Supplementary Information

Ambiphilicity of a Mononuclear Cobalt(III) Superoxo Complex

Ting-Yi Chen,^{a,c} Po-Hsun Ho,^a Can-Jerome Spyra,^c Franc Meyer,^{*,c} Eckhard Bill,^d Shengfa Ye,^{*,e,f} and Way-Zen Lee^{*,a,b}

^aDepartment of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan

^bDepartment of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan

^cUniversität Göttingen, Institut für Anorganische Chemie, Göttingen D-37077, Germany

^dMax-Planck-Institut für Chemische Energiekonversion, Mülheim an der Ruhr D-45470, Germany

^eState Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China

^fMax-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr D-45470, Germany

*Corresponding author. Email: wzlee@ntnu.edu.tw (W.-Z.L); shengfa.ye@dicp.ac.cn, shengfa.ye@kofo.mpg.de (S.Y.); franc.meyer@chemie.uni-goettingen.de (F.M.)

Contents	
Figures S1-S10	
References 1-14	

Materials and Instrumentation.

All Manipulations were performed under nitrogen or argon condition with standard Schlenk techniques or in a nitrogen-filled glove box. Dichloromethane was dried by CaH₂ under nitrogen atmosphere and was distilled prior to use. THF, Pentane and diethyl ether were dried by sodium/benzophenone under nitrogen atmosphere and distilled prior to use. n-PrCN was dried by Na₂CO₃/KMnO₄ and was distilled prior to use. Co^{II}(BDPP), Co^{III}(BDPP)(O₂•) (1), and Co^{III}(BDPP)(OOH) (3) were synthesized according to the published procedures.¹ Other chemicals were purchased from commercial sources and used without further purification. UV-vis spectra were recorded with Agilent 8454 spectrophotometer equipped with cryostat from Unisoku Scientific Instruments, Osaka, Japan. X-Band CW EPR measurements were performed in the temperature range of 3.8 to 12 K using a Bruker E500 spectrometer equipped with a Bruker ER 4116DM resonator, Oxford Instruments ESR 935 gas flow cryostat and Oxford Instruments ITC503 temperature controller. Microwave power was in the range of 0.2 to 1 mW. Magnetic field modulation amplitude was 7.5 G.

Preparation of $[Co^{III}(BDPP)(O_2^{\bullet})\cdots H^+](OTf)$ (2)

One equiv of HOTf was gradually added into a THF solution of **1** through a microsyringe at -90 °C. The color of the reaction solution changed from marigold to gray-green indicating the formation of [Co^{III}(BDPP)(O₂·)···H⁺](OTf) (**2**).

Computational Details

All calculations were performed by using the ORCA quantum chemical program package.² Geometry optimizations and frequency analyses were performed with the B3LYP³ density functional. The def2-TZVP for the first coordination sphere and def2-SVP basis sets⁴ for the remaining atoms were applied in combination with the auxiliary basis sets def2/J.⁵ The RIJCOSX⁶ approximations were used to accelerate the calculations.

Figure S1. Conversion of $[Co^{III}(BDPP)(O_2^{\bullet})\cdots H^+](OTf)$ (2, 1.0 mM, blue trace) to $Co^{III}(BDPP)(O_2^{\bullet})$ (1, red trace) by adding 1 equiv of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) into a THF solution of 2 at -90 °C. Two absorption bands at 470 and 640 nm decay with the growth of a band at 485 nm. The conversion yield is 80%.

Figure S2. UV-vis spectra of Co^{III}(BDPP)(OOH) (3, blue trace) and 2 (red trace) which was converted from the reaction of 3 with 1 equiv of magic blue in n-PrCN (1.0 mM) at -90 °C.

Figure S3. UV-vis spectra of **1** (blue trace) and **1** with addition of 1 equiv of decamethyl-ferrocene (Cp*₂Fe) (red trace) in THF (1.0 mM) at -90 °C. The absorption band growth at 430 nm is the signal of Cp*₂Fe indicating **2** cannot be reduced by Cp*₂Fe.

Figure S4. UV-vis spectra of 1 (blue trace) and 1 with addition of sodium naphthalenide $(NaC_{10}H_8)$ (red trace) in THF (1.0 mM) at -90 °C.

Figure S5. UV-vis spectrum of the produced I³⁻ from quantification for the yield of H₂O₂, which was carried out by the reaction of the mixture of **1** and Cp*₂Fe with 1 equiv of HOTf in THF at -90 °C, and then warming up the reaction solution and subsequently adding into an acetone solution with excess NaI. The concentration of **1** is 3.2×10^{-5} M. The amount of the produced I₃⁻ (19% relative to **1**) was then quantified using its absorbance observed in the obtained UV-vis spectra (for I₃⁻, $\lambda_{max} = 361$ nm, $\varepsilon = 2.5 \times 10^4$ M⁻¹ cm⁻¹).

Figure S6. UV-vis spectrum of the produced I³⁻ from quantification for the yield of H₂O₂, which was carried out by the reaction of the mixture of **1** and Cp*₂Fe with 2 equiv of HOTf in THF at -90 °C, and then warming up the reaction solution and subsequently adding into an acetone solution with excess NaI. The concentration of **1** is 3.2×10^{-5} M. The amount of the produced I₃⁻ (42% relative to **1**) was then quantified using its absorbance observed in the obtained UV-vis spectra (for I₃⁻, $\lambda_{max} = 361$ nm, $\varepsilon = 2.5 \times 10^4$ M⁻¹ cm⁻¹).

Figure S7. UV-vis spectrum of the produced I³⁻ from quantification for the yield of H₂O₂, which was carried out by the reaction of **2** with 1 equiv of Cp*₂Fe in THF at -90 °C, and then warming up the reaction solution and subsequently adding into an acetone solution with excess NaI. The concentration of **1** is 3.2×10^{-5} M. The amount of the produced I₃⁻ (23% relative to **1**) was then quantified using its absorbance observed in the obtained UV-vis spectra (for I₃⁻, $\lambda_{max} = 361$ nm, $\varepsilon = 2.5 \times 10^4$ M⁻¹ cm⁻¹).

Figure S8. UV-vis spectral changes of the conversion of 1 (blue trace) to $[Co^{III}(BDPP)(O_2^{\bullet})\cdots Sc (OTf)_n]^{(3-n)+}$ (4, red trace) by adding Sc(OTf)₃ to a THF solution of 1 at -90 °C.

Figure S9. UV-vis spectra of **1** (blue trace) and $[Co^{III}(BDPP)(\mu-OO)Sc(OTf)_n]^{(2-n)+}$ (**5**, red trace) which was converted from the reaction of Sc(OTf)₃ with a THF solution of **1** in the presence of Cp*₂Fe at -90 °C.

Figure S10. UV-vis spectrum of the produced I^{3–} from quantification for the yield of H₂O₂, which was carried out by adding 2 equiv of HOTf to a THF solution of **5** at -90 °C, and then warming up the reaction solution and subsequently adding into an acetone solution with excess NaI. The concentration of **1** is 3.2×10^{-5} M. The amount of the produced I₃⁻ (76% relative to **1**) was then quantified using its absorbance observed in the obtained UV-vis spectra (for I₃⁻, $\lambda_{max} = 361$ nm, $\varepsilon = 2.5 \times 10^4$ M⁻¹ cm⁻¹).

Co	1.970970	3.252119	18.220058
0	0.418822	4.322302	18.549289
0	-0.641344	3.630569	18.879876
Н	0.093561	2.254552	19.101241
Ν	1.500153	2.935435	16.293245
Ν	3.465710	2.173163	17.859144
Ν	2.758975	3.405767	20.077510
0	2.907738	4.745202	17.657038
0	0.953498	1.717321	18.990326
С	3.123023	4.854358	16.268746
С	3.216562	6.347965	15.893686
С	3.167996	7.331895	16.885249
Н	3.042047	7.027769	17.923367
С	3.274037	8.685139	16.546452
Н	3.242617	9.442298	17.333822
С	3.415441	9.070510	15.212407
Н	3.497828	10.127375	14.946891
С	3.458564	8.091381	14.215096
Н	3.574719	8.381809	13.167955
С	3.370475	6.741192	14.555601
Н	3.432706	5.992008	13.763792
С	4.467661	4.234413	15.823511
С	4.681821	3.678386	14.553230
Н	3.865593	3.608957	13.832694
С	5.943542	3.213233	14.169965
Н	6.082788	2.779981	13.176483
С	7.023379	3.304810	15.048968
Н	8.009447	2.944522	14.745981
С	6.827990	3.875864	16.311233
Н	7.669490	3.976382	17.001500
С	5.566213	4.337425	16.688328
Н	5.417628	4.810300	17.660156
С	1.891432	4.221887	15.580782
Н	2.087173	3.961671	14.530205
С	0.635241	5.089098	15.670574
Н	0.667092	5.680339	16.592518
Н	0.601408	5.795300	14.831999
С	-0.555139	4.115418	15.683784

 Table S1. Cartesian coordinates of optimized A

Н	-1.277689	4.386170	16.462642
Н	-1.088470	4.112868	14.722806
С	0.051461	2.731004	15.944487
Н	-0.436282	2.172403	16.752627
Н	0.012779	2.111550	15.034455
С	2.272473	1.724897	15.876565
Н	1.632739	0.851068	16.075761
Н	2.479327	1.749273	14.796477
С	3.524601	1.558136	16.682020
С	4.643733	0.802264	16.350072
Н	4.717972	0.315235	15.378019
С	5.670177	0.698490	17.290901
Н	6.556994	0.106476	17.057344
С	5.571487	1.357294	18.520193
Н	6.367023	1.287807	19.263191
С	4.437241	2.122582	18.766470
С	4.203126	3.042131	19.926646
Н	4.741496	3.974613	19.703589
Н	4.605517	2.637043	20.867354
С	2.661909	4.771300	20.691118
Н	2.851253	5.510014	19.903116
Н	3.453310	4.854567	21.454916
С	1.282683	4.856409	21.335894
Н	0.567570	5.336495	20.659207
Н	1.321227	5.454210	22.256153
С	0.873797	3.395925	21.611829
Н	0.778648	3.180469	22.683380
Н	-0.103293	3.172936	21.167016
С	1.980437	2.503097	21.011023
Н	2.667208	2.199838	21.811780
С	1.452451	1.246393	20.271581
С	2.511267	0.168854	20.003564
С	2.405097	-0.634121	18.859110
Н	1.598462	-0.443615	18.151847
С	3.310748	-1.669609	18.624986
Н	3.213903	-2.277062	17.721991
С	4.327319	-1.940806	19.546136
Н	5.028551	-2.758820	19.366395
С	4.423529	-1.167161	20.704924

Н	5.199413	-1.379162	21.444490
С	3.521799	-0.123383	20.931470
Н	3.620354	0.453778	21.851454
С	0.322905	0.565857	21.052994
С	0.523120	0.221365	22.398896
Н	1.462851	0.463871	22.898740
С	-0.462543	-0.456883	23.114482
Н	-0.283268	-0.726970	24.157642
С	-1.668646	-0.802394	22.495509
Н	-2.441479	-1.334659	23.054412
С	-1.873446	-0.467386	21.156734
Н	-2.807526	-0.740604	20.660305
С	-0.882888	0.210193	20.437123
Н	-1.058552	0.442734	19.386830

Co	2.13269260364761	3.26061745657475	18.40403005418174
0	0.81592691681781	4.55525219520683	18.82536804653621
0	-0.43974226614941	4.25241859229925	18.90109536994466
Ν	1.56267256982905	2.93458535911309	16.48457776416421
Ν	3.62359376233516	2.17770258058361	17.96005978162098
Ν	2.96044423776597	3.33680705353943	20.23107600264566
0	3.07494136939447	4.87816613038664	17.65730432967670
0	1.20334324607255	1.77939349417475	18.97088959260599
С	3.10866080779085	4.94062679894791	16.18811913122132
С	3.10259108693289	6.42187725637915	15.76986853754473
С	2.39112590338606	7.38143724359303	16.51083998736117
Н	1.81451047486522	7.11429058174658	17.40145523265052
С	2.36894438306492	8.72131919914571	16.11986005264220
Н	1.80513385422137	9.44481792813865	16.71217130644404
С	3.05786367012506	9.12922626194755	14.97523155557980
Н	3.03701758907314	10.17556778794734	14.66226423989091
С	3.77491742139017	8.18873894876789	14.23461315234093
Н	4.32734961604065	8.49718254787166	13.34418868456943
С	3.79844545873971	6.84869630632034	14.63000751152832
Н	4.37940723193870	6.13668897613549	14.04531078056139
С	4.41685438132534	4.28395107905496	15.74768081056963
С	4.54862500256205	3.66670574922087	14.49523311824397
Н	3.69709408986176	3.59486707135103	13.81790697216849
С	5.77742044190128	3.15110022575539	14.07468244361401
Н	5.85670355577360	2.67371038564238	13.09553041504152
С	6.89984420956807	3.25151494860384	14.89755039833262
Н	7.85980164179143	2.84937274537567	14.56563817796597
С	6.78339067939318	3.88276200007496	16.13963835765636
Н	7.65840330102057	3.98845007374145	16.78488749818469
С	5.55583465461901	4.39884634946931	16.55713280343875
Н	5.47910900823374	4.90906836311296	17.51696778290877
С	1.83581056780363	4.19630821978091	15.69214738792257
Н	1.98550537632949	3.91158708972414	14.64106701209136
С	0.53102184012587	4.98712553778772	15.79533837730771
Н	0.48875888069085	5.55004114876148	16.73156982341746
Н	0.44446169488840	5.70809565389808	14.97224509010317
С	-0.57166386207186	3.92653284490888	15.78661697136967
Н	-1.42760398670970	4.24127436464325	16.39741332485678

Table S2. Cartesian coordinates of optimized B

Η	-0.93684567873326	3.75077814142661	14.76420375480127
С	0.08002052171367	2.65726729631410	16.34487136492274
Н	-0.29046159047307	2.36353318180728	17.33303164089978
Н	-0.05307107092144	1.80902107554144	15.65954910375824
С	2.32938484828900	1.72853192450611	16.04074602763265
Н	1.71311298289153	0.85752905750604	16.30278366536226
Н	2.46775197028011	1.72909265812753	14.94964765016931
С	3.62071896003178	1.56026666962808	16.78340000882241
С	4.70061918941685	0.76379794907543	16.41799536749539
Н	4.72542239514232	0.26966026901519	15.44682353855425
С	5.74013761127011	0.60218142623008	17.33858072816214
Н	6.59039781541735	-0.03400776287257	17.08518847255266
С	5.68962375531564	1.23646086729431	18.58268501697096
Н	6.47844747424393	1.09278038480304	19.32187250964126
С	4.59352949545662	2.04900580584925	18.85958982328404
С	4.38801836436946	2.90999669795847	20.07249621509638
Н	4.98350882679230	3.82452554449166	19.92779385417115
Н	4.75028026541283	2.42018029954011	20.98857505459533
С	2.93172394294613	4.64481435520934	20.96426779365560
Н	3.14702420624584	5.45852674913694	20.25827909808143
Н	3.74551613980873	4.62756527120234	21.70800689136308
С	1.57258420975713	4.74567351756914	21.65889414338928
Н	0.91217291061955	5.44712221150536	21.13688377772582
Н	1.70236212009035	5.11315920845974	22.68632876507144
С	0.98863956568446	3.32080254899041	21.61831114912094
Н	0.66063719205036	2.96399122267755	22.60233714236143
Н	0.11735299615189	3.28288705385936	20.95855735827764
С	2.09918391470903	2.41063672053855	21.07894306216410
Н	2.72285150357090	2.06164586517392	21.91445087263210
С	1.58794344960141	1.23158130361326	20.21070644718814
С	2.63844143043680	0.10996609680985	20.03791478800522
С	2.55730629756824	-0.69725751636585	18.89293955633243
Н	1.76281045212759	-0.49240442601907	18.17484505983710
С	3.45681297139100	-1.74137108790137	18.67798536821086
Н	3.37392254106033	-2.35107427955845	17.77461608132802
С	4.45359422906926	-2.02002899832159	19.62048582345762
Н	5.15324894483598	-2.84298695846066	19.45622590244986
С	4.52502337856922	-1.25057349164103	20.78289461586823
Η	5.27903394559474	-1.47208281756683	21.54268741544948

С	3.62293614969183	-0.19979466312231	20.98873547983242
Η	3.69938592719486	0.36748567002905	21.91817746793645
С	0.33568723752494	0.61378319812361	20.86985137155726
С	0.43964112104619	-0.26397103992796	21.95762059735971
Η	1.41921463408285	-0.56745137400731	22.32961436952930
С	-0.70585366421864	-0.77664912115477	22.57204947980836
Η	-0.60354412141737	-1.45840007762119	23.42006576966648
С	-1.97331683889406	-0.42315204387997	22.10108295005116
Η	-2.86749333834899	-0.82888979146864	22.58013081261033
С	-2.08351551254607	0.44782887589611	21.01369083784656
Η	-3.06802598474932	0.73714350665680	20.63644043564622
С	-0.93830518746849	0.96364731187377	20.40151900389990
Η	-1.02161329025869	1.64993329827131	19.55975091339630
Η	2.54370834216765	5.62343534445150	17.98098863709276

Со	1.994678	3.268206	18.326222
0	0.662038	4.422666	18.816900
0	-0.644111	3.941409	18.708865
Ν	1.479466	2.888128	16.411461
Ν	3.498812	2.196525	17.928659
Ν	2.826296	3.427483	20.139203
0	2.999505	4.699116	17.681957
0	1.156239	1.737175	18.931506
С	3.118183	4.802939	16.281774
С	3.154697	6.294355	15.889688
С	3.023972	7.287083	16.864584
Н	2.899138	6.989817	17.905068
С	3.050308	8.639157	16.505549
Н	2.955371	9.404905	17.279330
С	3.192179	9.011830	15.167914
Н	3.210765	10.067530	14.886277
С	3.316862	8.022564	14.187636
Н	3.435385	8.304255	13.138449
С	3.309749	6.674639	14.548228
Н	3.438181	5.917377	13.772411
С	4.448254	4.192879	15.786355
С	4.610495	3.581883	14.534727
Н	3.762207	3.464198	13.858883
С	5.860709	3.114706	14.116281
Н	5.961199	2.637770	13.138441
С	6.977492	3.260097	14.939833
Н	7.953932	2.898562	14.608605
С	6.832357	3.887986	16.181715
Н	7.702164	4.033178	16.827086
С	5.582978	4.349851	16.595558
Н	5.474007	4.862883	17.552270
С	1.856631	4.151644	15.661600
Н	2.015801	3.874983	14.608456
С	0.596578	5.007748	15.773505
Н	0.603804	5.533114	16.736203
Н	0.571295	5.771089	14.986626
С	-0.566727	4.012524	15.686769
Н	-1.408769	4.314992	16.320935

 Table S3. Cartesian coordinates of optimized C

Н	-0.943247	3.939647	14.656260
С	0.018236	2.662724	16.125272
Н	-0.440176	2.230214	17.021042
Н	-0.055920	1.923553	15.312486
С	2.234743	1.661132	16.020720
Н	1.609992	0.802310	16.306939
Н	2.383637	1.631271	14.931243
С	3.519205	1.540802	16.773810
С	4.633895	0.784955	16.428066
Н	4.675961	0.266693	15.470449
С	5.693584	0.718491	17.334759
Н	6.578032	0.128074	17.088965
С	5.625225	1.406117	18.549509
Н	6.438353	1.356766	19.274694
С	4.491872	2.167299	18.812430
С	4.272162	3.092139	19.967651
Н	4.789290	4.032565	19.727320
Н	4.692802	2.698350	20.904787
С	2.705736	4.781578	20.776770
Н	2.737744	5.532317	19.976865
Н	3.585594	4.928245	21.421800
С	1.418213	4.780809	21.610111
Н	0.683526	5.486752	21.203062
Н	1.638682	5.097253	22.639447
С	0.887264	3.336800	21.564419
Н	0.572360	2.963877	22.547082
Н	0.019489	3.254116	20.905243
С	2.032664	2.477677	21.021122
Н	2.688361	2.181453	21.851723
С	1.564547	1.247462	20.194358
С	2.656145	0.161719	20.043603
С	2.580955	-0.708808	18.945669
Н	1.766137	-0.579187	18.232779
С	3.511229	-1.733698	18.771998
Н	3.432804	-2.394490	17.904604
С	4.532178	-1.927049	19.709356
Н	5.256342	-2.734361	19.576676
С	4.597818	-1.092766	20.826611
Н	5.372397	-1.247377	21.582320

С	3.666901	-0.060627	20.990850
Н	3.742729	0.558482	21.886642
С	0.343029	0.586034	20.868650
С	0.495914	-0.286176	21.955756
Н	1.490975	-0.541237	22.322570
С	-0.619474	-0.859630	22.571227
Н	-0.478544	-1.538100	23.415927
С	-1.905388	-0.574917	22.103208
Н	-2.775824	-1.030449	22.580554
С	-2.064201	0.288666	21.016345
Н	-3.063660	0.518954	20.636682
С	-0.948881	0.863417	20.401331
Н	-1.071664	1.530751	19.550011
Н	-1.153953	4.679459	19.088753

Reference

- (1) C. C. Wang, H. C. Chang, Y. C. Lai, H. Fang, C. C. Li, H. K. Hsu, Z. Y. Li, T. S. Lin, T. S. Kuo, F. Neese, S. Ye, Y. W. Chiang, M. L. Tsai, W. F. Liaw and W. Z. Lee, *J. Am. Chem. Soc.*, 2016, **138**, 14186-14189.
- (2) (a) F. Neese, WIREs Comput. Mol. Sci. 2012, 2, 73-78; (b) F. Neese, WIREs Comput. Mol. Sci 2018, 8, e1327.
- (3) (a) A. D. Becke, *J. Chem. Phys.*, 1993, **98**, 5648-5652; (b) C. T. Lee, W. T. Yang and R. G. Parr, *Phys. Rev. B*, 1988, **37**, 785-789.
- (4) F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys., 2005, 7, 3297-3305.
- (5) F. Weigend, Phys. Chem. Chem. Phys., 2006, 8, 1057-1065.
- (6) F.Neese, F. Wennmohs, A. Hansen and U. Becker, Chem. Phys., 2009, 356, 98-109.