Supporting Information

Hydrophobicity-driven folding and seeded polymerization of cystine-based dimeric diamides in aqueous media

Natsumi Fukaya, a Soichiro Ogi, * a Midori Kawashiro, a Shigehiro Yamaguchi * ab

^a Department of Chemistry, Graduate School of Science, and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan

^b Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan

Table of Contents

Experimental Procedures	S2
General	S2
Synthesis of 1	S2
Synthesis of 2	S3
Results and Discussion	S5
Solvent-dependent ¹ H NMR spectra	S5
MD simulation of 1 in a water box	
ONIOM calculation of 1	S6
MD simulation of 1 in a methanol box	S6
Temperature-dependent self-assembly of 1 in methanol/water	S6
Solvent-dependent self-assembly of 2 in methanol/water	S7
Temperature-dependent self-assembly of 2 in methanol/water	S7
Time-dependent self-assembly of 2 in methanol/water	S8
Seeded polymerization of 2 in methanol/water	
UV absorption, CD, and fluorescence spectra	S8
FT-IR specra of 1 _{Agg} and 2 _{Agg}	
Mixing experiment between 1_{Seed} and 2_{Mono}	
References	
¹ H and ¹³ C NMR spectra	S11

Experimental Procedures

General

¹H and ¹³C NMR spectra were recorded with a JEOL AL-400 spectrometer (400 MHz for ¹H, 100 MHz for ¹³C) or JEOL JNM-ECS400 (400 MHz for ¹H, 100 MHz for ¹³C) in CDCl₃ or CD₂Cl₂. The chemical shifts in ¹H NMR spectra are reported in δ ppm using the residual protons of the solvents as an internal standard (CHCl₃ δ 7.26 and CD₂Cl₂ δ 5.32), and those in ¹³C NMR spectra are reported using the solvent signal as an internal standard (CHCl₃ & 77.16). Melting points (mp) were determined with a Yanaco MP-S3 instrument. Mass spectra were measured with a Thermo Fisher Scientific Exactive Plus Orbitrap MS System with the ionization methods of electrospray ionization (ESI). Thin layer chromatography (TLC) was performed on glass plates coated with 0.25 mm thickness of silica gel 60F₂₅₄ (Merck). Column chromatography was performed using silica gel PSQ100B (Fuji Silysia Chemicals). Preparative Gel permeation Chromatography (GPC) was performed using LC-918 (Japan Analytical Industry) equipped with gel column (JAIGEL-2.5H and -3H) using CHCl₃ as eluent. The spectroscopic measurements were conducted under ambient conditions using solvents of spectroscopic grade. UV-vis absorption spectra were recorded using quartz cell of 1 cm path length with a JASCO V-750 spectrophotometer equipped with a JASCO ETCR-762 cell holder for temperature control. Fourier transform infrared (FT-IR) spectroscopic analysis was performed on a JASCO FT/IR-4200 spectrometer. The fluorescence spectra were recorded with a JASCO FP-8500 spectrometer. CD spectra were recorded were measured with a JASCO J-720WN spectrophotometer. Transmission electron microscopy (TEM) was performed with a JEM-1400EM (JEOL) using an acceleration voltage of 80 kV. Atomic force microscopy (AFM) was performed at ambient conditions with a JSPM-5200V (JEOL) in NC mode. Silicon cantilevers (HQ:NSC35/AI BS, MikroMasch) with a resonance frequency of ~300 kHz and force constant of ~16 Nm⁻¹ were used. All chemicals were purchased from commercial suppliers and used without further purification. Anhydrous CH2Cl2 was purchased from Kanto Chemicals and further purified by Glass Contour Solvent Systems. Compounds S1 and S2,¹ 3,5-bis{2-[2-(2-methoxyethoxy)ethoxy]ethoxy}benzoic acid,² and 3,5-Bis{2-[2-(2-methoxyethoxy)ethoxy}ethoxy}aniline³ were synthesized according to the reported procedure. All reactions were performed with dry glassware and under a nitrogen atmosphere unless stated otherwise.

Synthesis of 1.

Compound **1** was synthesized in five steps from *N*-[(9*H*-fluoren-9-ylmethoxy)carbonyl]-*S*-(triphenylmethyl)-L-cysteine by introduction of 1-pyrenylamine to the COOH terminus followed by *N*-Boc deprotection and amidation of the NH_2 terminus with 3,5-bis{2-[2-(2-methoxyethoxy)ethoxy]ethoxy}benzoic acid.⁴ The subsequent deprotection of the trityl group using an iodine oxidation method formed the disulfide bond of **1**.⁵

Scheme S1. Synthesis of 1

Compound S3. A solution of **S2** (529 mg, 0.918 mmol) in anhydrous CH_2CI_2 (15 mL) was slowly added to a solution of 3,5-bis{2-[2-(2-methoxyethoxy]ethoxy]ethoxy]benzoic acid (478 mg, 1.07 mmol), O-(benzotriazol-1-yl)-N, N, N', N'-tetramethyluronium tetrafluoroborate (N-TBTU) (329 mg, 1.02 mmol), and N, N-diisopropylethylamine (DIEA) (487 mg, 3.77 mmol) in CH_2CI_2 (15 mL). The

reaction mixture was stirred at room temperature for 22 h. The resulting mixture was quenched with an aqueous solution of KHSO₄ (1 M, 50 mL) and the aqueous layer was extracted with CH₂Cl₂ (3 × 20 mL). The combined organic layer was washed with an aqueous solution of HCl (1 M, 60 mL), an aqueous solution of NaHCO₃ (sat., 40 mL), and brine (60 mL), and dried over Na₂SO₄. After filtration, solvent was removed under reduced pressure. The resulting mixture was purified by preparative GPC (CHCl₃) to afford **S3** as a sticky oil (484 mg, 0.481 mmol, 84%). ¹H NMR (400 MHz, CD₂Cl₂) δ 7.94–8.23 (m, 9H), 7.30–7.34 (m, 6H), 7.10–7.17 (m, 9H), 6.78 (d, *J* = 2.2 Hz, 2H), 6.64 (d, *J* = 7.6 Hz, 1H), 6.60 (t, *J* = 2.3 Hz, 1H), 6.37 (t, *J* = 5.4 Hz, 1H), 5.07 (m, 2H), 4.20 (q, *J* = 6.8 Hz, 1H), 4.04 (m, 4H), 3.76 (t, *J* = 4.6 Hz, 4H), 3.55–3.65 (m, 12H), 3.46–3.48 (m, 4H), 3.30 (s, 6H), 2.64–2.82 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 169.7, 167.0, 159.9, 144.4, 135.5, 131.3, 130.8, 130.6, 129.6, 129.0, 128.2, 128.1, 127.6, 127.4, 127.3, 126.9, 126.0, 125.5, 125.4, 125.0, 124.8, 124.7, 123.0, 106.0, 105.2, 72.0, 70.9, 70.7, 70.6, 69.6, 67.7, 67.2, 59.1, 52.9, 42.2, 33.9; HRMS (ESI): *m/z* calcd. for C₆₀H₆₄N₂NaO₁₀S: 1027.4179 ([M+Na⁺]); found: 1027.4174.

Compound S4. Compound **S3** (480 mg, 0.477 mmol) was dissolved in 5.1 mL of trifluoroacetic acid (TFA). To the solution, water (0.05 mL), triisopropylsilane (TIPS) (0.14 mL, 0.68 mmol), 1,2-ethaneditiol (EDT) (0.14 mL, 1.7 mmol) were added. The reaction mixture was stirred at room temperature for 3 h. The mixture was diluted with CH_2CI_2 (10 mL), and washed with an aqueous solution of NaHCO₃ (5%, 10 mL), an aqueous solution of HCI (1 M, 10 mL), and an aqueous solution of NaHCO₃ (sat., 10 mL), and dried over Na₂SO₄. After filtration, solvent was removed under reduced pressure to afford **S4** as a colorless solid, which was used in next step without further purification. HRMS (ESI): m/z calcd. for $C_{41}H_{50}N_2NaO_{10}S$: 785.3084 ([M+Na⁺]); found: 785.3077.

Compound 1. Compound **S4** (364 mg, 0.478 mmol) was dissolved in CHCl₃ (25 mL) and cooled to 0 °C. Et₃N (0.38 mL, 2.7 mmol) and iodine (33.4 mg, 0.132 mmol) were subsequently added to the solution and the mixture was stirred at 0 °C for 16 h. An aqueous solution of NaHCO₃ (sat., 20 mL) was added to the mixture and the aqueous layer was extracted with CH₂Cl₂ (3 × 20 mL). The combined organic layer was washed by an aqueous solution of NaHSO₄ (10%, 20 mL) and brine, and dried over Na₂SO₄. After filtration, solvent was removed under reduced pressure. The mixture was subjected to silica gel column chromatography using a 95/5 CHCl₃/MeOH mixed solvent as eluent (R_f = 0.28). The product was further purified by preparative GPC (CHCl₃) to afford **1** as a colorless solid (281 mg, 0.184 mmol, 77%). Mp: 169.0–170.7 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.97 (br, 2H), 7.95–8.27 (m, 18H), 7.18 (d, *J* = 8.7 Hz, 2H), 6.69 (d, *J* = 2.3 Hz, 4H), 6.52 (t, *J* = 2.1 Hz, 2H), 5.67 (br, 2H), 5.21 (m, 4H), 3.84 (t, *J* = 4.6 Hz, 8H), 3.59–3.63 (m, 32H), 3.50 (q, *J* = 3.0 Hz, 8H), 3.34 (s, 12H), 3.02–3.23 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): δ 169.9, 167.7, 160.0, 135.6, 131.4, 131.1, 130.8, 128.7, 128.1, 127.6, 127.4, 126.4, 126.1, 125.4, 125.1, 125.0, 124.8, 122.9, 105.9, 105.0, 72.0, 70.8, 70.7, 69.6, 67.6, 59.2, 54.4, 46.8, 41.8; HRMS (ESI): *m/z* calcd. for C₈₂H₉₈N₄NaO₂₀S₂: 1545.6114 ([M+Na⁺]); found: 1545.6136.

Synthesis of 2.

Compound 2 was synthesized according to the procedure described for 1.

Scheme S2. Synthesis of 2

Compound S5. DIEA (682 mg, 5.28 mmol) was slowly added to a solution of *N*-[(9*H*-fluoren-9-ylmethoxy)carbonyl]-*S*-(triphenylmethyl)-L-cysteine (770 mg, 1.31 mmol), and *N*-TBTU (466 mg, 1.45 mmol), and 3,5-bis{2-[2-(2-methoxy)ethoxy]ethoxy}aniline (609 mg, 1.46 mmol) in CH₂Cl₂ (100 mL). The reaction mixture was stirred at room temperature

for 20 h. An aqueous solution of KHSO₄ (1 M, 30 mL) was added to the resulting mixture and the aqueous layer was extracted with CH₂Cl₂ (3 × 20 mL). The combined organic layer was washed with an aqueous solution of NaHCO₃ (sat., 30 mL), and brine (60 mL), and dried over Na₂SO₄. After filtration, solvent was removed under reduced pressure. The mixture was subjected to silica gel column chromatography using a 9/1 CHCl₃/MeOH mixed solvent as eluent (R_f = 0.73) to afford **S5** as a colorless oil (999 mg, 1.01 mmol, 77%). ¹H NMR (400 MHz, CD₂Cl₂) δ 7.77 (t, *J* = 7.5 Hz, 2H), 7.70 (s, 1H), 7.59 (d, *J* = 7.3 Hz, 2H), 7.36–7.44 (m, 8H), 7.21–7.31 (m, 11H), 6.69 (d, *J* = 1.8 Hz, 2H), 6.27 (t, *J* = 2.2 Hz, 1H), 5.07 (d, *J* = 7.3 Hz, 1H), 4.38–4.47 (m, 2H), 4.22 (t, *J* = 6.2 Hz, 1H), 4.05 (t, *J* = 4.8 Hz, 4H), 3.83–3.86 (m, 1H), 3.78 (t, *J* = 4.8 Hz, 4H), 3.64–3.67 (m, 4H), 3.57–3.61 (m, 8H), 3.49–3.51 (m, 4H), 3.33 (s, 6H), 2.68 (d, *J* = 6.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 168.3, 160.1, 156.4, 144.4, 143.6, 141.4, 139.0, 129.7, 128.2, 127.9, 127.2, 127.1, 125.0, 120.1, 99.1, 98.3, 72.0, 70.9, 70.7, 70.6, 69.7, 67.6, 67.6, 67.2, 59.1, 54.8, 47.2, 33.5; HRMS (ESI): *m/z* calcd. for C₅₇H₆₄N₂NaO₁₁S: 1007.4129 ([M+Na⁺]); found: 1007.4119.

Compound S6. Compound **S5** (523 mg, 0.531 mmol) was dissolved in a 20% piperidine/DMF solution (4.3 mL) and stirred at room temperature for 4 h. The solvents were removed under reduced pressure to afford **S6** as a colorless solid, which was used in next step without further purification. HRMS (ESI): m/z calcd. for C₄₂H₅₄N₂NaO₉S: 785.3448 ([M+Na⁺]); found: 785.3446.

Compound S7. DIEA (286 mg, 2.21 mmol) was slowly added to a solution of **S6** (405 mg, 0.531 mmol), 1-pyrenemethyl carboxylic acid (141 mg, 0.540 mmol), and *N*-TBTU (188 mg, 0.586 mmol) in CH₂Cl₂ (40 mL). The reaction mixture was stirred at room temperature for 13 h. An aqueous solution of KHSO₄ (1 M, 30 mL) was added to the resulting mixture and the aqueous layer was extracted with CH₂Cl₂ (2 × 30 mL). The combined organic layer was washed with an aqueous solution of NaHCO₃ (sat. 30 mL), and brine, and dried over Na₂SO₄. After filtration, the solvent was removed under reduced pressure. The mixture was subjected to silica gel column chromatography using a 9/1 CHCl₃/MeOH mixed solvent as eluent (R_f = 0.43) to afford **S7** as a colorless oil (470 mg, 0.466 mmol, 88%). ¹H NMR (400 MHz, CD₂Cl₂) δ 7.91-8.24 (m, 10H), 7.15–7.21 (m, 15H), 6.57 (s, 2H), 6.23 (s, 1H), 5.79 (d, *J* = 7.9 Hz, 1H), 4.28 (s, 2H), 4.12 (s, 1H), 3.98 (t, *J* = 4.0 Hz, 4H), 3.74 (t, *J* = 4.0 Hz, 4H), 3.57–3.64 (m, 12H), 3.49 (t, *J* = 4.0 Hz, 4H), 3.33 (d, *J* = 1.8 Hz, 6H), 2.36–2.53 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 172.4, 168.0, 160.1, 144.3, 139.2, 131.4, 130.8, 129.6, 129.5, 128.8, 128.6, 128.1, 127.8, 127.5, 127.0, 126.3, 125.8, 125.3, 124.7, 122.9, 98.9, 98.4, 72.1, 70.9, 70.8, 70.7, 69.7, 67.6, 67.1, 59.2, 53.4, 41.8, 32.2; HRMS (ESI): *m/z* calcd. for C₆₀H₆₄N₂NaO₁₀S: 1027.4179 ([M+Na⁺]); found: 1027.4170.

Compound S8. Compound **S7** (397 mg, 0.394 mmol) was dissolved in 4.3 mL of TFA. To the mixture, water (45 μ L), TIPS (0.11 mL, 0.54 mmol), EDT (0.11 mL, 1.3 mmol) were added and the resulting mixture was stirred at room temperature for 4 h. An aqueous solution of NaHCO₃ (sat., 30 mL) was added to the mixture and the aqueous layer was extracted with CH₂Cl₂ (3 × 30 mL). The combined organic layer was dried over Na₂SO₄. After filtration, the solvent was removed under reduced pressure and the mixture was dissolved in CHCl₃. After precipitation by the addition of hexane, the solid was collected by filtration and dried under reduced pressure to afford **S8** as a colorless solid (296 mg, 0.387 mmol, 98%), which was used in next step without further purification. HRMS (ESI): *m/z* calcd. for C₄₁H₅₀N₂NaO₁₀S: 785.3084 ([M+Na⁺]); found: 785.3076.

Compound 2. Compound **S8** (296 mg, 0.387 mmol) was dissolved in CHCl₃ (20 mL) and cooled to 0 °C. Et₃N (0.30 mL, 2.15 mmol) and iodine (28.5 mg, 0.112 mmol) were subsequently added to the solution and the mixture was stirred at 0 °C for 16 h. An aqueous solution of Na₂SO₃ (10%, 15 mL) was added to the mixture and the aqueous layer was extracted with CH₂Cl₂ (3 × 20 mL). The combined organic layer was washed by brine, and dried over Na₂SO₄. After filtration, the solvent was removed under reduced pressure. The mixture was subjected to silica gel column chromatography using a 9/1 CHCl₃/MeOH mixed solvent as eluent (R_f = 0.55). The product was further purified by preparative GPC (CHCl₃) to afford **2** as a colorless solid (142 mg, 0.0929 mmol, 48%). Mp: 144.2–145.8 °C; ¹H NMR (400 MHz, CDCl₃): δ 9.92 (s, 2H), 7.98–8.21 (m, 18H), 6.64 (d, *J* = 2.2 Hz, 4H), 6.51 (d, *J* = 10.0 Hz, 2H), 6.16 (t, *J* = 2.1 Hz, 2H), 5.62–5.67 (m, 2H), 4.44 (m, 4H), 3.92–3.94 (m, 8H), 3.70–3.76 (m, 8H), 3.57–3.66 (m, 24H), 3.47–3.51 (m, 8H), 3.32 (s, 12H), 2.68–3.06 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): δ 172.1, 167.8, 159.9, 139.4, 131.4, 130.8, 129.6, 128.6, 128.5, 127.7, 127.6, 127.3, 126.3, 125.7, 125.6, 125.5, 125.2, 124.7, 123.1, 99.0, 98.2, 72.0, 70.9, 70.7, 70.6, 69.7, 67.4, 59.1, 54.4, 46.8, 42.2; HRMS (ESI): *m/z* calcd. for C₈₂H₉₈N₄NaO₂₀S₂: 1545.6114 ([M+Na⁺]); found: 1545.6126.

Results and Discussion

Solvent-dependent ¹H NMR spectra

Fig. S1 ¹H NMR spectra of **1** in (a) 70/30, (b) 75/25, (c) 80/20, (d) 85/15, (e) 90/10 and (f) 95/5 chloroform- d_1 /methanol mixture and in (g) chloroform- d_1 with a concentration of 5 × 10⁻⁴ M at room temperature. Tetramethylsilane was used as a chemical shift reference.

MD simulation of 1 in a water box

MD simulation was conducted using the AMBER molecular dynamics package.⁶

Fig. S2 (a) An open ring structure employed as the starting structure of **1** for the MD simulation in a water box, and (b) a final structure of **1** obtained after the simulation run at equilibrium and 300 K for 100 ns.

ONIOM calculation of 1

Geometry optimizations were performed using the Gaussian 16 program.⁷

Fig. S3 (a) An input structure of 1 containing water molecules for the two-layer ONIOM calculation of (b) the low layer (AMBER) and (c) the high layer (B3LYP/6-31G*).

MD simulation of 1 in a methanol box

Fig. S4 A final structure of 1 obtained after the MD simulation run at equilibrium and 300 K for 100 ns in a methanol box.

Temperature-dependent self-assembly of 1 in methanol/water

Fig. S5 (a) UV-vis absorption spectral changes of 1 in 65/35 methanol/water (5×10^{-6} M) upon increasing temperature from 293 K (blue line) to 333 K (red line) at a rate of 1 K min⁻¹ and (b) thermal hysteresis observed during slow (1 K min⁻¹) heating (red circle) and cooling (blue circle) processes by monitoring the absorbance change at 344 nm.

Fig. S6 Spectral changes in UV-vis absorption spectra of **1** in 65/35 methanol/water (5 × 10^{-6} M) upon cooling from 333 K (blue dashed line) to 293 K (red solid line) at a rate of 1 K min⁻¹.

Solvent-dependent self-assembly of 2 in methanol/water

Fig. S7 (a) UV-vis absorption spectra of **2** at 293 K and at a concentration of 5×10^{-6} M in methanol (dashed line), 65/35 methanol/water (gray solid line), and 60/40 methanol/water (black solid line). (b) AFM height image (z scale: 31 nm) of 2_{Agg} cast on a silicon wafer from methanol/water (60/40, v/v; scale bar: 0.5 µm). A cross-sectional analysis along the red arrow is shown beneath the AFM image. (c) TEM image of 2_{Agg} (scale bar: 0.5 µm).

Temperature-dependent self-assembly of 2 in methanol/water

Fig. S8 Spectral changes in UV-vis absorption spectra of **2** in 60/40 methanol/water (5×10^{-6} M) observed during (a) heating process (293 K; blue line, 333 K; red line), and (b) cooling process (293 K; blue dashed line, 333 K; red solid line) at a rate of 1 K min⁻¹. (c) Thermal hysteresis observed during slow heating (red circle) and cooling (blue circle) by monitoring the absorbance change at 344 nm.

Time-dependent self-assembly of 2 in methanol/water

Fig. S9 Time-dependent absorbance change at 344 nm of 2 in 60/40 methanol/water observed after fast cooling from 333 K to 293 K.

Seeded polymerization of 2 in methanol/water

Fig. S10 (a) Time-dependent changes of the absorbance at 344 nm during the supramolecular polymerization of **2** when initiated spontaneously ($^{\circ}$) or when initiated upon addition of either a 60/40 methanol/water solution of **2**_{Seed} (0.3 mL; [**2**_{Seeds}]/[**2**_{Mono}] = 1/10; 5 × 10⁻⁶ M; •) or solvent only (0.3 mL; solvent/[**2**_{Mono}] = 1/10; ×) to 3 mL of **2** in 60/40 methanol/water (5 × 10⁻⁶ M). TEM images of (b) **2**_{Seed} and (c) **2**_{Agg} obtained after seeded polymerization at [**2**_{Seed}]/[**2**_{Mono}] = 1/10 (scale bar: 1 µm).

UV absorption, CD, and fluorescence spectra

Fig. S11 (a) UV-vis absorption and CD spectra of $\mathbf{1}_{Agg}$ (black line) and $\mathbf{2}_{Agg}$ (gray line) in 60/40 methanol/water (5 × 10⁻⁶ M). Fluorescence spectra of (b) 1 and (c) 2 in the monomeric state in methanol (dashed line) and in the aggregated state in 60/40 methanol/water (solid line).

FT-IR spectra of 1_{Agg} and 2_{Agg}

Fig. S12 FT-IR spectra of the dried aggregates of **1** (solid line) and **2** (dashed line). To prepare the samples, seeded supramolecular polymerizations were conducted at a concentration of 5×10^{-6} M in 65/35 methanol/water for **1** and in 60/40 methanol/water (5×10^{-6} M) for **2**. Then, the resultant supramolecular polymers were corrected by centrifuging, and dried by removing methanol under reduced pressure, followed by lyophilization.

Mixing experiment between 1_{Seed} and 2_{Mono}

A mixing experiment between 1_{Seed} and 2_{Mono} was conducted based on the seeding method. For that purpose, a solution of 1_{Seed} was added to a solution of 2_{Mono} . The absorbance at 344 nm remained unchanged after addition of 1_{Seed} , demonstrating that 1_{Seed} does not promote the assembly of 2_{Mono} .

Fig. S13 Time-dependent changes of the absorbance at 344 nm during the supramolecular polymerization of **1** when initiated upon addition of either a 60/40 methanol/water solution of $\mathbf{1}_{seed}$ (0.3 mL; $[\mathbf{1}_{seed}]/[\mathbf{2}_{Mono}] = 1/10$, 5×10^{-6} M, \circ) or $\mathbf{2}_{seed}$ (0.3 mL; $[\mathbf{2}_{seed}]/[\mathbf{2}_{Mono}] = 1/10$, 5×10^{-6} M, \circ) to 3 mL of $\mathbf{2}_{Mono}$ in 60/40 methanol/water (5×10^{-6} M).

References

[1] S. Ogi, A. Takamatsu, K. Matsumoto and S. Yamaguchi, 2020. https://doi.org/10.26434/chemrxiv.12643166.v1.

- [2] V. Percec, D. A. Wilson, P. Leowanawat, C. J. Wilson, A. D. Hughes, M. S. Kaucher, D. A. Hammer, D. H. Levine, A. J. Kim, F. S. Bates, K. P. Davis, T. P. Lodge, M. L. Klein, R. H. DeVane, E. Aqad, B. M. Rosen, A. O. Argintaru, M. J. Sienkowska, K. Rissanen, S. Nummelin and J. Ropponen, *Science*, 2010, **328**, 1009–1014.
- [3] a) J. Peng, F. Zhai, X. Guo, X. Jiang and Y. Ma, RSC Adv., 2014, 4, 13078–13084. b) M. Peterca, M. R. Imam, C.-H. Ahn, V. S. K. Balagurusamy, D. A. Wilson, B. M. Rosen and V. Percec, J. Am. Chem. Soc., 2011, 133, 2311–2328.
- [4] J. Montenegro, C. Vázquez-Vázquez, A. Kalinin, K. E. Geckeler and J. R. Granja, J. Am. Chem. Soc., 2014, 136, 2484–2491.
- [5] Y. Ma and C. Wu, J. Mater. Chem. B, 2014, 2, 3282-3291.
- [6] D. A. Case, I. Y. Ben-Shalom, S. R. Brozell, D. S. Cerutti, T. E. Cheatham, III, V. W. D. Cruzeiro, T. A. Darden, R. E. Duke, D. Ghoreishi, G. Giambasu, T. Giese, M. K. Gilson, H. Gohlke, A. W. Goetz, D. Greene, R. Harris, N. Homeyer, Y. Huang, S. Izadi, A. Kovalenko, R. Krasny, T. Kurtzman, T. S. Lee, S. LeGrand, P. Li, C. Lin, J. Liu, T. Luchko, R. Luo, V. Man, D. J. Mermelstein, K. M. Merz, Y. Miao, G. Monard, C. Nguyen, H. Nguyen, A. Onufriev, F. Pan, R. Qi, D. R. Roe, A. Roitberg, C. Sagui, S. Schott-Verdugo, J. Shen, C. L. Simmerling, J. Smith, J. Swails, R. C. Walker, J. Wang, H. Wei, L. Wilson, R. M. Wolf, X. Wu, L. Xiao, Y. Xiong, D. M. York and P. A. Kollman (2019), AMBER 2019, University of California, San Francisco.
- [7] Gaussian 16, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

Fig. S14 ¹H NMR spectrum of S3 (400 MHz, CD₂Cl₂).

Fig. S15 ¹³C NMR spectrum of S3 (100 MHz, CDCl₃).

Fig. S17 ¹³C NMR spectrum of 1 (100 MHz, CDCl₃).

Fig. S19 ¹³C NMR spectrum of S5 (100 MHz, CDCl₃).

Fig. S20 ¹H NMR spectrum of S7 (400 MHz, CD₂Cl₂).

Fig. S21 ¹³C NMR spectrum of S7 (100 MHz, CDCl₃).

