
Supporting Information for:

Hybridizing physical and data-driven prediction

methods for physicochemical properties

Fabian Jirasek,∗,†,‡ Robert Bamler,† and Stephan Mandt†

†Department of Computer Science, University of California,

Donald Bren Hall, Irvine, CA 92697, USA

‡Laboratory of Engineering Thermodynamics (LTD), TU Kaiserslautern,

Erwin-Schrödinger-Straße 44, 67663 Kaiserslautern, Germany

E-mail: fabian.jirasek@mv.uni-kl.de

1

Electronic Supplementary Material (ESI) for ChemComm.
This journal is © The Royal Society of Chemistry 2020

Data

This work is based on the same data set as our previous work;1 the following overview is

therefore rather brief.

Data on activity coefficients at infinite dilution in binary mixtures γ∞ij at 298.15±1 K were

adopted from the Dortmund Data Bank (DDB) 2019.2 Only molecular components (and one

ionic liquid that slipped through our filter) of which the molecular formula is known were

considered. Furthermore, metals and data points that are indicated to be of poor quality in

the DDB were rejected. If multiple data on γ∞ij for a specific binary mixture i − j in the

considered temperature range were available, the arithmetic mean of the available data was

used. Furthermore, only components for which at least data in two different binary mixtures

are available in the DDB were considered, which is a prerequisite for the application of leave-

one-out cross-validation that was applied to evaluate predictive performances of the studied

methods. The resulting data set comprises 240 solutes i and 250 solvents j. Experimental

data on γ∞ij in the considered temperature range are available for 4,094 of the 60,000 possible

binary mixtures. Some components appear as both solute and solvent in the data set. The

entries of γ∞ij where i and j denote the same substance, i.e., for pure components, were set

to unity to satisfy thermodynamic consistency. These data points were only included in

the training data but not considered in the evaluation of the predictive performance. For

information on the considered solutes and solvents, we refer to the Supporting Information

of our previous work.1

For the comparison of the predictive performances of the different studied methods, the

data set was further narrowed down since the physical base method, modified UNIFAC (Dort-

mund),3,4 referred to as UNIFAC in the following, can (with its present publicly accessible

parameterization4) only be applied to predict γ∞ij for 80% of the relevant mixtures. Fig-

ure S.1 shows the matrix representing all possible binary mixtures of the considered solutes

and solvents. The color of each entry indicates availability of experimental data in the DDB2

and applicability of UNIFAC to predict the respective data points (see figure caption).

2

5 0 1 0 0 1 5 0 2 0 0 2 5 0

2 0 0

1 5 0

1 0 0

5 0

So
lut

e i

S o l v e n t j
Figure S.1: Matrix representation of the available experimental data for γ∞ij at 298.15±1 K
in the DDB 2019.2 Whitespace: no experimental data available. Black squares: experimen-
tal data available, UNIFAC3,4 can be applied. Red squares: experimental data available,
UNIFAC cannot be applied.

3

Model Details

Bayesian Matrix Completion

As in our previous work,1 we used a Bayesian approach to matrix completion to predict ln γ∞ij

(the logarithm of the activity coefficient is used for scaling purposes throughout this work).

This approach consists of three steps. In the first step, a generative probabilistic model for

the variable of interest, i.e., ln γ∞ij , as a function of initially unknown (latent) features of

the solutes i and solvents j is specified. ln γ∞ij is thereby modeled as the dot product of the

feature vector ui of the solute i and the feature vector vj of the solvent j:

ln γ∞ij = ui · vj + εij (S.1)

where the random variable εij captures both measurement noise and inaccuracies of the

model. Both ui and vj are vectors of length K containing features of solute i and solvent j,

respectively. The hyperparameter K is the number of considered features per component

and also called latent dimension, and was set to K = 4 as in our previous work1 for all

approaches discussed here.

In the second step, the latent features are inferred by training the generative model to

the available data for ln γ∞ij , which requires inverting the generative model. We use Gaussian

meanfield variational inference5–7 for this purpose, which was demonstrated to be robust

and efficient in our previous work.1 Since our generative model is probabilistic, the inferred

latent features are random variables and a probability distribution, called posterior, for each

latent feature is obtained. In the third step, we use the means µui
and µvj of the inferred

approximate posterior distributions over ui and vj, respectively, to obtain predictions from

the dot product:

ln(γ∞ij)pred = µui
· µvj (S.2)

We note that the feature vectors u and v represent a characterization of each solute and

4

solvent, respectively, that is exclusively inferred from the available data for ln γ∞ in binary

mixtures of these components. Hence, no explicit physical knowledge on the pure solutes

or solvents, e.g., molecular or pure component descriptors like molar mass, dipole moment,

or structural formula, was used to find suitable feature vectors. However, since the data

for ln γ∞ implicitly comprise physical information on the respective components (which is

extracted during training the model and aggregated in the feature vectors), relationships

between the learned features and physical descriptors of the components can be expected.

Preliminary studies have shown that there are no direct correlations between features and

physical descriptors. However, to unveil these (complex) relationships will be an exciting

task for future work, possibly generating previously unknown physical insights.

All predictions were obtained by leave-one-out cross-validation, i.e., by training the model

to all available data except for the one data point that is to be predicted, and repeating this

procedure for each available data point. This procedure ensures that the model cannot cheat

by training to the test data. In all cases, we used the Stan framework,8 which allows the

specification of user-defined generative models and automates the task of Bayesian inference.

The following sections provide implementation details for each of the compared methods. For

more information on the theoretical background of Bayesian matrix completion, the reader

is referred to our previous work1 and the literature.9

Data-driven Matrix Completion Method (MCM)

Figure S.2 shows the Stan code of the probabilistic generative model of the data-driven MCM

from our previous work,1 which is considered as a data-driven base method here.

For all component features ui and vj, the same Gaussian prior distribution with mean

µ0 = 0 and standard deviation σ0 = 0.8 was used. Furthermore, a Cauchy likelihood with

scale parameter λ = 0.15 was used for all data points.

5

1 data {
2 int<lower=0> I; // number of solutes
3 int<lower=0> J; // number of solvents
4 int<lower=0> K; // number of latent dimensions
5 real ln_gamma_exp[I, J]; // matrix of experimental activity coefficients
6 real<lower=0> sigma_0; // prior standard deviation
7 real<lower=0> lambda; // likelihood scale
8 }
9

10 parameters {
11 vector[K] u[I]; // solute feature vectors
12 vector[K] v[J]; // solvent feature vectors
13 }
14

15 model {
16 // Prior: draw feature vectors for all solutes and solvents:
17 for (i in 1:I) {
18 u[i] ~ normal(0, sigma_0);
19 }
20 for (j in 1:J) {
21 v[j] ~ normal(0, sigma_0);
22 }
23

24

25

26

 // Likelihood: model the probability of ln_gamma_exp as a Cauchy
 // distribution around the dot product of the feature vectors:
 for (i in 1:I) {

27 for (j in 1:J) {
28 // Preprocessing uses a sentinel value of -99 for missing entries.
29 if (ln_gamma_exp[i, j] != -99) {
30 ln_gamma_exp[i, j] ~ cauchy(u[i]' * v[j], lambda);
31 }
32 }
33 }
34 }

Figure S.2: Stan code of the probabilistic generative model of the data-driven MCM. Line 29
ensures that the model is only trained on available experimental data, since missing entries
of the matrix were set to -99.

6

Whisky Method

The whisky method is proposed in this work as a novel generic approach for hybridizing

physical and data-driven prediction methods, and it is applied to predict ln γ∞ij here. Figure 1

in the manuscript illustrates the idea of the proposed hybrid approach.

The method consists of two steps: in the first step (distillation step, purple part of

Figure 1 in the manuscript), UNIFAC is employed to predict ln γ∞ij at 298.15 K in all possible

combinations of the considered 240 solutes i and 250 solvents j. With the current publicly

accessible parameterization of UNIFAC,4 approx. 66% of all relevant binary mixtures can

be modeled. Hence, a rather dense matrix with approx. 66% observed entries, i.e., UNIFAC

predictions for ln γ∞ij , is obtained, cf. Figure S.3.

5 0 1 0 0 1 5 0 2 0 0 2 5 0

2 0 0

1 5 0

1 0 0

5 0

So
lut

e i

S o l v e n t j
Figure S.3: Matrix representation of all possible binary mixtures of the considered solutes
i and solvents j. Blue: UNIFAC can be applied to predict γ∞ij . Red: UNIFAC cannot be
applied to predict γ∞ij .

At first, this rather dense matrix is used for training a Bayesian MCM in the distillation

7

step. In this step, the parameters (component features) and hyperparameters of the model

are trained simultaneously. Therefore, a (strongly uninformative) Gaussian hyperprior with

mean µhp = 0 and standard deviation σhp = 100 was used for all hyperparameters: the mean

µ0 and standard deviation σ0 of the Gaussian prior and the scale parameter λ of the Cauchy

likelihood. Figure S.4 shows the Stan code of the generative model of the distillation step of

the whisky method.

The posterior of the distillation step constitutes probability distributions for all compo-

nent features, thus containing information from the UNIFAC predictions for ln γ∞ij . However,

meaningful features were only obtained for the components that can, in principle, be modeled

with UNIFAC, i.e., for which UNIFAC predictions were available during the distillation step.

These posterior distributions were used to generate informative priors for the subsequent

maturation step of the whisky method, the actual training of the approach to the available

experimental data (green part of Figure 1 in the manuscript). In detail, the mean of each

posterior distribution of the distillation step was adopted and used in combination with a

standard deviation of σ0 = 0.5 in a Gaussian prior in the maturation step. For those com-

ponents that cannot be modeled with UNIFAC, i.e., for which no UNIFAC predictions were

available during the distillation step, a Gaussian prior with mean µ0 = 0 and standard devi-

ation σ0 = 3 was used in the maturation step. Hence, we used a rather small prior standard

deviation, i.e., a rather strong or informative prior, for those components for which we could

extract and hand over information from the distillation to the maturation step. In contrast,

we used a rather large prior standard deviation, i.e., a rather weak or uninformative prior,

for those components for which no a-priori information could be generated with UNIFAC.

The actual numbers for σ0 for the informative and uninformative priors in the maturation

step are to a certain degree arbitrary but its ratio matches the ratio of the mean and maxi-

mum posterior standard deviation of the distillation step. Furthermore, the proposed whisky

method is quite robust with respect to σ0 in the maturation step. Figure S.5 shows the Stan

code of the maturation step, the actual training step, of the whisky method.

8

1 data {
2 int<lower=0> I; // number of solutes
3 int<lower=0> J; // number of solvents
4 int<lower=0> K; // number of latent dimensions
5 real ln_gamma_UNIFAC[I, J]; // matrix of UNIFAC predictions
6 real<lower=0> sigma_hp; // hyperprior standard deviation
7 }
8

9 parameters {
10 vector[K] u[I]; // solute feature vectors
11 vector[K] v[J]; // solvent feature vectors
12 real mu_0; // prior mean
13 real<lower=0> sigma_0; // prior standard deviation
14 real<lower=0> lambda; // likelihood scale
15 }
16

17 model {
18 // Fit hyperparameters:
19 mu_0 ~ normal(0, sigma_hp);
20 sigma_0 ~ normal(0, sigma_hp);
21 lambda ~ normal(0, sigma_hp);
22

23 // Prior: draw feature vectors for all solutes and solvents:
24 for (i in 1:I) {
25 u[i] ~ normal(mu_0, sigma_0);
26 }
27 for (j in 1:J) {
28 v[j] ~ normal(mu_0, sigma_0);
29 }
30

31 // Likelihood: model the probability of ln_gamma_UNIFAC as a Cauchy
32 // distribution around the dot product of the feature vectors:
33 for (i in 1:I) {
34 for (j in 1:J) {
35 // Preprocessing uses a sentinel value of -99 for missing entries.
36 if (ln_gamma_UNIFAC[i, j] != -99) {
37 ln_gamma_UNIFAC[i, j] ~ cauchy(u[i]' * v[j], lambda);
38 }
39 }
40 }
41 }

Figure S.4: Stan code of the probabilistic generative model of the distillation step of the
proposed whisky method. Line 36 ensures that the model in only trained on available
UNIFAC predictions, since missing entries of the matrix were set to -99.

9

1 data {
2 int<lower=0> I; // number of solutes
3 int<lower=0> J; // number of solvents
4 int<lower=0> K; // number of latent dimensions
5 real ln_gamma_exp[I, J]; // matrix of experimental activity coefficients
6 vector[K] mu_u[I]; // prior mean of solute features
7 vector[K] mu_v[J]; // prior mean of solvent features
8 vector[K] sigma_u[I]; // prior standard deviation of solute features
9 vector[K] sigma_v[J]; // prior standard deviation of solvent features

10 real<lower=0> lambda; // likelihood scale
11 }
12

13 parameters {
14 vector[K] u[I]; // solute feature vectors
15 vector[K] v[J]; // solvent feature vectors
16 }
17

18 model {
19 // Prior: draw feature vectors for all solutes and solvents:
20 for (i in 1:I) {
21 u[i] ~ normal(mu_u[i], sigma_u[i]);
22 }
23 for (j in 1:J) {
24 v[j] ~ normal(mu_v[j], sigma_v[j]);
25 }
26

27 // Likelihood: model the probability of ln_gamma_UNIFAC as a Cauchy
28 // distribution around the dot product of the feature vectors:
29 for (i in 1:I) {
30 for (j in 1:J) {
31 // Preprocessing uses a sentinel value of -99 for missing entries.
32 if (ln_gamma_UNIFAC[i, j] != -99) {
33 ln_gamma_UNIFAC[i, j] ~ cauchy(u[i]' * v[j], lambda);
34 }
35 }
36 }
37 }

Figure S.5: Stan code of the probabilistic generative model of the maturation step of the
proposed whisky method. Line 32 ensures that the model is only trained on available exper-
imental data, since missing entries of the matrix were set to -99.

10

The proposed whisky method can be applied to predict ln γ∞ij for any mixture of the

considered solutes and solvents. Hence, predictions for the complete data set on ln γ∞ij from

our previous work1 that contains 4,094 experimental data points and covers 240 solutes i

and 250 solvents j can be obtained with the whisky approach. In the manuscript, we only

show results for the data points that can also be predicted with UNIFAC for the reason of

comparability. However, the performance of the whisky method to predict all available 4,094

data points is demonstrated below and compared to the data-driven base method MCM.1

Bagging

For obtaining predictions with the bootstrap aggregation (bagging) approach, the arithmetic

mean of the predictions of the two base methods UNIFAC3,4 and data-driven MCM1 was

calculated for each available data point:

ln(γ∞ij)Bagging =
1

2

(
ln(γ∞ij)UNIFAC + ln(γ∞ij)MCM-data

)
(S.3)

For the UNIFAC predictions, an inhouse MATLAB implementation with the latest pub-

licly accessible parameterization4 was used. The MCM predictions were adopted from our

previous work.1

With the data-driven MCM, predictions for all 4,094 available experimental data points

are obtained; with UNIFAC, predictions for only about 80% of the these can be obtained.

Hence, the applicability of the bagging approach is directly limited by the applicability of

UNIFAC. The relevant data set covers 231 solutes and 205 solvents.

Boosting

Additionally, another established machine learning ensemble method, namely boosting, is

adopted here as hybrid baseline. The basis for the boosting method is the matrix containing

UNIFAC predictions for ln γ∞ij for the mixtures for which also experimental data on ln γ∞ij

11

are available. As described above, UNIFAC yields only predictions for about 80% of the

experimental data, which can also be arranged in a partially observed matrix, whose rows

and columns correspond to the solutes i and solvents j, respectively. Since the results of the

boosting method were also evaluated using leave-one-out cross-validation, at least two ob-

served entries, i.e., entries for which experimental data and UNIFAC prediction are available,

per row and column were required. The data set therefore slightly reduced further, covering

224 solutes and 205 solvents. For all applicable mixtures, the residuals rij of UNIFAC, i.e.,

the differences between the experimental data points and the UNIFAC predictions, were

calculated:

rij = ln(γ∞ij)exp − ln(γ∞ij)UNIFAC (S.4)

These UNIFAC residuals were arranged in a partially observed matrix to which the

concept of Bayesian matrix completion was applied in the second step. Hence, previously

unknown features of the solutes and solvents that describe the deviation of the UNIFAC

predictions from the experimental data were learned from the training data. For all param-

eters a Gaussian prior with mean µ0 = 0 and standard deviation σ0 = 1 was used here.

Furthermore, a Cauchy likelihood with scale parameter λ = 0.15 was used. Figure S.6 shows

the Stan code for the boosting method.

Following the concept of leave-one-out cross-validation, the solute and solvent features

were trained to all rij except for one, which was then considered as test data point and

predicted. Each data point served once as test data point. The prediction of the logarithmic

activity coefficient ln(γ∞ij)Boosting was calculated in a straightforward manner:

ln(γ∞ij)Boosting = ln(γ∞ij)UNIFAC + µui
· µvj (S.5)

where ln(γ∞ij)UNIFAC is the UNIFAC prediction for the activity coefficient, and µui
and µvj

are the posterior means of the corresponding solute and solvent feature vectors, respectively,

obtained from the MCM of the residuals rij.

12

1 data {
2 int<lower=0> I; // number of solutes
3 int<lower=0> J; // number of solvents
4 int<lower=0> K; // number of latent dimensions
5 real ln_gamma_exp[I, J]; // matrix of experimental activity coefficients
6 real ln_gamma_UNIFAC[I, J]; // matrix of UNIFAC predictions
7 real<lower=0> sigma_0; // prior standard deviation
8 real<lower=0> lambda; // likelihood scale
9 }

10

11 parameters {
12 vector[K] u[I]; // solute feature vectors
13 vector[K] v[J]; // solvent feature vectors
14 }
15

16 model {
17 // Prior: draw feature vectors for all solutes and solvents:
18 for (i in 1:I) {
19 u[i] ~ normal(0, sigma_0);
20 }
21 for (j in 1:J) {
22 v[j] ~ normal(0, sigma_0);
23 }
24

25 // Likelihood: model the probability of ln_gamma_exp as a Cauchy
26 // distribution around the dot product of the feature vectors + ln_gamma_UNIFAC:
27 for (i in 1:I) {
28 for (j in 1:J) {
29 // Preprocessing uses a sentinel value of -99 for missing entries.
30 if (ln_gamma_exp[i, j] != -99 && ln_gamma_UNIFAC[i, j] != -99) {
31 ln_gamma_exp[i, j] ~ cauchy(u[i]' * v[j] + ln_gamma_UNIFAC[i, j], lambda);
32 }
33 }
34 }
35 }

Figure S.6: Stan code of the probabilistic generative model of the boosting method. Line 30
ensures that the model is only trained on available data, since missing entries of the matrix
were set to -99.

13

Additional Results

Results of Bagging and Boosting

In Figure S.7, the predictions with the hybrid baselines bagging and boosting are represented

in parity plots and compared to the predictions of the base methods UNIFAC and data-driven

MCM. Both hybrid approaches only partially compensate for outliers of the data-driven

MCM but severely suffer from outliers of UNIFAC. The worst outliers of UNIFAC, bagging,

and boosting lie outside the depicted ranges, cf. Figure S.8. Slight improvements with

bagging and boosting compared to the data-driven MCM can only be achieved, if the worst

UNIFAC outliers are ignored, cf. the coefficients of determination R2 in Figure S.7 and

Figure 2 in the manuscript.

The slight improvements that are possible with the bagging approach compared to MCM

if (and only if) the worst UNIFAC outliers are ignored can mainly be attributed to error

cancellations by averaging the predictions of the two base methods (UNIFAC and MCM).

For approx. 67% of the applicable data points, better predictions are obtained with bagging

than with UNIFAC, whereas for approx. 52% of the data points, the predictions with bagging

are better than those of the data-driven MCM. Hence, the bagging approach improves the

predictions of both base methods for more data points than impairs the predictions. This

can be explained by the observation that for almost 19% of the data points, an improved

prediction accuracy compared to both UNIFAC and MCM is observed. Hence, for these

19%, the bagging approach benefits from the effect of error cancellation, as the respective

data points are overestimated by MCM and underestimated by UNIFAC, or vice versa.

Incidentally, it is in the nature of the bagging approach that it cannot impair the predictions

of UNIFAC and MCM for a specific data point at the same time.

However, in all cases, i.e., with or without ignoring the worst UNIFAC outliers, the

performances of bagging and boosting are significantly worse than the performance of the

proposed whisky method, cf. Figures 2 and 3 in the manuscript.

14

0

5

1 0

1 5

2 0

2 5

ln(
� ij

∞
)pre

d

U N I F A C
M C M
W h i s k y

W h i s k y (p r o p o s e d)

B a g g i n g

B o o s t i n g

a)

a)

b)

R 2

w OL w/o OL
UNIFAC 0.095 0.903
MCM 0.866 0.866
W h i s k y 0 . 9 6 0 0 . 9 6 0

R 2
w O L w / o O L

U N I F A C 0 . 0 9 5 0 . 9 0 3
M C M 0 . 8 6 6 0 . 8 6 6
B a g g i n g 0 . 2 9 7 0 . 9 3 8

R 2
w O L w / o O L

U N I F A C 0 . 0 9 5 0 . 9 0 3
M C M 0 . 8 6 6 0 . 8 6 6
B o o s t i n g 0 . 1 0 2 0 . 9 1 9

0

5

1 0

1 5

2 0

2 5
ln(

� ij
∞
)pre

d

U N I F A C
M C M
B a g g i n g

0 5 1 0 1 5 2 0 2 5

0

5

1 0

1 5

2 0

2 5

ln(
� ij

∞
)pre

d

l n (� i j ∞) e x p

U N I F A C
M C M
B o o s t i n g

Figure S.7: Parity plots of the predictions (pred) for ln γ∞ij with the bagging (a) and boosting
(b) approaches over the corresponding experimental values (exp) and comparison to UNIFAC
and data-driven MCM. Coefficients of determination R2 (higher is better, 1 implies perfect
correlation) are given, both including and excluding the worst eight UNIFAC outliers (OL).

15

UNIFAC Outliers

In Figure S.8, predictions for all applicable ln γ∞ij including the worst eight UNIFAC outliers

(OL) with all studied methods are shown in a parity plot representation. For these UNIFAC

outliers, marked by red boxes in Figure S.8, the hybrid methods bagging and boosting, shown

in panels b) and c), respectively, give poor predictions, while the whisky method, shown in

panel a), as well as the purely data-driven MCM are demonstrated to be much more robust

and do not exhibit such outliers.

The performance of UNIFAC strongly depends on the quality of the fitted binary group-

interaction parameters. The worst eight outliers of UNIFAC are associated to binary mix-

tures of a cyclic alkane, cyclic alkene, or furane as solute and a heterocyclic compound in

which the ring structure is formed by carbon and nitrogen as solvent. According to the

group-division scheme of UNIFAC,3,4 all aforementioned solutes contain at least one ‘CY-

CH2’ main group (UNIFAC main group no. 42), all aforementioned solvents contain at least

one ‘PYRIDINE’ main group (UNIFAC main group no. 18). We therefore attribute the

poor predictions of UNIFAC for these outliers mainly to the UNIFAC group-interaction pa-

rameters between the ‘CY-CH2’ and the ‘PYRIDINE’ group, which have presumably been

overfitted to parts of the data that were used for training UNIFAC (and that are not neces-

sarily part of the data set considered here). We assume that this is not an isolated case but

likely to occur for other group-interaction parameters for UNIFAC as well, depending on the

data sets that are studied. As the data-driven MCM is an orthogonal approach to UNIFAC,

it is conclusive that it does not suffer from the same difficulties. Furthermore, the prior

distributions in the probabilistic approach of the data-driven MCM serve as regularization

terms and can therefore be expected to prevent overfitting of the MCM to single data points

or parts of the data set.

16

- 2 0 0

- 1 5 0

- 1 0 0

- 5 0

0

5 0

ln(
� ij

∞
)pre

d
 U N I F A C
 M C M
 W h i s k y

a)

b)

c)

R 2
w OL w/o OL

UNIFAC 0.095 0.903
MCM 0.866 0.866
W h i s k y 0 . 9 6 0 0 . 9 6 0

R 2

w OL w/o OL
Bagging 0.297 0.938

R 2

w OL w/o OL
Boosting 0.102 0.919

B o o s t i n g

B a g g i n g

W h i s k y (p r o p o s e d)

- 2 0 0

- 1 5 0

- 1 0 0

- 5 0

0

5 0

ln(
� ij

∞
)pre

d

 U N I F A C
 M C M
 B a g g i n g

0 5 1 0 1 5 2 0 2 5
- 2 0 0

- 1 5 0

- 1 0 0

- 5 0

0

5 0

ln(
� ij

∞
)pre

d

l n (� i j ∞) e x p

 U N I F A C
 M C M
 B o o s t i n g

Figure S.8: Parity plots of the predictions (pred) for ln γ∞ij with the hybrid approaches
over the corresponding experimental values (exp) and comparison to UNIFAC and MCM.
a) whisky (proposed), b) bagging, c) boosting. The worst eight UNIFAC outliers (OL) are
marked by red boxes. Coefficients of determination R2 (higher is better, 1 implies perfect
correlation) are given, both including and excluding OL.

17

The proposed hybrid whisky approach, like the data-driven MCM, does not exhibit such

outliers, although it, in contrast to the data-driven MCM, considers information from UNI-

FAC. In whisky, information from UNIFAC is taken into account in the prior distributions

used in the maturation step, cf. Figure 1 in the manuscript. The nonzero variance of the

Gaussian priors that we have used here allows the whisky method to ‘correct’ poor UNIFAC

predictions by combining them with experimental data evidence in the maturation step.

This procedure seems to work extremely efficiently. Ultimately, we emphasize again that

even with omitting these systematic outliers of UNIFAC in the evaluation, the proposed

whisky method significantly outperforms the individual and hybrid baselines studied here.

MCM and Whisky Predictions for All Available Data

As described above, the whisky method yields predictions for all available experimental

ln γ∞ij for the considered solutes i and solvents j, while the bagging and boosting methods

are limited by the applicability of UNIFAC. In Figure S.9, the performance of the whisky

approach to predict ln γ∞ij for all 4,094 available data points is demonstrated and compared

to the performance of the data-driven MCM. Significant improvements with respect to mean

square error (MSE), mean absolute deviation (MAD), and coefficient of determination (R2)

are obtained with the whisky method.

18

M C
M

W h i s
k y

0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0
MS

E /
 M

AD
 M S E
 M A D

a)

- 5 0 5 1 0 1 5 2 0 2 5
- 5

0

5

1 0

1 5

2 0

2 5

ln(
� ij

∞
)pre

d

l n (� i j ∞) e x p

M C M
W h i s k y

R 2

MCM 0.852
W h i s k y 0 . 9 5 2

b)

Figure S.9: Comparison of the data-driven MCM and the proposed whisky method consider-
ing all 4,094 available experimental data points for ln γ∞ij . a) Mean square error (MSE) and
mean absolute deviation (MAD) of the predictions; lower is better for both metrics, error
bars represent the standard errors of the means. b) Parity plot of the predictions (pred)
over corresponding experimental values (exp) and coefficients of determination R2 (higher is
better, 1 implies perfect correlation).

Influence of Latent Dimension

Figure S.10 shows MSE and MAD scores that are obtained with the whisky method consid-

ering all available experimental data points for different latent dimensions K, specifically for

varying numbers of learned solute and solvent features ranging from two to six. For K = 4,

which was used to obtain all other results throughout this work (cf. Section ‘Model Details’

in the ESI), and K = 5, very similar scores are obtained. Also the scores for K = 6 are

similar, which indicates that the whisky method is rather robust to small enlargements of

K. However, the slightly worse MSE score for K = 6 indicates commencing overfitting at

larger numbers for K. Hence, at very large numbers of K, the method is likely to overfit

to the training data dropping predictive performance (on unseen test data) due to too high

flexibility. On the other hand, also lowering the number of K can result in significant de-

terioration of the scores. For K = 3, only slightly worse scores, for K = 2, substantially

worse scores are observed. This indicates that for very small numbers of K, the approach is

insufficiently flexible for describing the data well. Hence, only two features per solute and

19

solvent are not adequate for characterizing the components well, which results in poor scores

due to underfitting.

2 3 4 5 6
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

1 . 2

1 . 4

L a t e n t d i m e n s i o n K

MS
E /

 M
AD

 M S E
 M A D

Figure S.10: Influence of the latent dimension K on mean square error (MSE) and mean
absolute deviation (MAD) of the predictions with the proposed whisky method for all 4,094
available experimental data points for ln γ∞ij ; lower is better for both metrics, error bars
represent the standard errors of the means.

The optimal number of K strongly depends on the data that are considered and can, if

necessary, be determined by cross-validation. In this work, we have simply adopted K = 4

from our previous work in which we introduced the data-driven MCM and which is also a

good choice for the whisky method as demonstrated in Figure S.10. We consider the observed

robustness towards small variations of K (K = 3 to K = 6 here) as a major strength of the

whisky method, as it shows excellent predictive performance on ln γ∞ data without requiring

extensive hyperparameter optimization.

We note that for applying the whisky method to other physicochemical properties than

activity coefficients, significantly different numbers for the latent dimension K might be

required. I.e., the number of features that are required for adequately characterizing compo-

nents with regard to a specific property is likely to depend on the considered property. The

whisky method is not restricted to specific numbers of K; in principle any number can be

chosen, which can be determined by cross-validation to prevent both under- and overfitting

20

as described above. Larger numbers of K might hamper the computation time required to

train the method, which is, however, for K = 4 and the data set considered here, in the

range of seconds or minutes (using a custom laptop).

References

(1) Jirasek, F.; Alves, R. A. S.; Damay, J.; Vandermeulen, R. A.; Bamler, R.; Bortz, M.;

Mandt, S.; Kloft, M.; Hasse, H. Machine Learning in Thermodynamics: Prediction of

Activity Coefficients by Matrix Completion. J. Phys. Chem. Lett. 2020, 11, 981–985.

(2) Onken, U.; Rarey-Nies, J.; Gmehling, J. The Dortmund Data Bank: A Computerized

System for the Retrieval, Correlation, and Prediction of Thermodynamic Properties of

Mixtures. Int. J. Thermophys. 1989, 10, 739–747.

(3) Weidlich, U.; Gmehling, J. A Modified UNIFAC Model. 1. Prediction of VLE, hE, and

γ∞. Ind. Eng. Chem. Res. 1987, 26, 1372–1381.

(4) Constantinescu, D.; Gmehling, J. Further Development of Modified UNIFAC (Dort-

mund): Revision and Extension 6. J. Chem. Eng. Data 2016, 61, 2738–2748.

(5) Blei, D. M.; Kucukelbir, A.; McAuliffe, J. D. Variational Inference: A Review for Statis-

ticians. J. Am. Stat. Assoc. 2017, 112, 859–877.

(6) Zhang, C.; Bütepage, J.; Kjellström, H.; Mandt, S. Advances in Variational Inference.

IEEE. T. Pattern. Anal. 2019, 41, 2008–2026.

(7) Kucukelbir, A.; Tran, D.; Ranganath, R.; Gelman, A.; Blei, D. M. Automatic Differen-

tiation Variational Inference. J. Mach. Learn. Res. 2017, 18, 1–45.

(8) Carpenter, B.; Gelman, A.; Hoffman, M. D.; Lee, D.; Goodrich, B.; Betancourt, M.;

Brubaker, M.; Guo, J.; Li, P.; Riddell, A. Stan: A Probabilistic Programming Language.

J. Stat. Softw. 2017, 76, 1–32.

21

(9) Murphy, K. P. Machine Learning: A Probabilistic Perspective; MIT press, 2012.

22

