2, 30.0, 25.1, 20.2. HRMS (ESI) for: m/z [M + Na]⁺ calcd for C₁₄H₁₂NaOS: 251.0501, found: 251.0505.

(E)-Phenyl(2-(prop-1-en-1-yl)cyclopropyl)methanone (4a)

White solid; 65% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.01-7.97 (m, 2H), 7.58-7.53 (m, 1H), 7.49-7.45 (m, 2H), 5.69-5.61 (m, 1H), 5.22-5.14 (m, 1H), 2.65-2.61 (m, 1H), 2.17-2.10 (m, 1H), 2.37-2.31 (m, 1H), 1.70-1.65 (m, 4H),

1.16-1.11 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 199.0, 138.0, 132.7, 131.2, 128.5, 128.1, 126.3, 29.2, 26.7, 18.2, 17.9. HRMS (ESI) for: m/z [M + Na]⁺ calcd for C₁₃H₁₄NaO: 209.0937, found: 209.0934.

(*E*)-Phenyl(2-styrylcyclopropyl)methanone (4b)

White solid; 63% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.00 (dd, J = 7.7, 3.1 Hz, 2H), 7.57-7.44 (m, 3H), 7.34-7.27 (m, 4H), 7.23-7.19 (m, 1H), 6.57 (d, J = 15.7 Hz, 1H), 5.94-5.87 (m, 1H), 2.82-2.77 (m, 1H), 2.37-2.31 (m,

1H), 1.86-1.80 (m , 1H), 1.32-1.28 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 198.5, 137.9, 137.0, 132.9, 130.6, 130.5, 128.7, 128.6, 128.1, 127.4, 126.0, 29.7, 27.2, 18.5. HRMS (ESI) for: m/z [M + Na]⁺ calcd for C₁₈H₁₆NaO: 271.1093, found: 271.1086.

(2-(2-Methylprop-1-en-1-yl)cyclopropyl)(phenyl)methanone (4c)

Ph

Colorless oil; 47% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.00-7.98 (m, 2H), 7.57-7.53 (m, 1H), 7.46 (t, *J* = 7.6 Hz, 2H), 4.79-4.75 (m, 1H), 2.63-2.59 (m, 1H), 2.29-2.22 (m, 1H), 1.71 (s, 6H), 1.10-1.06 (m, 1H). ¹³C NMR (100

MHz, CDCl₃) δ 199.2, 138.0, 134.4, 132.7, 128.5, 128.0, 125.2, 26.9, 26.5, 25.6, 18.9, 18.4. HRMS (ESI) for: m/z [M + Na]⁺ calcd for C₁₄H₁₄NaO: 223.1093, found: 223.1094.

(2-(Hex-1-yn-1-yl)cyclopropyl)(phenyl)methanone (4d)

Yellow oil; 58% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.04-8.01 (m, 2H), 7.60-7.56 (m, 1H), 7.51-7.47 (m, 2H), 2.91-2.87 (m, 1H), 2.18-2.14 (m, 2H), 2.02-1.98 (m, 1H), 1.64-1.59 (m, 1H), 1.49-1.37 (m, 4H), 1.33-1.28

(m, 1H), 0.91 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 197.9, 137.5, 133.0, 128.6, 128.2, 80.3, 78.4, 31.0, 27.0, 22.0, 19.7, 18.5, 14.0, 13.6. HRMS (ESI) for: m/z [M + Na]⁺ calcd for C₁₆H₁₈NaO: 249.1250, found: 249.1253.

Phenyl(2-(phenylethynyl)cyclopropyl)methanone (4e)

Yellow solid; 50% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.13-8.03 (m, 2H), 7.70 (t, J = 7.4 Hz, 1H), 7.58 (t, J = 7.6 Hz, 2H), 7.45-7.27 (m, 5H), 3.29-3.27 (m, 1H), 2.22-2.12 (m, 1H), 1.62-1.41 (m, 2H). ¹³C NMR (100 MHz,

CDCl₃) δ 197.2, 137.0, 134.0, 131.9, 129.3, 129.0, 128.8, 128.6, 123.0, 90.9, 78.1, 26.7, 19.6, 13.4. HRMS (ESI) for: m/z [M + Na]⁺ calcd for C₁₈H₁₄NaO: 269.0937, found: 269.0930.

Phenyl(2-((trimethylsilyl)ethynyl)cyclopropyl)methanone (4f)

White solid; 69% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.04-8.01 (m, 2H), 7.61-7.57 (m, 1H), 7.49 (dd, J = 8.2, 6.8 Hz, 2H), 3.00-2.96 (m, 1H), 2.10-2.06 (m, 1H), 1.65-1.60 (m, 1H), 1.41-1.36 (m, 1H), 0.16 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 197.7, 137.5, 133.4, 128.9, 128.5, 106.9, 82.8, 27.3, 20.2, 14.3, 0.3. HRMS (ESI) for: m/z [M + Na]⁺ calcd for C₁₅H₁₈NaOSi: 265.1019, found: 265.1010.

(4-Fluorophenyl)(2-phenylcyclopropyl)methanone (6a)

White solid; 85% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.03-7.99 (m, 2H), 7.31 (t, *J* = 7.4 Hz, 2H), 7.25-7.21 (m, 1H), 7.18-7.10 (m, 4H), 2.86-2.82 (m, 1H), 2.72-2.67 (m, 1H), 1.94-1.90 (m, 1H), 1.59-1.54 (m, 1H). ¹³C

NMR (100 MHz, CDCl₃) δ 197.0, 165.7 (d, J = 255.5 Hz), 140.4, 134.1 (d, J = 3.0 Hz), 130.8 (d, J = 9.1 Hz), 128.6, 126.7, 126.2, 115.7 (d, J = 22.2 Hz), 30.1, 29.3, 19.3. ¹⁹F NMR (376 MHz,

CDCl₃) δ -105.53. HRMS (ESI) for: m/z [M + Na]⁺ calcd for C₁₆H₁₄FNaO: 263.0843, found: 263.0848.

(4-Chlorophenyl)(2-phenylcyclopropyl)methanone (6b)

White solid; 83% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.92 (dd, J = 8.4, 1.3 Hz, 2H), 7.43-7.41 (m, 2H), 7.31 (t, J = 7.7 Hz, 2H), 7.25-7.21 (m, 1H), 7.17 (d, J = 7.5 Hz, 2H), 2.85-2.81 (m, 1H), 2.72-2.67 (m, 1H),

1.95-1.90 (m, 1H), 1.60-1.55 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 197.3, 140.3, 139.4, 136.0, 129.6, 128.9, 128.7, 126.8, 126.2, 30.3, 29.3, 19.4. HRMS (ESI) for: $m/z [M + Na]^+$ calcd for C₁₆H₁₄ClNaO: 279.0547, found: 279.0549.

(3-Phenylcyclopropyl)(*p*-tolyl)methanone (6c)

White solid; 84% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, *J* = 8.2 Hz, 2H), 7.32-7.28 (m, 2H), 7.24-7.20 (m, 3H), 7.18-7.16 (m, 2H), 2.90-2.86 (m, 1H), 2.70-2.66 (m, 1H), 2.40 (s, 3H), 1.92-1.88 (m, 1H), 1.55-1.50 (m,

1H). ¹³C NMR (100 MHz, CDCl₃) δ 198.1, 143.7, 140.7, 135.2, 129.3, 128.6, 128.3, 126.6, 126.3, 29.8, 29.2, 21.7, 19.1. HRMS (ESI) for: $m/z [M + Na]^+$ calcd for $C_{17}H_{16}NaO$: 259.1093, found: 259.1088.

(4-Methoxyphenyl)(2-phenylcyclopropyl)methanone (6d)

White solid; 75% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, J = 8.9Hz, 2H), 7.31-7.27 (m, 2H), 7.23-7.15 (m, 3H), 6.92 (d, J = 8.9 Hz, 2H), 3.84 (s, 2H), 2.87-2.82 (m, 1H), 2.68-2.64 (m, 1H), 1.91-1.86 (m,

1H), 1.52-1.47 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 196.9, 163.5, 140.8, 130.8, 130.4, 128.6, 126.5, 126.3, 113.8, 55.5, 29.5, 28.9, 18.9. HRMS (ESI) for: m/z [M + Na]+ calcd for C₁₇H₁₄NaO₂: 275.1043, found: 275.1043.

(2-Methoxyphenyl)(2-phenylcyclopropyl)methanone (6e)

White solid; 79% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.64-7.60 (m, 1H), 7.45-7.41 (m, 1H), 7.31-7.27 (m, 2H), 7.22-7.16 (m, 3H), 6.99 (t, *J* = 7.5 Hz, 1H), 6.92 (d, J = 8.3 Hz, 1H), 3.72 (s, 3H), 3.01-2.96 (m, 1H), 2.68-2.61 (m, 1H), 1.96-1.90 (m, 1H), 1.48-1.44 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 201.0, 158.7, 141.2,

133.3, 130.0, 129.3, 128.4, 126.3, 120.6, 111.7, 55.6, 33.8, 30.7, 19.3. HRMS (ESI) for: m/z [M $+ Na]^+$ calcd for C₁₇H₁₄NaO₂: 275.1043, found: 275.1044.

(3-Bromophenyl)(2-phenylcyclopropyl)methanone (6f)

White solid; 70% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.11 (t, J = 1.9 Hz, 1H), 7.91-7.89 (m, 1H), 7.68-7.66 (m, 1H), 7.35-7.30 (m, 3H), 7.26-7.23 (m, 1H), 7.18-7.15 (m, 2H), 2.85-2.80 (m, 1H), 2.75-2.70 (m, 1H), 1.94-1.89 (m, 1H), 1.61-1.57 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 197.2, 140.1, 139.5, 135.8, 131.2, 130.2, 128.7, 126.8, 126.7, 126.3, 123.0, 30.5, 29.4, 19.7. HRMS (ESI) for: m/z [M + Na]⁺ calcd for C₁₆H₁₄BrNaO: 323.0042, found: 323.0039.

(3,4-Dimethoxyphenyl)(2-phenylcyclopropyl)methanone (6g)

White solid; 93% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.66 (dd, $J = MeO_{MeO}$ MeO Ph 8.4, 2.0 Hz, 1H), 7.55 (d, J = 2.0 Hz, 1H), 7.31 (t, J = 7.4 Hz, 2H), 7.26-7.23 (m, 1H), 7.21-7.17 (m, 2H), 6.88 (d, J = 8.4 Hz, 1H), 3.93 (d, J = 4.3 Hz, 6H), 2.88-2.84 (m, 1H), 2.70-2.65 (m, 1H), 1.92-1.87 (m, 1H), 1.55-1.51 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 196.9, 153.3, 149.1, 140.7, 130.9, 128.6, 126.6, 126.3, 122.9, 110.2, 110.0, 56.1, 56.0, 29.6, 28.9, 19.0. HRMS (ESI) for: m/z [M + Na]⁺ calcd for C₁₈H₁₈NaO₃: 305.1148, found: 305.1148.

Naphthalen-2-yl(2-phenylcyclopropyl)methanone (6h)

White solid; 79% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.58 (s, 1H), 8.12 (dd, J = 8.6, 1.7 Hz, 1H), 8.00 (d, J = 8.1 Hz, 1H), 7.94 (t, J = 8.8Hz, 2H), 7.67-7.57 (m, 2H), 7.40 (t, J = 7.4 Hz, 2H), 7.33-7.28 (m, 3H), 3.15-3.10 (m, 1H), 2.87-2.82 (m, 1H), 2.06-2.02 (m, 1H), 1.71-1.66 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 198.5, 140.6, 135.6, 135.1, 132.6, 129.8, 129.6, 128.7, 128.5, 128.4, 127.8, 126.8, 126.7, 126.4, 124.0, 30.1, 29.5, 19.5. HRMS (ESI) for: m/z [M + Na]⁺ calcd for C₂₀H₁₆NaO: 295.1093, found: 295.1095.

(1-Methyl-1H-imidazol-2-yl)(2-phenylcyclopropyl)methanone (6i)

White solid; 89% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.29-7.24 (m, 2H), N N Ph 7.20-7.14 (m, 4H), 7.02 (s, 1H), 3.99 (d, J = 2.2 Hz, 3H), 3.64-3.59 (m, 1H), 2.71-2.66 (m, 1H), 1.83-1.78 (m, 1H), 1.56-1.50 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 190.4, 143.6, 140.5, 129.4, 128.5, 127.1, 126.5, 126.3, 36.3, 29.7, 29.4, 20.2. HRMS (ESI) for: m/z [M + Na]⁺ calcd for C₁₄H₁₄N₂NaO: 295.1093, found: 295.1090.

3. Details for the Condition Optimization

 Table S1. Condition optimization^a

Entry	Variation from the standard conditions	Yield $(\%)^b$	^a Reaction conditions: 0.20
1	none	80	mmol of $1a$, 0.60 mmol of 2 , La(OTf) ₂ (5 mol%)
2	no Ph-PTZ, La(OTf) ₃ , [Cu], or light	-	$Cu(MeCN)_4BF_4$ (5 mol%),
3	Cu(OAc) ₂ instead of Cu(MeCN) ₄ BF ₄	18	L1 (5 mol%), Ph-PTZ (5
4	L2 instead of L1	36	(2.0 mL) at rt for 24 h under
5	L3 instead of L1	-	the irradiation of 2*3 W
6	10 mol % of L1 was used	85 (80) ^c	purple LEDs. ^b Determined
7	Mg(OTf) ₂ instead of La(OTf) ₃	25	reaction mixture using 1,3,5-
8	Sc(OTf) ₃ instead of La(OTf) ₃	-	trimethoxybenzene as an
9	Ru(bpy) ₃ Cl ₂ 6H ₂ O instead of Ph-PTZ	6	internal standard. ^{r} Isolated vield DMF – NN_{-}
10	fac-Ir(ppy) ₃ instead of Ph-PTZ	77	dimethylformamide.

Table S2. The effect of solvents^a

$$\begin{array}{c} O \\ Ph \\ \hline \\ 1a \\ \end{array} \begin{array}{c} Ph \\ \hline \\ 1a \\ \end{array} \begin{array}{c} fac - Ir(ppy)_3 (5 \text{ mol}\%) \\ La(OTf)_3 (5 \text{ mol}\%) \\ \hline \\ Cu(MeCN)_4 BF_4/L1 (5 \text{ mol}\%) \\ \text{solvent, 24 h, rt, 2*3 W blue LEDs} \end{array} \begin{array}{c} O \\ Ph \\ \hline \\ CN \\ 3a \\ \end{array}$$

Entry	Solvent	Yield/% ^b	
1	THF	NR	
2	Dioxane	NR	^{<i>a</i>} Reaction conditions: 0.20 mmol of 1a ,
3	CH ₃ CN	trace	0.60 mmol of 2 , $La(OTf)_3$ (5 mol%),
4	CH_2Cl_2	64	fac-Ir(ppy) ₃ (5 mol%), solvent (2 mL) at
5	CHCl ₃	NR	rt for 24 h under the irradiation of $2*3$ W
6	Toluene	trace	yield using 1,3,5-trimethoxybenzene as
7	CH ₃ OH	61	an internal standard.
8	DMF	77	
9	DMSO	25	

Table S3. The effect of photocatalysts^{*a*}

		photocata La(OTf)	lyst (5 mol%) O ₀ (5 mol%) Ph
	Ph 1a 2	Cu(MeCN)₄B DMF, 24 h, rt, :	Ph ²
Entry	Photocatalyst	Yield/% ^b	^{<i>a</i>} Reaction conditions: 0.20 mmol of 1a , 0.60
1	<i>fac</i> -Ir(ppy) ₃	77	mmol of 2, $La(O11)_3$ (5 mol%), Cu(MeCN) ₄ BF ₄ (5 mol%), L1 (5 mol%),
2	Ru(bpy) ₃ Cl ₂ •6H ₂ O	6	photocatalyst (5 mol%), DMF (2 mL) at rt
3	$Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$	NR	LEDs. ^b Determined by ¹ H NMR yield using
4	Ir(4-Fppy) ₂ (bpy)PF ₆	NR	1,3,5-trimethoxybenzene as an internal
5^c	Ph-PTZ	80	standard. ^c Irradiation of 2*3 W purple LEDs.

Table S4. The effect of Lewis acids^{*a*}

Sc(OTf)₃

Yb(OTf)₃

Sm(OTf)₃

Mg(OTf)₂

Ga(OTf)₃

In(OTf)₃

3

4

5

6

7

8

Ph	O Ph + TM: 1a	Ph-F S-CN <u>Lewis</u> Cu(MeCN DMF, 24 h, r	PTZ (5 mol%) acid (5 mol%))) ₄ BF ₄ /L1 (5 mol%) t, 2*3 W purple LEDs 3a
Entry	Lewis acid	Yield/% ^b	
1	La(OTf) ₃	80	
2	Gd(OTf) ₃	50	^a Reaction conditions: 0.20 mmol of 1, 0.6

NR

NR

NR

25

NR

NR

^{*a*}Reaction conditions: 0.20 mmol of **1**, 0.60 mmol of **2**, Lewis acid (5 mol%), Cu(MeCN)₄BF₄ (5 mol%), **L1** (5 mol%), Ph-PTZ (5 mol%), DMF (2 mL) at rt for 24 h under the irradiation of 2*3 W purple LEDs. ^{*b*}Determined by ¹H NMR yield using 1,3,5-trimethoxybenzene as an internal standard.

 Table S5. The effect of Cu sources^a

Entry	Cu source	Yield/% ^b	
1	Cu(MeCN) ₄ BF ₄	80	
2	CuCl	NR	^a Reaction conditions: 0.20 mmol of 1, 0.60
3	CuBr	5	mmol of 2 , $La(OTf)_3$ (5 mol%), Cu source (5 mol%), L1 (5 mol%), Ph-PTZ (5 mol%),
4	CuOAc	34	DMF (2 mL) at rt for 24 h under the
5	Cu(OAc) ₂	18	^b Determined by ¹ H NMR yield using 1.3.5-
6	CuCN	29	trimethoxybenzene as an internal standard.
7	CuF ₂	29	
8	Cu(OTf) ₂	NR	

Figure S1. Preliminary trials on the asymmetric ring-opening cyanation. Reaction conditions: 0.20 mmol of **1a**, 0.60 mmol of **2**, $La(OTf)_3$ (5 mol%), $Cu(MeCN)_4BF_4$ (5 mol%), ligand (5 mol%), Ph-PTZ (5 mol%), DMF (2 mL) at rt for 24 h under the irradiation of 2*3 W purple LEDs; yields were determined by the ¹H NMR of the reaction mixture by using 1,3,5-trimethoxybenzene as an internal standard; ee values were determined by chiral HPLC. *^a*The reaction was performed in CH₂Cl₂ (2 mL).

4. General Procedure for Ring-Opening Cyanation

Procedure B: Cu(CH₃CN)₄BF₄ (3.1 mg, 0.01 mmol), L1 (7.1 mg, 0.02 mmol) and anhydrous DMF (2 mL) were added to a 10 mL Schlenk flask equipped with a magnetic stir bar in an argon-filled glove box. Then the resulting mixture was stirred at room temperature for 20 mins followed by the addition of La(OTf)₃ (5.9 mg, 0.01 mmol). The solution continued to stir for 10 mins at room temperature. The vial was closed and the Schlenk tube was removed from the glove box. To the resulting mixture were added phenyl ketone **1a** (0.2 mmol, 44.5 mg), photocatalyst **Ph-PTZ** (2.8 mg, 0.01 mmol). The mixture was degassed by a "freeze-pump-thaw" procedure (3 times). After that, TMSCN (**2**, 76 µL, 0.6 mmol) was added into the mixture. At last, the mixture was stirred at a distance of ~1 cm from 2*3 W purple LEDs at room temperature for 24 h. Upon the completion of reaction as monitored by TLC, the crude product was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate 100:1~10:1) directly to give the desired product **3a** as a colorless oil in 80% yield.

General Procedure for the Scaled-up Reaction

Procedure C: Cu(CH₃CN)₄BF₄ (155 mg, 0.5 mmol), **L1** (355 mg, 1.0 mmol) and anhydrous DMF (100 mL) were added to a 250 mL Schlenk flask equipped with a magnetic stir bar in an argon-filled glove box. Then the resulting mixture was stirred at room temperature for 30 mins followed by the addition of La(OTf)₃ (295 mg, 0.5 mmol). The solution continued to stir 10 mins at room temperature. The vial was closed and the Schlenk tube was removed from the glove box. To the resulting mixture were added phenyl ketone **1a** (10 mmol, 2.2 g), photocatalyst **Ph-PTZ** (140 mg, 0.5 mmol). The mixture was degassed by a "freeze-pump-thaw" procedure (3 times). After that, TMSCN (**2**, 3.8 mL, 30 mmol) was added into the mixture. At last, the mixture was stirred at a distance of ~1 cm from 2*3 W purple LEDs at room temperature for 24 h. Upon the completion of reaction as monitored by TLC, the crude product was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate 100:1~10:1) directly to give the desired product **3a** as a white soild in 85% yield with recovered **Ph-PTZ** (petroleum ether/ethyl acetate 200:1~100:1) in 83% yield.

Procedure for the Synthesis of 8

Procedure D³: Compound **7i** (53.4 mg, 0.2 mmol), 4Å molecular sieves (100 mg) and anhydrous acetonitrile (2 mL) were added to a 10 mL Schlenk flask equipped with a magnetic stir bar under an Ar atmosphere. The solution was stirred vigorously for 2 hours at room temperature. Then MeOTf (40 μ L, 0.34 mmol) was added. After 2 h another 0.6 equiv. of MeOTf was added and the reaction stirred an additional 30 minutes. Then the suspension was filtered through a short plug of oven dried Celite. The Celite was washed with EtOAc and the solvent was removed by vacuum. The resulting oil and 4 mL THF were added to a 10 mL Schlenk flask under Ar. Then the reaction mixture was cooled to -78 °C before benzylmagnesium bromide (2.5 eq.) was added dropwisely. After the reaction was complete judged by TLC analysis, the mixture was extracted with diethyl ether and saturated NaHCO₃ solution. Combined organic dried over Na₂SO₄ and the solvent was removed in vacuo. The residue was then purified by flash chromatography on silica gel (petroleum ether/ethyl acetate 20:1) to afford **8** as a colorless oil in 79% yield.

Procedure for the Synthesis of 9

Procedure E³: Compound **7i** (53.4 mg, 0.2 mmol), 4Å molecular sieves (100 mg), and anhydrous acetonitrile (2 mL) were added to a 10 mL Schlenk flask equipped with a magnetic stir bar under an Ar atmosphere. The solution was stirred vigorously for 2 hours at room temperature. Then MeOTf (40 μ L, 0.34 mmol) was added. After 2 h another 0.6 equiv. of MeOTf was added and the reaction stirred an additional 30 minutes. Then the reaction mixture was cooled to 0 °C before MeOH (81 μ L, 20.0 mmol) and DBU (60 μ L, 0.40 mmol) was added slowly. The reaction was then stirred for 30 mins and quenched by 1 M HCl and extracted with EtOAc and the combined organic dried over Na₂SO₄ and the solvent was removed in vacuo. The residue was then purified by flash chromatography on silica gel (petroleum ether/ethyl acetate 10:1) to afford **9** as a colorless oil in 83% yield.

Procedure for the Synthesis of 10a

Procedure F^{4,5}: Raney nickel that was washed with ethanol (3 times) was added to a solution of **3a** (99.7 mg, 0.40 mmol) in 2 mL EtOH. After the autoclave was flushed 3 times, it was pressurised with 25 bar of H₂ and stirred for 24 h at room temperature. Then the mixture was vented, and filtered through Celite, eluting with EtOAc and combined organic was concentrated in vacuo. The resulting crude product was dissolved in 2 mL CH₂Cl₂ under an Ar atmosphere. Then the reaction mixture was cooled to 0 \mathbb{C} before tosyl chloride and trimethylamine was added. The solution was warmed to room temperature and stirred for 4 h. The reaction was then quenched by 2 mL H₂O and extracted with ethyl acetate. Combined organic dried over Na₂SO₄ and the solvent was removed in vacuo. The crude product was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate 10:1) directly to give **10a** (>20:1 dr.) in 78% isolated yield as a white solid over two steps. The relative configuration of **10a** was given out according to Klussmann's work because the sampe reductive cyclozation procedure and nearly the same starting material (*p*-MeO-Bz group) were used⁵.

Procedure for the Synthesis of 10b

Procedure G^{6,7}: To a solution of **3a** (99.7 mg, 0.40 mmol) in DMSO (1 mL) was added hydrogen peroxide (30%, 128 μ L, 1.12 mmol) and K₂CO₃ (8.4 mg, 0.06 mmol) at 0 °C. The resulting solution was warmed to room temperature and stirred for 2 h. The reaction was then quenched by 2 mL H₂O and extracted with diethyl ether. Combined organic dried over Na₂SO₄ and the solvent was removed in vacuo. The crude product was dissolved in 4 mL CHCl₃ under an Ar atmosphere followed by the addition of a drop of BF₃ etherate. The solution was stirred vigorously for 30 minutes at room temperature. The crude product was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate 10:1) directly to give the desired product **10b** in 69% isolated yield as a white solid over two steps.

5. Spectral Data of Products

5-Oxo-2,5-diphenylpentanenitrile (3a)

Colorless oil; 80% yield. ¹H NMR (400 MHz, DMSO- d_6) δ 7.95-7.92 (m, 2H), 7.66-7.61 (m, 1H), 7.54-7.50 (m, 2H), 7.44-7.40 (m, 4H), 7.39-7.33 (m, 1H), 4.30 (dd, J = 8.3, 6.8 Hz, 1H), 3.15 (t, J = 7.3 Hz, 2H), 2.30-2.16 (m, 2H). ¹³C NMR (100 MHz, DMSO- d_6) δ 198.3, 136.3, 136.0, 133.3, 129.1, 128.7, 128.0, 127.8, 127.4, 121.2, 35.2, 35.2, 29.3. IR (in KBr): 3163, 3032, 2935, 2241, 1683, 1401 cm⁻¹. HRMS (ESI) for: m/z [M + Na]⁺ calcd for C₁₇H₁₅NNaO: 272.1046, found: 272.1043.

5-Oxo-5-phenyl-2-(p-tolyl)pentanenitrile (3b)

Colorless oil; 79% yield. ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.93 (d, *J* = 2.0 Hz, 2H), 7.65-7.61 (m, 1H), 7.52 (t, *J* = 2.0 Hz, 2H), 7.30 (d, *J* = 7.7 Hz, 2H), 7.22 (d, *J* = 7.7 Hz, 2H), 4.24 (t, *J* = 7.5 Hz, 1H), 3.13 (t, *J* =

7.2 Hz, 2H), 2.29 (s, 3H), 2.25-2.14 (m, 2H). ¹³C NMR (100 MHz, DMSO- d_6) δ 198.8, 137.8, 136.8, 133.8, 133.5, 130.1, 129.2, 128.3, 127.8, 121.8, 35.7, 35.3, 29.7, 21.1. IR (in KBr): 2987, 2926, 2241, 1684, 1400, 1181 cm⁻¹. HRMS (ESI) for: m/z [M + Na]⁺ calcd for C₁₈H₁₇NNaO: 286.1202, found: 286.1196.

2-(4-(Methylthio)phenyl)-5-oxo-5-phenylpentanenitrile (3c)

3.14 (t, J = 7.2 Hz, 2H), 2.26-2.15 (m, 2H). ¹³C NMR (100 MHz, DMSO- d_6) δ 198.8, 138.7, 136.8, 133.8, 132.9, 129.2, 128.5, 128.3, 126.8, 121.7, 35.7, 35.1, 29.6, 15.0. IR (in KBr): 2987,

29237, 2242, 1682, 1649, 1400.39, 1240 cm⁻¹. HRMS (ESI) for: $m/z [M + Na]^+$ calcd for $C_{18}H_{17}NNaOS$: 318.0923, found: 318.0919.

2-([1,1'-Biphenyl]-4-yl)-5-oxo-5-phenylpentanenitrile (3d)

Ph O White solid; 82% yield. ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.96 (d, *J* = 7.7 Hz, 2H), 7.74-7.63 (m, 5H), 7.55-7.46 (m, 6H), 7.38 (t, *J* = 7.3 Hz, 1H), 4.36 (t, *J* = 7.5 Hz, 1H), 3.19 (t, *J* = 7.2 Hz, 2H), 2.32-2.21 (m, 1H), 4.36 (t, *J* = 7.5 Hz, 1H), 3.19 (t, *J* = 7.2 Hz, 2H), 2.32-2.21 (m, 1H), 4.36 (t, *J* = 7.5 Hz, 1H), 3.19 (t, *J* = 7.2 Hz, 2H), 2.32-2.21 (m, 1H), 4.36 (t, *J* = 7.5 Hz, 1H), 3.19 (t, *J* = 7.2 Hz, 2H), 2.32-2.21 (m, 1H), 4.36 (t, *J* = 7.5 Hz, 1H), 3.19 (t, *J* = 7.2 Hz, 2H), 2.32-2.21 (m, 1H), 4.36 (t, *J* = 7.5 Hz, 1H), 3.19 (t, *J* = 7.2 Hz, 2H), 2.32-2.21 (m, 1H), 4.36 (t, *J* = 7.5 Hz, 1H), 3.19 (t, *J* = 7.2 Hz, 2H), 2.32-2.21 (m, 1H), 4.36 (t, *J* = 7.5 Hz, 1H), 3.19 (t, *J* = 7.2 Hz, 2H), 2.32-2.21 (m, 1H), 4.36 (t, *J* = 7.5 Hz, 1H), 3.19 (t, *J* = 7.2 Hz, 2H), 2.32-2.21 (m, 1H), 4.36 (t, *J* = 7.5 Hz, 1H), 3.19 (t, *J* = 7.2 Hz, 2H), 2.32-2.21 (m, 1H), 4.36 (t, *J* = 7.5 Hz, 1H), 3.19 (t, *J* = 7.2 Hz, 2H), 2.32-2.21 (m, 1H), 4.36 (t, *J* = 7.5 Hz, 1H), 3.19 (t, *J* = 7.2 Hz, 2H), 2.32-2.21 (m, 1H), 4.36 (t, *J* = 7.5 Hz, 1H), 3.19 (t, J = 7.5 Hz, 1H)

2H). ¹³C NMR (100 MHz, DMSO-d6) δ 198.8, 140.4, 139.9, 136.8, 135.6, 133.8, 129.5, 129.3, 128.5, 128.4, 128.2, 127.9, 127.2, 121.7, 35.8, 35.4, 29.6. IR (in KBr): 2988, 2256, 1647, 1398, 1046, 998 cm⁻¹. HRMS (ESI) for: m/z [M + Na]⁺ calcd for C₂₃H₁₉NNaO: 348.1359, found: 348.1348.

2-(4-Fluorophenyl)-5-oxo-5-phenylpentanenitrile (3e)

Colorless oil; 70% yield. ¹H NMR (400 MHz, DMSO- d_6) δ 7.94 (d, J = 7.7 Hz, 2H), 7.66-7.62 (m, 1H), 7.54-7.47 (m, 4H), 7.25 (t, J = 8.6 Hz, 2H), 4.33 (t, J = 7.5 Hz, 1H), 3.15 (t, J = 7.2 Hz, 2H), 2.23 (m, 2H).¹³C

NMR (100 MHz, DMSO- d_6) δ 198.7, 162.2 (d, J = 245.4 Hz), 136.8, 133.8, 132.7 (d, J = 3.0 Hz), 130.1 (d, J = 8.1 Hz), 129.2, 128.3, 121.6, 116.4 (d, J = 21.2 Hz), 35.7, 35.0, 29.7. ¹⁹F NMR (376 MHz, DMSO- d_6) δ -114.18. IR (in KBr): 3174, 2242, 1684, 1510, 1401, 837 cm⁻¹. HRMS (ESI) for: m/z [M + Na]⁺ calcd for C₁₇H₁₄FNNaO: 290.0952, found: 290.0949.

2-(4-Chlorophenyl)-5-oxo-5-phenylpentanenitrile (3f)

Colorless oil; 81% yield. ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.95-7.92 (m, 2H), 7.65-7.61 (m, 1H), 7.55-7.44 (m, 6H), 4.34 (dd, *J* = 8.3, 6.7 Hz, 1H), 3.14 (t, *J* = 7.2 Hz, 2H), 2.21 (m, 2H). ¹³C NMR (100 MHz,

DMSO- d_6) δ 198.7, 136.7, 135.5, 133.8, 133.2, 129.9, 129.6, 129.2, 128.3, 121.4, 35.6, 35.1, 29.5. IR (in KBr): 3176, 2242, 1647, 1401, 1093 cm⁻¹. HRMS (ESI) for: m/z [M + Na]⁺ calcd for C₁₇H₁₄ClNNaO: 306.0656, found: 306.0654.

2-(4-Bromophenyl)-5-oxo-5-phenylpentanenitrile (3g)

 $\begin{array}{l} \mbox{Br} & \mbox{Colorless oil; 69\% yield. ^{1}H NMR (400 MHz, DMSO-d_6) δ 7.94 (d, J = $1000 MHz, $MSO-d_6$) δ 7.94 (d, J = $1000 MHz, $MSO-d_6$) δ 7.94 (d, J = $1000 MHz, $1000 MHz, $2H$), $7.5 Hz, $2H$), $7.66-7.61 (m, $3H$), $7.54-7.50 (m, $2H$), $7.40 (d, J = $8.1 Hz, $2H$), $4.33 (t, J = $7.5 Hz, $1H$), $3.15 (t, J = $7.2 Hz, $2H$), $2.29-2.16 (m, $2H$), $1300 MHz, $DMSO-d_6$) δ 198.3, $136.3, $135.5, $133.4, $132.0, $129.5, $128.8, $127.9, $121.3, $120.9, $35.2, $34.7, $29.0. IR (in KBr): $2986, $2942, $2243, $1742, $1377, $1241, $1047 cm^{-1}$. $HRMS (ESI) for: $m/z [M + Na]^+ calcd for $C_{17}H_{14}FNNaO: $350.0151, found: $350.0153. $ \end{array}$

5-Oxo-5-phenyl-2-(4-(trifluoromethyl)phenyl)pentanenitrile (3h)

F₃C Colorless oil; 74% yield. ¹H NMR (400 MHz, DMSO- d_6) δ 7.95 (d, J= 7.7 Hz, 2H), 7.79 (d, J = 8.0 Hz, 2H), 7.69-7.62 (m, 3H), 7.52 (t, J= 7.6 Hz, 2H), 4.48 (t, J = 7.5 Hz, 1H), 3.18 (t, J = 7.2 Hz, 2H), 2.30-2.23 (m, 2H). ¹³C NMR (100 MHz, DMSO- d_6) δ 198.6, 141.1, 136.7, 133.8, 129.2 (q, J = 31.3 Hz), 129.2, 128.9, 128.3, 126.5 (q, J = 4.0 Hz), 124.5 (q, J = 273.7 Hz), 121.1, 35.7, 35.6, 29.5. ¹⁹F NMR (376 MHz, DMSO- d_6) δ -61.16. IR (in KBr): 2987, 2938, 2244, 1684, 1401, 1327, 1125 cm⁻¹. HRMS (ESI) for: m/z [M + Na]⁺ calcd for C₁₈H₁₄F₃NNaO: 340.0920, found: 340.0908.

4-(1-Cyano-4-oxo-4-phenylbutyl)-N,N-dipropylbenzenesulfonamide (3i)

Yellow oil; 69% yield. ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.947.92 (m, 2H), 7.84 (d, J = 8.1 Hz, 2H), 7.64 (dd, J = 15.4, 7.7
Ph Hz, 3H), 7.51 (t, J = 7.7 Hz, 2H), 4.47 (t, J = 7.5 Hz, 1H), 3.18-3.13 (m, 2H), 3.01 (dd, J = 8.5, 6.6 Hz, 4H), 2.29-2.22 (m,

2H), 1.50-1.41 (m, 4H), 0.79 (t, J = 7.3 Hz, 6H). ¹³C NMR (100 MHz, DMSO- d_6) δ 198.6, 141.0, 139.7, 136.7, 133.8, 129.2, 129.0, 128.3, 128.1, 121.1, 50.2, 35.6, 35.6, 29.5, 22.1, 11.4. IR (in KBr): 2977, 2938, 2877, 2244, 1684, 1400, 1240, 1047. HRMS (ESI) for: m/z [M + Na]⁺ calcd for C₂₃H₂₈N₂NaO₃: 435.1713, found: 435.1707.

2-(2-Fluorophenyl)-5-oxo-5-phenylpentanenitrile (3j)

Yellow oil; 70% yield. ¹H NMR (400 MHz, DMSO- d_6) δ 7.99-7.90 (m, 2H), 7.69-7.61 (m, 1H), 7.55-7.51 (m, 3H), 7.47-7.41 (m, 1H), 7.32-7.25 (m, 2H), 4.48 (dd, J = 8.5, 6.8 Hz, 1H), 3.22-3.17 (m, 2H), 2.35-2.16 (m,

2H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 198.2, 159.7 (d, *J* = 247.5 Hz), 136.3, 133.4, 130.6 (d, *J* = 9.1 Hz), 129.6 (d, *J* = 4.0 Hz), 128.8, 127.9, 125.3 (d, *J* = 3.0 Hz), 122.8 (d, *J* = 14.1 Hz), 120.2, 116.0 (d, *J* = 21.2 Hz), 35.2, 29.8 (d, *J* = 2.0 Hz), 27.4. ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -117.47. IR (in KBr): 2852, 2246, 1683, 1400, 1235, 996. cm⁻¹ HRMS (ESI) for: m/z [M + Na]⁺ calcd for C₁₇H₁₄FNNaO : 290.0952, found: 290.0945.

2-(2-Methoxyphenyl)-5-oxo-5-phenylpentanenitrile (3k)

Colorless oil; 59% yield. ¹H NMR (400 MHz, DMSO- d_6) δ 7.93 (d, J = 8.0 Hz, 2H), 7.65-7.62 (m, 1H), 7.52 (t, J = 7.6 Hz, 2H), 7.42-7.30 (m, 2H), 2.33-2.12 (m, 2H), 4.37 (t, J = 7.5 Hz, 1H), 3.75 (s, 3H), 3.15-3.10 (m, 2H), 2.33-2.12 (m, 2H). ¹³C NMR (100 MHz, DMSO- d_6) δ 198.4, 156.2, 136.3, 133.3, 129.7, 128.8, 128.4, 127.8, 123.3, 121.0, 120.9, 111.6, 55.6, 35.2, 29.9, 27.1. IR (in KBr): 3193, 2845, 2241, 1682, 1400, 1248, 1026 cm⁻¹. HRMS (ESI) for: m/z [M + Na]⁺ calcd for C₁₈H₁₇NNaO₂: 302.1151, found: 302.1148.

2-(3-Methoxyphenyl)-5-oxo-5-phenylpentanenitrile (3l)

Colorless oil; 64% yield. ¹H NMR (400 MHz, DMSO- d_6) δ 7.94 (d, J = 8.0 Hz, 2H), 7.66-7.62 (m, 1H), 7.52 (t, J = 7.6 Hz, 2H), 7.34 (t, J = 7.9 Hz, 1H), 7.01-6.97 (m, 2H), 6.92 (dd, J = 8.3, 2.5 Hz, 1H), 4.26 (t, J = 7.5 Hz, 1H), 3.76 (s, 3H), 3.15 (t, J = 7.2 Hz, 2H), 2.38-2.13 (m, 2H). ¹³C NMR

(100 MHz, DMSO-*d*₆) δ 198.8, 160.1, 137.9, 136.8, 133.8, 130.7, 129.2, 128.3, 121.6, 119.9, 114.0, 113.7, 55.6, 35.7, 35.7, 29.6. IR (in KBr): 3089, 2800, 2245, 1696, 1375, 1250, 959 cm⁻¹. HRMS (ESI) for: m/z [M + Na]⁺ calcd for C₁₈H₁₇NNaO₂: 302.1151, found: 302.1151.

2-(Naphthalen-1-yl)-5-oxo-5-phenylpentanenitrile (3m)

Colorless oil; 70% yield. ¹H NMR (400 MHz, DMSO- d_6) δ 8.27 (d, J = 8.6 Hz, 1H), 8.02-7.94 (m, 4H), 7.71 (dd, J = 7.2, 1.2 Hz, 1H), 7.67-7.50 (m, 6H), 5.10 (dd, J = 9.5, 5.5 Hz, 1H), 3.38-3.34 (m, 1H), 3.31-

3.23 (m, 1H), 2.44-2.24 (m, 2H).¹³C NMR (100 MHz, DMSO- d_6) δ 199.0, 136.8, 134.1, 133.8, 132.4, 130.3, 129.5, 129.2, 128.4, 127.4, 126.8, 126.1, 125.8, 123.4, 121.8, 36.0, 33.1, 28.9. IR (in KBr): 2986, 2242, 1649, 1377, 1028, 939 cm⁻¹. HRMS (ESI) for: m/z [M + Na]⁺ calcd for C₂₁H₁₇NNaO: 322.1202, found: 322.1199.

2-(Benzo[d][1,3]dioxol-5-yl)-5-oxo-5-phenylpentanenitrile (3n)

Colorless oil; 73% yield. ¹H NMR (400 MHz, DMSO- d_6) δ 7.94 (d, J = 7.4 Hz, 2H), 7.64 (t, J = 7.5 Hz, 1H), 7.52 (t, J = 7.6 Hz, 2H), 7.02 (s, 1H), 6.94- 6.87 (m, 2H), 6.04 (s, 2H), 4.19 (t, J = 7.6 Hz, 1H), 3.12 (t, J = 7.2 Hz, 2H), 2.26-2.13 (m, 2H). ¹³C NMR (100 MHz, DMSO- d_6) δ 198.8, 148.3, 147.5, 136.8, 133.8, 130.0, 129.2, 128.3, 121.8, 121.4, 109.0, 108.3, 101.8, 35.6, 35.3, 29.6. IR (in KBr): 3235, 2240, 1681, 1504, 1400, 1033 cm⁻¹. HRMS (ESI) for: m/z [M + Na]⁺ calcd for C₁₈H₁₅NNaO₃: 316.0944, found: 316.0944.

2-(3,4-Dichlorophenyl)-5-oxo-5-phenylpentanenitrile (30)

Colorless oil; 65% yield. ¹H NMR (400 MHz, DMSO- d_6) δ 7.96-7.93 (m, 2H), 7.75-7.61 (m, 3H), 7.55-7.44 (m, 3H), 4.38 (t, J = 8.2 Hz, 1H), 3.15 (t, J = 7.2 Hz, 2H), 2.34-2.18 (m, 2H). ¹³C NMR (100 MHz,

DMSO- d_6) δ 198.2, 137.0, 136.3, 133.4, 131.7, 131.2, 130.9, 129.7, 128.8, 127.9, 127.9, 120.5, 35.2, 34.4, 28.7. IR (in KBr): 2986, 2935, 2243, 1683, 1470, 1400, 1032 cm⁻¹. HRMS (ESI) for: m/z [M + Na]⁺ calcd for C₁₇H₁₃Cl₂NNaO: 340.0266, found: 340.0264.

2-(3,5-Dimethoxyphenyl)-5-oxo-5-phenylpentanenitrile (3p)

ĊN

CI

Colorless oil; 84% yield. ¹H NMR (400 MHz, DMSO- d_6) δ 7.94 (d, J = 7.7 Hz, 2H), 7.64 (t, J = 7.3 Hz, 1H), 7.52 (t, J = 7.6 Hz, 2H), 6.52 (d, J = 34.8 Hz, 2H), 4.20 (t, J = 7.5 Hz, 1H), 3.14 (t, J = 7.2 Hz, 2H), 2.50-2.16 (m, 2H).¹³C NMR (100 MHz, DMSO- d_6) δ 198.9, 161.3,

138.6, 136.8, 133.8, 129.2, 128.3, 121.6, 106.0, 100.1, 55.8, 35.8, 35.7, 29.4. IR (in KBr): 2988, 2841, 2242, 1649, 1560, 1048, 997 cm⁻¹. HRMS (ESI) for: $m/z [M + Na]^+$ calcd for $C_{19}H_{19}NNaO_3$: 332.1257, found: 332.1256.

2-(4-(Allyloxy)phenyl)-5-oxo-5-phenylpentanenitrile (3q)

Colorless oil; 73% yield. ¹H NMR (400 MHz, DMSO-
$$d_6$$
) δ 7.93-7.89
(m, 2H), 7.42 (d, $J = 4.3$ Hz, 4H), 7.38-7.33 (m, 1H), 7.06-7.03 (m,

2H), 6.09-5.99 (m, 1H), 5.43-5.38 (m, 1H), 5.30-5.26 (m, 1H), 4.66-4.64 (m, 2H), 4.28 (dd, J = 8.4, 6.8 Hz, 1H), 3.10-3.05 (m, 2H), 2.25-2.14 (m, 2H). ¹³C NMR (100 MHz, DMSO- d_6) δ 197.1, 162.6, 136.5, 133.6, 130.6, 129.8, 129.6, 128.5, 127.9, 121.7, 118.4, 115.0, 68.9, 35.7, 35.3, 29.9. IR (in KBr): 3290, 2986, 2940, 2242, 1676, 1600, 1377 cm⁻¹. HRMS (ESI) for: m/z [M + Na]⁺ calcd for C₂₀H₁₉NNaO₂: 328.1308, found: 328.1303.

5-Oxo-5-phenyl-2-(4-(prop-2-yn-1-yloxy)phenyl)pentanenitrile (3r)

CN O Ph

Colorless oil; 77% yield. ¹H NMR (400 MHz, DMSO- d_6) δ 7.95-7.91 (m, 2H), 7.42 (d, J = 4.3 Hz, 4H), 7.38-7.33 (m, 1H), 7.11-7.07 (m, 2H), 4.91 (d, J = 2.4 Hz, 2H), 4.28 (dd, J = 8.4, 6.8 Hz, 1H), 3.63 (t, J

= 2.3 Hz, 1H), 3.11-3.07 (m, 2H), 2.26-2.15 (m, 2H). ¹³C NMR (100 MHz, DMSO- d_6) δ 197.2, 161.5, 136.5, 130.6, 130.3, 129.6, 128.5, 127.9, 121.7, 115.2, 79.2, 79.1, 56.2, 35.8, 35.4, 29.9. IR (in KBr): 2986, 2938, 2241, 1676, 1599, 1374, 992 cm⁻¹. HRMS (ESI) for: m/z [M + Na]⁺ calcd for C₂₀H₁₇NNaO₂: 326.1151, found: 326.1154.

2-(Furan-2-yl)-5-oxo-5-phenylpentanenitrile (3s)

Yellow oil; 65% yield. ¹H NMR (400 MHz, DMSO- d_6) δ 7.96-7.93 (m, 2H), 7.71 (t, J = 1.4 Hz, 1H), 7.67-7.62 (m, 1H), 7.55-7.51 (m, 2H), 6.48 (d, J = 1.4 Hz, 2H), 4.51 (t, J = 7.5 Hz, 1H), 3.18 (t, J = 2.0 Hz, 2H), 2.27 (q, J

= 7.3 Hz, 2H). ¹³C NMR (100 MHz, DMSO- d_6) δ 198.6, 148.1, 144.1, 136.7, 133.8, 129.3, 128.3, 119.6, 111.4, 108.6, 35.4, 29.7, 26.2. IR (in KBr): 2988, 2250, 1681, 1649, 1399, 1047, 1027, 1001 cm⁻¹. HRMS (ESI) for: m/z [M + Na]⁺ calcd for C₁₅H₁₃NNaO₂: 262.0838, found: 262.0840.

5-Oxo-5-phenyl-2-(thiophen-2-yl)pentanenitrile (3t)

Yellow oil; 76% yield. ¹H NMR (400 MHz, DMSO- d_6) δ 7.96-7.93 (m, ^O_H 2H), 7.66-7.61 (m, 1H), 7.56-7.49 (m, 3H), 7.18-7.16 (m, 1H), 7.04 (dd, J = 5.1 Hz, 3.5 Hz, 1H), 4.67 (t, J = 7.5 Hz, 1H), 3.19 (t, J = 2.0 Hz, 2H),

2.38-2.18 (m, 2H). ¹³C NMR (100 MHz, DMSO- d_6) δ 198.6, 138.3, 136.7, 133.9, 129.3, 128.3, 127.8, 127.1, 126.8, 121.0, 35.6, 31.0, 29.9. IR (in KBr): 2987, 2244, 1681, 1399, 1028, 999 cm⁻¹. HRMS (ESI) for: m/z [M + Na]⁺ calcd for C₁₅H₁₃NNaOS: 278.0610, found: 278.0610.

2-(3-Oxo-3-phenylpropyl)pent-3-enenitrile (5a, *E*/Z = 2.5:1)

Ph CN

CN

Colorless oil; 57% yield. ¹H NMR (400 MHz, DMSO- d_6) δ 7.99-7.95 (*E*+*Z*, m, 2H), 7.66-7.61 (*E*+*Z*, m, 1H), 7.56-7.50 (*E*+*Z*, m, 2H), 5.86-5.37 (*E*+*Z*, m, 2H), 3.63-3.54 (*E*+*Z*, m, 1H), 3.17-3.09 (*E*+*Z*, m, 2H), 2.38 (*E*, q,

J = 7.2 Hz, 2H), 2.00-1.95 (Z, m, 2H), 1.68-1.66 (Z, m, 3H), 1.27 (*E*, dd, J = 7.1, 1.6 Hz, 3H). ¹³C NMR (100 MHz, DMSO- d_6) δ 199.6, 199.0, 137.0, 136.9, 133.8, 133.6, 132.0, 129.6, 129.2, 129.2, 128.4, 128.3, 126.8, 125.7, 122.2, 121.2, 37.6, 35.4, 32.9, 27.5, 27.3, 26.4, 18.9, 17.8. IR (in KBr): 2986, 2941, 2241, 1684, 1399, 1239, 1047 cm⁻¹. HRMS (ESI) for: m/z [M + Na]⁺ calcd for C₁₄H₁₅NNaO: 236.1046, found: 236.1043.

5-Oxo-5-phenyl-2-styrylpentanenitrile (5b, E/Z = 3:1)

Yellow oil; 70% yield. ¹H NMR (400 MHz, DMSO- d_6) δ 7.99-7.97 (Z, m, 1H), 7.95-7.92 (E, m, 2H), 7.67-7.62 (E+Z, m, 1H), 7.55-7.48 (m, 4H), 7.43-7.27 (E+Z, m, 5H), 6.77-6.74 (E+Z, d, J = 11.3 Hz, 1H), 6.37

(*Z*, dd, *J* = 15.9, 6.7 Hz, 1H), 5.73 (*E*, dd, *J* = 11.3, 9.7 Hz, 1H), 4.03-3.94 (*E*, dd, *J* = 7.0, 1.3 Hz, 1H), 3.89 (*Z*, dd, *J* = 7.0, 1.3 Hz, 1H), 3.26-3.17 (*E*+*Z*, m, 2H), 2.16-1.99 (*E*+*Z*, m, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 199.0, 198.9, 136.9, 136.8, 136.1, 135.6, 133.8, 133.7, 133.0, 129.2, 128.9, 128.6, 128.3, 127.0, 125.8, 124.5, 121.1, 121.0, 35.5, 35.4, 33.2, 29.1, 27.4, 27.3. IR (in KBr): 2250, 1681, 1650, 1400, 1026, 998 cm⁻¹. HRMS (ESI) for: m/z [M + Na]⁺ calcd for C₁₉H₁₇NNaO: 298.1202, found: 298.1196.

4-Methyl-2-(3-oxo-3-phenylpropyl)pent-3-enenitrile (5c)

Colorless oil; 63% yield. ¹H NMR (400 MHz, DMSO- d_6) δ 7.98-7.96 (m, 2H), 7.68-7.64 (m, 1H), 7.55 (t, J = 7.7 Hz, 2H), 5.15 (d, J = 9.0 Hz, 1H), 3.78-3.72 (m, 1H), 3.15 (t, J = 7.1 Hz, 2H), 2.04-1.90 (m, 2H), 1.71 (s,

3H), 1.65 (s, 3H). ¹³C NMR (100 MHz, DMSO- d_6) δ 199.2, 138.1, 136.9, 133.8, 129.3, 128.3, 121.9, 119.1, 35.4, 28.8, 27.6, 25.6, 18.4. IR (in KBr): 3128, 2253, 1643, 1400, 1026, 998 cm⁻¹. HRMS (ESI) for: m/z [M + Na]⁺ calcd for C₁₅H₁₇NNaO: 250.1202, found: 250.1203.

2-(3-Oxo-3-phenylpropyl)oct-3-ynenitrile (5d)

Colorless oil; 80% yield. ¹H NMR (400 MHz, DMSO- d_6) δ 7.97 (d, J = 8.0 Hz, 2H), 7.65 (t, J = 7.6 Hz, 1H), 7.54 (t, J = 7.6 Hz, 2H), 4.18-4.14 (m, 1H), 3.22 (t, J = 7.2 Hz, 2H), 2.21-2.09 (m, 4H), 1.42-1.27 (m,

4H), 0.83 (t, J = 7.0 Hz, 3H). ¹³C NMR (100 MHz, DMSO- d_6) δ 198.5, 136.7, 133.8, 129.2, 128.3, 128.3, 119.0, 85.2, 73.1, 35.3, 30.3, 27.9, 22.2, 21.8, 17.9, 13.8. IR (in KBr): 3193, 2959, 2869, 2245, 1685, 1400, 1047 cm⁻¹. HRMS (ESI) for: m/z [M + Na]⁺ calcd for C₁₇H₁₉NNaO: 276.1359, found: 276.1353.

5-Oxo-5-phenyl-2-(phenylethynyl)pentanenitrile (5e)

Ph Yellow oil; 76% yield. ¹H NMR (400 MHz, DMSO-
$$d_6$$
) δ 8.00 (d, $J = 8.0$
Hz, 2H), 7.65 (t, $J = 7.4$ Hz, 1H), 7.54 (t, $J = 7.5$ Hz, 2H), 7.48-7.44 (m, 2H), 7.42-7.36 (m, 3H), 4.52 (t, $J = 6.9$ Hz, 1H), 3.32 (t, $J = 7.2$ Hz, 2H),

2.29 (q, J = 8.4, 7.8 Hz, 2H). ¹³ NMR (100 MHz, DMSO- d_6) δ 198.1, 136.3, 133.4, 131.7, 129.3, 128.8, 128.7, 128.7, 128.0, 121.0, 118.1, 83.5, 82.1, 34.9, 27.2, 22.4. IR (in KBr): 2987, 2252, 1648, 1399, 1046, 998 cm⁻¹. HRMS (ESI) for: m/z [M + Na]⁺ calcd for C₁₉H₁₅NNaO: 296.1046, found: 296.1039.

5-Oxo-5-phenyl-2-((trimethylsilyl)ethynyl)pentanenitrile (5f)

Colorless oil; 66% yield. ¹H NMR (400 MHz, DMSO- d_6) δ 7.91 (d, J = 8.1 Hz, 2H), 7.60 (t, J = 7.7 Hz, 1H), 7.48 (t, J = 7.7 Hz, 2H), 4.24 (t, J = 7.0 Hz, 1H), 3.16 (dd, J = 8.3, 6.3 Hz, 2H), 2.15-2.08 (m, 2H), 0.07

(s, 9H). ¹³C NMR (100 MHz, DMSO- d_6) δ 199.3, 137.6, 134.8, 130.2, 129.3, 119.3, 99.4, 90.4, 36.1, 28.4, 23.9, 0.9. IR (in KBr): 3180, 2986, 2185, 1685, 1399, 1046 cm⁻¹. HRMS (ESI) for: m/z [M + Na]⁺ calcd for C₁₆H₁₉NNaOSi: 292.1128, found: 292.1125.

Di-tert-butyl 2-cyano-3-(2-oxo-2-phenylethyl)succinate (5g, 3:1 dr)

O CO₂*t*-Bu CO₂*t*-Bu

dd, *J* = 8.3, 1.4 Hz, 1H), 7.92 (major, dd, *J* = 7.8, 1.4 Hz, 1H), 7.72-7.65 (major+minor, m, 1H), 7.61-7.57 (major+minor, m, 1H), 7.51-7.43

Colorless oil; 80% yield. ¹H NMR (400 MHz, DMSO- d_6) δ 8.07 (minor,

(major, m, 2H), 4.27 (major, d, J = 6.0 Hz, 1H), 3.51-3.47 (major, m, 1H), 3.45-3.42 (minor, m, 1H), 3.40 (minor, d, J = 1.2 Hz, 1H), 2.89 (major, dd, J = 17.4, 6.9 Hz, 1H), 2.78 (major, dd, J = 17.4, 4.7 Hz, 1H), 2.67-2.63 (minor, m, 1H), 2.58 (minor, d, J = 5.4 Hz, 1H), 1.49 (minor, d, J = 1.3 Hz, 3H), 1.46 (major, d, J = 1.3 Hz, 9H), 1.30 (major, d, J = 1.3 Hz, 9H), 1.11 (minor, d, J = 1.3 Hz, 3H). ¹³C NMR (100 MHz, DMSO- d_6) δ 194.9, 192.2, 171.6, 170.8, 169.3, 166.9, 139.0, 136.4, 134.4, 134.2, 131.9, 129.2, 129.1, 128.9, 128.5, 126.8, 82.0, 82.0, 81.7, 81.6, 48.1, 43.5, 38.0, 33.4, 30.3, 28.1, 28.0, 27.8, 27.6, 25.9. IR (in KBr): 2981, 2936, 2252, 1731, 1691, 1645, 1397, 1150 cm⁻¹. HRMS (ESI) for: m/z [M + Na]⁺ calcd for C₂₁H₂₇NNaO₅: 396.1781, found: 396.1777.

6-Benzoyl-7-oxo-7-phenylhept-3-enenitrile (5h, E/Z = 2:1)

Hz, 2H), 2.67 (t, J = 6.0 Hz, 1H). ¹³C NMR (100 MHz, DMSO- d_6) δ 196.8, 136.1, 134.3, 131.3, 129.5, 128.9, 121.6, 118.9, 55.0, 31.9, 19.8. (*Z*)-**5h**: ¹H NMR (400 MHz, DMSO- d_6) δ 8.02 - 7.99 (m, 4H), 7.68-7.64 (m, 2H), 7.54 (t, J = 7.8 Hz, 4H), 5.94 (t, J = 6.5 Hz, 1H), 5.70-5.64 (m, 1H), 5.43-5.37 (m, 1H), 3.33-3.30 (m, 2H), 2.69 (t, J = 6.0 Hz, 1H). ¹³C NMR (100 MHz, DMSO- d_6) δ 196.8, 136.0, 134.3, 131.8, 129.6, 128.9, 120.5, 119.5, 54.7, 27.3, 15.5. IR (in KBr): 3029, 2237, 1676, 1401, 1168, 1036 cm⁻¹. HRMS (ESI) for: m/z [M + Na]⁺ calcd for C₂₀H₁₇NNaO₂: 326.1151, found: 326.1152.

5-(4-Fluorophenyl)-5-oxo-2-phenylpentanenitrile (7a)

Yellow oil; 90% yield. ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.05-8.00 (m, Ph 2H), 7.45-7.40 (m, 4H), 7.38-7.31 (m, 3H), 4.29 (dd, *J* = 8.4, 6.8 Hz, 1H), 3.15 (t, *J* = 7.2 Hz, 2H), 2.27-2.16 (m, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 197.0, 165.1 (d, *J* = 252.5 Hz), 136.0, 133.1, 133.1, 130.9 (d, *J* = 9.1 Hz), 129.1, 128.1, 127.4, 121.3, 115.8 (d, *J* = 22.2 Hz), 35.3, 35.2, 29.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -105.86. IR (in KBr): 3214, 2241, 1645, 1400, 1157, 1096 cm⁻¹. HRMS (ESI) for: m/z [M + Na]⁺ calcd for C₁₇H₁₄FNNaO: 290.0952, found: 290.0949.

5-(4-Fluorophenyl)-5-oxo-2-phenylpentanenitrile (7b)

Colorless oil; 79% yield. ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.96-7.93 (m, 2H), 7.60-7.56 (m, 2H), 7.42 (d, *J* = 4.3 Hz, 4H), 7.39-7.33 (m, 1H), 4.29 (dd, *J* = 8.4, 6.7 Hz, 1H), 3.15 (t, *J* = 7.2 Hz, 2H), 2.27-2.16 (m, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 197.4, 138.3, 136.0, 135.0, 129.8, 129.1, 128.9, 128.1, 127.4, 121.2, 35.3, 35.2, 29.2. IR (in KBr): 2241, 1639, 1400, 1091, 988 cm⁻¹. HRMS (ESI) for: m/z [M + Na]⁺ calcd for C₁₇H₁₄ClNNaO: 306.0656, found: 306.0653.

5-Oxo-2-phenyl-5-(p-tolyl)pentanenitrile (7c)

C₁₈H₁₇NNaO: 286.1202, found: 286.1198.

Colorless oil; 88% yield. ¹H NMR (400 MHz, DMSO- d_6) δ 7.83 (d, J =Ph 8.2 Hz, 2H), 7.42 (d, J = 4.3 Hz, 4H), 7.36 (q, J = 4.1 Hz, 1H), 7.31 (d, J = 8.0 Hz, 2H), 4.28 (dd, J = 8.3, 6.8 Hz, 1H), 3.11 (t, J = 7.5 Hz, 2H), 2.36 (s, 3H), 2.24-2.17 (m, 2H). ¹³C NMR (100 MHz, DMSO- d_6) δ 198.3, 144.2, 136.5, 134.3, 129.8, 129.6, 128.5, 128.4, 127.9, 121.7, 35.7, 35.6, 29.8, 21.6. IR (in KBr): 3032, 2985, 2939, 2241, 1680, 1608, 1401, 1375, 1047 cm⁻¹. HRMS (ESI) for: m/z [M + Na]⁺ calcd for

5-(4-Methoxyphenyl)-5-oxo-2-phenylpentanenitrile (7d)

Colorless oil; 85% yield. ¹H NMR (400 MHz, DMSO- d_6) δ 7.92 (d, J = 8.9 Hz, 2H), 7.42 (d, J = 4.4 Hz, 4H), 7.38-7.33 (m, 1H), 7.03 (d, J = 8.9 Hz, 2H), 4.28 (dd, J = 8.4, 6.8 Hz, 1H), 3.83 (s, 3H), 3.10-3.06 (t, J = 2.0 Hz, 2H), 2.26-2.15 (m, 2H). ¹³C NMR (100 MHz, DMSO- d_6) δ 196.6, 163.2, 136.1, 130.2, 129.3, 129.1, 128.0, 127.4, 121.2, 113.9, 55.5, 35.3, 34.8, 29.5. IR (in KBr): 3031, 2937, 2842, 2241, 1675, 1600, 1400, 1171, 1112 cm⁻¹. HRMS (ESI) for: m/z [M + Na]⁺ calcd for C₁₈H₁₇NNaO₂: 302.1151, found: 302.1149.

5-(2-Methoxyphenyl)-5-oxo-2-phenylpentanenitrile (7e)

Colorless oil; 89 % yield. ¹H NMR (400 MHz, DMSO- d_6) δ 7.57-7.51 (m, (m, 2H), 7.45-7.39 (m, 4H), 7.38-7.33 (m, 1H), 7.15 (d, J = 8.2 Hz, 1H), 7.02 (t, J = 7.5 Hz, 1H), 4.28 (dd, J = 8.0, 6.9 Hz, 1H), 3.83 (s, 3H), 3.04 (t, J = 7.4 Hz, 2H), 2.20-2.13 (m, 2H). ¹³ NMR (100 MHz, DMSO- d_6) δ 200.5, 158.7, 136.5, 134.4, 130.0, 129.5, 128.5, 127.9, 127.8, 121.7, 121.0, 112.9, 56.2, 35.7, 35.7, 30.1. IR (in KBr): 3031, 2940, 2844, 2241, 1669, 1400, 1024 cm⁻¹. HRMS (ESI) for: m/z [M + Na]⁺ calcd for C₁₈H₁₇NNaO₂: 302.1151, found: 302.1151.

5-(3-Bromophenyl)-5-oxo-2-phenylpentanenitrile (7f)

 $\begin{array}{c} \mbox{O} \\ \mbox{Br} \\ \mbox{CN} \\$

6.8 Hz, 1H), 3.16 (t, J = 7.2 Hz, 2H), 2.25-2.18 (m, 2H). ¹³C NMR (100 MHz, DMSO- d_6) δ 197.8, 138.8, 136.5, 136.4, 131.5, 130.8, 129.6, 128.5, 127.9, 127.4, 122.6, 121.7, 35.9, 35.7,

29.6. IR (in KBr): 3131, 2240, 1684, 1400, 1163, 994 cm⁻¹. HRMS (ESI) for: $m/z [M + Na]^+$ calcd for $C_{17}H_{14}FNNaO$: 350.0151, found: 350.0146.

5-(3,4-Dimethoxyphenyl)-5-oxo-2-phenylpentanenitrile (7g)

Colorless oil; 89% yield. ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.61 (dd, MeO MeO MeO CN T.06 (d, *J* = 8.4, 2.1 Hz, 1H), 7.43 (d, *J* = 4.3 Hz, 5H), 7.41-7.34 (m, 1H), 7.06 (d, *J* = 8.5 Hz, 1H), 4.29 (dd, *J* = 8.5, 6.7 Hz, 1H), 3.83 (d, *J* = 13.8 Hz, 6H), 3.14-3.09 (m, 2H), 2.25-2.16 (m, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 196.8, 153.2, 148.6, 136.1, 129.2, 129.2, 129.1, 128.1, 127.4, 122.7, 121.3, 110.9, 110.0, 55.8, 55.5, 35.3, 34.8, 29.7. IR (in KBr): 3007, 2936, 2844, 2240, 1672, 1514, 1415, 1153 cm⁻¹. HRMS (ESI) for: m/z [M + Na]⁺ calcd for C₁₉H₁₉NNaO₃: 332.1257, found: 332.1261.

5-(Naphthalen-2-yl)-5-oxo-2-phenylpentanenitrile (7h)

Colorless oil; 75% yield. ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.64 (s, 1H), 8.13 (d, *J* = 8.0 Hz, 1H), 8.02-7.95 (m, 3H), 7.68-7.59 (m, 2H), 7.49-7.41 (m, 4H), 7.40-7.34 (m, 1H), 4.34 (dd, *J* = 8.4, 6.8 Hz, 1H), 3.34-3.28 (m, 2H), 2.34-2.23 (m, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 198.7, 136.6, 135.6, 134.1, 132.6, 130.2, 130.1, 129.6, 129.2, 128.8, 128.5, 128.1, 127.9, 127.4, 123.9, 121.8, 35.8, 35.8, 29.9. IR (in KBr): 3137, 2925, 2852, 2240, 1678, 1400, 1181 cm⁻¹. HRMS (ESI) for: m/z [M + Na]⁺ calcd for C₂₁H₁₇NNaO: 322.1202, found: 322.1201.

5-(1-Methyl-1*H*-imidazol-2-yl)-5-oxo-2-phenylpentanenitrile (7i)

Colorless oil; 89% yield. ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.49 (s, 1H), N, Ph 7.45-7.39 (m, 4H), 7.38-7.34 (m, 1H), 4.32 (t, *J* = 7.4 Hz, 1H), 3.89 (s, 3H), 3.17-3.13 (m, 2H), 2.24-2.17 (m, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 190.6, 142.6, 136.4, 129.5, 129.1, 128.6, 128.5, 127.9, 121.7, 36.1, 35.7, 29.7. IR (in KBr): 2923, 2852, 2244, 1676, 1402, 1027 cm⁻¹. HRMS (ESI) for: m/z [M + H]⁺ calcd for C₁₅H₁₆N₃O: 254.1288, found: 254.1291.

5-Oxo-2,6-diphenylhexanenitrile (8)

Colorless oil; 79% yield. ¹H NMR (400 MHz, DMSO- d_6) δ 7.43-7.39 (m, Bn $(CN)^{\text{Ph}}$ 2H), 7.37-7.29 (m, 5H), 7.26-7.21 (m, 1H), 7.18-7.16 (m, 2H), 4.18 (dd, J = 8.2, 6.8 Hz, 1H), 3.77 (s, 2H), 2.62 (t, J = 7.4 Hz, 2H), 2.10-1.99 (m, 2H). ¹³C NMR (100 MHz, DMSO- d_6) δ 207.1, 136.3, 135.1, 130.1, 129.5, 128.7, 128.5, 127.8, 127.0, 121.6, 49.2, 39.1, 35.5, 29.3. IR (in KBr): 2923, 2851, 2244, 1648, 1400, 1026 cm⁻¹. HRMS (ESI) for: m/z [M + Na]⁺ calcd for C₁₈H₁₇NNaO: 286.1202 found: 286.1202.

Methyl 4-cyano-4-phenylbutanoate (9)

Colorless oil; 83% yield. ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.43-7.39 (m, MeO Ph 2H), 7.37-7.29 (m, 5H), 7.26-7.21 (m, 1H), 7.18-7.16 (m, 2H), 4.18 (dd, *J* = 8.2, 6.8 Hz, 1H), 3.77 (s, 2H), 2.62 (t, *J* = 7.4 Hz, 2H), 2.10-1.99 (m, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 207.1, 136.3, 135.1, 130.1, 129.5, 128.7, 128.5, 127.8, 127.0, 121.6, 49.2, 39.1, 35.5, 29.3. IR (in KBr): 2361, 1736, 1640, 1400, 1160, 1090 cm⁻¹. HRMS (ESI) for: $m/z [M + Na]^+$ calcd for $C_{12}H_{13}NNaO_2$: 226.0838 found: 226.0846.

syn-2,5-Diphenyl-1-tosylpiperidine (10a)

White solid; 78% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.38-7.19 (m, 12H), 7.13 (d, *J* = 7.9 Hz, 2H), 4.21 (dd, *J* = 7.9 Hz, 3.6 Hz, 1H), 4.12-4.00 (m, 1H), 3.11-3.02 (m, 2H), 2.38 (s, 3H), 2.04-1.94 (m, 3H), 1.74-1.63 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 142.9, 142.8, 141.0, 135.2, 129.1, 128.5, 127.9, 127.7, 127.6, 127.2, 127.2, 126.7, 60.8, 51.8, 40.5, 32.8, 28.1, 21.4. IR (in KBr): 3161, 2361, 1648, 1340, 1096 cm⁻¹. HRMS (ESI) for: m/z [M + Na]⁺ calcd for C₂₄H₂₅NNaO₂: 414.1498 found: 414.1489. **3,6-Diphenyl-3,4-dihydropyridin-2(1***H***)-one (10b)**

Ph White solid; 69% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, J = 23.6 Hz, 1H), 7.44-7.40 (m, 2H), 7.38-7.24 (m, 8H), 5.51-5.49 (m, 1H), 3.78 (dd, J = 9.7,

[†]s 7.3 Hz, 1H), 2.84-2.69 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 172.3, 138.9, 137.2, 134.9, 128.9, 128.8, 128.7, 128.2, 127.3, 124.9, 102.2, 46.4, 29.2. IR (in KBr): 2360, 2336, 1647, 1339, 1093 cm⁻¹. HRMS (ESI) for: m/z [M + Na]⁺ calcd for C₁₇H₁₅NNaO: 272.1046 found: 272.1039.

6. Preliminary Mechanistic Investigation

6.1 Stern-Volmer quenching studies

Voltammetric experiments was conducted on a GU Instruments Electrochemical Workstation model GU/07078C. CV measurement of starting material was carried out in 0.1 M of Bu_4NPF_6/DMF at a scan rate of 100 mV/s with the protection of Ar. The electrochemical cell contained a glassy carbon, a Pt wire electrode and a SCE reference electrode.

Figure S2. Cyclic voltammogram of background

Figure S3. Cyclic voltammogram of substrate 6i

Figure S4. Cyclic voltammogram of substrate 6i/La(OTf)₃(1:1)

6.2 Determination of quantum yield

Procedure H: A cuvette was charged with Cu(CH₃CN)₄BF₄ (3.1 mg, 0.01 mmol), **L1** (7.1 mg, 0.02 mmol), La(OTf)₃ (5.9 mg, 0.01 mmol), phenyl ketone **1a** (0.2 mmol, 44.5 mg), TMSCN **2a** (76 μ L, 0.6 mmol), photocatalyst **Ph-PTZ** (2.8 mg, 0.01 mmol) and 2.0 mL of anhydrous DMF. The sample was irradiated (λ = 400 nm, slit width = 3.0 nm, slit height 5.0 mm with intensity of 5.65 mW cm²) for 7200 s. After irradiation, the yield of product formed was determined by ¹H NMR based on 1,3,5-trimethoxybenzene standard. The quantum yield was determined as follows.

ϕ = Mole number for product/Mole number for absorption of photons = 0.055

$$\Phi = \frac{n_{3a}N_A/t}{f P \lambda/hc}$$

n_{3a}: the mole number of the product **3a**; t: reaction time (7200 s); NA: 6.02×10^{23} /mol; f: $1-10^{-A}$ (400 nm, A = 1.468); P: P = E*S (E: illumination intensity, E = 5.65 mW/cm²; S: the area that irradiated S = 0.15 cm²); λ : wavelength ($\lambda = 4.0 \times 10^{-7}$ m); h: planck constant (h = 6.626×10^{-34} J*s); c: velocity of light (c = 3×10^8 m/s).

7. References

- 1. K. Miyazawa, T. Koike, M. Akita, Chem. Eur. J., 2015, 21, 11677.
- (a) A. G. Amador, E. M. Sherbrook, T. P. Yoon, J. Am. Chem. Soc., 2016, 138, 4722; (b) Y. Xia, X.-H. Liu, H.-F. Zheng, L.-L. Lin, X.-M. Feng, Angew. Chem. Int. Ed., 2015, 54, 227.
- 3. D.-X. Yang, L.-Q. Wang, D. Li, F.-X. Han, D.-P. Zhao, R. Wang, *Chem. Eur. J.*, 2015, **21**, 1458.
- 4. M. S. Taylor, D. N. Zalatan, A. M. Lerchner, E. N. Jacobsen, J. Am. Chem. Soc., 2005, 127, 1313.
- 5. W. Shao, M. Lux, M. Breugst, M. Klussmann, Org. Chem. Front., 2019, 6, 1796.
- 6. K. Aikawa, K. Maruyama, K. Honda, K. Mikami, Org. Lett., 2015, 17, 4882.
- M. Pawlowski, J. K. Maurin, A. Leniewski, K. Wojtasiewicz, Z. Czarnocki, *Heterocycles*, 2005, 65, 9.

8. Copies of NMR Spectra

¹H and ¹³C NMR of compound **1a**

¹H and ¹³C NMR of compound **1b**

¹H and ¹³C NMR of compound **1**c

$^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR of compound $\mathbf{1d}$

$^1\mathrm{H}$, $^{13}\mathrm{C}$ and $^{19}\mathrm{F}$ NMR of compound 1e

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR of compound $\mathbf{1g}$

. 0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1 f1 (ppm)

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR of compound $\mathbf{1o}$

... 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1 fl (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

¹H and ¹³C NMR of compound **6b**

¹H and ¹³C NMR of compound 6c

¹H and ¹³C NMR of compound **6d**

¹H and ¹³C NMR of compound **6e**

¹H and ¹³C NMR of compound **6f**

¹H and ¹³C NMR of compound **6g**

¹H and ¹³C NMR of compound **6h**

¹H and ¹³C NMR of compound **6i**

¹H and ¹³C NMR of compound **3b**

¹H and ¹³C NMR of compound **3c**

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR of compound 3f

 1 H and 13 C NMR of compound **3**g

¹H, ¹³C and ¹⁹F NMR of compound **3h**

¹H and ¹³C NMR of compound **3i**

 ^1H and ^{13}C NMR of compound 3k

¹H and ¹³C NMR of compound **3**l

¹H and ¹³C NMR of compound **3m**

¹H and ¹³C NMR of compound **3n**

¹H and ¹³C NMR of compound **30**

¹H and ¹³C NMR of compound **3p**

¹H and ¹³C NMR of compound **3**q

¹H and ¹³C NMR of compound **3s**

¹H and ¹³C NMR of compound **5a**

10.5 10.0 9.5 9.0 8.5

¹H and ¹³C NMR of compound **5e**

¹H and ¹³C NMR of compound **5g**

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR of compound (Z)-5h

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 fl (ppm)

¹H and ¹³C NMR of compound **7g**

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 10 100 90 80 70 60 50 40 30 20 10 1

¹H and ¹³C NMR of compound **7**i

¹H and ¹³C NMR of compound **9**

¹H and ¹³C NMR of compound **10a**

¹H and ¹³C NMR of compound **10b**

9. Copies of HPLC Spectra

