Supporting Information

N-Iminopyridinium Ylide-Directed, Cobalt-Catalyzed Coupling of $\mathbf{s p}^{2} \mathbf{C - H}$ Bonds with Alkynes

Se Hun Kwak and Olafs Daugulis*
Department of Chemistry, University of Houston, Houston, Texas 77204-5003
olafs@uh.edu

Table of Contents

General Information. S1
Preparation and Characterization of Substrates S1-S10
General Procedure for Cobalt-Catalyzed Annulation of Pyridinium ylides. S11
Optimization Study. S11
Characterization of Products S11-S27
H/D Scrambling Experiments S27-S30
Competition Reaction Between Methoxy- and tert-Butyl Pyridinium Ylides. S30-S31
Preparation of Cobaltacycles and Its Use as a Catalyst S32-S33
X-Ray Crystal Structure and Data for Compound 41 and 50 S34-S37
References S38
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra for Substrates S39-S65
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra for Cyclized Products S66-S106
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra for Compounds Used for Mechanistic Studies. S107-S111

General Information.

The ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra were recorded on JEOL EC-400, EC-500 and EC-600 spectrometers using either residual tetramethylsilane or residual solvent peaks as a reference. Compounds for HRMS were analyzed by positive mode electrospray ionization (CI or ESI) using Agilent QTOF mass spectrometer in the Mass Spectrometry Facility (MSF) of the Department of Chemistry and Biochemistry of University of Texas-Austin. Column chromatography was performed using a Biotage Isolera instrument with $60 \AA$ silica gel. Reagents and starting materials were purchased from commercial vendors and used without further purification. Complexes $\left[\mathrm{Cp} * \mathrm{Co}(\mathrm{CO}) \mathrm{I}_{2}\right],{ }^{1 a}$ $\left[\mathrm{Cp} * \mathrm{Co}(\mathrm{MeCN})_{3}\right]\left[\mathrm{SbF}_{6}\right]_{2}{ }^{1 \mathrm{~b}}$ and $\left[\mathrm{CpCo}(\mathrm{MeCN})_{3}\left[\mathrm{SbF}_{6}\right]_{2}{ }^{1 \mathrm{~b}}\right.$ were prepared according to the reported procedure.

Preparation and Characterization of Pyridinium Ylides.

Pyridinium ylides were prepared according to the literature procedures. ${ }^{2}$ Procedures and characterization data for unknown pyridinium ylides are described below.

(4-Fluorobenzoyl)(4-methoxypyridin-1-ium-1-yl)amide (Method A)

To a 100 mL round bottomed flask were added 4 -methoxypyridine ($0.41 \mathrm{~mL}, 4 \mathrm{mmol}$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. O -(2,4,6-Trimethylbenzenesulfonyl)hydroxylamine $(1.03 \mathrm{~g}, 4.8 \mathrm{mmol})^{2 \mathrm{~b}}$ was added to the solution, and the mixture was stirred for 2 h . This step prepares a substituted 1 -aminopyridine. To another 100 mL round bottomed flask were added 4-fluorobenzoic acid ($0.56 \mathrm{~g}, 4 \mathrm{mmol}$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, and the mixture was cooled to $0{ }^{\circ} \mathrm{C}$. Ethyl chloroformate $(0.42 \mathrm{~mL}, 4.4 \mathrm{mmol})$ was added to the mixture followed by the addition of triethylamine $(1.67 \mathrm{~mL}$, 12 mmol). The mixture was stirred for 30 min at room temperature. To this mixture were added the 1 aminopyridinium solution prepared above dropwise and solid $\mathrm{K}_{2} \mathrm{CO}_{3}(1.66 \mathrm{~g}, 12 \mathrm{mmol})$. After stirring the mixture for $24 \mathrm{~h}, \mathrm{NaOH}$ (50 mL of a 1 N aqueous solution) was poured in and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times$ 100 mL). The extracts were dried over MgSO_{4}, and the residue was purified by column chromatography (gradient elution, $\mathrm{EtOAc} / \mathrm{MeOH}, 0 \% \rightarrow 15 \%$) to give the product ($0.44 \mathrm{~g}, 45 \%$). Appearance: white solid; $\mathrm{mp} 212-213{ }^{\circ} \mathrm{C}$ $(\mathrm{EtOAc} / \mathrm{MeOH}=10: 1) ; \mathrm{R}_{\mathrm{f}}=0.33(\mathrm{EtOAc} / \mathrm{MeOH}=5 / 1) ;{ }^{1} \mathrm{H} \operatorname{NMR}(400 \mathrm{MHz}, \mathrm{MeOD}) \delta 8.46(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$, $8.10-8.00(\mathrm{~m}, 2 \mathrm{H}), 7.43(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.19-7.03(\mathrm{~m}, 2 \mathrm{H}), 4.10(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{MeOD}\right) \delta$ $173.1,169.4,165.8(\mathrm{~d}, J=248.2 \mathrm{~Hz}), 146.4,134.1(\mathrm{~d}, J=3.1 \mathrm{~Hz}), 131.3(\mathrm{~d}, J=8.7 \mathrm{~Hz}), 115.7(\mathrm{~d}, J=21.8 \mathrm{~Hz})$, 113.6, 58.0. HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{FN}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$269.0697, found 269.0697.

(4-Cyanobenzoyl)(4-methoxypyridin-1-ium-1-yl)amide

Method A was employed, with 4-cyanobenzoic acid ($0.59 \mathrm{~g}, 4 \mathrm{mmol}$). Yield: $0.42 \mathrm{~g}, 41 \%$; Appearance: light yellow solid; mp 221-222 ${ }^{\circ} \mathrm{C}(\mathrm{EtOAc} / \mathrm{MeOH}=10: 1) ; \mathrm{R}_{\mathrm{f}}=0.31(\mathrm{EtOAc} / \mathrm{MeOH}=5 / 1)$; purification (gradient elution, EtOAc/MeOH, $0 \% \rightarrow 15 \%$); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.54(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.23(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.69(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.04(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.6,166.4$, $144.8,142.1,131.8,128.6,119.2,113.3,111.7,57.1$. HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 276.0743$, found 276.0750.

(3-Chlorobenzoyl)(4-methoxypyridin-1-ium-1-yl)amide

Method A was employed, with 3-chlorobenzoic acid ($0.63 \mathrm{~g}, 4 \mathrm{mmol}$). Yield: $0.78 \mathrm{~g}, 74 \%$; Appearance: white solid; mp $154-155^{\circ} \mathrm{C}(\mathrm{EtOAc} / \mathrm{MeOH}=10: 1) ; \mathrm{R}_{\mathrm{f}}=0.38(\mathrm{EtOAc} / \mathrm{MeOH}=5 / 1)$; purification (gradient elution, $\mathrm{EtOAc} / \mathrm{MeOH}, 0 \% \rightarrow 15 \%)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 8.47(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.01(\mathrm{~s}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.51-7.35(\mathrm{~m}, 4 \mathrm{H}), 4.10(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , MeOD) $\delta 172.5,169.4,146.3,140.1,135.0,131.4$, 130.6, 129.0, 127.3, 113.6, 58.0. HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Cl}[\mathrm{M}+\mathrm{Na}]^{+}$285.0401, found 285.0403.

(3-Iodobenzoyl)(4-methoxypyridin-1-ium-1-yl)amide

Method A was employed, with 3-iodobenzoic acid ($0.99 \mathrm{~g}, 4 \mathrm{mmol}$). Yield: $0.89 \mathrm{~g}, 63 \%$; Appearance: white solid; $\mathrm{mp} 135-136{ }^{\circ} \mathrm{C}(\mathrm{EtOAc} / \mathrm{MeOH}=10: 1) ; \mathrm{R}_{\mathrm{f}}=0.40(\mathrm{EtOAc} / \mathrm{MeOH}=5 / 1)$; purification (gradient elution, $\mathrm{EtOAc} / \mathrm{MeOH}, 0 \% \rightarrow 15 \%) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.61-8.46(\mathrm{~m}, 3 \mathrm{H}), 8.09(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}$, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $169.9,166.2,145.0,139.7,138.9,137.0,129.8,127.3,111.6,93.9,57.0$. HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{I}[\mathrm{M}+$ $\mathrm{Na}]^{+} 376.9757$, found 376.9753 .

(4-Methoxypyridin-1-ium-1-yl)(2-methylbenzoyl)amide

Method A was employed, with 2-methylbenzoic acid ($0.54 \mathrm{~g}, 4 \mathrm{mmol}$). Yield: $0.53 \mathrm{~g}, 55 \%$; Appearance: white solid; $\mathrm{mp} 163-164{ }^{\circ} \mathrm{C}(\mathrm{EtOAc} / \mathrm{MeOH}=10: 1) ; \mathrm{R}_{\mathrm{f}}=0.22(\mathrm{EtOAc} / \mathrm{MeOH}=5 / 1)$; purification (gradient elution, $\mathrm{EtOAc} / \mathrm{MeOH}, 0 \% \rightarrow 15 \%) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.57(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.67(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.26$

- $7.14(\mathrm{~m}, 3 \mathrm{H}), 7.04(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 174.6,166.0$, $144.9,138.7,136.4,130.6,128.4,128.2,125.4,111.5,56.9,20.5$. HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$ 265.0947, found 265.0943 .

(2-Fluorobenzoyl)(4-methoxypyridin-1-ium-1-yl)amide

Method A was employed, with 2-fluorobenzoic acid ($0.56 \mathrm{~g}, 4 \mathrm{mmol}$). Yield: $0.67 \mathrm{~g}, 68 \%$; Appearance: white solid; mp 141-142 ${ }^{\circ} \mathrm{C}(\mathrm{EtOAc} / \mathrm{MeOH}=10: 1) ; \mathrm{R}_{\mathrm{f}}=0.24(\mathrm{EtOAc} / \mathrm{MeOH}=5 / 1)$; purification (gradient elution, EtOAc/MeOH, $0 \% \rightarrow 15 \%) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.55(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.89(\mathrm{td}, J=7.5,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.39-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.16(\mathrm{td}, J=7.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.03(\mathrm{~m}, 3 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.1,166.3,160.7(\mathrm{~d}, J=251.2 \mathrm{~Hz}), 145.0,130.9(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 130.7(\mathrm{~d}, J=8.4 \mathrm{~Hz}), 126.4(\mathrm{~d}, J=13.2 \mathrm{~Hz})$, $123.7(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 116.3(\mathrm{~d}, J=23.2 \mathrm{~Hz}), 111.5,57.0$. HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~F}[\mathrm{M}+\mathrm{Na}]^{+}$269.0697, found 269.0700 .

(3-(Methoxycarbonyl)benzoyl)(4-methoxypyridin-1-ium-1-yl)amide

Method A was employed, with 3-(methoxycarbonyl)benzoic acid ($0.72 \mathrm{~g}, 4 \mathrm{mmol}$). Yield: $0.84 \mathrm{~g}, 73 \%$; Appearance: white solid; mp 170-171 ${ }^{\circ} \mathrm{C}(\mathrm{EtOAc} / \mathrm{MeOH}=10: 1) ; \mathrm{R}_{\mathrm{f}}=0.29(\mathrm{EtOAc} / \mathrm{MeOH}=5 / 1)$; purification (gradient elution, EtOAc/MeOH, $0 \% \rightarrow 15 \%$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 8.69(\mathrm{~s}, 1 \mathrm{H}), 8.49(\mathrm{~d}, J=6.4 \mathrm{~Hz}$, $2 \mathrm{H}), 8.25(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.10(\mathrm{~s}$, $3 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{MeOD}\right) \delta 172.9,169.4,168.2,146.4,138.5,133.5,132.3,131.2,130.1$, 129.4, 113.6, 58.0, 52.7. HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$309.0846, found 309.0848.

(4-(tert-Butyl)pyridin-1-ium-1-yl)(thiophene-2-carbonyl)amide
Method A was employed, with 2-thiophenecarboxylic acid ($0.51 \mathrm{~g}, 4 \mathrm{mmol}$). Yield: $0.53 \mathrm{~g}, 51 \%$; Appearance: white solid; mp 225-226 ${ }^{\circ} \mathrm{C}(\mathrm{EtOAc} / \mathrm{MeOH}=10: 1) ; \mathrm{R}_{\mathrm{f}}=0.52(\mathrm{EtOAc} / \mathrm{MeOH}=10 / 1)$; purification (gradient elution, $\mathrm{EtOAc} / \mathrm{MeOH}, 0 \% \rightarrow 10 \%$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.66(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.76 (dd, $J=3.6,1.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{dd}, J=5.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{dd}, J=5.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.39(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$

NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.9,163.0,142.6,141.8,129.0,128.1,127.2,123.1,35.8,30.3$. HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+}$261.1056, found 261.1053.

(4-(tert-Butyl)pyridin-1-ium-1-yl)(5-methylthiophene-2-carbonyl)amide

Method A was employed, with 5-methylthiophene-2-carboxylic acid ($0.57 \mathrm{~g}, 4 \mathrm{mmol}$). Yield: $0.75 \mathrm{~g}, 68 \%$; appearance: white solid; $\mathrm{mp} 194-195{ }^{\circ} \mathrm{C}(\mathrm{EtOAc} / \mathrm{MeOH}=10: 1) ; \mathrm{R}_{\mathrm{f}}=0.52(\mathrm{EtOAc} / \mathrm{MeOH}=10 / 1)$; purification (gradient elution, $\mathrm{EtOAc} / \mathrm{MeOH}, 0 \% \rightarrow 10 \%) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.65(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=$ $7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , CDCl_{3}) $\delta 167.0,162.7,142.9,142.6,139.2,129.2,125.6,123.0,35.8,30.3,15.8$. HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+}$275.1213, found 275.1209.

(4-(tert-Butyl)pyridin-1-ium-1-yl)(thiophene-3-carbonyl)amide

Method A was employed, with thiophene-3-carboxylic acid ($0.51 \mathrm{~g}, 4 \mathrm{mmol}$). Yield: $0.79 \mathrm{~g}, 76 \%$; appearance: white solid; mp 244-245 ${ }^{\circ} \mathrm{C}(\mathrm{EtOAc} / \mathrm{MeOH}=10: 1) ; \mathrm{R}_{\mathrm{f}}=0.38(\mathrm{EtOAc} / \mathrm{MeOH}=10 / 1)$; purification (gradient elution, $\mathrm{EtOAc} / \mathrm{MeOH}, 0 \% \rightarrow 10 \%$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.64(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 8.01 (dd, $J=3.1,1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.63(\mathrm{dd}, J=4.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{dd}, J=4.9,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.39(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 167.9,162.8,142.7,141.0,127.7,127.4,124.9,123.1,35.8,30.3$. HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+}$261.1056, found 261.1054.

(4-(tert-Butyl)pyridin-1-ium-1-yl)(furan-2-carbonyl)amide

Method A was employed, with furan-2-carboxylic acid ($0.45 \mathrm{~g}, 4 \mathrm{mmol}$), Yield: $0.79 \mathrm{~g}, 81 \%$; appearance: white solid; mp 220-221 ${ }^{\circ} \mathrm{C}(\mathrm{EtOAc} / \mathrm{MeOH}=10: 1) ; \mathrm{R}_{\mathrm{f}}=0.29(\mathrm{EtOAc} / \mathrm{MeOH}=10 / 1)$; purification (gradient elution, $\mathrm{EtOAc} / \mathrm{MeOH}, 0 \% \rightarrow 10 \%) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.67(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.50$ (d, $J=0.8 \mathrm{~Hz}, 1 \mathrm{H}$), $7.07(\mathrm{dd}, J=3.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{dd}, J=3.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , CDCl_{3}) $\delta 163.9,163.0,151.4,143.4,142.6,123.2,112.7,111.2,35.8,30.3$. HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}$ $+\mathrm{H}]^{+}$245.1285, found 245.1280.

(4-(tert-Butyl)pyridin-1-ium-1-yl)(furan-3-carbonyl)amide
Method A was employed, with furan-3-carboxylic acid ($0.45 \mathrm{~g}, 4 \mathrm{mmol}$), Yield: $0.57 \mathrm{~g}, 58 \%$; appearance: white solid; $\mathrm{mp} 242-243{ }^{\circ} \mathrm{C}(\mathrm{EtOAc} / \mathrm{MeOH}=10: 1) ; \mathrm{R}_{\mathrm{f}}=0.36(\mathrm{EtOAc} / \mathrm{MeOH}=10 / 1)$; purification (gradient elution, $\mathrm{EtOAc} / \mathrm{MeOH}, 0 \% \rightarrow 10 \%) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.62(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 8.00(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.61$ $(\mathrm{d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~s}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.39(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.6,162.9$, $144.5,142.8,142.7,125.3,123.1,109.9,35.7,30.3$. HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 245.1285$, found 245.1281 .

(4-(tert-Butyl)pyridin-1-ium-1-yl)(6-methoxynicotinoyl)amide
Method A was employed, with 6-methoxynicotinic acid (4 mmol, 0.61 g), Yield: $0.78 \mathrm{~g}, 68 \%$; appearance: white solid; $\mathrm{mp} 180-181^{\circ} \mathrm{C}(\mathrm{EtOAc} / \mathrm{MeOH}=10: 1) ; \mathrm{R}_{\mathrm{f}}=0.33(\mathrm{EtOAc} / \mathrm{MeOH}=10 / 1)$; purification (gradient elution, $\mathrm{EtOAc} / \mathrm{MeOH}, 0 \% \rightarrow 10 \%) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.96(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.64(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 8.30$ $(\mathrm{dd}, J=8.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.75(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.4,165.3,162.9,147.8,142.7,138.6,126.4,123.1,109.7,53.7,35.8,30.3 . \operatorname{HRMS}$ (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$286.1550, found 286.1548.

(4-(tert-Butyl)pyridin-1-ium-1-yl)(1-methyl-1H-pyrrole-2-carbonyl)amide

Method A was employed, with 1-methyl-1H-pyrrole-2-carboxylic acid ($4 \mathrm{mmol}, 0.50 \mathrm{~g}$), Yield: $0.45 \mathrm{~g}, 44 \%$; appearance: white solid; $\mathrm{mp} 214-215^{\circ} \mathrm{C}(\mathrm{EtOAc} / \mathrm{MeOH}=10: 1) ; \mathrm{R}_{\mathrm{f}}=0.36(\mathrm{EtOAc} / \mathrm{MeOH}=10 / 1)$; purification (gradient elution, $\mathrm{EtOAc} / \mathrm{MeOH}, 0 \% \rightarrow 10 \%) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.58(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=$ $7.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{dd}, J=3.8,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.73-6.63(\mathrm{~m}, 1 \mathrm{H}), 6.11(\mathrm{dd}, J=3.8,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 1.38$ $(\mathrm{s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.4,162.4,142.9,128.8,126.3,123.0,112.3,106.9,36.9,35.6,30.3$. HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$258.1601, found 258.1594.

(4-(tert-Butyl)pyridin-1-ium-1-yl)(1-methyl-1H-pyrazole-5-carbonyl)amide

Method A was employed, with 1-methyl-1H-pyrazole-5-carboxylic acid ($4 \mathrm{mmol}, 0.50 \mathrm{~g}$), Yield: $0.66 \mathrm{~g}, 64 \%$; appearance: white solid; $\mathrm{mp} 177-178{ }^{\circ} \mathrm{C}(\mathrm{EtOAc} / \mathrm{MeOH}=10: 1) ; \mathrm{R}_{\mathrm{f}}=0.24(\mathrm{EtOAc} / \mathrm{MeOH}=10 / 1)$; purification (gradient elution, $\mathrm{EtOAc} / \mathrm{MeOH}, 0 \% \rightarrow 10 \%) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.58(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{~d}, J=$ $6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 165.5,163.6,142.6,138.8,137.5,123.3,107.5,39.4,35.9,30.3$. HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}+$ $\mathrm{H}]^{+}$259.1553, found 259.1551

(4-(tert-Butyl)pyridin-1-ium-1-yl)(1-methyl-1H-indole-5-carbonyl)amide

Method A was employed, with 1-methyl-1H-indole-5-carboxylic acid ($4 \mathrm{mmol}, 0.70 \mathrm{~g}$). Yield: $0.98 \mathrm{~g}, 80 \%$; appearance: pale yellow solid; mp 218-219 ${ }^{\circ} \mathrm{C}(\mathrm{EtOAc} / \mathrm{MeOH}=10: 1) ; \mathrm{R}_{\mathrm{f}}=0.38(\mathrm{EtOAc} / \mathrm{MeOH}=10 / 1)$; purification (gradient elution, $\mathrm{EtOAc} / \mathrm{MeOH}, 0 \% \rightarrow 10 \%) ;{ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.68(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H})$, $8.51(\mathrm{~s}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H})$, $6.55(d, \mathrm{~J}=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.1,162.3,143.0,138.1,129.3$, 128.6, 128.1, 123.0, 122.1, 121.5, 108.4, 102.1, 35.6, 33.0, 30.3. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$ 308.1757, found 308.1758

(Benzo[b]thiophene-3-carbonyl)(4-(tert-butyl)pyridin-1-ium-1-yl)amide
Method A was employed, with benzo[b]thiophene-3-carboxylic acid ($4 \mathrm{mmol}, 0.71 \mathrm{~g}$) Yield: $0.92 \mathrm{~g}, 74 \%$; appearance: white solid; $\mathrm{mp} 179-180^{\circ} \mathrm{C}(\mathrm{EtOAc} / \mathrm{MeOH}=10: 1) ; \mathrm{R}_{\mathrm{f}}=0.52(\mathrm{EtOAc} / \mathrm{MeOH}=10 / 1)$; purification (gradient elution, $\mathrm{EtOAc} / \mathrm{MeOH}, 0 \% \rightarrow 10 \%) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.84(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.68(\mathrm{~d}, J=$ $6.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.26(\mathrm{~s}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.47-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.38-7.30(\mathrm{~m}$, $1 \mathrm{H}), 1.34(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.6,162.9,142.8,140.7,137.7,134.6,130.4,125.9,124.4$, 124.1, 123.1, 122.4, 35.7, 30.3. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+} 311.1213$, found 311.1214

Preparation of pyridinium ylides (Method B)

(5-Bromofuran-3-carbonyl)(4-(tert-butyl)pyridin-1-ium-1-yl)amide

To a 100 mL round bottomed flask were added 4-tert-butylpyridine ($0.59 \mathrm{~mL}, 4 \mathrm{mmol}$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL}) . \mathrm{O}$ -(2,4,6- Trimethylbenzenesulfonyl)hydroxylamine ($1.03 \mathrm{~g}, 4.8 \mathrm{mmol}$) was added to the solution, and the mixture was stirred for 2 h . This step prepares a substituted 1 -aminopyridine. To another 100 mL round bottomed flask were added 5-bromofuran-3-carboxylic acid ($0.76 \mathrm{~g}, 4 \mathrm{mmol}$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, oxalyl chloride ($8 \mathrm{mmol}, 0.69 \mathrm{~mL}$), and DMF (4 drops). The mixture was refluxed for two hours and cooled to room temperature. After removal of excess of oxalyl chloride and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. To this solution were added the aminopyridinium solution prepared above and triethylamine ($1.67 \mathrm{~mL}, 12 \mathrm{mmol}$) at room temperature. After stirring the mixture for $24 \mathrm{~h}, \mathrm{NaOH}$ (50 mL of a 1 N aqueous solution) was poured in and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{~mL})$. The extracts were dried over MgSO_{4}, and the residue was purified by column chromatography (gradient elution, $\mathrm{EtOAc} / \mathrm{MeOH}, 0 \% \rightarrow 10 \%$) to give the product ($0.52 \mathrm{~g}, 40 \%$). Appearance: white solid; mp 206 $207{ }^{\circ} \mathrm{C}(\mathrm{EtOAc} / \mathrm{MeOH}=10: 1) ; \mathrm{R}_{\mathrm{f}}=0.48(\mathrm{EtOAc} / \mathrm{MeOH}=10 / 1) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.60(\mathrm{~d}, J=7.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.94(\mathrm{~s}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.73(\mathrm{~s}, 1 \mathrm{H}), 1.39(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.4$, 163.2, 145.7, 142.6, 128.0, 123.2, 122.1, 111.6, 35.8, 30.3. HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{BrN}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 323.0390$, found 323.0388 .

(2-Bromoisonicotinoyl)(4-(tert-butyl)pyridin-1-ium-1-yl)amide

Method B was employed, with 2-bromoisonicotinic acid ($4 \mathrm{mmol}, 0.81 \mathrm{~g}$). Yield : $0.68 \mathrm{~g}, 51 \%$; appearance : white solid; mp $176-177{ }^{\circ} \mathrm{C}(\mathrm{EtOAc} / \mathrm{MeOH}=10: 1) ; \mathrm{R}_{\mathrm{f}}=0.48(\mathrm{EtOAc} / \mathrm{MeOH}=10 / 1)$; purification (gradient elution, EtOAc/MeOH, $0 \% \rightarrow 10 \%$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.64(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.42(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.21$ - 8.13 (m, 1H), 7.93 (dd, $J=5.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.6,163.9,150.2,148.3,142.4,142.3,126.9,123.4,121.6,35.9,30.3$. HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{BrN}_{3} \mathrm{O}$ [M $+\mathrm{H}]^{+} 334.0550$, found 334.0550 .

(Furan-2-carbonyl)(4-methoxypyridin-1-ium-1-yl)amide
Method A was employed, with furan-2-carboxylic acid ($0.45 \mathrm{~g}, 4 \mathrm{mmol}$). Yield: $0.47 \mathrm{~g}, 54 \%$; Appearance: white solid; $\mathrm{mp} 187-188^{\circ} \mathrm{C}(\mathrm{EtOAc} / \mathrm{MeOH}=10: 1) ; \mathrm{R}_{\mathrm{f}}=0.12(\mathrm{EtOAc} / \mathrm{MeOH}=5 / 1)$; purification (gradient elution, $\mathrm{EtOAc} / \mathrm{MeOH}, 0 \% \rightarrow 20 \%) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.55(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.51-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.10(\mathrm{~d}$, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{dd}, J=3.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.1,164.3,151.5,144.9,143.3,112.4,111.5,111.1,57.0$. HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$ 241.0584, found 241.0590.

(Furan-3-carbonyl)(4-methoxypyridin-1-ium-1-yl)amide

Method A was employed, with furan-3-carboxylic acid ($0.45 \mathrm{~g}, 4 \mathrm{mmol}$). Yield: $0.43 \mathrm{~g}, 49 \%$; Appearance: pale yellow solid; mp $127-128{ }^{\circ} \mathrm{C}(\mathrm{EtOAc} / \mathrm{MeOH}=10: 1) ; \mathrm{R}_{\mathrm{f}}=0.21(\mathrm{EtOAc} / \mathrm{MeOH}=5 / 1)$; purification (gradient elution, $\mathrm{EtOAc} / \mathrm{MeOH}, 0 \% \rightarrow 20 \%$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.50(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.98(\mathrm{~s}, 1 \mathrm{H}), 7.41(\mathrm{~s}$, $1 \mathrm{H}), 7.08(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.1,166.1,145.1,144.5$, 142.8, 125.2, 111.5, 109.8, 57.0. HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{Na}]^{+} 241.0584$, found 241.0585.

(2-Bromoisonicotinoyl)(4-methoxypyridin-1-ium-1-yl)amide

Method B was employed, with 2-bromoisonicotinic acid ($0.81 \mathrm{~g}, 4 \mathrm{mmol}$). Yield: $0.55 \mathrm{~g}, 45 \%$; Appearance: white solid; $\mathrm{mp} 192-193{ }^{\circ} \mathrm{C}(\mathrm{EtOAc} / \mathrm{MeOH}=10: 1) ; \mathrm{R}_{\mathrm{f}}=0.21(\mathrm{EtOAc} / \mathrm{MeOH}=5 / 1)$; purification (gradient elution, $\mathrm{EtOAc} / \mathrm{MeOH}, 0 \% \rightarrow 20 \%) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.54$ (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 8.41 (d, $J=4.9 \mathrm{~Hz}, 1 \mathrm{H}$), 8.16 $(\mathrm{s}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.05(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.9,166.5$, $150.1,148.4,144.6,142.4,126.9,121.5,111.7,57.1$. HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Br}[\mathrm{M}+\mathrm{Na}]^{+} 329.9849$, found 329.9849 .

(6-Methoxynicotinoyl)(4-methoxypyridin-1-ium-1-yl)amide

Method A was employed, with 6-methoxynicotinic acid ($0.61 \mathrm{~g}, 4 \mathrm{mmol}$). Yield: $0.47 \mathrm{~g}, 45 \%$; Appearance: white solid; $\mathrm{mp} 176-177{ }^{\circ} \mathrm{C}(\mathrm{EtOAc} / \mathrm{MeOH}=10: 1) ; \mathrm{R}_{\mathrm{f}}=0.18(\mathrm{EtOAc} / \mathrm{MeOH}=5 / 1)$; purification (gradient elution, $\mathrm{EtOAc} / \mathrm{MeOH}, 0 \% \rightarrow 20 \%)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.93(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.53(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.28$ (dd, $J=8.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.73(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.9,166.1,165.3,147.7,145.1,138.5,126.4,111.5,109.8,57.0,53.7$. HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$282.0849, found 282.0847.

(4-Methoxypyridin-1-ium-1-yl)(1-methyl-1H-pyrazole-5-carbonyl)amide

Method A was employed, with 1-methyl-1H-pyrazole-5-carboxylic acid ($0.50 \mathrm{~g}, 4 \mathrm{mmol}$). Yield: $0.55 \mathrm{~g}, 59 \%$; Appearance: white solid; $\mathrm{mp} 148-149{ }^{\circ} \mathrm{C}(\mathrm{EtOAc} / \mathrm{MeOH}=10: 1) ; \mathrm{R}_{\mathrm{f}}=0.15(\mathrm{EtOAc} / \mathrm{MeOH}=5 / 1)$; purification (gradient elution, $\mathrm{EtOAc} / \mathrm{MeOH}, 0 \% \rightarrow 20 \%) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.49(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{~d}, J=$ $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.73(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{~s}, 3 \mathrm{H}), 4.02(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , CDCl_{3}) $\delta 166.4,165.8,145.0,138.7,137.5,111.6,107.4,57.1,39.4$. HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$ 255.0852, found 255.0858.

(4-Methoxypyridin-1-ium-1-yl)(1-methyl-1H-indole-5-carbonyl)amide

Method A was employed, with 1-methyl-1H-indole-5-carboxylic acid ($0.70 \mathrm{~g}, 4 \mathrm{mmol}$). Yield: $0.75 \mathrm{~g}, 67 \%$; Appearance: white solid; mp 219-220 ${ }^{\circ} \mathrm{C}(\mathrm{EtOAc} / \mathrm{MeOH}=10: 1) ; \mathrm{R}_{\mathrm{f}}=0.21(\mathrm{EtOAc} / \mathrm{MeOH}=5 / 1)$; purification (gradient elution, $\mathrm{EtOAc} / \mathrm{MeOH}, 0 \% \rightarrow 20 \%) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 8.62(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 8.25(\mathrm{~s}$, $1 \mathrm{H}), 7.90(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.26(\mathrm{~m}, 4 \mathrm{H}), 6.47(\mathrm{~s}, 1 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6}) $\delta 170.1,165.4,145.1,137.3,129.9,129.1,127.3,121.4,120.3,111.8,108.2,101.2,57.1,32.6$. HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 304.1056$, found 304.1056.

Preparation of pyridinium ylides (Method C)

(4-(tert-Butyl)pyridin-1-ium-1-yl)(2-phenylacryloyl)amide. To a 100 mL round bottomed flask were added 4-tert-butylpyridine ($0.59 \mathrm{~mL}, 4 \mathrm{mmol}$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL}) . O-(2,4,6$-Trimethylbenzenesulfonyl)hydroxylamine $(1.03 \mathrm{~g}, 4.8 \mathrm{mmol})$ was added to the solution, and the mixture was stirred for 2 h . This step prepares a substituted 1-aminopyridine. To another 100 mL round bottomed flask were added atropic acid ($0.59 \mathrm{~g}, 4 \mathrm{mmol}$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(20 \mathrm{~mL})$, and the mixture was cooled to $0^{\circ} \mathrm{C}$. Ethyl chloroformate $(0.42 \mathrm{~mL}, 4.4 \mathrm{mmol})$ was added to the mixture followed by the addition of triethylamine ($1.67 \mathrm{~mL}, 12 \mathrm{mmol}$). The mixture was stirred for 30 min at room temperature. To this mixture were added the 1 -aminopyridinium solution prepared above dropwise, solid $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(1.66 \mathrm{~g}, 12 \mathrm{mmol})$ and acetonitrile (20 mL). After stirring the mixture for $24 \mathrm{~h}, \mathrm{NaOH}(50 \mathrm{~mL}$ of a 1 N aqueous solution) was poured in and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{~mL})$. The extracts were dried over MgSO_{4}, and the residue was purified by column chromatography (gradient elution, $\mathrm{EtOAc} / \mathrm{MeOH}, 0 \% \rightarrow 10 \%$) to give the product ($0.42 \mathrm{~g}, 37 \%$). Appearance: pale yellow solid; mp $146-147^{\circ} \mathrm{C}(\mathrm{EtOAc} / \mathrm{MeOH}=10: 1) ; \mathrm{R}_{\mathrm{f}}=0.50$ $(E t O A c / M e O H=8 / 2) ;{ }^{1} H$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.56(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.66-7.52(\mathrm{~m}, 4 \mathrm{H}), 7.33(\mathrm{~d}, J=$ $7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.22(\mathrm{~m}, 1 \mathrm{H}), 6.11(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.61(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.36(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.6,163.0,147.7,142.6,139.4,128.3,127.9,127.3,123.0,119.2,35.7,30.3$. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$281.1651, found 281.1648.

Methacryloyl(4-methoxypyridin-1-ium-1-yl)amide. Method C was employed, with methacrylic acid ($0.34 \mathrm{~g}, 4$ mmol). Yield: $0.60 \mathrm{~g}, 78 \%$; Appearance: pale yellow solid; $\mathrm{mp} 85-86^{\circ} \mathrm{C}(\mathrm{EtOAc} / \mathrm{MeOH}=10: 1) ; \mathrm{R}_{\mathrm{f}}=0.16$ ($\mathrm{EtOAc} / \mathrm{MeOH}=8 / 2$); purification (gradient elution, $\mathrm{EtOAc} / \mathrm{MeOH}, 0 \% \rightarrow 15 \%$); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.40(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.96(\mathrm{~s}, 1 \mathrm{H}), 5.24(\mathrm{~s}, 1 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz CDCl 3) $\delta 173.0,166.1,145.1,142.4,118.5,111.4,56.9$, 19.4. HRMS (ESI) calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+$ $\mathrm{H}]^{+}$193.0972, found 193.0975.

General Procedure for Cobalt-Catalyzed C-H Annulation. A 2-dram vial equipped with a magnetic stir bar was charged with the pyridinium ylide (0.2 mmol), $\left[\mathrm{Cp} * \mathrm{Co}(\mathrm{MeCN})_{3}\right]\left[\mathrm{SbF}_{6}\right]_{2}(0.03$ or 0.04 mmol$)$, pivalic acid (0.04 or 0.06 mmol$)$, HFIP (1 mL), and alkyne (0.4 mmol). The vial was closed with a screw cap after flushing with nitrogen. The mixture was stirred in a heating block at $110^{\circ} \mathrm{C}$ for $20-72 \mathrm{~h}$. After the mixture was cooled, ethyl acetate was added, and the diluted mixture was poured into a round bottom flask. The mixture was absorbed on 3 g of silica gel and purified by column chromatography on silica gel.

Optimization Study ${ }^{\text {a }}$

			$\mathrm{Ph}=\mathrm{Ph}$ (2 equiv)			
			Co cat. Additive 1 Additive 2 110° 20 h		 4	Me
Entry	R	Cat.	Additive 1	Additive 2	Solvent	Yield (\%) ${ }^{\text {b }}$
1	H	$\begin{gathered} \hline \mathrm{Cp}^{*} \mathrm{CoI}_{2}(\mathrm{CO}) \\ 5 \mathrm{~mol} \% \end{gathered}$	$\begin{gathered} \mathrm{AgSbF}_{6} \\ (20 \mathrm{~mol} \%) \end{gathered}$	$\begin{gathered} \mathrm{NaOAc} \\ (40 \mathrm{~mol} \%) \end{gathered}$	TFE	8
2	$t \mathrm{Bu}$	$\begin{gathered} \mathrm{Cp}^{*} \mathrm{CoI}_{2}(\mathrm{CO}) \\ 10 \mathrm{~mol} \% \end{gathered}$	$\begin{gathered} \mathrm{AgSbF}_{6} \\ (20 \mathrm{~mol} \%) \end{gathered}$	NaOAc (40 mol\%)	HFIP	30
3	$t \mathrm{Bu}$	$\begin{gathered} \mathrm{Cp}^{*} \mathrm{CoI}_{2}(\mathrm{CO}) \\ 20 \mathrm{~mol} \% \end{gathered}$	$\begin{gathered} \mathrm{AgSbF}_{6} \\ (40 \mathrm{~mol} \%) \end{gathered}$	$\begin{gathered} \text { PivOH } \\ (20 \mathrm{~mol} \%) \end{gathered}$	HFIP	60
4	$t \mathrm{Bu}$	$\left[\mathrm{Cp} * \mathrm{Co}(\mathrm{MeCN})_{3}\right]\left[\mathrm{SbF}_{6}\right]_{2}$ $15 \mathrm{~mol} \%$		NaOAc (40 mol\%)	TFE	45
5	$t \mathrm{Bu}$	$\begin{gathered} {\left[\mathrm{Cp} * \mathrm{Co}(\mathrm{MeCN})_{3}\right]\left[\mathrm{SbF}_{6}\right]_{2}} \\ 15 \mathrm{~mol} \% \end{gathered}$		$\begin{aligned} & \text { 1-AdCO }{ }_{2} \mathrm{H} \\ & (20 \mathrm{~mol} \%) \end{aligned}$	HFIP	77
6	$t \mathrm{Bu}$	$\begin{gathered} {\left[\mathrm{Cp} * \mathrm{Co}(\mathrm{MeCN})_{3}\right]\left[\mathrm{SbF}_{6}\right]_{2}} \\ 15 \mathrm{~mol} \% \end{gathered}$		$\begin{gathered} \text { PivOH } \\ (20 \mathrm{~mol} \%) \end{gathered}$	HFIP	81
7	$t \mathrm{Bu}$	$\left[\mathrm{CpCo}(\mathrm{MeCN})_{3}\right]\left[\mathrm{SbF}_{6}\right]_{2}$ $15 \mathrm{~mol} \%$		$\begin{gathered} \text { PivOH } \\ (20 \mathrm{~mol} \%) \end{gathered}$	HFIP	7
8	$t \mathrm{Bu}$	$\left[\mathrm{Cp}^{*} \mathrm{Co}(\mathrm{MeCN})_{3}\right]\left[\mathrm{SbF}_{6}\right]_{2}$ $15 \mathrm{~mol} \%$			HFIP	55
9	OMe	$\begin{gathered} {\left[\mathrm{Cp} * \mathrm{Co}(\mathrm{MeCN})_{3}\right]\left[\mathrm{SbF}_{6}\right]_{2}} \\ 15 \mathrm{~mol} \% \end{gathered}$		$\begin{gathered} \text { PivOH } \\ (20 \mathrm{~mol} \%) \end{gathered}$	HFIP	82
10	H	$\begin{gathered} {\left[\mathrm{Cp}^{*} \mathrm{Co}(\mathrm{MeCN})_{3}\right]\left[\mathrm{SbF}_{6}\right]_{2}} \\ 15 \mathrm{~mol} \% \\ \hline \end{gathered}$		$\begin{gathered} \text { PivOH } \\ (20 \mathrm{~mol} \%) \\ \hline \end{gathered}$	HFIP	24

${ }^{\text {a }}$ Reaction conditions: ylide $(0.2 \mathrm{mmol})$, HFIP $(1 \mathrm{~mL}) .{ }^{\mathrm{b}}$ Isolated yields.

6-Methyl-3,4-diphenylisoquinolin-1 (2H)-one (4). Ylide $3(0.2 \mathrm{mmol}, 54 \mathrm{mg}),\left[\mathrm{Cp} * \mathrm{Co}(\mathrm{MeCN})_{3}\right]\left[\mathrm{SbF}_{6}\right]_{2}(0.03$ $\mathrm{mmol}, 24 \mathrm{mg})$, pivalic acid ($0.04 \mathrm{mmol}, 4 \mathrm{mg}$), HFIP (1 mL), and diphenylacethylene ($0.4 \mathrm{mmol}, 71 \mathrm{mg}$), 20 h ;
white solid; 81% yield (50 mg); purification (gradient elution, hexanes/EtOAc, $20 \% \rightarrow 70 \%$); $\mathrm{R}_{\mathrm{f}}=0.50$ (hexanes/EtOAc $=1 / 1) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.65(\mathrm{~s}, 1 \mathrm{H}), 8.35(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.28(\mathrm{~m}, 4 \mathrm{H})$, $7.26-7.21(\mathrm{~m}, 5 \mathrm{H}), 7.21-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.0,143.4$, $138.9,137.4,136.1,135.3,132.0,129.5,128.6,128.5,128.4,128.3,127.6,127.3,125.4,123.1,117.1,22.2$.

This compound is known. ${ }^{3}$
Ylide $2(0.2 \mathrm{mmol}, 48 \mathrm{mg}),\left[\mathrm{Cp} * \mathrm{Co}(\mathrm{MeCN})_{3}\right]\left[\mathrm{SbF}_{6}\right]_{2}(0.03 \mathrm{mmol}, 24 \mathrm{mg})$, pivalic acid $(0.04 \mathrm{mmol}, 4 \mathrm{mg})$, HFIP $(1 \mathrm{~mL})$, and diphenylacethylene ($0.4 \mathrm{mmol}, 71 \mathrm{mg}$). $20 \mathrm{~h} ; 82 \%$ yield $(51 \mathrm{mg})$.

6-Methoxy-3,4-diphenylisoquinolin-1(2H)-one (5). (4-(tert-Butyl)pyridin-1-ium-1-yl)(4-methoxybenzoyl)amide $(0.2 \mathrm{mmol}, 54 \mathrm{mg}),\left[\mathrm{Cp}^{*} \mathrm{Co}(\mathrm{MeCN})_{3}\right]\left[\mathrm{SbF}_{6}\right]_{2}(0.03 \mathrm{mmol}, 24 \mathrm{mg})$, pivalic acid $(0.04 \mathrm{mmol}, 4 \mathrm{mg})$, HFIP (1 mL), and diphenylacethylene ($0.4 \mathrm{mmol}, 71 \mathrm{mg}$), 48 h ; white solid; 64% yield (42 mg); purification (gradient elution, hexanes/EtOAc, $40 \% \rightarrow 100 \%$); $\mathrm{R}_{\mathrm{f}}=0.30$ (hexanes/EtOAc $=1 / 1$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 11.38(\mathrm{~s}, 1 \mathrm{H})$, $8.25(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.18(\mathrm{~m}, 8 \mathrm{H}), 7.18-7.09(\mathrm{~m}, 3 \mathrm{H}), 6.51(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 162.3,161.4,140.2,139.3,135.9,134.6,131.7,129.8,129.2,128.3,128.2,127.7,127.1$, $118.9,115.1,114.6,107.2,55.2$. This compound is known. ${ }^{4}$
(4-Methoxybenzoyl)(4-methoxypyridin-1-ium-1-yl)amide ($0.2 \mathrm{mmol}, 52 \mathrm{mg}$), $\left[\mathrm{Cp} * \mathrm{Co}(\mathrm{MeCN})_{3}\right]\left[\mathrm{SbF}_{6}\right]_{2}(0.03$ $\mathrm{mmol}, 24 \mathrm{mg}$), pivalic acid ($0.04 \mathrm{mmol}, 4 \mathrm{mg}$), HFIP (1 mL), and diphenylacethylene ($0.4 \mathrm{mmol}, 71 \mathrm{mg}$), 20 h; 76\% yield $(50 \mathrm{mg})$.

6-Fluoro-3,4-diphenylisoquinolin-1 (2H)-one (6). (4-(tert-Butyl)pyridin-1-ium-1-yl)(4-fluorobenzoyl)amide (0.2 mmol, 57 mg), $\left[\mathrm{Cp} * \mathrm{Co}(\mathrm{MeCN})_{3}\right]\left[\mathrm{SbF}_{6}\right]_{2}(0.03 \mathrm{mmol}, 24 \mathrm{mg})$, pivalic acid $(0.04 \mathrm{mmol}, 4 \mathrm{mg})$, HFIP $(1 \mathrm{~mL})$, and diphenylacethylene ($0.4 \mathrm{mmol}, 71 \mathrm{mg}$), 48 h ; white solid; 63% yield (40 mg); purification (gradient elution, hexanes/EtOAc, $30 \% \rightarrow 50 \%$); $\mathrm{R}_{\mathrm{f}}=0.53$ (hexanes/EtOAc $\left.=1 / 1\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.81(\mathrm{~s}, 1 \mathrm{H}), 8.45$ $(\mathrm{dd}, J=8.9,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.22(\mathrm{~m}, 8 \mathrm{H}), 7.21-7.14(\mathrm{~m}, 3 \mathrm{H}), 6.98(\mathrm{dd}, J=10.7,2.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.7(\mathrm{~d}, J=252.2 \mathrm{~Hz}), 162.4,141.4(\mathrm{~d}, J=10.0 \mathrm{~Hz}), 138.8,135.4,134.8,131.8,130.8(\mathrm{~d}, J=$ $10.0 \mathrm{~Hz}), 129.4,129.0,128.7,128.5,127.7,121.9(\mathrm{~d}, J=1.6 \mathrm{~Hz}), 116.9(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 115.3(\mathrm{~d}, J=23.6 \mathrm{~Hz})$, $111.0(\mathrm{~d}, J=23.4 \mathrm{~Hz})$. This compound is known. ${ }^{3}$
(4-Fluorobenzoyl)(4-methoxypyridin-1-ium-1-yl)amide ($0.2 \mathrm{mmol}, 49 \mathrm{mg}$), $\left[\mathrm{Cp} * \mathrm{Co}(\mathrm{MeCN})_{3}\right]\left[\mathrm{SbF}_{6}\right]_{2}(0.03$ $\mathrm{mmol}, 24 \mathrm{mg}$), pivalic acid ($0.04 \mathrm{mmol}, 4 \mathrm{mg}$), $\operatorname{HFIP}(1 \mathrm{~mL})$, and diphenylacethylene ($0.4 \mathrm{mmol}, 71 \mathrm{mg}$), $20 \mathrm{~h} ; 78 \%$ yield (49 mg).

6-Bromo-3,4-diphenylisoquinolin-1(2H)-one (7). (4-Bromobenzoyl)(4-(tert-butyl)pyridin-1-ium-1-yl)amide $(0.2 \mathrm{mmol}, 67 \mathrm{mg}),\left[\mathrm{Cp} * \mathrm{Co}(\mathrm{MeCN})_{3}\right]\left[\mathrm{SbF}_{6}\right]_{2}(0.04 \mathrm{mmol}, 32 \mathrm{mg})$, pivalic acid ($0.06 \mathrm{mmol}, 6 \mathrm{mg}$), HFIP $(1 \mathrm{~mL})$, and diphenylacethylene ($0.4 \mathrm{mmol}, 71 \mathrm{mg}$), 48 h ; white solid; 76% yield (57 mg); purification (gradient elution, hexanes/EtOAc, 20\% $\rightarrow 70 \%$); $\mathrm{R}_{\mathrm{f}}=0.67$ (hexanes/EtOAc $=1 / 1$); ${ }^{1} \mathrm{H}$ NMR (600 MHz, DMSO- d_{6}) $\delta 11.76(\mathrm{~s}, 1 \mathrm{H})$, $8.22(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{dd}, J=8.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.26-7.19(\mathrm{~m}, 6 \mathrm{H}), 7.18-7.13(\mathrm{~m}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz, DMSO-D ${ }_{6}$) $\delta 161.3,140.3,139.9,135.2,134.2,131.7,129.8,129.4,129.30,128.5,127.8$, $127.5,127.0,126.9,123.9,114.5$. One carbon signal could not be located. This compound is known. ${ }^{3}$

6-(tert-Butyl)-3,4-diphenylisoquinolin-1(2H)-one (8). (4-(tert-Butyl)benzoyl)(4-(tert-butyl)pyridin-1-ium-1yl)amide ($0.2 \mathrm{mmol}, 62 \mathrm{mg}$), $\left[\mathrm{Cp} * \mathrm{Co}(\mathrm{MeCN})_{3}\right]\left[\mathrm{SbF}_{6}\right]_{2}(0.03 \mathrm{mmol}, 24 \mathrm{mg})$, pivalic acid ($0.04 \mathrm{mmol}, 4 \mathrm{mg}$), HFIP $(1 \mathrm{~mL})$, and diphenylacethylene ($0.4 \mathrm{mmol}, 71 \mathrm{mg}$), 48 h ; white solid; 64% yield (45 mg); purification (gradient elution, hexanes/EtOAc, $20 \% \rightarrow 50 \%$); $\mathrm{R}_{\mathrm{f}}=0.63$ (hexanes/EtOAc $=1 / 1$); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.27(\mathrm{~s}$, $1 \mathrm{H}), 8.40(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.13(\mathrm{~m}, 11 \mathrm{H}), 1.25(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 162.7,156.3,138.7,137.1,136.0,135.4,132.0,129.4,128.7,128.5,128.4,127.4,124.9,123.0,121.9$, $117.7,35.4,31.1$. One carbon signal could not be located. This compound is known. ${ }^{6}$

3,4-Diphenyl-6-(trifluoromethyl)isoquinolin-1(2H)-one (9). (4-(tert-Butyl)pyridin-1-ium-1-yl)(4-(trifluoromethyl)benzoyl)amide ($0.2 \mathrm{mmol}, 64 \mathrm{mg}$), $\left[\mathrm{Cp} * \mathrm{Co}(\mathrm{MeCN})_{3}\right]\left[\mathrm{SbF}_{6}\right]_{2}(0.03 \mathrm{mmol}, 24 \mathrm{mg})$, pivalic acid $(0.04 \mathrm{mmol}$, 4 mg), HFIP (1 mL), and diphenylacethylene ($0.4 \mathrm{mmol}, 71 \mathrm{mg}$), 72 h ; white solid; 70% yield (51 mg); purification (gradient elution, hexanes/EtOAc, $20 \% \rightarrow 40 \%$); $\mathrm{R}_{\mathrm{f}}=0.73$ (hexanes/EtOAc $=1 / 1$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $10.23(\mathrm{~s}, 1 \mathrm{H}), 8.53(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~s}, 1 \mathrm{H}), 7.39-7.22(\mathrm{~m}, 8 \mathrm{H}), 7.17(\mathrm{~d}, J=5.8$
$\mathrm{Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.4,139.1,138.9,134.9,134.6,134.4(\mathrm{q}, J=32.4 \mathrm{~Hz}), 131.8,129.5$, $129.1,128.8,128.7,128.5,127.9,127.3,123.8(\mathrm{q}, J=272.9 \mathrm{~Hz}), 123.0(\mathrm{q}, J=4.0 \mathrm{~Hz}), 122.6(\mathrm{q}, J=3.4 \mathrm{~Hz}), 117.2$. This compound is known. ${ }^{3}$

Methyl 1-oxo-3,4-diphenyl-1,2-dihydroisoquinoline-6-carboxylate (10). (4-(tert-Butyl)pyridin-1-ium-1-yl)(4(methoxycarbonyl)benzoyl)amide ($0.2 \mathrm{mmol}, 62 \mathrm{mg}$), $\left[\mathrm{Cp} * \mathrm{Co}(\mathrm{MeCN})_{3}\right]\left[\mathrm{SbF}_{6}\right]_{2}(0.04 \mathrm{mmol}, 32 \mathrm{mg})$, pivalic acid ($0.06 \mathrm{mmol}, 6 \mathrm{mg}$), HFIP (1 mL), and diphenylacethylene ($0.4 \mathrm{mmol}, 71 \mathrm{mg}$), 48 h ; pale yellow solid; 75\% yield (53 mg); purification (gradient elution, hexanes/EtOAc, $20 \% \rightarrow 70 \%$); $\mathrm{R}_{\mathrm{f}}=0.53$ (hexanes/EtOAc $=1 / 1$); ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 11.80(\mathrm{~s}, 1 \mathrm{H}), 8.42(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~s}, 1 \mathrm{H}), 7.36-7.27$ $(\mathrm{m}, 3 \mathrm{H}), 7.27-7.20(\mathrm{~m}, 5 \mathrm{H}), 7.19-7.13(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- $\left.d_{6}\right) \delta 165.7,161.2$, $139.8,138.1,135.3,134.3,132.8,131.7,129.8,128.4,127.8,127.7,127.7,127.4,126.3,125.8,115.5,52.6$. One carbon signal could not be located. This compound is known. ${ }^{6}$

6-(Methylsulfonyl)-3,4-diphenylisoquinolin-1(2H)-one (11). (4-(tert-Butyl)pyridin-1-ium-1-yl)(4-(methylsulfonyl)benzoyl)amide ($0.2 \mathrm{mmol}, 66 \mathrm{mg}$), $\left[\mathrm{Cp} * \mathrm{Co}(\mathrm{MeCN})_{3}\right]\left[\mathrm{SbF}_{6}\right]_{2}(0.03 \mathrm{mmol}, 24 \mathrm{mg})$, pivalic acid (0.04 mmol , $4 \mathrm{mg})$, HFIP $(1 \mathrm{~mL})$, and diphenylacethylene $(0.4 \mathrm{mmol}, 71 \mathrm{mg}), 48 \mathrm{~h}$; white solid; $\mathrm{mp} 326-327{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; 72 \%$ yield (54 mg); purification (gradient elution, hexanes/EtOAc, $30 \% \rightarrow 100 \%$); $\mathrm{R}_{\mathrm{f}}=0.25$ (hexanes/EtOAc $=1 / 1$); ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 11.98(\mathrm{~s}, 1 \mathrm{H}), 8.54(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~s}, 1 \mathrm{H}), 7.38$ $-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.28-7.22(\mathrm{~m}, 5 \mathrm{H}), 7.22-7.15(\mathrm{~m}, 2 \mathrm{H}), 3.23(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{DMSO}-D_{6}\right) \delta 161.0$, $144.1,140.8,138.3,134.9,134.1,131.8,129.9,128.8,128.6,128.5,127.8,127.6,123.8,123.6,115.4,43.2$. One carbon signal could not be located. HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 376.1002$, found 376.1001.

1-Oxo-3,4-diphenyl-1,2-dihydroisoquinoline-6-carbonitrile (12). (4-(tert-Butyl)pyridin-1-ium-1-yl)(4-cyanobenzoyl)amide ($0.2 \mathrm{mmol}, 56 \mathrm{mg}$), $\left[\mathrm{Cp} * \mathrm{Co}(\mathrm{MeCN})_{3}\right]\left[\mathrm{SbF}_{6}\right]_{2}(0.03 \mathrm{mmol}, 24 \mathrm{mg})$, pivalic acid $(0.04 \mathrm{mmol}, 4 \mathrm{mg})$, HFIP (1 mL), and diphenylacethylene ($0.4 \mathrm{mmol}, 71 \mathrm{mg}$), 72 h ; pale orange solid; 51% yield (33 mg); purification
(gradient elution, hexanes/EtOAc, $30 \% \rightarrow 100 \%$); $\mathrm{R}_{\mathrm{f}}=0.56$ (hexanes/EtOAc $=1 / 1$); ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO$\left.d_{6}\right) \delta 11.98(\mathrm{~s}, 1 \mathrm{H}), 8.43(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{dd}, J=8.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.37-7.20(\mathrm{~m}$, $8 \mathrm{H}), 7.19-7.11(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 160.9,140.8,138.2,134.7,134.0,131.7,129.9,129.5$, $128.7,128.6,128.3,128.1,127.8,127.6,127.5,118.4,115.0,114.6$. This compound is known. ${ }^{3}$
(4-Cyanobenzoyl)(4-methoxypyridin-1-ium-1-yl)amide ($0.2 \mathrm{mmol}, 51 \mathrm{mg}$), $\left[\mathrm{Cp} * \mathrm{Co}(\mathrm{MeCN})_{3}\right]\left[\mathrm{SbF}_{6}\right]_{2}(0.03 \mathrm{mmol}$, 24 mg), pivalic acid ($0.04 \mathrm{mmol}, 4 \mathrm{mg}$), HFIP (1 mL), and diphenylacethylene ($0.4 \mathrm{mmol}, 71 \mathrm{mg}$), $48 \mathrm{~h} ; 76 \%$ yield (40 mg).

7-Chloro-3,4-diphenylisoquinolin-1(2H)-one (13). (4-(tert-Butyl)pyridin-1-ium-1-yl)(3-chlorobenzoyl)amide $(0.2 \mathrm{mmol}, 58 \mathrm{mg}),\left[\mathrm{Cp}^{*} \mathrm{Co}(\mathrm{MeCN})_{3}\right]\left[\mathrm{SbF}_{6}\right]_{2}(0.04 \mathrm{mmol}, 32 \mathrm{mg})$, pivalic acid $(0.06 \mathrm{mmol}, 6 \mathrm{mg})$, HFIP $(1 \mathrm{~mL})$, and diphenylacethylene ($0.4 \mathrm{mmol}, 71 \mathrm{mg}$), 48 h ; pale yellow solid; 54% yield (36 mg); purification (gradient elution, hexanes/EtOAc, $30 \% \rightarrow 70 \%$); $\mathrm{R}_{\mathrm{f}}=0.75$ (hexanes/EtOAc $=1 / 1$); ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 11.76$ $(\mathrm{s}, 1 \mathrm{H}), 8.24(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{dd}, J=8.8,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.20(\mathrm{~m}, 8 \mathrm{H}), 7.19-7.12(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 160.7,149.5,139.2,136.8,135.4,134.2,132.7,131.7,131.0,129.8,128.4,127.7,127.4$, $127.3,126.2,125.8,115.1$. One carbon signal could not be located. This compound is known. ${ }^{3}$
(3-Chlorobenzoyl)(4-methoxypyridin-1-ium-1-yl)amide ($0.2 \mathrm{mmol}, 53 \mathrm{mg}$), $\left[\mathrm{Cp} * \mathrm{Co}(\mathrm{MeCN})_{3}\right]\left[\mathrm{SbF}_{6}\right]_{2}(0.03 \mathrm{mmol}$, 24 mg), pivalic acid ($0.04 \mathrm{mmol}, 4 \mathrm{mg}$), HFIP (1 mL), and diphenylacethylene ($0.4 \mathrm{mmol}, 71 \mathrm{mg}$), $20 \mathrm{~h} ; 63 \%$ yield (42 mg).

7-Iodo-3,4-diphenylisoquinolin-1(2H)-one (14). (4-(tert-Butyl)pyridin-1-ium-1-yl)(3-iodobenzoyl)amide (0.2 mmol, 76 mg), $\left[\mathrm{Cp} * \mathrm{Co}(\mathrm{MeCN})_{3}\right]\left[\mathrm{SbF}_{6}\right]_{2}(0.03 \mathrm{mmol}, 24 \mathrm{mg})$, pivalic acid $(0.04 \mathrm{mmol}, 4 \mathrm{mg})$, HFIP $(1 \mathrm{~mL})$, and diphenylacethylene ($0.4 \mathrm{mmol}, 71 \mathrm{mg}$); 48 h ; pale yellow solid; $\mathrm{mp} 266-267{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; 48% yield (41 mg); purification (gradient elution, hexanes/EtOAc, $30 \% \rightarrow 70 \%$); $\mathrm{R}_{\mathrm{f}}=0.75$ (hexanes/EtOAc $=1 / 1$); ${ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, DMSO-d $d_{6} \delta 11.73(\mathrm{~s}, 1 \mathrm{H}), 8.59(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{dd}, J=8.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.19(\mathrm{~m}, 8 \mathrm{H}), 7.16-7.09$ $(\mathrm{m}, 2 \mathrm{H}), 6.93(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 160.4,140.8,139.4,137.3,135.3,135.1,134.3$, $131.7,129.8,128.5,128.4,127.7,127.2,127.2,126.6,115.2,91.8$. HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{INO}[\mathrm{M}+\mathrm{H}]^{+}$ 424.0193, found 424.0194 .
(3-Iodobenzoyl)(4-methoxypyridin-1-ium-1-yl)amide ($0.2 \mathrm{mmol}, 71 \mathrm{mg}$), $\left[\mathrm{Cp} * \mathrm{Co}(\mathrm{MeCN})_{3}\right]\left[\mathrm{SbF}_{6}\right]_{2}(0.03 \mathrm{mmol}$, 24 mg), pivalic acid ($0.04 \mathrm{mmol}, 4 \mathrm{mg}$), HFIP (1 mL), and diphenylacethylene ($0.4 \mathrm{mmol}, 71 \mathrm{mg}$), $20 \mathrm{~h} ; 63 \%$ yield $(53 \mathrm{mg})$.

Methyl 1-oxo-3,4-diphenyl-1,2-dihydroisoquinoline-7-carboxylate (15). (4-(tert-Butyl)pyridin-1-ium-1-yl)(3(methoxycarbonyl)benzoyl)amide ($0.2 \mathrm{mmol}, 62 \mathrm{mg}$), $\left[\mathrm{Cp} * \mathrm{Co}(\mathrm{MeCN})_{3}\right]\left[\mathrm{SbF}_{6}\right]_{2}(0.03 \mathrm{mmol}, 24 \mathrm{mg})$, pivalic acid ($0.04 \mathrm{mmol}, 4 \mathrm{mg}$), HFIP (1 mL), and diphenylacethylene ($0.4 \mathrm{mmol}, 71 \mathrm{mg}$), 72 h ; white solid; mp $254-255{ }^{\circ} \mathrm{C}$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; 66 \%$ yield (47 mg); purification (gradient elution, hexanes/EtOAc, $30 \% \rightarrow 90 \%$); $\mathrm{R}_{\mathrm{f}}=0.63$ (hexanes/EtOAc $=1 / 1$); ${ }^{1} \mathrm{H}$ NMR (600 MHz , DMSO- d_{6}) $\delta 11.86(\mathrm{~s}, 1 \mathrm{H}), 8.88(\mathrm{~s}, 1 \mathrm{H}), 8.20-8.02(\mathrm{~m}, 1 \mathrm{H}), 7.35-$ $7.20(\mathrm{~m}, 9 \mathrm{H}), 7.19-7.12(\mathrm{~m}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz, DMSO-d d_{6}) $\delta 165.7,161.5,141.5,135.4$, 134.2, 132.1, 131.7, 129.8, 128.7, 128.6, 128.4, 127.8, 127.3, 126.8, 125.6, 124.7, 115.4, 52.4. HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+} 356.1281$, found 356.1284.

8-Methyl-3,4-diphenylisoquinolin-1(2H)-one (16). (4-(tert-Butyl)pyridin-1-ium-1-yl)(2-methylbenzoyl)-amide $(0.2 \mathrm{mmol}, 54 \mathrm{mg}),\left[\mathrm{Cp} * \mathrm{Co}(\mathrm{MeCN})_{3}\right]\left[\mathrm{SbF}_{6}\right]_{2}(0.04 \mathrm{mmol}, 32 \mathrm{mg})$, pivalic acid ($0.06 \mathrm{mmol}, 6 \mathrm{mg}$), HFIP (1 mL), and diphenylacethylene ($0.4 \mathrm{mmol}, 71 \mathrm{mg}$), 48 h ; white solid; 38% yield (24 mg); purification (gradient elution, hexanes/EtOAc, 20\% $\rightarrow 50 \%$); $\mathrm{R}_{\mathrm{f}}=0.87$ (hexanes/EtOAc $=1 / 1$); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.00(\mathrm{~s}, 1 \mathrm{H}), 7.41$ $-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.19(\mathrm{~m}, 9 \mathrm{H}), 7.18-7.14(\mathrm{~m}, 3 \mathrm{H}), 2.89(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.2,142.0$, $140.6,137.5,136.7,135.1,132.1,131.8,129.7,129.5,128.5,128.5,128.3,127.3,124.0,123.7,117.3,24.0$. This compound is known. ${ }^{3}$
(4-Methoxypyridin-1-ium-1-yl)(2-methylbenzoyl)amide ($0.2 \mathrm{mmol}, 48 \mathrm{mg}$), $\left[\mathrm{Cp} * \mathrm{Co}(\mathrm{MeCN})_{3}\right]\left[\mathrm{SbF}_{6}\right]_{2}(0.03$ $\mathrm{mmol}, 24 \mathrm{mg}$), pivalic acid ($0.04 \mathrm{mmol}, 4 \mathrm{mg}$), $\operatorname{HFIP}(1 \mathrm{~mL})$, and diphenylacethylene ($0.4 \mathrm{mmol}, 71 \mathrm{mg}$), $48 \mathrm{~h} ; 54 \%$ yield (34 mg).

8-Fluoro-3,4-diphenylisoquinolin-1(2H)-one (17). (4-(tert-Butyl)pyridin-1-ium-1-yl)(2-fluorobenzoyl)amide $(0.2 \mathrm{mmol}, 54 \mathrm{mg}),\left[\mathrm{Cp} * \mathrm{Co}(\mathrm{MeCN})_{3}\right]\left[\mathrm{SbF}_{6}\right]_{2}(0.04 \mathrm{mmol}, 32 \mathrm{mg})$, pivalic acid ($0.06 \mathrm{mmol}, 6 \mathrm{mg}$), HFIP (1 mL), and diphenylacethylene ($0.4 \mathrm{mmol}, 71 \mathrm{mg}$), 72 h ; white solid; 51% yield (32 mg); purification (gradient elution, hexanes/EtOAc, 20\% $\rightarrow 50 \%$); $\mathrm{R}_{\mathrm{f}}=0.66$ (hexanes/EtOAc $=1 / 1$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.58(\mathrm{~s}, 1 \mathrm{H}), 7.48$ (td, $J=8.1,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.27-7.21(\mathrm{~m}, 5 \mathrm{H}), 7.20-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.07(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.8(\mathrm{~d}, J=264.0 \mathrm{~Hz}), 160.5,141.7,138.6,135.8,134.6,133.4(\mathrm{~d}, J=10.2 \mathrm{~Hz}), 132.0$, $129.3,129.0,128.6,128.5,127.6,121.7(\mathrm{~d}, J=4.4 \mathrm{~Hz}), 116.5,114.5(\mathrm{~d}, J=6.1 \mathrm{~Hz}), 113.5(\mathrm{~d}, J=21.6 \mathrm{~Hz})$. This compound is known. ${ }^{4}$
(2-Fluorobenzoyl)(4-methoxypyridin-1-ium-1-yl)amide ($0.2 \mathrm{mmol}, 49 \mathrm{mg}$), $\left[\mathrm{Cp} * \mathrm{Co}(\mathrm{MeCN})_{3}\right]\left[\mathrm{SbF}_{6}\right]_{2}(0.03 \mathrm{mmol}$, 24 mg), pivalic acid ($0.04 \mathrm{mmol}, 4 \mathrm{mg}$), HFIP (1 mL), and diphenylacethylene ($0.4 \mathrm{mmol}, 71 \mathrm{mg}$), $48 \mathrm{~h} ; 71 \%$ yield (45 mg).

3,5,6-Triphenylpyridin-2(1H)-one (18). (4-(tert-butyl)pyridin-1-ium-1-yl)(2-phenylacryloyl)amide (0.2 mmol, 56 $\mathrm{mg}),\left[\mathrm{Cp} * \mathrm{Co}(\mathrm{MeCN})_{3}\right]\left[\mathrm{SbF}_{6}\right]_{2}(0.03 \mathrm{mmol}, 24 \mathrm{mg})$, pivalic acid ($0.04 \mathrm{mmol}, 4 \mathrm{mg}$), HFIP (1 mL), and diphenylacethylene ($0.4 \mathrm{mmol}, 71 \mathrm{mg}$), 20 h ; white solid; 65% yield (42 mg); purification (gradient elution, hexanes/EtOAc, 20\% $\rightarrow 70 \%$); Appearance: white solid. $\mathrm{R}_{\mathrm{f}}=0.60$ (hexanes/EtOAc $=1 / 1$); ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, DMSO- d_{6}) $\delta 12.06(\mathrm{~s}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{~s}, 1 \mathrm{H}), 7.46-7.16(\mathrm{~m}, 11 \mathrm{H}), 7.15-7.07(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 125.3,105.6,104.8,100.4,98.4,96.0,92.2,92.1,91.7,90.9,90.9,90.6,90.2,89.4,82.0$, $39.7,39.5,39.3$. Two carbon signals could not be located. This compound is known. ${ }^{5}$

3-Methyl-5,6-diphenylpyridin-2(1H)-one (19). Methacryloyl(4-methoxypyridin-1-ium-1-yl)amide (0.2 mmol , 38 mg), $\left[\mathrm{Cp} * \mathrm{Co}(\mathrm{MeCN})_{3}\right]\left[\mathrm{SbF}_{6}\right]_{2}(0.03 \mathrm{mmol}, 24 \mathrm{mg})$, pivalic acid ($0.04 \mathrm{mmol}, 4 \mathrm{mg}$), HFIP (1 mL), and diphenylacethylene ($0.4 \mathrm{mmol}, 71 \mathrm{mg}$), 20 h ; white solid; 82% yield (43 mg); purification (gradient elution, hexanes/EtOAc, 20\% $\rightarrow 90 \%$); $\mathrm{R}_{\mathrm{f}}=0.20$ (hexanes/EtOAc $=1 / 1$); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.70(\mathrm{~s}, 1 \mathrm{H}), 7.47$ $-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.15(\mathrm{~m}, 8 \mathrm{H}), 7.13-7.03(\mathrm{~m}, 2 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.9,142.0$, $140.9,138.1,134.1,129.7,129.5,129.2,128.6,128.4,128.4,126.9,118.9,16.4$. This compound is known. ${ }^{5}$

3,4-Diethyl-6-methylisoquinolin-1(2H)-one (20). Ylide 3 (0.2 mmol , 54 mg), $\left[\mathrm{Cp} * \mathrm{Co}(\mathrm{MeCN})_{3}\right]\left[\mathrm{SbF}_{6}\right]_{2}(0.03$ $\mathrm{mmol}, 24 \mathrm{mg}$), pivalic acid ($0.04 \mathrm{mmol}, 4 \mathrm{mg}$), HFIP (1 mL), and 3-hexyne ($0.4 \mathrm{mmol}, 45 \mu \mathrm{~L}$), 20 h ; white solid; $\mathrm{mp} 212-213{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; 70% yield (30 mg); purification (gradient elution, hexanes/EtOAc, $20 \% \rightarrow 70 \%$); $\mathrm{R}_{\mathrm{f}}=$ 0.55 (hexanes/EtOAc $=1 / 1$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.04(\mathrm{~s}, 1 \mathrm{H}), 8.35(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~s}, 1 \mathrm{H})$, $7.36-7.16(\mathrm{~m}, 1 \mathrm{H}), 2.83-2.63(\mathrm{~m}, 4 \mathrm{H}), 1.33(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.21(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 163.9,142.9,139.3,138.5,127.9,127.0,123.1,122.8,113.7,24.4,22.4,19.6,15.1,14.1$ HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$216.1383, found 232.1387.

3,4-Diethyl-6-methoxyisoquinolin-1(2H)-one (21). (4-(tert-Butyl)pyridin-1-ium-1-yl)(4-methoxybenzoyl)amide ($0.2 \mathrm{mmol}, 57 \mathrm{mg}$), $\left[\mathrm{Cp} * \mathrm{Co}(\mathrm{MeCN})_{3}\right]\left[\mathrm{SbF}_{6}\right]_{2}(0.03 \mathrm{mmol}, 24 \mathrm{mg})$, pivalic acid ($0.04 \mathrm{mmol}, 4 \mathrm{mg}$), HFIP (1 mL), and 3-hexyne ($0.4 \mathrm{mmol}, 45 \mu \mathrm{~L}$). 48 h ; light tan solid; mp $167-168{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; 69 \%$ yield (32 mg); purification (gradient elution, hexanes/EtOAc, 20\% $\rightarrow 70 \%$); $\mathrm{R}_{\mathrm{f}}=0.39$ (hexanes/EtOAc $=1 / 1$); ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 10.99(\mathrm{~s}, 1 \mathrm{H}), 8.37(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-6.94(\mathrm{~m}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 2.76-2.62(\mathrm{~m}, 4 \mathrm{H}), 1.30(\mathrm{t}, J$ $=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.20(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.6,163.0,140.4,140.0,129.9,119.1$, 114.1, 113.6, 104.9, 55.5, 24.5, 19.8, 14.8, 14.1. HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 232.1332$, found 232.1334 .

Methyl 3,4-diethyl-1-oxo-1,2-dihydroisoquinoline-7-carboxylate (22). (4-(tert-Butyl)pyridin-1-ium-1-yl)(3(methoxycarbonyl)benzoyl)amide ($0.2 \mathrm{mmol}, 62 \mathrm{mg}$), $\left[\mathrm{Cp} * \mathrm{Co}(\mathrm{MeCN})_{3}\right]\left[\mathrm{SbF}_{6}\right]_{2}(0.04 \mathrm{mmol}, 32 \mathrm{mg})$, pivalic acid ($0.06 \mathrm{mmol}, 6 \mathrm{mg}$), HFIP (1 mL), and 3-hexyne ($0.4 \mathrm{mmol}, 45 \mu \mathrm{~L}$), 72 h ; light tan solid; mp 211-212 ${ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; 52% yield (27 mg); purification (gradient elution, hexanes/EtOAc, $20 \% \rightarrow 70 \%$); $\mathrm{R}_{\mathrm{f}}=0.50$ (hexanes/EtOAc $=1 / 1$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.72(\mathrm{~s}, 1 \mathrm{H}), 9.12(\mathrm{~s}, 1 \mathrm{H}), 8.29(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.99$ $(\mathrm{s}, 3 \mathrm{H}), 2.79(\mathrm{q}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 1.39(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.22(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$
166.8, 164.0, 142.6, 141.7, 132.6, 130.2, 126.8, 124.8, 123.2, 114.1, 52.4, 24.6, 19.7, 15.0, 14.2. HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$260.1281, found 260.1279 . (3-(Methoxycarbonyl)benzoyl)(4-methoxypyridin-1-ium-1-yl)amide (0.2 mmol , 57 mg), $\left[\mathrm{Cp} * \mathrm{Co}(\mathrm{MeCN})_{3}\right]\left[\mathrm{SbF}_{6}\right]_{2}(0.03 \mathrm{mmol}, 24 \mathrm{mg})$, pivalic acid $(0.04 \mathrm{mmol}, 4 \mathrm{mg})$, HFIP $(1 \mathrm{~mL})$, and 3-hexyne $(0.4$ mmol, $45 \mu \mathrm{~L}$), $48 \mathrm{~h} ; 66 \%$ yield (34 mg).

4,5-Diphenylthieno[2,3-c]pyridin-7(6H)-one (23). (4-(tert-Butyl)pyridin-1-ium-1-yl)(thiophene-2-carbonyl)amide ($0.2 \mathrm{mmol}, 52 \mathrm{mg}$), $\left[\mathrm{Cp} * \mathrm{Co}(\mathrm{MeCN})_{3}\right]\left[\mathrm{SbF}_{6}\right]_{2}(0.03 \mathrm{mmol}, 24 \mathrm{mg})$, pivalic acid ($0.04 \mathrm{mmol}, 4 \mathrm{mg}$), HFIP (1 mL), and diphenylacethylene ($0.4 \mathrm{mmol}, 71 \mathrm{mg}$), 48 h ; white solid; 82% yield (50 mg); purification (gradient elution, hexanes/EtOAc, 20\% $\rightarrow 70 \%$); $\mathrm{R}_{\mathrm{f}}=0.59$ (hexanes/EtOAc $=1 / 1$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.59(\mathrm{~s}, 1 \mathrm{H}), 7.68$ (d, $J=5.2 \mathrm{~Hz}, 1 \mathrm{H}$), $7.37-7.22(\mathrm{~m}, 8 \mathrm{H}), 7.21-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.07(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO$\left.d_{6}\right) \delta 158.1,146.8,139.9,136.4,134.2,134.0,130.8,130.1,128.4,128.3,128.1,127.9,127.0,124.6,114.8$. This compound is known. ${ }^{7}$

2-Methyl-4,5-diphenylthieno[2,3-c]pyridin-7(6H)-one (24). (4-(tert-Butyl)pyridin-1-ium-1-yl)(5-methylthio-phene-2-carbonyl)amide ($0.2 \mathrm{mmol}, 55 \mathrm{mg}$), $\left[\mathrm{Cp} * \mathrm{Co}(\mathrm{MeCN})_{3}\right]\left[\mathrm{SbF}_{6}\right]_{2}(0.03 \mathrm{mmol}, 24 \mathrm{mg})$, pivalic acid (0.04 mmol , $4 \mathrm{mg})$, $\operatorname{HFIP}(1 \mathrm{~mL})$, and diphenylacethylene ($0.4 \mathrm{mmol}, 71 \mathrm{mg}$), 48 h ; white solid; mp 287-288 ${ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; 79 \%$ yield (50 mg); purification (gradient elution, hexanes/EtOAc, $20 \% \rightarrow 70 \%$); $\mathrm{R}_{\mathrm{f}}=0.54$ (hexanes/EtOAc $=1 / 1$); ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 11.70(\mathrm{~s}, 1 \mathrm{H}), 7.30-7.17(\mathrm{~m}, 8 \mathrm{H}), 7.15-7.07(\mathrm{~m}, 2 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}), 2.51(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13}$ C NMR (126 MHz, DMSO- d_{6}) δ 157.7, 148.2, 147.3, 140.0, 136.5, 134.0, 130.8, 130.1, 128.4, 128.3, 127.8, 127.0, 126.5, 123.0, 114.5, 15.9. HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{NOS}[\mathrm{M}+\mathrm{H}]^{+} 318.0947$, found 318.0948.

6,7-Diphenylthieno[3,2-c]pyridin-4(5H)-one (25). (4-(tert-Butyl)pyridin-1-ium-1-yl)(thiophene-3-carbonyl)amide ($0.2 \mathrm{mmol}, 55 \mathrm{mg}$), $\left[\mathrm{Cp} * \mathrm{Co}(\mathrm{MeCN})_{3}\right]\left[\mathrm{SbF}_{6}\right]_{2}(0.03 \mathrm{mmol}, 24 \mathrm{mg})$, pivalic acid $(0.04 \mathrm{mmol}, 4 \mathrm{mg})$, HFIP (1 mL), and diphenylacethylene ($0.4 \mathrm{mmol}, 71 \mathrm{mg}$), 20 h ; white solid; 82% yield $(50 \mathrm{mg}$); purification (gradient elution,
hexanes/EtOAc, $30 \% \rightarrow 80 \%) ; \mathrm{R}_{\mathrm{f}}=0.44$ (hexanes/EtOAc $\left.=1 / 1\right) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 11.73(\mathrm{~s}, 1 \mathrm{H})$, $7.68-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.13(\mathrm{~m}, 10 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO- d_{6}) $\delta 159.1,151.8,139.2,137.0,134.0$, $130.7,130.5,129.8,129.1,128.4,128.2,126.4,125.1,114.2$. One carbon signal could not be located. This compound is known. ${ }^{8}$

4,5-Diphenylfuro[2,3-c]pyridin-7(6H)-one (26). (4-(tert-Butyl)pyridin-1-ium-1-yl)(furan-2-carbonyl)amide $(0.2 \mathrm{mmol}, 49 \mathrm{mg}),\left[\mathrm{Cp} * \mathrm{Co}(\mathrm{MeCN})_{3}\right]\left[\mathrm{SbF}_{6}\right]_{2}(0.04 \mathrm{mmol}, 32 \mathrm{mg})$, pivalic acid ($0.06 \mathrm{mmol}, 6 \mathrm{mg}$), HFIP (1 mL), and diphenylacethylene ($0.4 \mathrm{mmol}, 71 \mathrm{mg}$), 48 h ; pale brown solid; 24% yield (14 mg); purification (gradient elution, hexanes/EtOAc, $30 \% \rightarrow 80 \%) ; \mathrm{R}_{\mathrm{f}}=0.29$ (hexanes/EtOAc $=1 / 1$); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.48(\mathrm{~s}, 1 \mathrm{H}), 7.59$ $(\mathrm{d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.19-7.08(\mathrm{~m}, 5 \mathrm{H}), 7.07-6.99(\mathrm{~m}, 2 \mathrm{H}), 6.50(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.6,149.1,141.9,138.3,136.4,135.3,134.0,130.3,129.6,128.9,128.6,128.4,127.5$, 114.4, 107.5. This compound is known. ${ }^{9}$
(Furan-2-carbonyl)(4-methoxypyridin-1-ium-1-yl)amide ($0.2 \mathrm{mmol}, 44 \mathrm{mg}$), $\left[\mathrm{Cp} * \mathrm{Co}(\mathrm{MeCN})_{3}\right]\left[\mathrm{SbF}_{6}\right]_{2}(0.04$ $\mathrm{mmol}, 32 \mathrm{mg}$), pivalic acid ($0.06 \mathrm{mmol}, 6 \mathrm{mg}$), $\mathrm{HFIP}(1 \mathrm{~mL})$, and diphenylacethylene ($0.4 \mathrm{mmol}, 71 \mathrm{mg}$), $48 \mathrm{~h} ; 23 \%$ yield (13 mg).

6,7-Diphenylfuro[3,2-c]pyridin-4(5H)-one (27). (4-(tert-butyl)pyridin-1-ium-1-yl)(furan-3-carbonyl)amide (0.2 $\mathrm{mmol}, 49 \mathrm{mg}),\left[\mathrm{Cp} * \mathrm{Co}(\mathrm{MeCN})_{3}\right]\left[\mathrm{SbF}_{6}\right]_{2}(0.04 \mathrm{mmol}, 32 \mathrm{mg})$, pivalic acid $(0.06 \mathrm{mmol}, 6 \mathrm{mg})$, HFIP $(1 \mathrm{~mL})$, and diphenylacethylene ($0.4 \mathrm{mmol}, 71 \mathrm{mg}$), 48 h ; white solid; 65% yield (37 mg); purification (gradient elution, hexanes/EtOAc, $30 \% \rightarrow 80 \%$); $\mathrm{R}_{\mathrm{f}}=0.27$ (hexanes/EtOAc $=1 / 1$); ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 11.70(\mathrm{~s}, 1 \mathrm{H})$, $7.89(\mathrm{~s}, 1 \mathrm{H}), 7.38-7.22(\mathrm{~m}, 8 \mathrm{H}), 7.21-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.04(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 159.1,158.8$, 144.6, 140.8, 133.3, 132.4, 130.8, 130.1, 128.8, 128.2, 128.0, 127.2, 114.5, 108.0, 107.1. This compound is known. ${ }^{7}$ (Furan-3-carbonyl)(4-methoxypyridin-1-ium-1-yl)amide ($0.2 \mathrm{mmol}, 44 \mathrm{mg}$), $\left[\mathrm{Cp} * \mathrm{Co}(\mathrm{MeCN})_{3}\right]\left[\mathrm{SbF}_{6}\right]_{2}(0.04$ $\mathrm{mmol}, 32 \mathrm{mg}$), pivalic acid ($0.06 \mathrm{mmol}, 6 \mathrm{mg}$), $\operatorname{HFIP}(1 \mathrm{~mL})$, and diphenylacethylene $(0.4 \mathrm{mmol}, 71 \mathrm{mg}), 48 \mathrm{~h} ; 56 \%$ yield (32 mg).

2-Bromo-6,7-diphenylfuro[3,2-c]pyridin-4(5H)-one (28). (5-Bromofuran-3-carbonyl)(4-(tert-butyl)pyridin-1-ium-1-yl)amide ($0.2 \mathrm{mmol}, 65 \mathrm{mg}$), $\left[\mathrm{Cp} * \mathrm{Co}(\mathrm{MeCN})_{3}\right]\left[\mathrm{SbF}_{6}\right]_{2}(0.04 \mathrm{mmol}, 32 \mathrm{mg})$, pivalic acid ($0.06 \mathrm{mmol}, 6 \mathrm{mg}$), HFIP (1 mL), and diphenylacethylene ($0.4 \mathrm{mmol}, 71 \mathrm{mg}$), 48 h ; white solid; mp $287-288{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; 70 \%$ yield (51 mg); purification (gradient elution, hexanes/EtOAc, $30 \% \rightarrow 70 \%$); $\mathrm{R}_{\mathrm{f}}=0.34$ (hexanes/EtOAc $=1 / 1$); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 11.85(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.01(\mathrm{~m}, 11 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO-d d_{6}) $\delta 160.1$, $157.5,141.4,133.0,131.8,130.8,130.0,128.9,128.3,128.0,127.5,125.0,116.1,109.0,107.5$. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{BrNO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 366.0124$, found 366.0126.

7-Bromo-3,4-diphenyl-2,6-naphthyridin-1(2H)-one (29). (2-Bromoisonicotinoyl)(4-(tert-butyl)pyridin-1-ium-1-yl)amide ($0.2 \mathrm{mmol}, 49 \mathrm{mg}$), $\left[\mathrm{Cp} * \mathrm{Co}(\mathrm{MeCN})_{3}\right]\left[\mathrm{SbF}_{6}\right]_{2}(0.04 \mathrm{mmol}, 32 \mathrm{mg})$, pivalic acid ($0.06 \mathrm{mmol}, 6 \mathrm{mg}$), HFIP $(1 \mathrm{~mL})$, and diphenylacethylene ($0.4 \mathrm{mmol}, 71 \mathrm{mg}$), 72 h ; pale yellow solid; mp $261-262{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; 30 \%$ yield (23 mg); purification (gradient elution, hexanes/EtOAc, $20 \% \rightarrow 60 \%$); $\mathrm{R}_{\mathrm{f}}=0.78$ (hexanes/EtOAc $=1 / 1$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.50(\mathrm{~s}, 1 \mathrm{H}), 8.53(\mathrm{~s}, 1 \mathrm{H}), 8.30(\mathrm{~s}, 1 \mathrm{H}), 7.39-7.23(\mathrm{~m}, 8 \mathrm{H}), 7.22-7.12(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.0,150.2,139.5,138.4,133.9,133.6,132.1,132.0,131.6,129.4,129.4,128.9,128.6,128.2$, 123.8, 115.3. HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{13} \mathrm{BrN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 377.0284$, found 377.0283.
(2-Bromoisonicotinoyl)(4-methoxypyridin-1-ium-1-yl)amide ($0.2 \mathrm{mmol}, 62 \mathrm{mg}$), $\left[\mathrm{Cp} * \mathrm{Co}(\mathrm{MeCN})_{3}\right]\left[\mathrm{SbF}_{6}\right]_{2}(0.04$ $\mathrm{mmol}, 32 \mathrm{mg}$), pivalic acid ($0.06 \mathrm{mmol}, 6 \mathrm{mg}$), $\mathrm{HFIP}(1 \mathrm{~mL})$, and diphenylacethylene $(0.4 \mathrm{mmol}, 71 \mathrm{mg}), 72 \mathrm{~h} ; 70 \%$ yield (53 mg).

2-Methoxy-7,8-diphenyl-1,6-naphthyridin-5(6H)-one (30). (4-(tert-Butyl)pyridin-1-ium-1-yl)(6-methoxynicotinoyl)amide ($0.2 \mathrm{mmol}, 57 \mathrm{mg}$), $\left[\mathrm{Cp} * \mathrm{Co}(\mathrm{MeCN})_{3}\right]\left[\mathrm{SbF}_{6}\right]_{2}(0.04 \mathrm{mmol}, 32 \mathrm{mg})$, pivalic acid $(0.04 \mathrm{mmol}, 6 \mathrm{mg})$, HFIP (1 mL), and diphenylacethylene ($0.4 \mathrm{mmol}, 71 \mathrm{mg}$), 72 h ; white solid; mp $264-265^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; 58 \%$ yield (38 mg); purification (gradient elution, hexanes/EtOAc, $30 \% \rightarrow 70 \%$); $\mathrm{R}_{\mathrm{f}}=0.56$ (hexanes/EtOAc $=1 / 1$); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.25(\mathrm{~s}, 1 \mathrm{H}), 8.46(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.17(\mathrm{~m}, 10 \mathrm{H}), 6.80(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.76$
(s, 3H). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 166.1, 162.8, 153.6, 142.0, 138.2, 135.1, 134.9, 132.4, 129.7, 129.1, 128.5, 127.4, 126.7, 118.4, 115.8, 111.0, 53.8. HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 329.1285$, found 329.1286. (6-Methoxynicotinoyl)(4-methoxypyridin-1-ium-1-yl)amide ($0.2 \mathrm{mmol}, 52 \mathrm{mg}$), $\left[\mathrm{Cp} * \mathrm{Co}(\mathrm{MeCN})_{3}\right]\left[\mathrm{SbF}_{6}\right]_{2}(0.04$ $\mathrm{mmol}, 32 \mathrm{mg}$), pivalic acid ($0.06 \mathrm{mmol}, 6 \mathrm{mg}$), HFIP (1 mL), and diphenylacethylene ($0.4 \mathrm{mmol}, 71 \mathrm{mg}$), $72 \mathrm{~h} ; 53 \%$ yield (35 mg).

1-Methyl-4,5-diphenyl-1,6-dihy dro-7H-pyrrolo[2,3-c]pyridin-7-one (31). (4-(tert-Butyl)pyridin-1-ium-1-yl)(1-methyl-1H-pyrrole-2-carbonyl)amide ($0.2 \mathrm{mmol}, 51 \mathrm{mg}$), $\left[\mathrm{Cp*} \mathrm{Co}(\mathrm{MeCN})_{3}\right]\left[\mathrm{SbF}_{6}\right]_{2}(0.04 \mathrm{mmol}, 32 \mathrm{mg})$, pivalic acid ($0.06 \mathrm{mmol}, 6 \mathrm{mg}$), HFIP (1 mL), and diphenylacethylene ($0.4 \mathrm{mmol}, 71 \mathrm{mg}$), 48 h ; light tan solid; mp $277-278{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; 68 \%$ yield (41 mg); purification (gradient elution, hexanes/EtOAc, $30 \% \rightarrow 80 \%$); $\mathrm{R}_{\mathrm{f}}=0.32$ (hexanes/EtOAc = 1/1); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 11.06(\mathrm{~s}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.13(\mathrm{~m}$, $8 \mathrm{H}), 7.12-7.05(\mathrm{~m}, 2 \mathrm{H}), 5.96(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6}) $\delta 155.4,136.8$, 134.7, 134.2, 132.6, 132.1, 130.4, 130.2, 128.1, 127.8, 126.5, 121.6, 113.2, 101.6, 35.3. HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$301.1335, found 301.1340.

1-Methyl-4,5-diphenyl-1,6-dihydro-7H-pyrazolo[3,4-c]pyridin-7-one (32). (4-(tert-Butyl)pyridin-1-ium-1-yl)(1-methyl-1H-pyrazole-5-carbonyl)amide ($0.2 \mathrm{mmol}, 52 \mathrm{mg}$), $\left[\mathrm{Cp} * \mathrm{Co}(\mathrm{MeCN})_{3}\right]\left[\mathrm{SbF}_{6}\right]_{2}(0.04 \mathrm{mmol}, 32 \mathrm{mg})$, pivalic acid ($0.06 \mathrm{mmol}, 6 \mathrm{mg}$), HFIP (1 mL), and diphenylacethylene $(0.4 \mathrm{mmol}, 71 \mathrm{mg}), 48 \mathrm{~h}$; white solid; mp $243-244{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; 35 \%$ yield (21 mg); purification (gradient elution, hexanes/EtOAc, $30 \% \rightarrow 70 \%$); $\mathrm{R}_{\mathrm{f}}=0.56$ (hexanes/EtOAc = 1/1); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.91(\mathrm{~s}, 1 \mathrm{H}), 7.64(\mathrm{~s}, 1 \mathrm{H}), 7.35-7.23(\mathrm{~m}, 8 \mathrm{H}), 7.22-7.14$ $(\mathrm{m}, 2 \mathrm{H}), 4.36(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.2,135.7,134.5,134.5,133.5,130.4,129.8,129.4,128.9$, 128.7, 128.6, 128.5, 127.4, 113.1, 38.5. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 302.1288$, found 302.1292. (4-Methoxypyridin-1-ium-1-yl)(1-methyl-1H-pyrazole-5-carbonyl)amide $\quad(0.2 \mathrm{mmol}, 46 \mathrm{mg}$), $\left[\mathrm{Cp} * \mathrm{Co}(\mathrm{MeCN})_{3}\right]\left[\mathrm{SbF}_{6}\right]_{2}(0.04 \mathrm{mmol}, 32 \mathrm{mg})$, pivalic acid ($0.06 \mathrm{mmol}, 6 \mathrm{mg}$), HFIP (1 mL), and diphenylacethylene ($0.4 \mathrm{mmol}, 71 \mathrm{mg}$), $72 \mathrm{~h} ; 71 \%$ yield (43 mg).

1-Methyl-7,8-diphenyl-1,6-dihydro-5H-pyrrolo[2,3-g]isoquinolin-5-one (33). (4-(tert-Butyl)pyridin-1-ium-1-yl)(1-methyl-1H-indole-5-carbonyl)amide $(0.2 \mathrm{mmol}, 61 \mathrm{mg}),\left[\mathrm{Cp} * \mathrm{Co}(\mathrm{MeCN})_{3}\right]\left[\mathrm{SbF}_{6}\right]_{2}(0.04 \mathrm{mmol}, 32 \mathrm{mg})$, pivalic acid ($0.06 \mathrm{mmol}, 6 \mathrm{mg}$), HFIP (1 mL), and diphenylacethylene ($0.4 \mathrm{mmol}, 71 \mathrm{mg}$), 48 h ; pale yellow solid; $\mathrm{mp} 332-333{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; 51% yield (36 mg); purification (gradient elution, hexanes/EtOAc, $20 \% \rightarrow 60 \%$); $\mathrm{R}_{\mathrm{f}}=$ 0.42 (hexanes/EtOAc $=1 / 1) ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 11.12(\mathrm{~s}, 1 \mathrm{H}), 8.62(\mathrm{~s}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.37-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.14(\mathrm{~m}, 7 \mathrm{H}), 7.00(\mathrm{~s}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- $\left.d_{6}\right) \delta 162.7,139.4,136.8,135.5,135.3,133.4,132.6,131.9,129.9,128.3,128.0,127.6,127.6,127.0,119.7$, 118.6, 116.0, 103.6, 101.3, 32.6. HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 351.1492$, found 351.1499.
(4-Methoxypyridin-1-ium-1-yl)(1-methyl-1H-indole-5-carbonyl)amide $(0.2 \mathrm{mmol}$, 56 mg$)$, $\left[\mathrm{Cp} * \mathrm{Co}(\mathrm{MeCN})_{3}\right]\left[\mathrm{SbF}_{6}\right]_{2}(0.04 \mathrm{mmol}, 32 \mathrm{mg})$, pivalic acid ($0.06 \mathrm{mmol}, 6 \mathrm{mg}$), HFIP (1 mL), and diphenylacethylene ($0.4 \mathrm{mmol}, 71 \mathrm{mg}$), $48 \mathrm{~h} ; 58 \%$ yield (33 mg).

4,5-Diethylthieno[2,3-c]pyridin-7(6H)-one (34). (4-(tert-Butyl)pyridin-1-ium-1-yl)(thiophene-2carbonyl)amide amide ($0.2 \mathrm{mmol}, 52 \mathrm{mg}$), $\left[\mathrm{Cp} * \mathrm{Co}(\mathrm{MeCN})_{3}\right]\left[\mathrm{SbF}_{6}\right]_{2}(0.03 \mathrm{mmol}, 24 \mathrm{mg})$, pivalic acid $(0.04 \mathrm{mmol}$, 4 mg), HFIP (1 mL), and 3-hexyne ($0.4 \mathrm{mmol}, 45 \mu \mathrm{~L}$), 48 h ; pale brown solid; 72% yield (30 mg); purification (gradient elution, hexanes/EtOAc, $20 \% \rightarrow 60 \%$); $\mathrm{R}_{\mathrm{f}}=0.39$ (hexanes/EtOAc $=1 / 1$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $11.99(\mathrm{~s}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.21(\mathrm{~m}, 1 \mathrm{H}), 2.93-2.53(\mathrm{~m}, 4 \mathrm{H}), 1.33(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.20(\mathrm{t}, \mathrm{J}$ $=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.5,148.2,141.3,133.2,127.4,123.0,114.6,23.7,21.5,15.5$, 14.7. This compound is known. ${ }^{10}$

4,5-Diethyl-2-methylthieno[2,3-c]pyridin-7(6H)-one (35). (4-(tert-Butyl)pyridin-1-ium-1-yl)(5-methylthio-phene-2-carbonyl)amide ($0.2 \mathrm{mmol}, 55 \mathrm{mg}$), $\left[\mathrm{Cp} * \mathrm{Co}(\mathrm{MeCN})_{3}\right]\left[\mathrm{SbF}_{6}\right]_{2}(0.03 \mathrm{mmol}, 24 \mathrm{mg})$, pivalic acid (0.04 mmol , $4 \mathrm{mg})$, $\operatorname{HFIP}(1 \mathrm{~mL})$, and 3-hexyne ($0.4 \mathrm{mmol}, 45 \mu \mathrm{~L}), 48 \mathrm{~h}$; pale brown solid; mp 213-214 ${ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; 68 \%$ yield $(30 \mathrm{mg})$; purification (gradient elution, hexanes/EtOAc, $20 \% \rightarrow 60 \%$); $\mathrm{R}_{\mathrm{f}}=0.37$ (hexanes/EtOAc $=1 / 1$); ${ }^{1} \mathrm{H}$ NMR
$\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.40(\mathrm{~s}, 1 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H}), 2.74-2.62(\mathrm{~m}, 4 \mathrm{H}), 2.61(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.17(\mathrm{t}$, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.8,148.9,148.6,141.2,126.0,121.3,114.3,23.7,21.4,16.6$, 15.4, 14.6. HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NOS}[\mathrm{M}+\mathrm{H}]^{+}$222.0947, found 222.0949 .

6,7-Diethylthieno[3,2-c]pyridin-4(5H)-one
(36). (4-(tert-Butyl)pyridin-1-ium-1-yl)(thiophene-3carbonyl)amide ($0.2 \mathrm{mmol}, 52 \mathrm{mg}$), $\left[\mathrm{Cp} * \mathrm{Co}(\mathrm{MeCN})_{3}\right]\left[\mathrm{SbF}_{6}\right]_{2}(0.03 \mathrm{mmol}, 24 \mathrm{mg})$, pivalic acid ($0.04 \mathrm{mmol}, 4 \mathrm{mg}$), HFIP (1 mL), and 3-hexyne ($0.4 \mathrm{mmol}, 45 \mu \mathrm{~L}$), 20 h ; white solid; 72% yield (30 mg); purification (gradient elution, hexanes/EtOAc, 20\% $\rightarrow 80 \%$); $\mathrm{R}_{\mathrm{f}}=0.24$ (hexanes/EtOAc $=1 / 1$); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.39(\mathrm{~s}, 1 \mathrm{H}), 7.65$ $(\mathrm{d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.20(\mathrm{~m}, 1 \mathrm{H}), 2.77-2.60(\mathrm{~m}, 4 \mathrm{H}), 1.32(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.25(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.8,152.4,140.3,128.5,125.1,123.2,113.9,23.7,23.1,14.3,14.3$. This compound is known. ${ }^{10}$

3,4-Diethylbenzo[4,5]thieno[3,2-c]pyridin-1 (2H)-one (37). (4-(tert-Butyl)pyridin-1-ium-1-yl)(thiophene-3carbonyl)amide ($0.2 \mathrm{mmol}, 62 \mathrm{mg}$), $\left[\mathrm{Cp} * \mathrm{Co}(\mathrm{MeCN})_{3}\right]\left[\mathrm{SbF}_{6}\right]_{2}(0.03 \mathrm{mmol}, 24 \mathrm{mg})$, pivalic acid ($0.04 \mathrm{mmol}, 4 \mathrm{mg}$), HFIP (1 mL), and 3-hexyne ($0.4 \mathrm{mmol}, 45 \mu \mathrm{~L}$), 20 h ; white solid; mp $229-230{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; 87 \%$ yield (45 mg); purification (gradient elution, hexanes/EtOAc, $20 \% \rightarrow 70 \%$); $\mathrm{R}_{\mathrm{f}}=0.45$ (hexanes/EtOAc $=1 / 1$); ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.86(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.86$ (q, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), $2.73(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.45(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.28(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 161.2,154.0,143.4,137.5,137.3,125.3,125.3,124.7,121.9,121.2,114.1,23.9,23.1,14.4,14.4$. HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NOS}[\mathrm{M}+\mathrm{H}]^{+} 258.0947$, found 258.0948.

6,7-Diethylfuro[3,2-c]pyridin-4(5H)-one (38). (4-(tert-Butyl)pyridin-1-ium-1-yl)(furan-3-carbonyl)amide (0.2 $\mathrm{mmol}, 49 \mathrm{mg}),\left[\mathrm{Cp} * \mathrm{Co}(\mathrm{MeCN})_{3}\right]\left[\mathrm{SbF}_{6}\right]_{2}(0.04 \mathrm{mmol}, 32 \mathrm{mg})$, pivalic acid $(0.06 \mathrm{mmol}, 6 \mathrm{mg})$, HFIP $(1 \mathrm{~mL})$, and 3-hexyne ($0.4 \mathrm{mmol}, 45 \mu \mathrm{~L}$), 48 h ; white solid; $\mathrm{mp} 150-151^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; 18% yield (7 mg); purification (gradient
elution, hexanes/EtOAc, $20 \% \rightarrow 80 \%$); $\mathrm{R}_{\mathrm{f}}=0.21$ (hexanes/EtOAc $=1 / 1$); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.95(\mathrm{~s}$, $1 \mathrm{H}), 7.48(\mathrm{~s}, 1 \mathrm{H}), 6.95(\mathrm{~s}, 1 \mathrm{H}), 2.77-2.60(\mathrm{~m}, 4 \mathrm{H}), 1.29(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.21(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 161.8,160.9,142.9,142.4,113.7,108.6,107.0,23.6,18.2,15.0,14.5$. HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$192.1019, found 192.1017.
(Furan-3-carbonyl)(4-methoxypyridin-1-ium-1-yl)amide $(0.2 \mathrm{mmol}, 44 \mathrm{mg}),\left[\mathrm{Cp} * \mathrm{Co}(\mathrm{MeCN})_{3}\right]\left[\mathrm{SbF}_{6}\right]_{2}(0.04$ mmol, 32 mg), pivalic acid ($0.06 \mathrm{mmol}, 6 \mathrm{mg}$), HFIP (1 mL), and diphenylacethylene ($0.4 \mathrm{mmol}, 71 \mathrm{mg}$), $48 \mathrm{~h} ; 30 \%$ yield (11 mg).

Ethyl 4-butyl-6-methyl-1-oxo-1,2-dihydroisoquinoline-3-carboxylate (39) and ethyl 3-butyl-6-methyl-1-oxo-1,2-dihydroisoquinoline-4-carboxylate (40). Ylide $2(0.2 \mathrm{mmol}, 48 \mathrm{mg}),\left[\mathrm{Cp} * \mathrm{Co}(\mathrm{MeCN})_{3}\right]\left[\mathrm{SbF}_{6}\right]_{2}(0.03 \mathrm{mmol}$, 24 mg), pivalic acid ($0.04 \mathrm{mmol}, 4 \mathrm{mg}$), HFIP (1 mL), and ethyl hept-2-ynoate ($0.4 \mathrm{mmol}, 62 \mathrm{mg}$), 24 h ; Product 39: white solid; $\mathrm{mp} 141-142{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; 50 \%$ yield (29 mg); purification (gradient elution, hexanes/EtOAc, 20% $\rightarrow 40 \%) ; \mathrm{R}_{\mathrm{f}}=0.42$ (hexanes/EtOAc $\left.=1 / 3\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.22(\mathrm{~s}, 1 \mathrm{H}), 8.40(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.68(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.19(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}), 1.66-1.57$ $(\mathrm{m}, 2 \mathrm{H}), 1.57-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.2,161.0,143.6,137.3$, $130.6,128.2,126.2,125.5,125.1,124.3,62.6,32.8,26.6,23.3,22.4,14.4,14.1$. HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{3}$ $[\mathrm{M}+\mathrm{H}]^{+}$288.1594, found 288.1596 .

Product 40: White solid; $\mathrm{mp} 209-210{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; 7 \%$ yield $(4 \mathrm{mg}) ; \mathrm{R}_{\mathrm{f}}=0.55$ (hexanes/EtOAc $\left.=1 / 3\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.33(\mathrm{~s}, 1 \mathrm{H}), 8.28(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~s}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{q}, J=7.1$ $\mathrm{Hz}, 2 \mathrm{H}), 2.85-2.71(\mathrm{~m}, 2 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H}), 1.82-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.52-1.37(\mathrm{~m}, 5 \mathrm{H}), 0.97(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.5,164.1,144.6,144.0,135.9,128.2,127.4,124.2,122.0,109.2,61.4,32.5,31.6$, 22.8, 22.4, 14.5, 13.9. HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$288.1594, found 288.1596.

Ylide $3(0.2 \mathrm{mmol}, 54 \mathrm{mg}),\left[\mathrm{Cp} * \mathrm{Co}(\mathrm{MeCN})_{3}\right]\left[\mathrm{SbF}_{6}\right]_{2}(0.04 \mathrm{mmol}, 32 \mathrm{mg})$, pivalic acid $(0.06 \mathrm{mmol}, 6 \mathrm{mg})$, HFIP $(1 \mathrm{~mL})$ and ethyl hept-2-ynoate $(0.4 \mathrm{mmol}, 62 \mathrm{mg}), 48 \mathrm{~h} ; \mathbf{3 9}: 47 \%$ yield $(27 \mathrm{mg})$ and $\mathbf{4 0}: 7 \%$ yield $(4 \mathrm{mg})$.

Ethyl 6-methyl-1-oxo-4-phenyl-1,2-dihydroisoquinoline-3-carboxylate (41) and ethyl 6-methyl-1-oxo-3-phenyl-1,2-dihydroisoquinoline-4-carboxylate (42). Ylide $2(0.2 \mathrm{mmol}, 48 \mathrm{mg}),\left[\mathrm{Cp} * \mathrm{Co}(\mathrm{MeCN})_{3}\right]\left[\mathrm{SbF}_{6}\right]_{2}(0.03$
mmol, 24 mg), pivalic acid ($0.04 \mathrm{mmol}, 4 \mathrm{mg}$), HFIP (1 mL), and ethyl 3-phenylpropiolate ($0.4 \mathrm{mmol}, 70 \mathrm{mg}$). 24 h ; Product 41: white solid; $\mathrm{mp} 181-182{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; 38 \%$ yield (23 mg); purification (gradient elution, hexanes/EtOAc, $20 \% \rightarrow 50 \%$); $\mathrm{R}_{\mathrm{f}}=0.35$ (hexanes/acetone $=1 / 3$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.46(\mathrm{~s}, 1 \mathrm{H}), 8.41$ $(\mathrm{d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.41(\mathrm{~m}, 4 \mathrm{H}), 7.29-7.19(\mathrm{~m}, 2 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 4.07(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H})$, $0.92(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.4,161.3,143.6,138.2,135.9,130.7,130.0,128.3$, $127.8,127.7,125.6,125.0,124.9,62.2,22.1,13.4$. One carbon signal could not be located. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+} 308.1281$, found 308.1283. Structure of this compound was verified by X-ray crystallographic analysis after recrystallization from diethyl ether.

Product 42: White solid; mp 197-198 ${ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; 18 \%$ yield $(11 \mathrm{mg}) ; \mathrm{R}_{\mathrm{f}}=0.30$ (hexanes/acetone $\left.=1 / 3\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 9.58(\mathrm{~s}, 1 \mathrm{H}), 8.28(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{q}, J=3.5,2.4 \mathrm{~Hz}, 5 \mathrm{H}), 7.35$ $(\mathrm{d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.51(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $167.3,162.7,144.4,141.8,135.4,135.0,130.0,129.0,128.1,127.8,124.4,122.5,110.2,61.3,22.3,13.6$. One carbon signal could not be located. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]+308.1281$, found 308.1284.
Ylide $3(0.2 \mathrm{mmol}, 54 \mathrm{mg}),\left[\mathrm{Cp}^{*} \mathrm{Co}(\mathrm{MeCN})_{3}\right]\left[\mathrm{SbF}_{6}\right]_{2}(0.04 \mathrm{mmol}, 32 \mathrm{mg})$, pivalic acid $(0.06 \mathrm{mmol}, 6 \mathrm{mg})$, HFIP $(1 \mathrm{~mL})$, and ethyl hept-2-ynoate $(0.4 \mathrm{mmol}, 62 \mathrm{mg}), 48 \mathrm{~h} ; \mathbf{4 1}: 39 \%$ yield $(24 \mathrm{mg})$ and $\mathbf{4 2}: 18 \%$ yield $(11 \mathrm{mg})$.

3-Acetyl-6-methyl-4-phenylisoquinolin-1(2H)-one (43) and 4-acetyl-6-methyl-3-phenylisoquinolin-1(2H)one (44). Ylide $2(0.2 \mathrm{mmol}, 48 \mathrm{mg}),\left[\mathrm{Cp}^{*} \mathrm{Co}(\mathrm{MeCN})_{3}\right]\left[\mathrm{SbF}_{6}\right]_{2}(0.03 \mathrm{mmol}, 24 \mathrm{mg})$, pivalic acid ($0.04 \mathrm{mmol}, 4$ mg), HFIP (1 mL), and 4-phenylbut-3-yn-2-one ($0.4 \mathrm{mmol}, 58 \mathrm{mg}$). 24 h ; Product 43: white solid; mp $254-255^{\circ} \mathrm{C}$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; 24 \%$ yield (13 mg); purification (gradient elution, hexanes/EtOAc, $20 \% \rightarrow 60 \%$); $\mathrm{R}_{\mathrm{f}}=0.14$ (hexanes/EtOAc = 1/3); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.95(\mathrm{~s}, 1 \mathrm{H}), 8.29(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.49(\mathrm{~m}, 6 \mathrm{H})$, $7.36(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 203.7,162.9,144.5,139.4,134.9$, $134.1,130.8,129.5,129.0,128.9,127.9,124.1,122.7,118.6,32.9,22.3$. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{NO}_{2}[\mathrm{M}+$ $\mathrm{H}]^{+}$278.1176, found 278.1176 .

Product 44: White solid; mp 191-192 ${ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; 28 \%$ yield $(16 \mathrm{mg}) ; \mathrm{R}_{\mathrm{f}}=0.23$ (hexanes/EtOAc $\left.=1 / 3\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.52(\mathrm{~s}, 1 \mathrm{H}), 8.41(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.52(\mathrm{~m}, 3 \mathrm{H}), 7.45(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-$ $7.30(\mathrm{~m}, 2 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 193.2,161.0,143.6,138.2$, $135.6,131.7,131.1,130.8,129.4,129.2,128.0,127.8,126.0,125.2,29.9,22.1$. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{NO}_{2}$ $[M+H]+278.1180$, found 278.1176

Ylide $3(0.2 \mathrm{mmol}, 54 \mathrm{mg}),\left[\mathrm{Cp} * \mathrm{Co}(\mathrm{MeCN})_{3}\right]\left[\mathrm{SbF}_{6}\right]_{2}(0.03 \mathrm{mmol}, 24 \mathrm{mg})$, pivalic acid ($\left.0.04 \mathrm{mmol}, 4 \mathrm{mg}\right)$, HFIP $(1 \mathrm{~mL})$, and ethyl hept-2-ynoate ($0.4 \mathrm{mmol}, 62 \mathrm{mg}$), $48 \mathrm{~h} ; \mathbf{4 3}: 25 \%$ yield (14 mg) and $\mathbf{4 4}: 20 \%$ yield (11 mg).

H/D Scrambling experiments

(Benzoyl-2,3,4,5,6-d \mathbf{d}_{5} (4-methoxypyridin-1-ium-1-yl)amide (45). Method A was employed, with benzoic-$2,3,4,5,6-d_{5}$ acid ($0.25 \mathrm{~g}, 2 \mathrm{mmol}$). Yield: $0.30 \mathrm{~g}, 64 \%$; appearance: white solid; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{0}\right) \delta 8.52$ (d, $J=4.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H})$.

A 2-dram vial equipped with a magnetic stir bar was charged with (benzoyl-2,3,4,5,6- d_{5})(4-methoxypyridin-1-ium-1-yl)amide $45(0.2 \mathrm{mmol}, 46 \mathrm{mg}),\left[\mathrm{Cp} * \mathrm{Co}(\mathrm{MeCN})_{3}\right]\left[\mathrm{SbF}_{6}\right]_{2}(0.03 \mathrm{mmol}, 24 \mathrm{mg})$, pivalic acid $(0.04 \mathrm{mmol}, 4 \mathrm{mg})$, HFIP (1 mL). The vial was closed with a screw cap after flushing with nitrogen. The mixture was stirred in a heating block at $110^{\circ} \mathrm{C}$ for 24 h . After the mixture was cooled, ethyl acetate was added, and the diluted mixture was poured into a round bottom flask. The mixture was absorbed on 3 g of silica gel and purified by column chromatography on silica gel.

(Benzoyl-3,4,5-d \mathbf{d}_{3})(4-methoxypyridin-1-ium-1-yl)amide (45-d \mathbf{d}_{2}). Yield: $30 \mathrm{mg}, 65 \%$; Appearance: white solid; purification (gradient elution, $\mathrm{EtOAc} / \mathrm{MeOH}, 0 \% \rightarrow 15 \%$); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.53(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H})$, 8.13 (s, 2H), 7.07 (d, $J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H})$.

A 2-dram vial equipped with a magnetic stir bar was charged with (benzoyl-2,3,4,5,6- d_{5})(4-methoxypyridin-1-ium-1-yl)amide $45(0.2 \mathrm{mmol}, 46 \mathrm{mg}),\left[\mathrm{Cp*} \mathrm{Co}(\mathrm{MeCN})_{3}\right]\left[\mathrm{SbF}_{6}\right]_{2}(0.03 \mathrm{mmol}, 24 \mathrm{mg})$, pivalic acid ($0.04 \mathrm{mmol}, 4 \mathrm{mg}$), HFIP (1 mL), and 3-hexyne ($0.4 \mathrm{mmol}, 45 \mu \mathrm{~L}$). The vial was closed with a screw cap after flushing with nitrogen. The mixture was stirred in a heating block at $110^{\circ} \mathrm{C}$ for 24 h . After the mixture was cooled, ethyl acetate was added, and the diluted mixture was poured into a round bottom flask. The mixture was absorbed on 3 g of silica gel and purified by column chromatography on silica gel. The purified mixture was used to check the ratio of products by ${ }^{1} \mathrm{H}$-NMR spectroscopy.

A 2-dram vial equipped with a magnetic stir bar was charged with (benzoyl-2,3,4,5,6- d_{5})(4-methoxypyridin-1-ium-1-yl)amide $45(0.2 \mathrm{mmol}, 46 \mathrm{mg}),\left[\mathrm{Cp} * \mathrm{Co}(\mathrm{MeCN})_{3}\right]\left[\mathrm{SbF}_{6}\right]_{2}(0.03 \mathrm{mmol}, 24 \mathrm{mg})$, pivalic acid $(0.04 \mathrm{mmol}, 4 \mathrm{mg})$, HFIP (1 mL), and 3-hexyne ($0.4 \mathrm{mmol}, 45 \mu \mathrm{~L}$). The vial was closed with a screw cap after flushing with nitrogen. The mixture was stirred in a heating block at $110^{\circ} \mathrm{C}$ for 4 h . After the mixture was cooled, ethyl acetate was added, and the diluted mixture was poured into a round bottom flask. The mixture was absorbed on 3 g of silica gel and purified by column chromatography on silica gel. The purified mixture was used to check the ratio of products by ${ }^{1} \mathrm{H}$-NMR spectroscopy.

Intermolecular competition experiment between (4-(tert-butyl)pyridin-1-ium-1-yl)(4-methylbenzoyl)amide and (4-ethylbenzoyl)(4-methoxypyridin-1-ium-1-yl)amide.

(4-Ethylbenzoyl)(4-methoxypyridin-1-ium-1-yl)amide (47). Method A was employed, with 4-ethylbenzoic acid ($0.60 \mathrm{~g}, 4 \mathrm{mmol}$). Yield: $0.62 \mathrm{~g}, 60 \%$; Appearance: white solid; mp 179-180 ${ }^{\circ} \mathrm{C}(\mathrm{EtOAc} / \mathrm{MeOH}=10: 1) ; \mathrm{R}_{f}=0.37$ ($\mathrm{EtOAc} / \mathrm{MeOH}=5 / 1$); purification (gradient elution, $\mathrm{EtOAc} / \mathrm{MeOH}, 0 \% \rightarrow 15 \%$); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.50(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~s}, 1 \mathrm{H})$, $2.67(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.24(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.5,166.0,146.4,145.2,134.8$, 128.0, 127.5, 111.4, 56.9, 28.9, 15.6.

A 2-dram vial equipped with a magnetic stir bar was charged with (4-(tert-butyl)pyridin-1-ium-1-yl)(4methylbenzoyl)amide ($0.1 \mathrm{mmol}, 27 \mathrm{mg}$), (4-ethylbenzoyl)(4-methoxypyridin-1-ium-1-yl)amide ($0.1 \mathrm{mmol}, 26$ mg), $\left[\mathrm{Cp} * \mathrm{Co}(\mathrm{MeCN})_{3}\right]\left[\mathrm{SbF}_{6}\right]_{2}(0.03 \mathrm{mmol}, 24 \mathrm{mg})$, pivalic acid ($0.04 \mathrm{mmol}, 4 \mathrm{mg}$), HFIP (1 mL), and diphenylacethylene ($0.1 \mathrm{mmol}, 18 \mathrm{mg}$). The vial was closed with a screw cap after flushing with nitrogen. The mixture was stirred in a heating block at $110^{\circ} \mathrm{C}$ for 90 min . After the mixture was cooled, ethyl acetate was added, and the diluted mixture was poured into a round bottom flask. The mixture was absorbed on 3 g of silica gel and purified by column chromatography on silica gel. The purified mixture was used to check the ratio of products by ${ }^{1} \mathrm{H}$-NMR spectroscopy.

Preparation of cobaltacycles

(2-Iodobenzoyl)(4-methoxypyridin-1-ium-1-yl)amide (49). Method A was employed, with 2-iodobenzoic acid ($0.99 \mathrm{~g}, 4 \mathrm{mmol}$). Yield: $0.92 \mathrm{~g}, 65 \%$; appearance: white solid; mp 195-196 ${ }^{\circ} \mathrm{C}(\mathrm{EtOAc} / \mathrm{MeOH}=10: 1)$; $\mathrm{R}_{f}=0.37$ ($\mathrm{EtOAc} / \mathrm{MeOH}=5 / 1$); purification (gradient elution, $\mathrm{EtOAc} / \mathrm{MeOH}, 0 \% \rightarrow 15 \%$); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.59(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.83(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.05(\mathrm{~m}$, $2 \mathrm{H}), 6.99(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.3,166.4,144.7,144.4,139.4,129.6$, 128.6, 128.0, 111.7, 94.8, 57.0.

The oven dried flask was charged with $\mathrm{Co}_{2}(\mathrm{CO})_{8}(0.5 \mathrm{mmol}, 0.17 \mathrm{~g}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$, and $1,2,3,4,5-$ pentamethylcyclopentadiene ($1.2 \mathrm{mmol}, 188 \mu \mathrm{~L}$). The mixture was refluxed under a nitrogen atmosphere for 4 h and cooled to room temperature. The solvent was removed under vacuum. The residue was dissolved in THF (10 mL). (2-Iodobenzoyl)(4-methoxypyridin-1-ium-1-yl)amide ($0.95 \mathrm{mmol}, 0.34 \mathrm{~g}$) as a solution in THF (30 mL) was added to the solution at room temperature and refluxed for 20 h under a nitrogen atmosphere. After removal of the solvent, the resulting residue was purified by column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc} 1: 1\right.$ to $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc} / \mathrm{MeOH} 5: 5: 1\right)$ to provide the complex $\mathbf{5 0}(0.39 \mathrm{~g}, 74 \%)$. Structure of this compound was verified by X-ray crystallographic analysis after recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and diethyl ether at room temperature. appearance: black olive solid; $\mathrm{R}_{f}=0.50\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc} / \mathrm{MeOH}=5 / 5 / 1\right) ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 9.34$ (s, $2 \mathrm{H}), 8.36(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.10(\mathrm{~m}, 2 \mathrm{H}), 7.03(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H})$, $1.33(\mathrm{~s}, 15 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 177.3,173.7,168.3,148.2,142.7,139.4,130.6,126.3,122.5,112.0$, 91.8, 58.1, 10.4. HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{CoIN}_{2} \mathrm{O}_{2}[\mathrm{M}-\mathrm{I}]^{+} 421.1321$, found 421.1330.

51

To a flask was added pyidinium ylide cobaltacycle $\mathbf{5 0}(0.11 \mathrm{~g}, 0.2 \mathrm{mmol})$ and $\mathrm{CH}_{3} \mathrm{CN}(3 \mathrm{~mL})$. To the solution was added the solution of $\mathrm{AgSbF}_{6}(0.08 \mathrm{~g}, 0.24 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{~mL})$ dropwise at room temperature. The suspension was stirred for 2 h at room temperature under a nitrogen atmosphere. Then the suspension was filtered through celite and washed with $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{~mL})$. After removal of the solvent, the resulting solid $\mathbf{5 1}$ was used without further purification. Yield: $120 \mathrm{mg}, 86 \%$; appearance: dark purple solid; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 8.63(\mathrm{~d}, J=6.7$ $\mathrm{Hz}, 2 \mathrm{H}), 8.17(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.41(\mathrm{~m}, 4 \mathrm{H}), 7.23-7.07(\mathrm{~m}, 1 \mathrm{H}), 4.13(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{~s}, 15 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 169.6,169.3,147.5,139.7,138.7,138.5,132.1,127.3,124.5,113.2,95.4,58.4$, 58.4, 9.4, 4.5.

The use of cationic cobaltacycle 51 as a catalyst.

A 2-dram vial equipped with a magnetic stir bar was charged with (4-methoxypyridin-1-ium-1-yl)(4methylbenzoyl)amide ($0.2 \mathrm{mmol}, 48 \mathrm{mg}$), pyridinium ylide cationic cobaltacycle $\mathbf{5 1}(0.03 \mathrm{mmol}, 21 \mathrm{mg}$), pivalic acid ($0.04 \mathrm{mmol}, 4 \mathrm{mg}$), HFIP (1 mL), and diphenylacethylene ($0.4 \mathrm{mmol}, 71 \mathrm{mg}$). The vial was closed with a screw cap after flushing with nitrogen. The mixture was stirred in a heating block at $110{ }^{\circ} \mathrm{C}$ for 20 h . After the mixture was cooled, ethyl acetate was added, and the diluted mixture was poured into a round bottom flask. The mixture was absorbed on 3 g of silica gel and purified by column chromatography on silica gel. The purified mixture was used to check the yield (68\%) using 1,3,5-trimethoxybenzene as an internal standard.

X-Ray Crystallography Data

Table. Crystal data and structure refinement for compound 41.

Identification code	Compound 41
Empirical formula	$\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NO}_{3}$
Formula weight	307.33
Temperature/K	123(2)
Crystal system	monoclinic
Space group	$\mathrm{P} 2_{1} / \mathrm{c}$
a/A	10.7539(7)
b/Å	15.7753(11)
c/Å	10.6322(7)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	118.742(2)
$\gamma /{ }^{\circ}$	90
Volume/A ${ }^{3}$	1581.48(19)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.291
μ / mm^{-1}	0.709
$\mathrm{F}(000)$	648.0
Crystal size/ mm^{3}	$0.37 \times 0.32 \times 0.04$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54178)$
2Θ range for data collection $/{ }^{\circ}$	9.38 to 135.708
Index ranges	$-10 \leq \mathrm{h} \leq 12,-17 \leq \mathrm{k} \leq 18,-12 \leq 1 \leq 12$
Reflections collected	12200
Independent reflections	$2801\left[\mathrm{R}_{\text {int }}=0.0193, \mathrm{R}_{\text {sigma }}=0.0208\right]$
Data/restraints/parameters	2801/0/213
Goodness-of-fit on F^{2}	1.003
Final R indexes [$\mathrm{I}>=2 \sigma$ (I)]	$\mathrm{R}_{1}=0.0330, \mathrm{wR}_{2}=0.0895$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0332, \mathrm{wR}_{2}=0.0896$
Largest diff. peak/hole / e \AA^{-3}	0.21/-0.16

Ethyl 6-methyl-1-oxo-4-phenyl-1,2-dihydroisoquinoline-3-carboxylate (41).

X-Ray Crystallography Data

Table. Crystal data and structure refinement for compound 50.

Identification code	50
Empirical formula	C23 H26 Co I N2 O2
Formula weight	548.29
Temperature	123(2) K
Wavelength	0.71073 A
Crystal system	Monoclinic
Space group	P 21/c
Unit cell dimensions	$\mathrm{a}=8.4964(11) \AA=90^{\circ}$.
	$\mathrm{b}=31.850(4) \AA=112.618(3)^{\circ}$
	$\mathrm{c}=8.5016(10) \AA=90^{\circ}$.
Volume	2123.7(4) \AA^{3}
Z	4
Density (calculated)	$1.715 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$2.284 \mathrm{~mm}^{-1}$
$\mathrm{F}(000)$	1096
Crystal size	$0.36 \times 0.15 \times 0.02 \mathrm{~mm}^{3}$
Theta range for data collection	2.597 to 28.296°
Index ranges	$-11<=\mathrm{h}<=11,-42<=\mathrm{k}<=42,-11<=\mathrm{l}<=11$
Reflections collected	20830
Independent reflections	5278 [R(int) $=0.0280]$
Completeness to theta $=25.242^{\circ}$	99.9 \%
Absorption correction	Empirical
Max. and min. transmission	0.7457 and 0.5814
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	5278 / 0/268
Goodness-of-fit on F^{2}	1.227
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I}$] $]$	$\mathrm{R} 1=0.0315, \mathrm{wR} 2=0.0603$
R indices (all data)	$\mathrm{R} 1=0.0354, \mathrm{wR} 2=0.0614$
Largest diff. peak and hole	0.636 and -0.762 e. \AA^{-3}

References

1. (a) B. Sun, T. Yoshino, S. Matsunaga and M. Kanai, Adv. Synth. Catal., 2014, 356, 1491-1495. (b) D.-G. Yu, T. Gensch, F. de Azambuja, S. Vásquez-Céspedes and F. Glorius, J. Am. Chem. Soc., 2014, 136, 17722-17725.
2. (a) S. H. Kwak and O. Daugulis, J. Org. Chem., 2019, 84, 13022-13032. (b) Brookings, D. C.; Jackson, V. E.; Kroeplien, B. WO2015/ 086502, A1, 2015.
3. G. Sivakumar, A. Vijeta and M. Jeganmohan, Chem. Eur. J., 2016, 22, 5899-5903.
4. X. Yu, K. Chen, S. Guo, P. Shi, C. Song and J. Zhu, Org. Lett., 2017, 19, 5348-5351.
5. M. Liu, J. L. Niu, Yang, D. Yang and M. P. Song, J. Org. Chem. 2020, 85, 4067-4078.
6. B. Li, H. Feng, S. Xu and B. Wang, Chem. Eur. J., 2011, 17, 12573-12577.
7. H. Zhu, R. Zhuang, W. Zheng, L. Fu, Y. Zhao, L. Tu, Y. Chai, L. Zeng, C. Zhang and J. Zhang, Tetrahedron, 2019, 75, 3108-3112.
8. M. C. Reddy, R. Manikandan and M. Jeganmohan, Chem. Commun., 2013, 49, 6060-6062.
9. S. Lu, Y. Lin, H. Zhong, K. Zhao and J. Huang, Tetrahedron Lett., 2013, 54, 2001-2005.
10. S. Ruiz, C. Carrera, P. Villuendas and E. P. Urriolabeitia, Org. Biomol. Chem., 2017, 15, 8904-8913.

(4-Fluorobenzoyl)(4-methoxypyridin-1-ium-1-yl)amide

310	200	190	180	170	160	150	140	130	1	11	100	9	80	70			10		10	10	,
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

(4-Cyanobenzoyl)(4-methoxypyridin-1-ium-1-yl)amide

(3-Chlorobenzoyl)(4-methoxypyridin-1-ium-1-yl)amide

(3-Iodobenzoyl)(4-methoxypyridin-1-ium-1-yl)amide

(4-Methoxypyridin-1-ium-1-yl)(2-methylbenzoyl)amide

(2-Fluorobenzoyl)(4-methoxypyridin-1-ium-1-yl)amide

(3-(Methoxycarbonyl)benzoyl)(4-methoxypyridin-1-ium-1-yl)amide

(4-(tert-Butyl)pyridin-1-ium-1-yl)(thiophene-2-carbonyl)amide

(4-(tert-Butyl)pyridin-1-ium-1-yl)(5-methylthiophene-2-carbonyl)amide

(4-(tert-Butyl)pyridin-1-ium-1-yl)(thiophene-3-carbonyl)amide

(4-(tert-Butyl)pyridin-1-ium-1-yl)(furan-2-carbonyl)amide

(4-(tert-Butyl)pyridin-1-ium-1-yl)(furan-3-carbonyl)amide

（4－（tert－Butyl）pyridin－1－ium－1－yl）（6－methoxynicotinoyl）amide

\％ّ̆	
$\underbrace{\infty} \infty^{\infty} \underbrace{\infty} \infty^{\infty} \infty^{\infty} \underbrace{\infty} \infty^{\infty}$	へ人入入人
$\checkmark 4$ V	\downarrow 1

(4-(tert-Butyl)pyridin-1-ium-1-yl)(1-methyl-1H-pyrrole-2-carbonyl)amide

(4-(tert-Butyl)pyridin-1-ium-1-yl)(1-methyl-1H-pyrazole-5-carbonyl)amide

1	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

(4-(tert-Butyl)pyridin-1-ium-1-yl)(1-methyl-1H-indole-5-carbonyl)amide

(Benzo[b]thiophene-3-carbonyl)(4-(tert-butyl)pyridin-1-ium-1-yl)amide

(5-Bromofuran-3-carbonyl)(4-(tert-butyl)pyridin-1-ium-1-yl)amide

(2-Bromoisonicotinoyl)(4-(tert-butyl)pyridin-1-ium-1-yl)amide

[^0](Furan-2-carbonyl)(4-methoxypyridin-1-ium-1-yl)amide

200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

(Furan-3-carbonyl)(4-methoxypyridin-1-ium-1-yl)amide

(2-Bromoisonicotinoyl)(4-methoxypyridin-1-ium-1-yl)amide

(6-Methoxynicotinoyl)(4-methoxypyridin-1-ium-1-yl)amide

(4-Methoxypyridin-1-ium-1-yl)(1-methyl-1H-pyrazole-5-carbonyl)amide

190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

(4-Methoxypyridin-1-ium-1-yl)(1-methyl-1H-indole-5-carbonyl)amide

(4-(tert-butyl)pyridin-1-ium-1-yl)(2-phenylacryloyl)amide.

Methacryloyl(4-methoxypyridin-1-ium-1-yl)amide.

\% ${ }^{\text {g }}$ 馬	\% ${ }_{\text {¢ }}$	\%	$\stackrel{\circ}{4}$	${ }_{\text {W }}^{\text {b }}$	寺
$\stackrel{\infty}{¢}$	¡V	-	$\stackrel{\square}{0}$	¢	

(

6-Methyl-3,4-diphenylisoquinolin-1(2H)-one (4)

6-Methoxy-3,4-diphenylisoquinolin-1(2H)-one (5).

6-Fluoro-3,4-diphenylisoquinolin-1(2H)-one (6).

6-Bromo-3,4-diphenylisoquinolin-1(2H)-one (7).

1	1	1	1	160	15	14	13	120	1	100	90	80				40	30			
:00	190	180	170	16	150	14	13	120	110	100	90	80	70	60	50	40	30	20	10	0

6-(tert-Butyl)-3,4-diphenylisoquinolin-1(2H)-one (8).

3,4-diphenyl-6-(trifluoromethyl)isoquinolin-1(2H)-one (9).

Methyl 1-oxo-3,4-diphenyl-1,2-dihydroisoquinoline-6-carboxylate (10).

[^1]6-(Methylsulfonyl)-3,4-diphenylisoquinolin-1(2H)-one (11).

1-Oxo-3,4-diphenyl-1,2-dihydroisoquinoline-6-carbonitrile (12).

7-Chloro-3,4-diphenylisoquinolin-1(2H)-one (13).

7-Iodo-3,4-diphenylisoquinolin-1(2H)-one (14).

Methyl 1-oxo-3,4-diphenyl-1,2-dihydroisoquinoline-7-carboxylate (15).

8-Methyl-3,4-diphenylisoquinolin-1(2H)-one (16).

8-Fluoro-3,4-diphenylisoquinolin-1(2H)-one (17).

3,5,6-Triphenylpyridin-2(1H)-one (18).

3,5,6-Triphenylpyridin-2(1H)-one (19).

3,4-Diethyl-6-methylisoquinolin-1(2H)-one (20).

200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	1	40	1	10	10	0

3,4-Diethyl-6-methoxyisoquinolin-1(2H)-one (21).

Methyl 3,4-diethyl-1-oxo-1,2-dihydroisoquinoline-7-carboxylate (22).

4,5-Diphenylthieno[2,3-c]pyridin-7(6H)-one (23).

2-Methyl-4,5-diphenylthieno[2,3-c]pyridin-7(6H)-one (24).

							1				1	1	1	1			10			
00	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

6,7-Diphenylthieno[3,2-c]pyridin-4(5H)-one (25).

4,5-Diphenylfuro[2,3-c]pyridin-7(6H)-one (26).

			17																	
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

6,7-Diphenylfuro[3,2-c]pyridin-4(5H)-one (27).

2-Bromo-6,7-diphenylfuro[3,2-c]pyridin-4(5H)-one (28).

7-Bromo-3,4-diphenyl-2,6-naphthyridin-1(2H)-one (29).

2-Methoxy-7,8-diphenyl-1,6-naphthyridin-5(6H)-one (30).

1-Methyl-4,5-diphenyl-1,6-dihydro-7H-pyrrolo[2,3-c]pyridin-7-one (31).

1-Methyl-4,5-diphenyl-1,6-dihydro-7H-pyrazolo[3,4-c]pyridin-7-one (32).

z1-Methyl-7,8-diphenyl-1,6-dihydro-5H-pyrrolo[2,3-g]isoquinolin-5-one (33).

4,5-Diethylthieno[2,3-c]pyridin-7(6H)-one (34).

\qquad

4,5-Diethyl-2-methylthieno[2,3-c]pyridin-7(6H)-one (35).

 ?

6,7-Diethylthieno[3,2-c]pyridin-4(5H)-one (36).

3,4-Diethylbenzo[4,5]thieno[3,2-c]pyridin-1(2H)-one (37).

6,7-Diethylfuro[3,2-c]pyridin-4(5H)-one (38).

Ethyl 4-butyl-6-methyl-1-oxo-1,2-dihydroisoquinoline-3-carboxylate (39).

Ethyl 3-butyl-6-methyl-1-oxo-1,2-dihydroisoquinoline-4-carboxylate (40).

Ethyl 6-methyl-1-oxo-4-phenyl-1,2-dihydroisoquinoline-3-carboxylate (41).

Ethyl 6-methyl-1-oxo-3-phenyl-1,2-dihydroisoquinoline-4-carboxylate (42).

3-Acetyl-6-methyl-4-phenylisoquinolin-1(2H)-one (43).

4-Acetyl-6-methyl-3-phenylisoquinolin-1(2H)-one (44).

[^2](Benzoyl-2,3,4,5,6-d5)(4-methoxypyridin-1-ium-1-yl)amide (45).

$\stackrel{\square}{\circ}$

(Benzoyl-3,4,5-d3)(4-methoxypyridin-1-ium-1-yl)amide (45- d_{2}).

(4-Ethylbenzoyl)(4-methoxypyridin-1-ium-1-yl)amide (47).

范

（2－Iodobenzoyl）（4－methoxypyridin－1－ium－1－yl）amide（49）．

¢炎	
ソ	VVVバ1

50

51

[^0]:

[^1]:

[^2]:

