## Supporting Information

# Synthesis of P-Chiral Phosphine Compounds by Palladium-Catalyzed C-P Coupling Reactions 

 Sixuan Meng, ${ }^{\text {a }}$ Yang Yu, ${ }^{\text {c Guang-Ao Yu, }}$, a and Chi-Ming Che*b

\& These authors contributed equally to this work.

## Table of Contents

1. General considerations ..... S2
2. Procedures for palladium-catalyzed $\mathrm{C}-\mathrm{P}$ coupling reactions ..... S2
3. Procedures for palladium-catalyzed C-P coupling reactions under microwave conditions ..... S12
4. X-ray Structural Determination ..... S15
5. References ..... S17
6. HPLC spectra for all products ..... S77

## 1. General considerations

All manipulations of air-sensitive materials were carried out under an atmosphere of dry argon by using modified Schlenk line and glovebox techniques. Aryl halides, heteroaryl halides, bases, and catalysts were purchased from Alfa-Aesar and J\&K Scientific Ltd. All solvents were distilled from appropriate drying agents under argon before use. The ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{19} \mathrm{~F}$ and ${ }^{31} \mathrm{P}$ NMR spectroscopic data were recorded on Bruker Mercury Plus 400 MHz NMR spectrometers. Chemical shifts ( $\delta$ ) for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ are referenced to internal solvent resonances and reported relative to $\mathrm{SiMe}_{4}$. Chemical shifts for ${ }^{19} \mathrm{~F}$ are reported relative to an external $\mathrm{CFCl}_{3}$ standard. Chemical shifts for ${ }^{31} \mathrm{P}$ are reported relative to an external $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ standard. High resolution mass analysis is performed on Varian 7.OT Fourier-transform mass spectrometry with ESI resource. High performance liquid chromatography (HPLC) was performed on Agilent 1100 series chromatographs using a Daicel Chiracel AD-H (4.6 $\mathrm{mm} \emptyset \times 250 \mathrm{~mm})$ or OD-H ( $4.6 \mathrm{~mm} \emptyset \times 250 \mathrm{~mm}$ ) or AS-H ( $4.6 \mathrm{~mm} \emptyset \times 250 \mathrm{~mm}$ ) column or IBN-H ( $4.6 \mathrm{~mm} \emptyset \times 250$ mm ) with $n$-hexane $/ i$-PrOH as an eluent. Microwave reaction was determined by Disover SP microwave instrument. (S)-tert- butyl(methyl)phosphine borane and (R)-tert- butyl(methyl)phosphine borane was synthesized according to the published procedures. ${ }^{[1]}$



Synthesis of $(R)-1$ was similar as (S)-1

Scheme S1. Synthesis of optically pure P-stereogenic tert-butyl(methyl)phosphine borane ${ }^{[1]}$

## 2. Procedures for palladium-catalyzed C-P coupling reactions

To a reaction tube, (S)-tert-butyl(methyl)phosphine borane ( $35.0 \mathrm{mg}, 0.3 \mathrm{mmol}$ ), aryl and heteroaryl halides $(0.5 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(3.4 \mathrm{mg}, 0.015 \mathrm{mmol})$, dppf ( $27.7 \mathrm{mg}, 0.03 \mathrm{mmol}$ ), $t \mathrm{BuONa}(57.6 \mathrm{mg}, 0.6 \mathrm{mmol})$ and toluene $(3 \mathrm{~mL})$ were added under argon. The mixture was stirred for 72 h at room temperature. After removal of volatile materials under reduced pressure, the crude product was purified by chromatograph on silica gel. ( $n$-hexane / dichloromethane).

(R)-tert-butyl(methyl)(naphthalen-1-yl)phosphine Borane. ${ }^{2}$ Performed according to the general procedure to afford $41.0 \mathrm{mg}(71 \%)$ of $(R)-2$ a as white solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.90(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 7.99(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 7.87$ (d, J = $8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 7.75-7.80$ (m, $1 \mathrm{H}, \mathrm{Ar}$ ), $7.61-7.75$ (m, $1 \mathrm{H}, \mathrm{Ar}$ ), $7.49-7.53$ (m, $2 \mathrm{H}, \mathrm{Ar}$ ),
$1.78\left(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.16\left(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.79-1.57\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{BH}_{3}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}(101 \mathrm{MHz}$, $\mathrm{CDCl}_{3}$ ): $\delta 135.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{p}}=10.6 \mathrm{~Hz}, \mathrm{Ar}\right), 133.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{p}}=7.7 \mathrm{~Hz}, \mathrm{Ar}\right), 133.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{p}}=4.0 \mathrm{~Hz}, \mathrm{Ar}\right), 132.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{p}}=2.6 \mathrm{~Hz}\right.$,
 $9.2 \mathrm{~Hz}, \mathrm{Ar}), 30.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=31.5 \mathrm{~Hz}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 25.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.9 \mathrm{~Hz}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 8.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{p}}=39.6 \mathrm{~Hz}, C \mathrm{H}_{3}\right) .{ }^{31} \mathrm{P}$ NMR (162 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 23.8$ ( $\mathrm{q}, \mathrm{J}=69.7 \mathrm{~Hz}$ ). HPLC (Daicel Chiralcel AS-H, $n$-hexane $/ \mathrm{i}-\mathrm{PrOH}=95 / 5$, UV $=250 \mathrm{~nm}$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}) \mathrm{t}_{\mathrm{R} 1}=5.452 \mathrm{~min}($ minor $)$ and $\mathrm{t}_{\mathrm{R} 2}=6.546 \mathrm{~min}($ major $)$, ee $=91 \% .[\alpha]_{\mathrm{D}}^{25}=+8.5\left(\mathrm{c}=2.0, \mathrm{CHCl}_{3}\right)$.

(R)-tert-butyl(methyl)(phenyl)phosphine Borane. ${ }^{2}$ Performed according to the general procedure to afford 41 $\mathrm{mg}(71 \%)$ of $(R)-\mathbf{2 b}$ as white solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.71(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.39-7.58(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar})$, $1.58\left(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.11\left(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.12-0.97\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{BH}_{3}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}(101 \mathrm{MHz}$, $\mathrm{CDCl}_{3}$ ) : $\delta 132.9\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=8.0 \mathrm{~Hz}, \mathrm{Ar}\right), 131.1(\mathrm{~s}, \mathrm{Ar}), 128.3(\mathrm{~s}, \mathrm{Ar}), 128.2(\mathrm{~s}, \mathrm{Ar}), 28.5\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=33.3 \mathrm{~Hz}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 25.1$ $\left(\mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=2.9 \mathrm{~Hz}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 5.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=37.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right) .{ }^{31} \mathrm{P} \mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 25.0(\mathrm{q}, \mathrm{J}=64.8 \mathrm{~Hz}) . \mathrm{HPLC}$ (Daicel Chiralcel AS-H, $n$-hexane $/ i-\mathrm{PrOH}=95 / 5, \mathrm{UV}=254 \mathrm{~nm}$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$ ) $\mathrm{t}_{\mathrm{R} 1}=7.131 \mathrm{~min}$ (minor) and $t_{R 2}=8.103 \mathrm{~min}$ (major), ee $=65 \% .[\alpha]_{\mathrm{D}}{ }^{25}=+23.0\left(\mathrm{c}=2.0, \mathrm{CHCl}_{3}\right)$.

(R)-tert-butyl(3,5-dimethylphenyl)(methyl)phosphine Borane. Performed according to the general procedure to afford $50 \mathrm{mg}(75 \%)$ of $(R)-2 \mathrm{c}$ as yellow solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.30(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}), 7.27(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}), 7.12(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{Ar}), 2.36\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.53\left(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.10\left(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.24-0.86\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{BH} \mathrm{H}_{3}\right)$. ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 137.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=9.9 \mathrm{~Hz}, \mathrm{Ar}\right), 132.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.6 \mathrm{~Hz}, \mathrm{Ar}\right), 130.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=8.4 \mathrm{~Hz}, \mathrm{Ar}\right)$, $127.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=50.3 \mathrm{~Hz}, \mathrm{Ar}\right), 28.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=33.4 \mathrm{~Hz}, C\left(\mathrm{CH}_{3}\right)_{3}\right), 25.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.6 \mathrm{~Hz}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 21.3\left(\mathrm{~s}, C \mathrm{CH}_{3}\right), 5.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}\right.$ $=37.8 \mathrm{~Hz}, \mathrm{CH}_{3}$ ). ${ }^{31} \mathrm{P}$ NMR ( $162 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 24.3$ ( $\mathrm{q}, \mathrm{J}=69.7 \mathrm{~Hz}$ ). HRMS (ESI): m/z: $\left[\mathrm{M}+\mathrm{H}-\mathrm{BH}_{3}\right]^{+}$calculated for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{P}$ : 209.1454, found 209.1455. HPLC (Daicel Chiralcel AS-H, $n$-hexane/i-PrOH $=95 / 5$, UV $=220 \mathrm{~nm}$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}) \mathrm{t}_{\mathrm{R} 1}=4.240 \mathrm{~min}($ minor $)$ and $\mathrm{t}_{\mathrm{R} 2}=5.678 \mathrm{~min}($ major $)$, ee $=94 \% .[\alpha]_{\mathrm{D}}{ }^{25}=+38.0\left(\mathrm{c}=2.0, \mathrm{CHCl}_{3}\right)$.

(R)-tert-butyl(methyl)(o-tolyl)phosphine Borane. ${ }^{2}$ Performed according to the general procedure to afford 34 $\mathrm{mg}(42 \%)$ of $(R)-\mathbf{2 d}$ as white solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.52-7.56(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 7.37(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar})$, 7.13 - $7.26(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 2.66\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.64\left(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.14\left(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.43-$ $1.10\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{BH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 144.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=10.5 \mathrm{~Hz}, \mathrm{Ar}\right), 133.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=6.1 \mathrm{~Hz}, \mathrm{Ar}\right), 132.1\left(\mathrm{~d}, J_{\mathrm{C}}\right.$ $p=8.8 \mathrm{~Hz}, \mathrm{Ar}), 131.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.4 \mathrm{~Hz}, \mathrm{Ar}\right), 125.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{p}}=46.0 \mathrm{~Hz}, \mathrm{Ar}\right), 125.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{p}}=8.3 \mathrm{~Hz}, \mathrm{Ar}\right), 30.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{p}}=31.9\right.$ $\left.\mathrm{Hz}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 25.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{p}}=2.7 \mathrm{~Hz}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 23.3\left(\mathrm{~d}, \mathrm{~J}=3.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 8.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{p}}=39.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right) .{ }^{31} \mathrm{P} \mathrm{NMR}(162 \mathrm{MHz}$, $\mathrm{CDCl}_{3}$ ): $\delta 25.1$ (q, $J=61.6 \mathrm{~Hz}$ ). HPLC (Daicel Chiralcel OD-H, $n$-hexane $/ i-\mathrm{PrOH}=98 / 2$, UV $=230 \mathrm{~nm}$, flow rate $=0.5$ $\mathrm{mL} / \mathrm{min}$ ) $\mathrm{t}_{\mathrm{R} 1}=12.580 \mathrm{~min}($ minor $)$ and $\mathrm{t}_{\mathrm{R} 2}=14.134 \mathrm{~min}($ major $)$, ee $=90 \% .[\alpha]_{\mathrm{D}}{ }^{25}=+1.0\left(\mathrm{c}=2.0, \mathrm{CHCl}_{3}\right)$.

(R)-tert-butyl(4-(tert-butyl)phenyl)(methyl)phosphine Borane. Performed according to the general procedure to afford $67.5 \mathrm{mg}(90 \%)$ of $(R)-2 \mathrm{e}$ as yellow solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.61-7.65(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.45-7.47(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{Ar}), 1.55\left(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.33\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.11\left(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.48-1.05(\mathrm{~m}, 3 \mathrm{H}$, $\left.B H_{3}\right) .{ }^{13} \mathrm{CNMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 154.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.4 \mathrm{~Hz}, \mathrm{Ar}\right), 132.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=8.4 \mathrm{~Hz}, \mathrm{Ar}\right), 125.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=9.7 \mathrm{~Hz}, \mathrm{Ar}\right)$, $124.2\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=6.1 \mathrm{~Hz}, \mathrm{Ar}\right), 34.9\left(\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 31.2\left(\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 28.6\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=33.3 \mathrm{~Hz}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 25.2\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=3.0 \mathrm{~Hz}\right.$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 5.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{p}}=30.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right) .{ }^{31} \mathrm{P} \mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 23.7(\mathrm{q}, \mathrm{J}=66.4 \mathrm{~Hz}) . \mathrm{HRMS}(\mathrm{ESI}): \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}-$ $\left.\mathrm{BH}_{3}\right]^{+}$calculated for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{P}: 237.1767$, found 237.1766. HPLC (Daicel Chiralcel AS-H, $n$-hexane/ $i-\mathrm{PrOH}=99 / 1$, UV $=234 \mathrm{~nm}$, flow rate $=1 \mathrm{~mL} / \mathrm{min}$ ) $\mathrm{t}_{\mathrm{R} 1}=5.365 \mathrm{~min}($ major $)$ and $\mathrm{t}_{\mathrm{R} 2}=6.045 \mathrm{~min}($ minor $)$, ee $=90 \% .[\alpha]_{\mathrm{D}}{ }^{25}=+13.0(\mathrm{c}=$ 2.0, $\mathrm{CHCl}_{3}$ ).

(R)-tert-butyl(4-methoxyphenyl)(methyl)phosphine Borane. Performed according to the general procedures to afford $47 \mathrm{mg}(70 \%)$ of $(R)-2 f$ as white solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.61-7.65(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 6.96-6.98(\mathrm{~m}, 2$ $\mathrm{H}, \mathrm{Ar}), 3.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 1.54\left(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.09\left(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) .0 .35-0.91\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{BH} \mathrm{H}_{3}\right)$. ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 161.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{p}}=2.4 \mathrm{~Hz}, \mathrm{Ar}\right), 134.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{p}}=9.4 \mathrm{~Hz}, \mathrm{Ar}\right), 118.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{p}}=6.2 \mathrm{~Hz}, \mathrm{Ar}\right)$, $113.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=10.3 \mathrm{~Hz}, \mathrm{Ar}\right), 55.3\left(\mathrm{~s}, \mathrm{OCH}_{3}\right), 28.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{p}}=30.3 \mathrm{~Hz}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 25.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.7 \mathrm{~Hz}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 5.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}\right.$ $=30.3 \mathrm{~Hz}, \mathrm{CH}_{3}$ ). ${ }^{31} \mathrm{P}$ NMR ( $162 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 23.2$ ( $\mathrm{q}, \mathrm{J}=61.6 \mathrm{~Hz}$ ). HRMS (ESI): m/z: $\left[\mathrm{M}+\mathrm{H}-\mathrm{BH}_{3}\right]^{+}$calculated for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{OP}: 211.1246$, found 211.1248. HPLC (Daicel Chiralcel $\mathrm{AS}-\mathrm{H}, n$-hexane $/ i-\operatorname{PrOH}=98 / 2, \mathrm{UV}=254 \mathrm{~nm}$, flow rate $=0.8 \mathrm{~mL} / \mathrm{min}$ ) $\mathrm{t}_{\mathrm{R} 1}=21.843 \mathrm{~min}$ (minor) and $\mathrm{t}_{\mathrm{R} 2}=23.093$ (major), ee $=98 \% .[\alpha]_{\mathrm{D}}{ }^{25}=+5.0\left(\mathrm{c}=2.0, \mathrm{CHCl}_{3}\right)$.

(R)-(4-(1,3-dioxolan-2-yl)phenyl)(tert-butyl)(methyl)phosphine Borane. Performed according to the general procedure to afford $34 \mathrm{mg}(42 \%)$ of $(R)-2 \mathrm{~g}$ as yellow solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.69-7.78(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar})$, $7.56-7.58(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 5.84(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 4.10-4.15\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.04-4.09\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.57(\mathrm{~d}, \mathrm{~J}=9.7 \mathrm{~Hz}, 3$ $\left.\mathrm{H}, \mathrm{CH}_{3}\right), 1.10\left(\mathrm{~d}, \mathrm{~J}=14.0 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.13-0.99\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{BH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl $\left.)_{3}\right): \delta 141.1(\mathrm{~s}, \mathrm{Ar})$, $133.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{p}}=8.1 \mathrm{~Hz}, \mathrm{Ar}\right), 128.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=50.5 \mathrm{~Hz}, \mathrm{Ar}\right), 126.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{p}}=9.1 \mathrm{~Hz}, \mathrm{Ar}\right), 103.0(\mathrm{~s}, \mathrm{CH}), 65.4\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 28.6$ $\left(\mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=40.4 \mathrm{~Hz}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 25.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.7 \mathrm{~Hz}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 5.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{p}}=40.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right) .{ }^{31} \mathrm{P} \mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 25.2 ( $q, J=66.4 \mathrm{~Hz}$ ). HRMS (ESI): m/z: $\left[\mathrm{M}+\mathrm{H}-\mathrm{BH}_{3}\right]^{+}$calculated for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{P}: 253.1352$, found 253.1352. HPLC (Daicel Chiralcel AS-H, n-hexane $/ i-\mathrm{PrOH}=98 / 2, \mathrm{UV}=250 \mathrm{~nm}$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$ ) $\mathrm{t}_{\mathrm{R} 1}=26.610 \mathrm{~min}$ (major) and $t_{R 2}=34.227 \mathrm{~min}($ minor $)$, ee $=89 \% .[\alpha]_{D}^{25}=+11.0\left(c=2.0, \mathrm{CHCl}_{3}\right)$.

(R)-(4-(1,3-dioxolan-2-yl)phenyl)(tert-butyl)(methyl)phosphine Borane. Performed according to the general procedure to afford $34 \mathrm{mg}(42 \%)$ of $(R)-2 \mathrm{~h}$ as yellow solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.75-7.80(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar})$, $7.66-7.68$ (m, 2 H, Ar), $7.60-7.61$ (m, 2 H, Ar), $7.45-7.49$ (m, $2 \mathrm{H}, \mathrm{Ar}$ ), $7.37-7.41$ (m, $1 \mathrm{H}, \mathrm{Ar}$ ), 1.61 (d, J = 9.7 $\left.\mathrm{Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.15\left(\mathrm{~d}, \mathrm{~J}=14.0 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.41-0.88\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{BH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl 3$): \delta 143.9(\mathrm{~s}$,
 $126.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{p}}=51.3 \mathrm{~Hz}, \mathrm{Ar}\right), 28.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{p}}=34.3 \mathrm{~Hz}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 25.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=24.2 \mathrm{~Hz}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 5.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{p}}=37.4 \mathrm{~Hz}\right.$, $\mathrm{CH}_{3}$ ). ${ }^{31} \mathrm{P}$ NMR ( $162 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 24.7$ ( $\mathrm{q}, \mathrm{J}=66.4 \mathrm{~Hz}$ ). HRMS (ESI): m/z: $\left[\mathrm{M}+\mathrm{H}-\mathrm{BH}_{3}\right]^{+}$calculated for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{P}$ : 257.1454, found 257.1454. HPLC (Daicel Chiralcel OD-H, $n$-hexane $/ i-\mathrm{PrOH}=95 / 5$, UV $=250 \mathrm{~nm}$, flow rate $=0.8$ $\mathrm{mL} / \mathrm{min}$ ) $\mathrm{t}_{\mathrm{R} 1}=7.891 \mathrm{~min}$ (major) and $\mathrm{t}_{\mathrm{R} 2}=8.692 \mathrm{~min}$ (minor), ee $=79 \% .[\alpha]_{\mathrm{D}}{ }^{25}=+11.0\left(\mathrm{c}=2.0, \mathrm{CHCl}_{3}\right)$.

(R)-4-(borane tert-butyl(methyl)phosphino)phenyl)methanol. Performed according to the general procedure to afford $64 \mathrm{mg}(95 \%)$ of $(R)-\mathbf{2 i}$ as white solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.68(\mathrm{t}, \mathrm{J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.44(\mathrm{~d}, \mathrm{~J}=7.6$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{Ar}), 4.72\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.37\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right), 1.56\left(\mathrm{~d}, \mathrm{~J}=9.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.09\left(\mathrm{~d}, \mathrm{~J}=14.0 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $0.17-0.91\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{BH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 144.1(\mathrm{~s}, \mathrm{Ar}), 133.0\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=8.4 \mathrm{~Hz}, \mathrm{Ar}\right), 126.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{p}}=51.5\right.$ $\mathrm{Hz}, \mathrm{Ar}), 126.4\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=10.1 \mathrm{~Hz}, \mathrm{Ar}\right), 64.4\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 28.4\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=33.0 \mathrm{~Hz}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 25.0\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=2.6 \mathrm{~Hz}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 5.2$ (d, $J_{C-p}=37.8 \mathrm{~Hz}, \mathrm{CH}_{3}$ ). ${ }^{31} \mathrm{P}$ NMR ( $162 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 24.6$ (q, J=68.0 Hz). HRMS (ESI): m/z: $\left[\mathrm{M}+\mathrm{H}-\mathrm{BH}_{3}\right]^{+}$calculated for $\mathrm{C}_{12} \mathrm{H}_{20}$ OP: 211.1246, found 211.1246. HPLC (Daicel Chiralcel OD-H, $n$-hexane $/ i-\mathrm{PrOH}=90 / 10$, UV $=254 \mathrm{~nm}$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$ ) $\mathrm{t}_{\mathrm{R} 1}=9.399 \mathrm{~min}$ (major) and $t_{R 2}=12.921 \mathrm{~min}$ (minor), ee $=84 \% .[\alpha]_{D}{ }^{25}=+58.0(c=2.0$, $\mathrm{CHCl}_{3}$ ).

(R)-tert-butyl(4-chlorophenyl)(methyl)phosphine Borane. Performed according to the general procedure to afford $46 \mathrm{mg}(68 \%)$ of $(R)-\mathbf{2 j}$ as white solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.61-7.69(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.41-7.48(\mathrm{~m}, 2$ $\mathrm{H}, \mathrm{Ar}), 1.57\left(\mathrm{~d}, \mathrm{~J}=9.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.10\left(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.11-0.95\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{BH} \mathrm{H}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz,
 $\left.\mathrm{p}=30.3 \mathrm{~Hz}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 25.1\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=2.7 \mathrm{~Hz}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 5.3\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=38.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right) .{ }^{31} \mathrm{P} \mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 25.5(\mathrm{q}$, $J=59.9 \mathrm{~Hz}$ ). HRMS (ESI): m/z: $\left[\mathrm{M}+\mathrm{H}-\mathrm{BH}_{3}\right]^{+}$calculated for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{CIP}: 215.0751$, found 215.0752. HPLC (Daicel Chiralcel AS-H, $n$-hexane $/ i-\mathrm{PrOH}=99 / 1, \mathrm{UV}=234 \mathrm{~nm}$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$ ) $\mathrm{t}_{\mathrm{R} 1}=9.339 \mathrm{~min}(\mathrm{major})$ and $\mathrm{t}_{\mathrm{R} 2}=$ 11.765 min (minor), ee $=94 \% .[\alpha]_{\mathrm{D}}{ }^{25}=+1.5\left(\mathrm{c}=2.0, \mathrm{CHCl}_{3}\right)$.

(R)-tert-butyl(methyl)(4-(trifluoromethyl)phenyl)phosphine Borane. Performed according to the general procedure to afford $47 \mathrm{mg}(60 \%)$ of $(R)-2 k$ as yellow solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.83-7.88(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar})$, $7.72(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 1.61\left(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.12\left(\mathrm{~d}, \mathrm{~J}=14.2 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.21-0.94(\mathrm{~m}, 3 \mathrm{H}$, $\left.B H_{3}\right) .{ }^{13} \mathrm{CNMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 133.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=8.4 \mathrm{~Hz}, \mathrm{Ar}\right), 133.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=2.0 \mathrm{~Hz}, \mathrm{Ar}\right), 133.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=5.1 \mathrm{~Hz}, \mathrm{Ar}\right)$, 132.4 ( $\mathrm{s}, \mathrm{Ar}$ ), $123.6\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=273.7 \mathrm{~Hz}, \mathrm{CF}_{3}\right.$ ), $122.2(\mathrm{~s}, \mathrm{Ar}), 28.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=32.6 \mathrm{~Hz}, C\left(\mathrm{CH}_{3}\right)_{3}\right), 25.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{p}}=2.6 \mathrm{~Hz}\right.$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 5.2\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=37.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right) .{ }^{31} \mathrm{P} \mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 26.9(\mathrm{q}, J=40.5 \mathrm{~Hz}) .{ }^{19} \mathrm{~F} \mathrm{NMR}\left(377 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ : $\delta$-63.1 (s). HRMS (ESI): m/z: $\left[\mathrm{M}+\mathrm{H}-\mathrm{BH}_{3}\right]^{+}$calculated for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{P}: 249.1014$, found 249.1016. HPLC (Daicel Chiralcel AS-H, $n$-hexane $/ i-\mathrm{PrOH}=99 / 1, \mathrm{UV}=254 \mathrm{~nm}$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$ ) $\mathrm{t}_{\mathrm{R} 1}=6.392 \mathrm{~min}(\operatorname{minor})$ ang $\mathrm{t}_{\mathrm{R} 2}=$ 6.672 min (major), ee $=89 \% .[\alpha]_{\mathrm{D}}{ }^{25}=+5.5\left(\mathrm{c}=2.0, \mathrm{CHCl}_{3}\right)$.

(R)-1-(4-(borane tert-butyl(methyl)phosphino)phenyl)ethan-1-one. Performed according to the general procedure to afford $20 \mathrm{mg}(28 \%)$ of ( $R$ )-2l as white solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.95-8.05(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar})$, $7.82(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 2.64\left(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 1.61\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.12(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 9 \mathrm{H}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) \cdot{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 197.6\left(\mathrm{~s}, \mathrm{COCH}_{3}\right), 138.8(\mathrm{~s}, \mathrm{Ar}), 133.2\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=8.1 \mathrm{~Hz}, \mathrm{Ar}\right), 127.7\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=9.1\right.$ $\mathrm{Hz}, \mathrm{Ar}), 28.8\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=30.3 \mathrm{~Hz}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 28.5\left(\mathrm{~s}, \mathrm{COCH}_{3}\right), 25.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{p}}=2.7 \mathrm{~Hz}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 5.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=38.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right) .{ }^{31} \mathrm{P}$ NMR (162 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 26.5$ (q, J = 61.6 Hz ). HRMS (ESI): m/z: $\left[\mathrm{M}+\mathrm{H}-\mathrm{BH}_{3}\right]^{+}$calculated for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{OP}: 223.1246$, found 223.1247. HPLC (Daicel Chiralcel OD-H, $n$-hexane $/ i-\mathrm{PrOH}=90 / 10$, UV $=254 \mathrm{~nm}$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$ ) $\mathrm{t}_{\mathrm{R} 1}$ $=7.292 \mathrm{~min}$ (major) and $\mathrm{t}_{\mathrm{R} 2}=8.536 \mathrm{~min}$ (minor), ee $=63 \% .[\alpha]_{\mathrm{D}}{ }^{25}=+1.5\left(\mathrm{c}=2.0, \mathrm{CHCl}_{3}\right)$.

(R)-(4-(borane tert-butyl(methyl)phosphino)phenyl)(phenyl)methanone. Performed according to the general procedure to afford $22 \mathrm{mg}(25 \%)$ of ( $R$ )-2m as yellow solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.77-7.90(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar})$, 7.61 - 7.65 (m, $1 \mathrm{H}, \mathrm{Ar}$ ), $7.49-7.53$ (m, $2 \mathrm{H}, \mathrm{Ar}), 1.63\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.14\left(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, 0.11 - 1.02 ( $\mathrm{m}, 3 \mathrm{H}, \mathrm{BH}_{3}$ ). ${ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 196.1$ (s, CO), 139.8 ( $\left.\mathrm{s}, \mathrm{Ar}\right), 136.8$ ( $\left.\mathrm{s}, \mathrm{Ar}\right), 133.0(\mathrm{~s}, \mathrm{Ar})$,
 ( $\mathrm{s}, \mathrm{Ar}$ ), $28.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=32.3 \mathrm{~Hz}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 25.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.7 \mathrm{~Hz}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 5.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=37.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right) .{ }^{31 \mathrm{P}} \mathrm{NMR}(162 \mathrm{MHz}$, $\mathrm{CDCl}_{3}$ ): $\delta 26.5$ ( $\mathrm{q}, \mathrm{J}=76.1 \mathrm{~Hz}$ ). HRMS (ESI): m/z: $\left[\mathrm{M}+\mathrm{H}-\mathrm{BH}_{3}\right]^{+}$calculated for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{P}: 285.1408$, found 285.1413. HPLC (Daicel Chiralcel OD-H, $n$-hexane $/ i-\mathrm{PrOH}=98 / 2, \mathrm{UV}=250 \mathrm{~nm}$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$ ) $\mathrm{t}_{\mathrm{R} 1}=54.504 \mathrm{~min}$ (minor) and $\mathrm{t}_{\mathrm{R} 2}=57.362 \mathrm{~min}$ (major), $\mathrm{ee}=65 \% .[\alpha]_{\mathrm{D}}{ }^{25}=+52.0\left(\mathrm{c}=2.0, \mathrm{CHCl}_{3}\right)$.

( $R$ )-ethyl 4-(borane tert-butyl(methyl)phosphino)benzoate. Performed according to the general procedure to afford $50 \mathrm{mg}(63 \%)$ of $(R)-2 \mathrm{n}$ as yellow solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.08-8.14(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.76-7.83(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{Ar}), 4.41\left(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.61\left(\mathrm{~d}, \mathrm{~J}=9.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.41\left(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.11(\mathrm{~d}, J=$ $\left.14.0 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.19-0.94\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{BH}_{3}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 165.9\left(\mathrm{~s}, \mathrm{CO}_{2} \mathrm{Et}\right), 133.4\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=2.0\right.$ $\mathrm{Hz}, \mathrm{Ar}), 132.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=8.3 \mathrm{~Hz}, \mathrm{Ar}\right), 132.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.0 \mathrm{~Hz}, \mathrm{Ar}\right), 129.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=9.5 \mathrm{~Hz}, \mathrm{Ar}\right), 61.4\left(\mathrm{~s}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 28.7$ $\left(\mathrm{d}, \mathrm{J}_{\mathrm{C}-\mathrm{p}}=33.3 \mathrm{~Hz}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 25.1\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=2.8 \mathrm{~Hz}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 14.3\left(\mathrm{~s}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 5.2\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=37.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right) .{ }^{31 \mathrm{p}} \mathrm{NMR}$ ( $162 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 26.4$ ( $\mathrm{q}, \mathrm{J}=66.4 \mathrm{~Hz}$ ). HRMS (ESI): m/z: $\left[\mathrm{M}+\mathrm{H}-\mathrm{BH}_{3}\right]^{+}$calculated for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{P}: 253.1352$, found 253.1353. HPLC (Daicel Chiralcel OD-H, $n$-hexane $/ i-\mathrm{PrOH}=98 / 2$, UV $=230 \mathrm{~nm}$, flow rate $=0.8 \mathrm{~mL} / \mathrm{min}$ ) $\mathrm{t}_{\mathrm{R} 1}=$ 15.308 min (major) and $\mathrm{t}_{\mathrm{R} 2}=16.976 \mathrm{~min}$ (minor), $\mathrm{ee}=92 \% .[\alpha]_{\mathrm{D}}{ }^{25}=+11.0\left(\mathrm{c}=2.0, \mathrm{CHCl}_{3}\right)$.

(R)-4-( borane tert-butyl(methyl)phosphino)benzonitrile. Performed according to the general procedure to afford $24 \mathrm{mg}(36 \%)$ of ( $R$ )-2o as white solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.85(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.77(\mathrm{~d}, \mathrm{~J}=$ $\left.5.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 1.63\left(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.98-1.19\left(\mathrm{~d}, \mathrm{~J}=14.0 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.11-0.95(\mathrm{~m}, 3 \mathrm{H}, \mathrm{BH})_{3}\right)$. ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 134.3\left(\mathrm{~d}, J_{C-p}=44.4 \mathrm{~Hz}, \mathrm{Ar}\right), 133.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{p}}=7.1 \mathrm{~Hz}, \mathrm{Ar}\right), 131.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{p}}=8.1 \mathrm{~Hz}, \mathrm{Ar}\right)$, $117.9(\mathrm{~s}, \mathrm{CN}), 115.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=40.0 \mathrm{~Hz}, \mathrm{Ar}\right), 28.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=30.3 \mathrm{~Hz}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 25.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.7 \mathrm{~Hz}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 5.1\left(\mathrm{~d}, J_{\mathrm{CP}}=\right.$ $40.4 \mathrm{~Hz}, \mathrm{CH}_{3}$ ). ${ }^{31} \mathrm{P}$ NMR ( $162 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 28.1$ ( $\mathrm{q}, \mathrm{J}=71.3 \mathrm{~Hz}$ ). HRMS (ESI): m/z: $\left[\mathrm{M}+\mathrm{H}-\mathrm{BH}_{3}\right]^{+}$calculated for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NP}:$ 206.1093, found 206.1094. HPLC (Daicel Chiralcel OD-H, $n$-hexane/i-PrOH $=90 / 10, \mathrm{UV}=250 \mathrm{~nm}$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}) \mathrm{t}_{\mathrm{R} 1}=7.383 \mathrm{~min}$ (major) and $\mathrm{t}_{\mathrm{R} 2}=8.712 \mathrm{~min}($ minor $), \mathrm{ee}=74 \% .[\alpha]_{\mathrm{D}}{ }^{25}=+4.7\left(\mathrm{c}=2.0, \mathrm{CHCl}_{3}\right)$.

(R)-tert-butyl(4-methoxynaphthalen-1-yl)(methyl)phosphine Borane. Performed according to the general procedure to afford $37 \mathrm{mg}(40 \%)$ of $(R)-2 p$ as white solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.79(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar})$, 8.33 (d, J = 8.4 Hz, $1 \mathrm{H}, \mathrm{Ar}$ ), $7.74(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}), 7.47-7.63(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 6.86(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 4.05\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $1.76\left(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.15\left(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.21-0.88\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{BH}_{3}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ : $\delta 158.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=3.0 \mathrm{~Hz}, \mathrm{Ar}\right), 136.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=11.1 \mathrm{~Hz}, \mathrm{Ar}\right), 134.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=6.1 \mathrm{~Hz}, \mathrm{Ar}\right), 127.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{p}}=5.1 \mathrm{~Hz}, \mathrm{Ar}\right)$,
 $\left.\mathrm{Hz}, \mathrm{Ar}), 55.7(\mathrm{~s}, \mathrm{OMe}), 30.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{p}}=32.3 \mathrm{~Hz}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 25.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=3.0 \mathrm{~Hz}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 9.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=39.4 \mathrm{~Hz}, \mathrm{CH}\right)\right) .{ }^{31} \mathrm{P}$ NMR (162 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 22.4$ ( $\mathrm{q}, \mathrm{J}=68.0 \mathrm{~Hz}$ ). HRMS (ESI): m/z: $\left[\mathrm{M}+\mathrm{H}-\mathrm{BH}_{3}\right]^{+}$calculated for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{OP}: 261.1403$, found 261.1403. HPLC (Daicel Chiralcel OD-H, $n$-hexane $/ i-\operatorname{PrOH}=98 / 2$, UV $=250 \mathrm{~nm}$, flow rate $=1 \mathrm{~mL} / \mathrm{min}$ ) $\mathrm{t}_{\mathrm{R} 1}=$ 7.585 min (minor) and $\mathrm{t}_{\mathrm{R} 2}=12.549 \mathrm{~min}$ (major), ee $=46 \% .[\alpha]_{\mathrm{D}}{ }^{25}=+16.0\left(\mathrm{c}=2.0, \mathrm{CHCl}_{3}\right)$.

(R)-tert-butyl(9,9-dimethyl-9H-fluoren-2-yl)(methyl)phosphine Borane. Performed according to the general procedure to afford $76 \mathrm{mg}(82 \%)$ of $(R)-2 q$ as white solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.72-7.81(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar})$, $7.67(\mathrm{t}, \mathrm{J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 7.43-7.49(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 7.34-7.38(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 1.62\left(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH} \mathrm{H}_{3}\right), 1.51(\mathrm{~d}, \mathrm{~J}$ $\left.=4.0 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.12\left(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.11-0.99\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{BH}_{3}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 154.1$
 128.4 ( $\mathrm{s}, \mathrm{Ar}$ ), 127.2 ( $\mathrm{d}, J_{\mathrm{C}-\mathrm{p}}=8.1 \mathrm{~Hz}, \operatorname{Ar}$ ), 126.0 ( $\mathrm{s}, \mathrm{Ar}$ ), 122.8 ( $\mathrm{s}, \mathrm{Ar}$ ), 120.7 ( $\mathrm{s}, \mathrm{Ar}$ ), 119.7 ( $\mathrm{d}, \mathrm{J}_{\mathrm{C}-\mathrm{p}}=10.0 \mathrm{~Hz}, \mathrm{Ar}$ ), 47.0 ( s , $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 28.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=34.4 \mathrm{~Hz}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 27.0\left(\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 25.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.8 \mathrm{~Hz}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 5.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=38.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$. ${ }^{31} \mathrm{P}$ NMR (162 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 25.3$ ( $\mathrm{q}, J=72.9 \mathrm{~Hz}$ ). HRMS (ESI): m/z: $\left[\mathrm{M}+\mathrm{H}-\mathrm{BH}_{3}\right]^{+}$calculated for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{P}: 297.1767$, found 297.1769. HPLC (Daicel Chiralcel IBN-H, $n$-hexane $/ i-\mathrm{PrOH}=99 / 1$, UV $=254 \mathrm{~nm}$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}$ ) $\mathrm{t}_{\mathrm{R} 1}$ $=11.612 \mathrm{~min}$ (minor) and $\mathrm{t}_{\mathrm{R} 2}=12.325 \mathrm{~min}($ major $)$, ee $=74 \% .[\alpha]_{\mathrm{D}}{ }^{25}=+7.5\left(\mathrm{c}=2.0, \mathrm{CHCl}_{3}\right)$.

(R)-tert-butyl(methyl)(phenanthren-9-yl)phosphine Borane. Performed according to the general procedure to afford $79 \mathrm{mg}(85 \%)$ of $(R)-2 \mathrm{r}$ as white solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.96(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 8.68-8.74$ (m, 2 H, Ar), 8.08 (d, J = $12.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}$ ), 7.94 (d, J = $7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}$ ), $7.61-7.80$ (m, $4 \mathrm{H}, \mathrm{Ar}$ ), 1.87 (d, J = 9.0 Hz, 3 $\left.\mathrm{H}, \mathrm{CH}_{3}\right), 1.21\left(\mathrm{~d}, \mathrm{~J}=14.1 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.11-0.94\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{BH}_{3}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 136.2\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=\right.$ $4.0 \mathrm{~Hz}, \mathrm{Ar}), 132.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=7.1 \mathrm{~Hz}, \mathrm{Ar}\right), 131.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.0 \mathrm{~Hz}, \mathrm{Ar}\right), 130.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=7.1 \mathrm{~Hz}, \mathrm{Ar}\right), 130.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=10.0 \mathrm{~Hz}\right.$,
 $=47.5 \mathrm{~Hz}, \mathrm{Ar}), 122.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=38.4 \mathrm{~Hz}, \mathrm{Ar}\right), 30.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=30.3 \mathrm{~Hz}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 26.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.8 \mathrm{~Hz}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 9.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}\right.$ $=40.4 \mathrm{~Hz}, \mathrm{CH}_{3}$ ). ${ }^{31} \mathrm{P}$ NMR ( $162 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 24.6$ ( $\mathrm{q}, \mathrm{J}=58.3 \mathrm{~Hz}$ ). HRMS (ESI): m/z: $\left[\mathrm{M}+\mathrm{H}-\mathrm{BH}_{3}\right]^{+}$calculated for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{P}$ : 281.1454, found 281.1455. HPLC (Daicel Chiralcel AS-H, $n$-hexane/i-PrOH $=90 / 10$, UV $=254 \mathrm{~nm}$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$ ) $\mathrm{t}_{\mathrm{R} 1}=13.414 \mathrm{~min}($ minor $)$ and $\mathrm{t}_{\mathrm{R} 2}=28.472 \mathrm{~min}($ major $)$, ee $=91 \% .[\alpha]_{\mathrm{D}}{ }^{25}=+13.5\left(\mathrm{c}=2.0, \mathrm{CHCl}_{3}\right)$.

(R)-3-(borane tert-butyl(methyl)phosphino)-N,N-dimethylaniline. Performed according to the general procedure to afford $37 \mathrm{mg}(52 \%)$ of $(R)$-3a as yellow solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.26-7.39(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar})$, $7.09(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 6.92-6.96(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 6.82(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 2.98\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.54(\mathrm{~d}, J=$ $\left.12.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.12\left(\mathrm{~d}, \mathrm{~J}=24.0 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.18-0.74\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{BH}_{3}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 150.1$
 $\left.J_{C-p}=12.8 \mathrm{~Hz}, \mathrm{Ar}\right), 114.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.3 \mathrm{~Hz}, \mathrm{Ar}\right), 40.4\left(\mathrm{~s}, \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right), 28.5\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=30.3 \mathrm{~Hz}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 25.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.7 \mathrm{~Hz}\right.$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 5.4\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=38.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right) .{ }^{31} \mathrm{P} \mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 25.6(\mathrm{q}, \mathrm{J}=64.8 \mathrm{~Hz}) . \mathrm{HRMS}(\mathrm{ESI}): \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}-$ $\left.\mathrm{BH}_{3}\right]^{+}$calculated for $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{NP}: 224.1563$, found 224.1562. HPLC (Daicel Chiralcel OD-H, $n$-hexane $/ i-\mathrm{PrOH}=98 / 2$,
$U V=250 \mathrm{~nm}$, flow rate $=0.8 \mathrm{~mL} / \mathrm{min}) \mathrm{t}_{\mathrm{R} 1}=8.667 \mathrm{~min}($ minor $)$ and $\mathrm{t}_{\mathrm{R} 2}=10.155 \mathrm{~min}($ major $)$, ee $=80 \% .[\alpha]_{\mathrm{D}}{ }^{25}=$ $+24.0\left(\mathrm{c}=2.0, \mathrm{CHCl}_{3}\right)$.

( $R$ )-4-(4-(borane tert-butyl(methyl)phosphino)phenyl)morpholine. Performed according to the general procedure to afford $44 \mathrm{mg}(53 \%)$ of $(R)-3 b$ as white solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.55-7.60(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar})$, 6.91-6.94 (m, 2 H, Ar), 3.84-3.87 (m, 4 H, CH2), 3.23-3.25 (m, 4 H, CH2), $1.52\left(d, J=9.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.09(\mathrm{~d}, \mathrm{~J}$ $\left.=13.9 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.25-0.84\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{BH}_{3}\right) .{ }^{13} \mathrm{CNMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 152.8\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=3.0 \mathrm{~Hz}, \mathrm{Ar}\right), 134.1(\mathrm{~d}$, $\left.J_{C-P}=9.1 \mathrm{~Hz}, \mathrm{Ar}\right), 116.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=56.6 \mathrm{~Hz}, \mathrm{Ar}\right), 114.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=10.1 \mathrm{~Hz}, \mathrm{Ar}\right), 66.6\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 47.8\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 28.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=\right.$ $\left.34.3 \mathrm{~Hz}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 25.1\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=3.0 \mathrm{~Hz}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 5.3\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=38.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right) .{ }^{31} \mathrm{P} \mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 22.4(\mathrm{q}, \mathrm{J}$ $=74.5 \mathrm{~Hz}$ ). HRMS (ESI): m/z: $\left[\mathrm{M}+\mathrm{H}-\mathrm{BH}_{3}\right]^{+}$calculated for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{NOP}: 266.1668$, found 266.1668. HPLC (Daicel Chiralcel OD-H, $n$-hexane $/ i-\mathrm{PrOH}=90 / 10, \mathrm{UV}=250 \mathrm{~nm}$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$ ) $\mathrm{t}_{\mathrm{R} 1}=11.953 \mathrm{~min}($ major $)$ and $\mathrm{t}_{\mathrm{R} 2}=$ 16.618 min (minor), ee $=46 \% .[\alpha]_{\mathrm{D}}^{25}=+24.0\left(\mathrm{c}=2.0, \mathrm{CHCl}_{3}\right)$.

(R)-1-(4-(borane tert-butyl(methyl)phosphino)phenyl)-1H-pyrrole. Performed according to the general procedure to afford $57 \mathrm{mg}(74 \%)$ of $(R)-3 \mathrm{c}$ as white solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.74-7.79(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar})$, $7.46-7.49$ (m, $2 \mathrm{H}, ~ A r), 7.13-7.15$ (m, $2 \mathrm{H}, \mathrm{Ar}$ ), $6.38-6.39(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 1.59\left(\mathrm{~d}, \mathrm{~J}=3.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.13(\mathrm{~d}, \mathrm{~J}=$ $\left.4.0 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.11-1.07\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{BH}_{3}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 142.7\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=3.0 \mathrm{~Hz}, \mathrm{Ar}\right), 134.4(\mathrm{~d}$, $\left.J_{C-p}=9.9 \mathrm{~Hz}, \operatorname{Ar}\right), 124.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=51.2 \mathrm{~Hz}, \mathrm{Ar}\right), 119.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=10.0 \mathrm{~Hz}, \mathrm{Ar}\right), 119.0(\mathrm{~s}, \mathrm{Ar}), 111.4(\mathrm{~s}, \mathrm{Ar}), 28.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=\right.$ $\left.33.3 \mathrm{~Hz}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 25.1\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=3.0 \mathrm{~Hz}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 5.3\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=37.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right) .{ }^{31} \mathrm{P} \mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 24.6(\mathrm{q}, \mathrm{J}$ $=68.0 \mathrm{~Hz}$ ). HRMS (ESI): m/z: $\left[\mathrm{M}+\mathrm{H}-\mathrm{BH}_{3}\right]^{+}$calculated for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NP}: 246.1406$, found 246.1407. HPLC (Daicel Chiralcel OD-H, $n$-hexane $/ i-\mathrm{PrOH}=98 / 2, \mathrm{UV}=254 \mathrm{~nm}$, flow rate $=0.8 \mathrm{~mL} / \mathrm{min}$ ) $\mathrm{t}_{\mathrm{R} 1}=13.659 \mathrm{~min}(\operatorname{minor})$ and $\mathrm{t}_{\mathrm{R} 2}=$ 15.300 min (major), ee $=94 \% .[\alpha]_{\mathrm{D}}{ }^{25}=+0.5\left(\mathrm{c}=2.0, \mathrm{CHCl}_{3}\right)$.

(R)-9-(4-(borane tert-butyl(methyl)phosphino)phenyl)-9H-carbazole. Performed according to the general procedure to afford $67.8 \mathrm{mg}(63 \%)$ of $(R)-3 \mathrm{~d}$ as white solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.15(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}$, Ar), $7.93-7.98$ (m, $2 \mathrm{H}, ~ \mathrm{Ar}$ ), $7.70-7.72$ (m, $2 \mathrm{H}, \mathrm{Ar}$ ), 7.41 - 7.49 (m, $4 \mathrm{H}, \mathrm{Ar}$ ), $7.30-7.34$ (m, $2 \mathrm{H}, \mathrm{Ar}$ ), 1.67 ( $\mathrm{d}, \mathrm{J}=$ $\left.8.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.21\left(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.26-0.93\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{BH}_{3}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 140.5$
 123.7 ( $\mathrm{s}, \mathrm{Ar}$ ), $120.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=6.1 \mathrm{~Hz}, \mathrm{Ar}\right), 109.7(\mathrm{~s}, \mathrm{Ar}), 28.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=33.3 \mathrm{~Hz}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 25.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=3.0 \mathrm{~Hz}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$,
$5.4\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=37.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$ ). ${ }^{31 \mathrm{p}} \mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 25.6$ (q, $J=53.5 \mathrm{~Hz}$ ). HRMS (ESI): m/z: $\left[\mathrm{M}+\mathrm{H}-\mathrm{BH}_{3}\right]^{+}$ calculated for $\mathrm{C}_{23} \mathrm{H}_{25}$ NP: 346.1719, found 346.1721. HPLC (Daicel Chiralcel AS-H, $n$-hexane/ $i-\mathrm{PrOH}=98 / 2, \mathrm{UV}=$ 254 nm , flow rate $=0.5 \mathrm{~mL} / \mathrm{min}$ ) $\mathrm{t}_{\mathrm{R} 1}=18.239 \mathrm{~min}($ major $)$ and $\mathrm{t}_{\mathrm{R} 2}=20.275 \mathrm{~min}($ minor $)$, ee $=69 \% .[\alpha]_{\mathrm{D}}{ }^{25}=+4.5$ (c $\left.=2 \cdot 0, \mathrm{CHCl}_{3}\right)$.

( $\boldsymbol{R}$ )-4-(borane tert-butyl(methyl)phosphino)- $\mathbf{N}, \mathbf{N}$-diphenylaniline. Performed according to the general procedure to afford $58 \mathrm{mg}(47 \%)$ of $(R)-3 \mathrm{e}$ as white solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.46-7.51(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.28-7.32$ ( $\mathrm{m}, 4 \mathrm{H}, \mathrm{Ar}$ ), $7.09-7.14$ (m, $6 \mathrm{H}, \mathrm{Ar}$ ), $7.02-7.04$ (m, $2 \mathrm{H}, \mathrm{Ar}$ ), 1.52 ( $\mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$ ), 1.11 (d, J = $12.0 \mathrm{~Hz}, 9 \mathrm{H}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.26-0.86\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{BH}_{3}\right) .{ }^{13} \mathrm{CNMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 150.3\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=2.0 \mathrm{~Hz}, \mathrm{Ar}\right), 146.7(\mathrm{~s}, \mathrm{Ar}), 133.8(\mathrm{~d}$,
 $\left.33.3 \mathrm{~Hz}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 25.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=3.0 \mathrm{~Hz}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 5.4\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=38.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right)^{31} \mathrm{P} \mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 25.4(\mathrm{q}, \mathrm{J}=$ 61.6 Hz ). HRMS (ESI): m/z: $\left[\mathrm{M}+\mathrm{H}-\mathrm{BH}_{3}\right]^{+}$calculated for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{NP}: 348.1876$, found 348.1877 . HPLC (Daicel Chiralcel $\mathrm{OD}-\mathrm{H}, n$-hexane $/ i-\mathrm{PrOH}=98 / 2, \mathrm{UV}=250 \mathrm{~nm}$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}) \mathrm{t}_{\mathrm{R} 1}=5.476 \mathrm{~min}(\mathrm{minor})$ and $\mathrm{t}_{\mathrm{R} 2}=5.912 \mathrm{~min}$ (major), ee $=84 \% .[\alpha]_{\mathrm{D}}{ }^{25}=+8.0\left(\mathrm{c}=2.0, \mathrm{CHCl}_{3}\right)$.

( $R$ )-4-(borane tert-butyl(methyl)phosphino)- $\boldsymbol{N}, \mathbf{N}$-bis(4-iodophenyl)aniline. Performed according to the general procedure to afford $93.7 \mathrm{mg}(51 \%)$ of $(R)-3 f$ as white solid. ${ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{( } 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.46-7.51(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar})$,
 $\left.=12.0 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.26-0.86(\mathrm{~m}, 3 \mathrm{H}, \mathrm{BH} 3) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 149.2\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}} \mathrm{p}=3.0 \mathrm{~Hz}, \mathrm{Ar}\right), 146.1(\mathrm{~s}$,
 87.6 ( $\mathrm{s}, \mathrm{Ar}$ ), $28.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=33.3 \mathrm{~Hz}, C\left(\mathrm{CH}_{3}\right)_{3}\right), 25.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.0 \mathrm{~Hz}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 5.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{p}}=38.4 \mathrm{~Hz}, C \mathrm{H}_{3}\right) .{ }^{31 \mathrm{P}} \mathrm{NMR}(162$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 23.7$ ( $\mathrm{q}, \mathrm{J}=38.9 \mathrm{~Hz}$ ). HRMS (ESI): m/z: $\left[\mathrm{M}+\mathrm{H}-\mathrm{BH}_{3}\right]^{+}$calculated for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{I}_{2} \mathrm{NP}: 599.9808$, found 599.9811. HPLC (Daicel Chiralcel OD-H, $n$-hexane $/ i-\mathrm{PrOH}=90 / 10$, UV $=254 \mathrm{~nm}$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$ ) $\mathrm{t}_{\mathrm{R} 1}=$ 9.428 min (major) and $\mathrm{t}_{\mathrm{R} 2}=11.065 \mathrm{~min}$ (minor), ee $=94 \%$. $[\alpha]_{\mathrm{D}}{ }^{25}=+1.5\left(\mathrm{c}=2.0, \mathrm{CHCl}_{3}\right)$.

(R)-2-(borane tert-butyl(methyl)phosphino)-6-fluoropyridine. Performed according to the general procedure to afford $59 \mathrm{mg}(62 \%)$ of $(R)-3 \mathrm{~g}$ as white solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.88-7.92(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 7.69-7.73(\mathrm{~m}, 1$ $\left.\mathrm{H}, \mathrm{Ar}), 7.37(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 1.60(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH})_{3}\right), 1.11\left(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.26-0.98(\mathrm{~m}, 3$ $\left.\mathrm{H}, \mathrm{BH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 154.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=61.6 \mathrm{~Hz}, \mathrm{Ar}\right), 151.5\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=11.1 \mathrm{~Hz}, \mathrm{Ar}\right), 138.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{p}}=10.0\right.$ $\mathrm{Hz}, \mathrm{Ar}), 129.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{p}}=23.2 \mathrm{~Hz}, \mathrm{Ar}\right), 125.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{p}}=2.0 \mathrm{~Hz}, \mathrm{Ar}\right), 28.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=32.3 \mathrm{~Hz}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 25.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{p}}=3.0 \mathrm{~Hz}\right.$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 4.5\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=39.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right) .{ }^{31} \mathrm{P} \mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 30.3(\mathrm{q}, \mathrm{J}=61.6 \mathrm{~Hz}) .{ }^{19} \mathrm{~F} \mathrm{NMR}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$ $\delta$-68.4 (s). HRMS (ESI): m/z: $\left[\mathrm{M}+\mathrm{H}-\mathrm{BH}_{3}\right]^{+}$calculated for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{FNP}: 200.0999$, found 200.1001. HPLC (Daicel

Chiralcel AS-H, $n$-hexane $/ i-\mathrm{PrOH}=98 / 2, \mathrm{UV}=250 \mathrm{~nm}$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}) \mathrm{t}_{\mathrm{R} 1}=11.503 \mathrm{~min}(\mathrm{minor})$ and $\mathrm{t}_{\mathrm{R} 2}=$ 12.124 min (major), ee $=97 \% .[\alpha]_{\mathrm{D}}{ }^{25}=+12.0\left(\mathrm{c}=2.0, \mathrm{CHCl}_{3}\right)$.

(R)-methyl 6-(borane tert-butyl(methyl)phosphino)picolinate. Performed according to the general procedure to afford $35.7 \mathrm{mg}(47 \%)$ of $(R)-3 \mathrm{~h}$ as white solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.11-8.15$ (m, $2 \mathrm{H}, \mathrm{Ar}$ ), $7.86-7.91(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 3.97\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.66\left(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.13(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, 9 \mathrm{H}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.20-0.95\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{BH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 165.2(\mathrm{~s}, \mathrm{CO}), 154.3\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=64.6 \mathrm{~Hz}, \mathrm{Ar}\right), 148.1$ (d, $\left.J_{C-p}=11.1 \mathrm{~Hz}, \operatorname{Ar}\right), 136.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=8.1 \mathrm{~Hz}, \mathrm{Ar}\right), 132.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=25.3 \mathrm{~Hz}, \mathrm{Ar}\right), 125.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{p}}=2.0 \mathrm{~Hz}, \mathrm{Ar}\right), 52.8(\mathrm{~s}$, $\left.C_{3}\right), 28.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=32.3 \mathrm{~Hz}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 25.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.5 \mathrm{~Hz}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 4.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=39.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right) .{ }^{31 \mathrm{P}} \mathrm{NMR}(162 \mathrm{MHz}$, $\mathrm{CDCl}_{3}$ ): $\delta 30.3$ ( $\mathrm{q}, \mathrm{J}=66.4 \mathrm{~Hz}$ ). HRMS (ESI): m/z: $\left[\mathrm{M}+\mathrm{H}-\mathrm{BH}_{3}\right]^{+}$calculated for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{NO}_{2} \mathrm{P}: 240.1148$, found 240.1150. HPLC (Daicel Chiralcel AS-H, n-hexane $/ i-\mathrm{PrOH}=95 / 5$, UV $=230 \mathrm{~nm}$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$ ) $\mathrm{t}_{\mathrm{R} 1}=8.140 \mathrm{~min}$ (minor) and $\mathrm{t}_{\mathrm{R} 2}=9.308 \mathrm{~min}$ (major), ee $=73 \% .[\alpha]_{\mathrm{D}}{ }^{25}=+42.0\left(\mathrm{c}=2.0, \mathrm{CHCl}_{3}\right)$.

(R)-2-(borane tert-butyl(methyl)phosphino)quinoline. Performed according to the general procedure to afford $68 \mathrm{mg}(56 \%)$ of $(R)-3 \mathrm{i}$ as white solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.20-8.22(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 8.15(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}$, Ar), $8.02-8.05(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 7.87(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 7.75-7.79(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 7.60-7.64$ (m, $1 \mathrm{H}, \mathrm{Ar}), 1.76$ (d, J $\left.=8.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.18\left(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.25-1.11\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{BH}_{3}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 154.7$
 Ar), 127.8 ( $s, A r$ ), 125.6 ( $d, J_{C-p}=26.3 \mathrm{~Hz}, \mathrm{Ar}$ ), 29.1 ( $\left.\mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=32.3 \mathrm{~Hz}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 25.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=3.0 \mathrm{~Hz}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 4.6$ (d, $\left.J_{\mathrm{C}-\mathrm{p}}=40.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right) \cdot{ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 30.1(\mathrm{q}, J=63.2 \mathrm{~Hz})$. HRMS (ESI): m/z: $\left[\mathrm{M}+\mathrm{H}-\mathrm{BH}_{3}\right]^{+}$calculated for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NP}$ : 232.1250, found 232.1250. HPLC (Daicel Chiralcel AS-H, $n$-hexane $/ i-\operatorname{PrOH}=98 / 2$, UV $=250 \mathrm{~nm}$, flow rate $=0.8 \mathrm{~mL} / \mathrm{min}) \mathrm{t}_{\mathrm{R} 1}=6.452 \mathrm{~min}($ minor $)$ and $\mathrm{t}_{\mathrm{R} 2}=6.937 \mathrm{~min}($ major $)$, ee $=81 \% .[\alpha]_{\mathrm{D}}{ }^{25}=+49.5\left(\mathrm{c}=2.0, \mathrm{CHCl}_{3}\right)$.

(R)-8-(borane tert-butyl(methyl)phosphino)quinoline. Performed according to the general procedure to afford $20.7 \mathrm{mg}(20 \%)$ of $(R)-3 \mathrm{j}$ as white solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.91-8.93(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 8.50-8.55(\mathrm{~m}, 1 \mathrm{H}$, Ar), 8.19 ( $\mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}$ ), 7.96 ( $\mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}$ ), $7.57-7.64$ (m, $1 \mathrm{H}, \mathrm{Ar}$ ), $7.42-7.45$ (m, $1 \mathrm{H}, \mathrm{Ar}$ ), 2.10 (d, $\left.J=8.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.18\left(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.26-0.90\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{BH}_{3}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $149.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{p}}=2.0 \mathrm{~Hz}, \mathrm{Ar}\right), 149.4(\mathrm{~s}, \mathrm{Ar}), 140.2\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=16.2 \mathrm{~Hz}, \mathrm{Ar}\right), 136.6$ ( $\mathrm{s}, \mathrm{Ar}$ ), $132.0\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=2.5 \mathrm{~Hz}, \mathrm{Ar}\right), 128.4$ (d, $\left.J_{C-p}=5.1 \mathrm{~Hz}, \operatorname{Ar}\right), 126.0(\mathrm{~s}, \mathrm{Ar}), 125.9(\mathrm{~s}, \mathrm{Ar}), 121.2(\mathrm{~s}, \mathrm{Ar}), 30.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{p}}=34.3 \mathrm{~Hz}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 26.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{p}}=3.0 \mathrm{~Hz}\right.$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 8.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{p}}=39.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right) .{ }^{31} \mathrm{P} \mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 31.0(\mathrm{q}, \mathrm{J}=58.3 \mathrm{~Hz}) . \mathrm{HRMS}(\mathrm{ESI}): \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}-$ $\left.\mathrm{BH}_{3}\right]^{+}$calculated for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NP}: 232.1250$, found 232.1250. HPLC (Daicel Chiralcel OD-H, $n$-hexane/i-PrOH $=98 / 2$, $U V=250 \mathrm{~nm}$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$ ) $\mathrm{t}_{\mathrm{R} 1}=6.324 \mathrm{~min}$ (minor) and $\mathrm{t}_{\mathrm{R} 2}=7.473 \mathrm{~min}$ (major), ee $=71 \% .[\alpha]_{\mathrm{D}}{ }^{25}=$ $+42.0\left(\mathrm{c}=2.0, \mathrm{CHCl}_{3}\right)$.

(R)-2-(borane tert-butyl(methyl)phosphino)-5-methoxypyrazine. Performed according to the general procedure to afford $40.0 \mathrm{mg}(59 \%)$ of $(R)-3 k$ as white solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.66(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}), 8.31(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar})$, $\left.4.01\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 1.58\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.14\left(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.20-0.98(\mathrm{~m}, 3 \mathrm{H}, \mathrm{BH})_{3}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl $)_{3}$ : $\delta 161.0\left(d, J_{C-p}=20.0 \mathrm{~Hz}, \mathrm{Ar}\right), 147.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{p}}=28.3 \mathrm{~Hz}, \mathrm{Ar}\right), 138.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=66.7 \mathrm{~Hz}, \mathrm{Ar}\right)$, $136.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=10.0 \mathrm{~Hz}, \mathrm{Ar}\right), 55.0(\mathrm{~s}, \mathrm{OMe}), 28.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=33.3 \mathrm{~Hz}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 25.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=3.0 \mathrm{~Hz}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 4.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}\right.$ $=39.4 \mathrm{~Hz}, \mathrm{CH}_{3}$ ). ${ }^{31} \mathrm{P}$ NMR ( $162 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 24.4$ ( $\mathrm{q}, \mathrm{J}=59.9 \mathrm{~Hz}$ ). HRMS (ESI): m/z: $\left[\mathrm{M}+\mathrm{H}-\mathrm{BH}_{3}\right]^{+}$calculated for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{OP}: 213.1151$, found 213.1152. HPLC (Daicel Chiralcel OD-H, $n$-hexane/i-PrOH $=98 / 2, \mathrm{UV}=254 \mathrm{~nm}$, flow rate $=0.8 \mathrm{~mL} / \mathrm{min}$ ) $\mathrm{t}_{\mathrm{R} 1}=5.752 \mathrm{~min}$ (major) and $\mathrm{t}_{\mathrm{R} 2}=6.206 \mathrm{~min}($ minor $), e e=77 \% .[\alpha]_{\mathrm{D}}{ }^{25}=+9.5\left(\mathrm{c}=2.0, \mathrm{CHCl}_{3}\right)$.

(R)-2-(borane tert-butyl(methyl)phosphino)-3-chloroquinoxaline. Performed according to the general procedure to afford $64 \mathrm{mg}(76 \%)$ of $(R)-3 \mathrm{l}$ as yellow solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.15-8.17(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 8.05-8.08$ (m, $1 \mathrm{H}, \mathrm{Ar}), 7.83-7.92(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 1.81\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.28\left(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.18-1.14(\mathrm{~m}$ $\left.3 \mathrm{H}, \mathrm{BH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 150.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{p}}=22.6 \mathrm{~Hz}, \mathrm{Ar}\right.$ ), 149.9 ( $\mathrm{d}, J_{\mathrm{C}-\mathrm{p}}=9.3 \mathrm{~Hz}, \mathrm{Ar}$ ), $141.4(\mathrm{~s}, \mathrm{Ar}), 140.3$ ( $\mathrm{s}, \mathrm{Ar}$ ), 132.9 ( $\mathrm{s}, \mathrm{Ar}$ ), 130.8 ( $\mathrm{s}, \mathrm{Ar}$ ), 129.6 ( $\mathrm{s}, \mathrm{Ar}), 128.3(\mathrm{~s}, \mathrm{Ar}), 31.5\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=29.3 \mathrm{~Hz}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 26.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{p}}=2.0 \mathrm{~Hz}\right.$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 7.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{p}}=41.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right) .{ }^{31} \mathrm{P} \operatorname{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 37.9(\mathrm{q}, \mathrm{J}=53.5 \mathrm{~Hz}) . \mathrm{HRMS}(\mathrm{ESI}): \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}-$ $\left.\mathrm{BH}_{3}\right]^{+}$calculated for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{CIN}_{2} \mathrm{P}: 267.0812$, found 267.0813. HPLC (Daicel Chiralcel OD-H, $n$-hexane/i-PrOH $=98 / 2$, $U V=254 \mathrm{~nm}$, flow rate $=0.8 \mathrm{~mL} / \mathrm{min}) \mathrm{t}_{\mathrm{R} 1}=11.847 \mathrm{~min}($ minor $)$ and $t_{\mathrm{R} 2}=13.672 \mathrm{~min}$ (major), ee $=94 \% .[\alpha]_{D}{ }^{25}=$ $+2.5\left(\mathrm{c}=2.0, \mathrm{CHCl}_{3}\right)$.

## 3. Procedures of palladium-catalyzed C-P coupling reactions under microwave conditions

To a reaction tube, ( $R$ )-tert-butyl(methyl)phosphine borane ( $35 \mathrm{mg}, 0.3 \mathrm{mmol}$ ), aryl and heteroaryl halides ( 0.5 $\mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(3.37 \mathrm{mg}, 0.015 \mathrm{mmol})$, dppf ( $27.75 \mathrm{mg}, 0.03 \mathrm{mmol}$ ), tBuONa ( $57.66 \mathrm{mg}, 0.60 \mathrm{mmol}$ ) and toluene ( 3 mL ) were added under argon. The mixture was stirred for 6 h under microwave conditions. After removal of the volatile materials under reduced pressure, the crude product was purified by chromatograph on silica gel. ( $n$-hexane / dichloromethane).

(S)-tert-butyl(methyl)(naphthalen-1-yl)phosphine Borane. ${ }^{2}$ Performed according to the microwave reactions procedure to afford $47.2 \mathrm{mg}(64 \%)$ of (S)-2a as white solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.90(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}$, Ar), 7.99 ( $\mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}$ ), 7.87 ( $\mathrm{d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}$ ), $7.75-7.80$ (m, $1 \mathrm{H}, \mathrm{Ar}$ ), $7.61-7.75$ ( $\mathrm{m}, 1 \mathrm{H}, \mathrm{Ar}$ ), 7.49 7.53 (m, $2 \mathrm{H}, \mathrm{Ar}), 1.78\left(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.16\left(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.79-1.57\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{BH} \mathrm{H}_{3}\right) .{ }^{31} \mathrm{P}$ NMR (162 MHz, CDCl 3 ): $\delta 23.9$ ( $q, J=66.4 \mathrm{~Hz}$ ). HPLC (Daicel Chiralcel AS-H, $n$-hexane $/ i-\operatorname{PrOH}=95 / 5$, UV $=250 \mathrm{~nm}$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}) \mathrm{t}_{\mathrm{R} 1}=5.430 \mathrm{~min}($ major $)$, $e e=99 \% .[\alpha]_{\mathrm{D}}^{25}=-23.0\left(\mathrm{c}=2.0, \mathrm{CHCl}_{3}\right)$.

(S)-tert-butyl(methyl)(phenyl)phosphine Borane. ${ }^{2}$ Performed according to the microwave reactions procedure to afford $50.6 \mathrm{mg}(87 \%)$ of $(S)-2 \mathrm{~b}$ as white solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.69-7.73(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.43-7.52$ ( $\mathrm{m}, 3 \mathrm{H}, \mathrm{Ar}$ ), $\left.1.58\left(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.11\left(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.24-1.07(\mathrm{~m}, 3 \mathrm{H}, \mathrm{BH})_{3}\right) .{ }^{31 \mathrm{P}} \mathrm{NMR}$ (162 MHz, CDCl ${ }_{3}$ ): $\delta 25.0$ ( $\mathrm{q}, J=63.2 \mathrm{~Hz}$ ). HPLC (Daicel Chiralcel AS-H, $n$-hexane $/ i$-PrOH $=95 / 5$, UV $=230 \mathrm{~nm}$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$ ) $\mathrm{t}_{\mathrm{R} 1}=7.908 \mathrm{~min}$ (major) and $\mathrm{t}_{\mathrm{R} 2}=8.829 \mathrm{~min}($ minor $), \mathrm{ee}=99 \%$. $[\alpha]_{\mathrm{D}}{ }^{25}=-14.5\left(\mathrm{c}=2.0, \mathrm{CHCl}_{3}\right)$.

(S)-tert-butyl(methyl)(o-tolyl)phosphine Borane. ${ }^{2}$ Performed according to the microwave reactions procedure to afford $40.7 \mathrm{mg}(65 \%)$ of $(S)-2 \mathrm{~d}$ as white solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.52-7.56(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 7.35-7.39$ (m, 1 H, Ar), $7.23-7.26(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 2.66\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.64\left(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.14(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, 9 \mathrm{H}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.19-1.10\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{BH}_{3}\right) .{ }^{31} \mathrm{P}$ NMR ( $162 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 25.1(\mathrm{q}, \mathrm{J}=59.9 \mathrm{~Hz})$. HPLC (Daicel Chiralcel OD-H, $n$-hexane $/ i-\mathrm{PrOH}=98 / 2, \mathrm{UV}=230 \mathrm{~nm}$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}$ ) $\mathrm{t}_{\mathrm{R} 1}=13.211 \mathrm{~min}($ major $)$ and $\mathrm{t}_{\mathrm{R} 2}=14.302 \mathrm{~min}$ (minor), ee $=92 \%$. $[\alpha]_{D}{ }^{25}=-12.5\left(c=2.0, C H C l_{3}\right)$.

(S)-tert-butyl(4-(tert-butyl)phenyl)(methyl)phosphine Borane. Performed according to the microwave reactions procedure to afford $35.3 \mathrm{mg}(50 \%)$ of $(S)$-2e as white solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.61-7.65(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar})$, $7.45-7.47(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 1.55\left(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.33\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.11\left(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.18$ - 1.05 ( $\mathrm{m}, 3 \mathrm{H}, \mathrm{BH}_{3}$ ). ${ }^{31 \mathrm{P}}$ NMR ( $162 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 23.7$ ( $\mathrm{q}, \mathrm{J}=66.4 \mathrm{~Hz}$ ). HPLC (Daicel Chiralcel AS-H, $n$-hexane $/ i$ PrOH $=99 / 1, \mathrm{UV}=254 \mathrm{~nm}$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}) \mathrm{t}_{\mathrm{R} 1}=4.992 \mathrm{~min}($ minor $)$ and $\mathrm{t}_{\mathrm{R} 2}=5.519 \mathrm{~min}($ major $)$, ee $=88 \%$. $[\alpha]_{D}{ }^{25}=-7.3\left(\mathrm{c}=2.0, \mathrm{CHCl}_{3}\right)$.

(S)-tert-butyl(4-methoxyphenyl)(methyl)phosphine Borane. Performed according to the microwave reactions procedure to afford $53.7 \mathrm{mg}(80 \%)$ of $(S)$-2f as white solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.61-7.65(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar})$, $6.96-6.98(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 3.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 1.54\left(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH} \mathrm{H}_{3}\right), 1.09\left(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) \cdot 0.35-$ $0.91\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{BH}_{3}\right) .{ }^{31} \mathrm{P}$ NMR ( $162 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 23.2$ ( $\mathrm{q}, \mathrm{J}=69.7 \mathrm{~Hz}$ ). HPLC (Daicel Chiralcel AS-H, n-hexane/iPrOH $=98 / 2, \mathrm{UV}=250 \mathrm{~nm}$, flow rate $=0.8 \mathrm{~mL} / \mathrm{min}) \mathrm{t}_{\mathrm{R} 1}=21.932 \mathrm{~min}($ major $)$ and $\mathrm{t}_{\mathrm{R} 2}=24.014 \mathrm{~min}$ (minor), ee $=$ $95 \% .[\alpha]_{\mathrm{D}}{ }^{25}=-8.3\left(\mathrm{c}=2.0, \mathrm{CHCl}_{3}\right)$.

(S)-[1,1'-biphenyl]-4-yl(tert-butyl)(methyl)phosphine Borane. Performed according to the microwave reactions procedure to afford $57.4 \mathrm{mg}(70 \%)$ of $(S)$-2h as white solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.75-7.81(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar})$, $7.66-7.68(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.61(\mathrm{~d}, \mathrm{~J}=4.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.45-7.49(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.37-7.41(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 1.61(\mathrm{~d}, \mathrm{~J}=$ $\left.12.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.14\left(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.24-0.95\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{BH} \mathrm{H}_{3}\right) .{ }^{31 \mathrm{p}} \mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ : $\delta 24.7$ ( $q, J=77.8 \mathrm{~Hz}$ ). HPLC (Daicel Chiralcel OD-H, n -hexane $/ \mathrm{i}-\mathrm{PrOH}=95 / 5, \mathrm{UV}=250 \mathrm{~nm}$, flow rate $=0.8 \mathrm{~mL} / \mathrm{min}$ ) $\mathrm{t}_{\mathrm{R} 1}=$ 7.872 min (minor) and $\mathrm{t}_{\mathrm{R} 2}=8.778 \mathrm{~min}($ major $)$, ee $=93 \% .[\alpha]_{\mathrm{D}}{ }^{25}=-12.0\left(\mathrm{c}=2.0, \mathrm{CHCl}_{3}\right)$.

(S)-tert-butyl(4-chlorophenyl)(methyl)phosphine Borane. Performed according to the microwave reactions procedure to afford $46.6 \mathrm{mg}(68 \%)$ of $(S)-\mathbf{2 j}$ as white solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.60-7.69(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar})$, $\left.7.37-7.51(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 1.57\left(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.10\left(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.22-0.85(\mathrm{~m}, 3 \mathrm{H}, \mathrm{BH})_{3}\right)$. ${ }^{31}$ P NMR (162 MHz, CDCl ${ }_{3}$ ): $\delta 25.4$ ( $q, J=63.2 \mathrm{~Hz}$ ). HPLC (Daicel Chiralcel AS-H, $n$-hexane $/ i-\mathrm{PrOH}=99 / 1$, UV $=234$ nm , flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$ ) $\mathrm{t}_{\mathrm{R} 1}=9.679 \mathrm{~min}($ major $)$ and $\mathrm{t}_{\mathrm{R} 2}=12.252 \mathrm{~min}($ minor $)$, ee $=95 \% .[\alpha]_{D}{ }^{25}=-12.3(c=2.0$, $\mathrm{CHCl}_{3}$ ).

(S)-tert-butyl(methyl)(4-(trifluoromethyl)phenyl)phosphine Borane. Performed according to the microwave reactions procedure to afford $31.4 \mathrm{mg}(40 \%)$ of $(S)-\mathbf{2 k}$ as white solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ : $\delta 7.83-7.88(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{Ar}), 7.72(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 1.61\left(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.13\left(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.25-0.85$ (m, 3 H, BH3). ${ }^{31} \mathrm{P}$ NMR (162 MHz, CDCl 3 ): $\delta 26.9$ ( $\mathrm{q}, \mathrm{J}=59.9 \mathrm{~Hz}$ ). HPLC (Daicel Chiralcel AS-H, $n$-hexane $/ i-\mathrm{PrOH}=$ $99 / 1, ~ U V=254 \mathrm{~nm}$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$ ) $\mathrm{t}_{\mathrm{R} 1}=6.399 \mathrm{~min}($ major $)$ and $\mathrm{t}_{\mathrm{R} 2}=6.745 \mathrm{~min}($ minor $)$, ee $=94 \% .[\alpha]_{\mathrm{D}}{ }^{25}=$ -33.0 ( $\mathrm{c}=2.0, \mathrm{CHCl}_{3}$ ).

(S)-ethyl 4-(borane tert-butyl(methyl)phosphino)benzoate. Performed according to the microwave reactions procedure to afford $50.3 \mathrm{mg}(63 \%)$ of $(S)-2 \mathrm{n}$ as white solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.10-8.12(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar})$, 7.77 - 7.81 (m, $2 \mathrm{H}, \mathrm{Ar}$ ), $4.41\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.61\left(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.39-1.43(\mathrm{~m}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 1.11\left(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.21-0.87\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{BH}_{3}\right) .{ }^{31} \mathrm{P} \mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 26.4(\mathrm{q}, J=74.5 \mathrm{~Hz})$. HPLC (Daicel Chiralcel OD-H, $n$-hexane $/ i-\mathrm{PrOH}=98 / 2$, UV $=230 \mathrm{~nm}$, flow rate $=0.8 \mathrm{~mL} / \mathrm{min}$ ) $\mathrm{t}_{\mathrm{R} 1}=14.957 \mathrm{~min}$ (minor) and $t_{R 2}=16.501 \mathrm{~min}$ (major), ee $=97 \% .[\alpha]_{D}{ }^{25}=-28.0\left(c=2.0, \mathrm{CHCl}_{3}\right)$.

(S)-4-(4-(borane tert-butyl(methyl)phosphino)phenyl)morpholine. Performed according to the microwave reactions procedure to afford $65.8 \mathrm{mg}(79 \%)$ of $(S)-\mathbf{3 b}$ as white solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ : $\delta 7.56-7.60(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{Ar}), 6.91-6.94(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 3.83-3.90\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 3.21-3.29\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.52\left(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $1.09\left(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.19-0.88\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{BH}_{3}\right) .{ }^{31} \mathrm{P} \mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 22.4$ (q, J=77.8 Hz). HPLC (Daicel Chiralcel OD-H, $n$-hexane $/ i-\mathrm{PrOH}=90 / 10$, UV $=250 \mathrm{~nm}$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$ ) $\mathrm{t}_{\mathrm{R} 1}=11.772 \mathrm{~min}$ (major) and $\mathrm{t}_{\mathrm{R} 2}=16.287 \mathrm{~min}$ (minor), ee $=91 \% .[\alpha]_{\mathrm{D}}{ }^{25}=-12.0\left(\mathrm{c}=2.0, \mathrm{CHCl}_{3}\right)$.

(S)-9-(4-(borane tert-butyl(methyl)phosphino)phenyl)-9H-carbazole. Performed according to the microwave reactions procedure to afford $52.1 \mathrm{mg}(43 \%)$ of $(S)-3 d$ as white solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.15(\mathrm{~d}, \mathrm{~J}=8.0$
 $1.67\left(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.21\left(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.26-0.93\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{BH}_{3}\right) .{ }^{31 \mathrm{p}} \mathrm{NMR}(162 \mathrm{MHz}$, $\mathrm{CDCl}_{3}$ ) : $\delta 25.5$ ( $\mathrm{q}, J=66.4 \mathrm{~Hz}$ ). HPLC (Daicel Chiralcel AS-H, $n$-hexane $/ i-\mathrm{PrOH}=98 / 2, \mathrm{UV}=254 \mathrm{~nm}$, flow rate $=0.5$ $\mathrm{mL} / \mathrm{min}) \mathrm{t}_{\mathrm{R} 1}=18.379 \mathrm{~min}($ minor $)$ and $\mathrm{t}_{\mathrm{R} 2}=20.599 \mathrm{~min}($ major $), \mathrm{ee}=90 \% .[\alpha]_{\mathrm{D}}{ }^{25}=-6.0\left(\mathrm{c}=2.0, \mathrm{CHCl}_{3}\right)$

(S)-4-(borane tert-butyl(methyl)phosphino)- $\mathbf{N}, \mathbf{N}$-bis(4-iodophenyl)aniline. Performed according to the microwave reactions procedure to afford $81.5 \mathrm{mg}(45 \%)$ of $(S)-3 f$ as white solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.46$ - 7.51 (m, $2 \mathrm{H}, \mathrm{Ar}$ ), 7.28 - 7.32 (m, $4 \mathrm{H}, \mathrm{Ar}$ ), 7.13 (d, J = 8.0 Hz, $4 \mathrm{H}, \mathrm{Ar}$ ), 7.02 - 7.04 (m, 2 H, Ar), 1.52 (d, J = 8.0 Hz, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.12\left(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.26-0.86\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{BH}_{3}\right) .{ }^{31} \mathrm{p} \mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 23.7(\mathrm{q}, J=$ 45.4 Hz ). HPLC (Daicel Chiralcel OD-H, $n$-hexane $/ i-\mathrm{PrOH}=90 / 10$, UV $=254 \mathrm{~nm}$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$ ) $\mathrm{t}_{\mathrm{R} 1}=9.797$ $\min$ (minor) and $t_{R 2}=11.418 \mathrm{~min}$ (major), ee $=95 \% .[\alpha]_{D}^{25}=-6.5\left(c=2.0, \mathrm{CHCl}_{3}\right)$.

(S)-2-(borane tert-butyl(methyl)phosphino)-6-fluoropyridine. Performed according to the microwave reactions procedure to afford $43.2 \mathrm{mg}(56 \%)$ of $(S)-3 \mathrm{~g}$ as white solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.88-7.92(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar})$, $7.69-7.73(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 7.37(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 1.60\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.11\left(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $0.26-0.98\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{BH}_{3}\right) .{ }^{31} \mathrm{P}$ NMR (162 MHz, CDCl ${ }_{3}$ ): $\delta 30.5(\mathrm{q}, \mathrm{J}=61.6 \mathrm{~Hz})$. HPLC (Daicel Chiralcel AS-H, $n-$ hexane $/ i-\mathrm{PrOH}=98 / 2, \mathrm{UV}=250 \mathrm{~nm}$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$ ) $\mathrm{t}_{\mathrm{R} 1}=11.471 \mathrm{~min}$ (major) and $\mathrm{t}_{\mathrm{R} 2}=12.718 \mathrm{~min}$ (minor), ee $=93 \% .[\alpha]_{\mathrm{D}}{ }^{25}=-34.0\left(\mathrm{c}=2.0, \mathrm{CHCl}_{3}\right)$.

(S)-8-(borane tert-butyl(methyl)phosphino)quinoline. Performed according to the microwave reactions procedure to afford $22.6 \mathrm{mg}(26 \%)$ of $(S)-3 \mathrm{j}$ as white solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.91-8.93(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar})$, $8.50-8.55$ (m, $1 \mathrm{H}, \operatorname{Ar}$ ), 8.19 (d, J = $8.0 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar}$ ), 7.96 (d, J=8.0 Hz, $1 \mathrm{H}, \mathrm{Ar}$ ), $7.57-7.64$ (m, $1 \mathrm{H}, \mathrm{Ar}$ ), 7.42 $\left.7.45(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 2.10\left(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.18\left(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.26-0.90(\mathrm{~m}, 3 \mathrm{H}, \mathrm{BH})_{3}\right) .{ }^{31 \mathrm{P}} \mathrm{NMR}$ ( $162 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 31.0(\mathrm{q}, J=63.2 \mathrm{~Hz}$ ). HPLC (Daicel Chiralcel OD-H, $n$-hexane/i-PrOH $=98 / 2$, UV $=250 \mathrm{~nm}$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$ ) $\mathrm{t}_{\mathrm{R} 1}=6.791 \mathrm{~min}(\mathrm{major})$ and $\mathrm{t}_{\mathrm{R} 2}=7.931 \mathrm{~min}(\operatorname{minor}), \mathrm{ee}=71 \% .[\alpha]_{\mathrm{D}}{ }^{25}=-27.0\left(\mathrm{c}=2.0, \mathrm{CHCl}_{3}\right)$.

## 4. X-ray structural determination

The X-ray date was collected on a Rigaku Saturn CCDC diffractometer using graphite-monochromated Mo K $\alpha$ radiation $\left(\lambda=0.71073 \AA\right.$ ). The structure was solved by direct methods (SHELXS-97) ${ }^{3}$ and refined by full-matrix least squares on $F^{2}$. All non-hydrogen atoms were refined anisotropically and hydrogen atoms by a riding model (SHELXL-97). ${ }^{4}$ The crystal data and structural refinements details are listed in Table S1. CCDC 2017943 ((S)-2q), and CCDC $2017887((R)-2 h)$ contain the supplementary crystallographic data for this paper. This data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

Table S1. Crystal Data and Summary of X-ray Data Collection for compound $(S)$ - $\mathbf{2 q}$ and $(R)$-2h

|  | $(S)-2 q$ | (R)-2h |
| :---: | :---: | :---: |
| formula | $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{BP}$ | $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{BP}$ |
| fw | 310.20 | 270.14 |
| $T$ (K) | 296 | 296 |
| space group | P 212121 | P 212121 |
| crystal system | Orthorhombic | Orthorhombic |
| $a(\mathrm{~A})$ | 11.2902(16) | 6.6359(9) |
| $b$ (Å) | 12.3392(18) | 7.5137(10) |
| $c(A ̊)$ | 13.6341(19) | 34.018(5) |
| $\alpha$ (deg.) | $90^{\circ}$ | $90^{\circ}$ |
| 6 (deg.) | $90^{\circ}$ | $90^{\circ}$ |
| $\gamma$ (deg.) | $90^{\circ}$ | $90^{\circ}$ |
| $V(\AA$ 3) | 1899.4(5) | 90(19) |
| $z$ | 4 | 4 |
| dcalcd. (mg/cm3) | 1.085 | 1.058 |
| $F(000)$ | 672.0 | 584 |
| GOF | 1.078 | 1.248 |
| R1 ( $1>2 \sigma(1)$ ) | 0.0358 | 0.0840 |
| wR2 (all data) | 0.1017 | 0.1430 |

## 5. References

1. (a) E. Salomó, A. Prades, A. Riera, and X. Verdaguer, J. Org. Chem., 2017, 82, 7065; (b) E. Salomó, S. Orgué, A. Riera, X. Verdaguer, Synthesis, 2016, 48, 2659.
2. D. Gatineau, L. Giordano and G. Buono, J. Am. Chem. Soc., 2011, 133, 10728.
3. G. M. Sheldrick, SHELXS-90/96, Program for Structure Solution, Acta Crystallogr. Sect A 1990, 46, 467.
4. G. M. Sheldrick, SHELXL 97, Program for Crystal structure Refinement, University of Goettingen:Geottingen, Germany, 1997.
5. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{19} \mathrm{~F}$ and ${ }^{31} \mathrm{P}$ NMR spectra for all products.


Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum of $(R)$ - 2 a in $\mathrm{CDCl}_{3}$

##  <br>  <br> 



Figure S2. ${ }^{13} \mathrm{C}$ NMR spectrum of $(R)$ - $\mathbf{2 a}$ in $\mathrm{CDCl}_{3}$

## 줄둘


(R)-2a


Figure S3. ${ }^{31} \mathrm{P}$ NMR spectrum of $(R) \mathbf{- 2 a}$ in $\mathrm{CDCl}_{3}$


Figure S4. ${ }^{1} \mathrm{H}$ NMR spectrum of $(R) \mathbf{- 2 b}$ in $\mathrm{CDCl}_{3}$


Figure S5．${ }^{13} \mathrm{C}$ NMR spectrum of $(R)$－ $\mathbf{2 b}$ in $\mathrm{CDCl}_{3}$

## 留長等意




Figure $\mathbf{S 6}$ ．${ }^{31} \mathrm{P}$ NMR spectrum of $(R) \mathbf{- 2 b}$ in $\mathrm{CDCl}_{3}$


Figure S7. ${ }^{1} \mathrm{H}$ NMR spectrum of $(R)$ - $\mathbf{2 c}$ in $\mathrm{CDCl}_{3}$


Figure S8. ${ }^{13} \mathrm{C}$ NMR spectrum of $(R) \mathbf{- 2} \mathbf{c}$ in $\mathrm{CDCl}_{3}$

## 踶新委



Figure $\mathbf{S 9}$ ．${ }^{31} \mathrm{P}$ NMR spectrum of $(R)$－ $\mathbf{2 c}$ in $\mathrm{CDCl}_{3}$


Figure S10．${ }^{1} \mathrm{H}$ NMR spectrum of $(R)$－ $\mathbf{2 d}$ in $\mathrm{CDCl}_{3}$


Figure S11. ${ }^{13} \mathrm{C}$ NMR spectrum of $(R)$ - $\mathbf{2 d}$ in $\mathrm{CDCl}_{3}$


Figure S12. ${ }^{31} \mathrm{P}$ NMR spectrum of $(R)$-2d in $\mathrm{CDCl}_{3}$


Figure S13. ${ }^{1} \mathrm{H}$ NMR spectrum of $(R)$ - $\mathbf{2 e}$ in $\mathrm{CDCl}_{3}$





Figure $\mathbf{S 1 4 .}{ }^{13} \mathrm{C}$ NMR spectrum of $(R)$ - $\mathbf{2 e}$ in $\mathrm{CDCl}_{3}$


Figure S15. ${ }^{31} \mathrm{P}$ NMR spectrum of $(R)$ - $\mathbf{2 e}$ in $\mathrm{CDCl}_{3}$


Figure S16. ${ }^{1} \mathrm{H}$ NMR spectrum of $(R)$ - 2 f in $\mathrm{CDCl}_{3}$


Figure S17. ${ }^{13} \mathrm{C}$ NMR spectrum of $(R)$ - $\mathbf{2 f}$ in $\mathrm{CDCl}_{3}$


[^0]Figure S18. ${ }^{31} \mathrm{P}$ NMR spectrum of $(R)$ - $\mathbf{2 f}$ in $\mathrm{CDCl}_{3}$


Figure S19. ${ }^{1} \mathrm{H}$ NMR spectrum of $(R)-\mathbf{2} \mathrm{g}$ in $\mathrm{CDCl}_{3}$


Figure S20. ${ }^{13} \mathrm{C}$ NMR spectrum of $(R)-\mathbf{2 g}$ in $\mathrm{CDCl}_{3}$


Figure S21. ${ }^{31} \mathrm{P}$ NMR spectrum of $(R)-\mathbf{2 g}$ in $\mathrm{CDCl}_{3}$


Figure S22. ${ }^{1} \mathrm{H}$ NMR spectrum of $(R)$ - $\mathbf{2 h}$ in $\mathrm{CDCl}_{3}$



Figure S23. ${ }^{13} \mathrm{C}$ NMR spectrum of $(R)$ - $\mathbf{2 h}$ in $\mathrm{CDCl}_{3}$

## 䰄䋨




Figure S24. ${ }^{31} \mathrm{P}$ NMR spectrum of $(R)$ - $\mathbf{2 h}$ in $\mathrm{CDCl}_{3}$

\%




Figure S25. ${ }^{1} \mathrm{H}$ NMR spectrum of $(R) \mathbf{- 2 i}$ in $\mathrm{CDCl}_{3}$


M88 8




Figure S26. ${ }^{13} \mathrm{C}$ NMR spectrum of $(R) \mathbf{- 2 i}$ in $\mathrm{CDCl}_{3}$

## 


（R）－2i


Figure S27．${ }^{31} \mathrm{P}$ NMR spectrum of $(R) \mathbf{- 2 i}$ in $\mathrm{CDCl}_{3}$

## 是思景草



$(R)-2 \mathbf{j}$


Figure S28．${ }^{1} \mathrm{H}$ NMR spectrum of $(R)$－ $\mathbf{2 j}$ in $\mathrm{CDCl}_{3}$


Figure S29. ${ }^{13} \mathrm{C}$ NMR spectrum of $(R) \mathbf{- 2 j}$ in $\mathrm{CDCl}_{3}$

ฟัูู่ป


Figure S30. ${ }^{31} \mathrm{P}$ NMR spectrum of $(R)-\mathbf{2} \mathbf{j}$ in $\mathrm{CDCl}_{3}$


Figure $\mathbf{S 3 1 .}{ }^{1} \mathrm{H}$ NMR spectrum of $(R)$-2k in $\mathrm{CDCl}_{3}$


Figure S32. ${ }^{13} \mathrm{C}$ NMR spectrum of $(R)$-2k in $\mathrm{CDCl}_{3}$


Figure S33. ${ }^{31} \mathrm{P}$ NMR spectrum of $(R)-\mathbf{2 k}$ in $\mathrm{CDCl}_{3}$


Figure S34. ${ }^{19} \mathrm{~F}$ NMR spectrum of $(R) \mathbf{- 2 k}$ in $\mathrm{CDCl}_{3}$


Figure S35. ${ }^{1} \mathrm{H}$ NMR spectrum of $(R)-\mathbf{2 l}$ in $\mathrm{CDCl}_{3}$

| $\frac{9}{9}$ |  | $\begin{gathered} \text { M8:8 } \\ \text { EF } \end{gathered}$ | $\begin{aligned} & \text { AREM } \\ & \text { A88, } \end{aligned}$ |
| :---: | :---: | :---: | :---: |


(R)-2I


Figure S36. ${ }^{13} \mathrm{C}$ NMR spectrum of $(R)-2 \mathrm{I}$ in $\mathrm{CDCl}_{3}$

igure S37. ${ }^{31} \mathrm{P}$ NMR spectrum of $(R)$ - $\mathbf{2 l}$ in $\mathrm{CDCl}_{3}$


(R)-2m


Figure S38. ${ }^{1} \mathrm{H}$ NMR spectrum of $(R)-\mathbf{2 m}$ in $\mathrm{CDCl}_{3}$


Figure S39. ${ }^{13} \mathrm{C}$ NMR spectrum of $(R) \mathbf{- 2 m}$ in $\mathrm{CDCl}_{3}$

ฟ๗o


$\begin{array}{lllllllllllllllllllllllllll}30 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 & -20 & -30 & -40 & -50 & -60 & -70 & -80 & -90 & -100 & -110\end{array}$
Figure S40. ${ }^{31} \mathrm{P}$ NMR spectrum of $(R) \mathbf{- 2 m}$ in $\mathrm{CDCl}_{3}$


Figure S41. ${ }^{1} \mathrm{H}$ NMR spectrum of $(R) \mathbf{-} \mathbf{2} \mathbf{n}$ in $\mathrm{CDCl}_{3}$


Figure S42. ${ }^{13} \mathrm{C}$ NMR spectrum of $(R)$ - $\mathbf{2} \mathbf{n}$ in $\mathrm{CDCl}_{3}$

(R)-2n
.

Figure S43. ${ }^{31} \mathrm{P}$ NMR spectrum of $(R)-\mathbf{2} \mathbf{n}$ in $\mathrm{CDCl}_{3}$



Figure $\mathbf{S 4 4 .}{ }^{1} \mathrm{H}$ NMR spectrum of $(R)$ - $\mathbf{2 o}$ in $\mathrm{CDCl}_{3}$


Figure S45. ${ }^{13} \mathrm{C}$ NMR spectrum of $(R)$ - $\mathbf{2 o}$ in $\mathrm{CDCl}_{3}$
M.



Figure S46. ${ }^{31} \mathrm{P}$ NMR spectrum of $(R)$ - $\mathbf{2 o}$ in $\mathrm{CDCl}_{3}$


Figure S47. ${ }^{1} \mathrm{H}$ NMR spectrum of $(R)-2 p$ in $\mathrm{CDCl}_{3}$


(R)-2p


Figure S48. ${ }^{13} \mathrm{C}$ NMR spectrum of $(R)-\mathbf{2 p}$ in $\mathrm{CDCl}_{3}$

## 주สํํㅜㅜ



Figure S49. ${ }^{31} \mathrm{P}$ NMR spectrum of $(R)-\mathbf{2 p}$ in $\mathrm{CDCl}_{3}$


(R)-2q


Figure S50. ${ }^{1} \mathrm{H}$ NMR spectrum of $(R)$ - $\mathbf{2 q}$ in $\mathrm{CDCl}_{3}$


Figure S51. ${ }^{13} \mathrm{C}$ NMR spectrum of $(R)-\mathbf{2 q}$ in $\mathrm{CDCl}_{3}$


Figure S52. ${ }^{31} \mathrm{P}$ NMR spectrum of $(R)-\mathbf{2 q}$ in $\mathrm{CDCl}_{3}$


Figure S53. ${ }^{1} \mathrm{H}$ NMR spectrum of $(R)$ - 2 r in $\mathrm{CDCl}_{3}$


6888
क. 888
कृष又
\% \%



Figure $\mathbf{S 5 4 .}{ }^{13} \mathrm{C}$ NMR spectrum of $(R)-2 \boldsymbol{r}$ in $\mathrm{CDCl}_{3}$


Figure S55. ${ }^{31} \mathrm{P}$ NMR spectrum of $(R)-2 \mathrm{r}$ in $\mathrm{CDCl}_{3}$




Figure S56. ${ }^{1} \mathrm{H}$ NMR spectrum of $(R)$-3a in $\mathrm{CDCl}_{3}$


Figure S57. ${ }^{13} \mathrm{C}$ NMR spectrum of $(R)$-3a in $\mathrm{CDCl}_{3}$




Figure S58. ${ }^{31} \mathrm{P}$ NMR spectrum of $(R)$-3a in $\mathrm{CDCl}_{3}$

(R)-3b


Figure S59. ${ }^{1} \mathrm{H}$ NMR spectrum of $(R)-\mathbf{3 b}$ in $\mathrm{CDCl}_{3}$

|  | $\begin{aligned} & \text { 웋․ } \\ & \text { 产 } \end{aligned}$ |  | $\begin{gathered} \text { M88 } \\ \text { FE } \end{gathered}$ | 8 8 1 | $\stackrel{\text { 需 }}{\text { j }}$ | \&igis |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |



Figure S60. ${ }^{13} \mathrm{C}$ NMR spectrum of $(R)$ - $\mathbf{3 b}$ in $\mathrm{CDCl}_{3}$

## 風敢




|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 130 | 110 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | -10 | -30 | $\begin{gathered} -50 \\ \mathrm{fl}(\mathrm{ppm}) \end{gathered}$ | . 70 | -90 | -110 | -130 | -150 | -170 | -190 | -210 | -230 |

Figure S61. ${ }^{31} \mathrm{P}$ NMR spectrum of $(R)$-3b in $\mathrm{CDCl}_{3}$

|  |
| :---: |
|  |  |




Figure S62. ${ }^{1} \mathrm{H}$ NMR spectrum of $(R)-\mathbf{3 c}$ in $\mathrm{CDCl}_{3}$


Figure $\mathbf{S 6 3 .}{ }^{13} \mathrm{C}$ NMR spectrum of $(R)$ - $\mathbf{3} \mathbf{c}$ in $\mathrm{CDCl}_{3}$


Figure S64. ${ }^{31} \mathrm{P}$ NMR spectrum of $(R)-3 \mathrm{c}$ in $\mathrm{CDCl}_{3}$


Figure $\mathbf{S 6 5} \mathbf{. ~}^{1} \mathrm{H}$ NMR spectrum of $(R)$ - $\mathbf{3 d}$ in $\mathrm{CDCl}_{3}$


Figure S66. ${ }^{13} \mathrm{C}$ NMR spectrum of $(R)$ - $\mathbf{3 d}$ in $\mathrm{CDCl}_{3}$


Figure S67. ${ }^{31} \mathrm{P}$ NMR spectrum of $(R)-\mathbf{3 d}$ in $\mathrm{CDCl}_{3}$
n̄monno on

(R)-3e


Figure S68. ${ }^{1} \mathrm{H}$ NMR spectrum of $(R)-3 \mathrm{e}$ in $\mathrm{CDCl}_{3}$
Niñ Nin
$3 \frac{\infty}{n}$



Figure $\mathbf{S 6 9 .}{ }^{13} \mathrm{C}$ NMR spectrum of $(R)$-3e in $\mathrm{CDCl}_{3}$

๗๗๓\%
ペin M


Figure $\mathbf{S 7 0 .}{ }^{31} \mathrm{P}$ NMR spectrum of $(R)$-3e in $\mathrm{CDCl}_{3}$



Figure S71. ${ }^{1} \mathrm{H}$ NMR spectrum of $(R)$ - $\mathbf{3 f}$ in $\mathrm{CDCl}_{3}$


Figure S72. ${ }^{13} \mathrm{C}$ NMR spectrum of $(R)$ - $\mathbf{3 f}$ in $\mathrm{CDCl}_{3}$

## 



Figure S73. ${ }^{31} \mathrm{P}$ NMR spectrum of $(R)$ - $\mathbf{3 f}$ in $\mathrm{CDCl}_{3}$


Figure $\mathbf{S 7 4 .}{ }^{1} \mathrm{H}$ NMR spectrum of $(R)-3 \mathrm{~g}$ in $\mathrm{CDCl}_{3}$


Figure $\mathbf{S 7 5} .{ }^{13} \mathrm{C}$ NMR spectrum of $(R)-\mathbf{3 g}$ in $\mathrm{CDCl}_{3}$

$$
\begin{aligned}
& \mathscr{\infty} \circ \circ \circ \\
& \text { ơ웅 }
\end{aligned}
$$




Figure S76. ${ }^{31} \mathrm{P}$ NMR spectrum of $(R)-\mathbf{3 g}$ in $\mathrm{CDCl}_{3}$


Figure S77. ${ }^{19} \mathrm{~F}$ NMR spectrum of $(R)-\mathbf{3 g}$ in $\mathrm{CDCl}_{3}$


Figure S78. ${ }^{1} \mathrm{H}$ NMR spectrum of $(R)-3 \mathrm{~h}$ in $\mathrm{CDCl}_{3}$


Figure $\mathbf{S 7 9 .}{ }^{13} \mathrm{C}$ NMR spectrum of $(R)$ - $\mathbf{3 h}$ in $\mathrm{CDCl}_{3}$




Figure S80. ${ }^{31} \mathrm{P}$ NMR spectrum of $(R)-\mathbf{3 h}$ in $\mathrm{CDCl}_{3}$

(R)-3i



Figure S81. ${ }^{1} \mathrm{H}$ NMR spectrum of $(R)-\mathbf{3 i}$ in $\mathrm{CDCl}_{3}$



Figure S82. ${ }^{13} \mathrm{C}$ NMR spectrum of $(R)$-3i in $\mathrm{CDCl}_{3}$


Figure S83. ${ }^{31} \mathrm{P}$ NMR spectrum of $(R)-\mathbf{3 i}$ in $\mathrm{CDCl}_{3}$

## 



( $R$ )- $\mathbf{-} \mathbf{j}$


Figure S84. ${ }^{1} \mathrm{H}$ NMR spectrum of $(R)-3 \mathbf{j}$ in $\mathrm{CDCl}_{3}$

(R)-3j


Figure S85. ${ }^{13} \mathrm{C}$ NMR spectrum of $(R)-\mathbf{3 j}$ in $\mathrm{CDCl}_{3}$





Figure S86. ${ }^{31} \mathrm{P}$ NMR spectrum of $(R)-\mathbf{3} \mathbf{j}$ in $\mathrm{CDCl}_{3}$


Figure S87. ${ }^{1} \mathrm{H}$ NMR spectrum of $(R)-\mathbf{3 k}$ in $\mathrm{CDCl}_{3}$


Figure S88. ${ }^{13} \mathrm{C}$ NMR spectrum of $(R)$ - $\mathbf{3 k}$ in $\mathrm{CDCl}_{3}$




Figure S89. ${ }^{31} \mathrm{P}$ NMR spectrum of $(R)-\mathbf{3 k}$ in $\mathrm{CDCl}_{3}$

## 





Figure S90. ${ }^{1} \mathrm{H}$ NMR spectrum of $(R)-3 \mathrm{I}$ in $\mathrm{CDCl}_{3}$


Figure S91. ${ }^{13} \mathrm{C}$ NMR spectrum of $(R)-3 \mathrm{I}$ in $\mathrm{CDCl}_{3}$


Figure S92. ${ }^{31} \mathrm{P}$ NMR spectrum of $(R)-3 \mathbf{l}$ in $\mathrm{CDCl}_{3}$


Figure S93. ${ }^{1} \mathrm{H}$ NMR spectrum of $(S)$ - $\mathbf{2 a}$ in $\mathrm{CDCl}_{3}$



Figure S94. ${ }^{31} \mathrm{P}$ NMR spectrum of $(S)$ - $\mathbf{2 a}$ in $\mathrm{CDCl}_{3}$



```
(S) \(\mathbf{- 2}{ }^{\text {tB }}\)
```



Figure S95. ${ }^{1} \mathrm{H}$ NMR spectrum of $(S) \mathbf{- 2 b}$ in $\mathrm{CDCl}_{3}$



Figure S96. ${ }^{31} \mathrm{P}$ NMR spectrum of $(S)$ - $\mathbf{2 b}$ in $\mathrm{CDCl}_{3}$


Figure S97. ${ }^{1} \mathrm{H}$ NMR spectrum of $(S)$-2d in $\mathrm{CDCl}_{3}$



Figure S98. ${ }^{31} \mathrm{P}$ NMR spectrum of (S)-2d in $\mathrm{CDCl}_{3}$


Figure S99. ${ }^{1} \mathrm{H}$ NMR spectrum of $(S)$-2e in $\mathrm{CDCl}_{3}$


(S)-2e


Figure S100. ${ }^{31} \mathrm{P}$ NMR spectrum of $(S) \mathbf{- 2} \mathbf{e}$ in $\mathrm{CDCl}_{3}$

(S)-2f


Figure S101. ${ }^{1} \mathrm{H}$ NMR spectrum of $(S)$ - $\mathbf{2 f}$ in $\mathrm{CDCl}_{3}$


 $\begin{array}{lllllllllllllllllllllllllllllll}130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 & -20 & -30 & 40 & -50 & -60 & -70 & -80 & -90 & -100 & -110 & -120 & -130\end{array}$

Figure S102. ${ }^{31} \mathrm{P}$ NMR spectrum of $(S)$ - $\mathbf{2 f}$ in $\mathrm{CDCl}_{3}$

(S) -2 hb


Figure S103. ${ }^{1} \mathrm{H}$ NMR spectrum of $(S) \mathbf{- 2} \mathbf{h}$ in $\mathrm{CDCl}_{3}$



Figure S104. ${ }^{31} \mathrm{P}$ NMR spectrum of $(S) \mathbf{- 2} \mathbf{h}$ in $\mathrm{CDCl}_{3}$

(S)-3j


Figure S105. ${ }^{1} \mathrm{H}$ NMR spectrum of $(S)-\mathbf{3} \mathbf{j}$ in $\mathrm{CDCl}_{3}$


Figure S106. ${ }^{31} \mathrm{P}$ NMR spectrum of $(S)-\mathbf{3 j}$ in $\mathrm{CDCl}_{3}$

(S)-2k


Figure S107. ${ }^{1} \mathrm{H}$ NMR spectrum of $(S) \mathbf{- 2 k}$ in $\mathrm{CDCl}_{3}$

(S)-2k

Figure S108. ${ }^{31} \mathrm{P}$ NMR spectrum of $(S)$ - $\mathbf{2 k}$ in $\mathrm{CDCl}_{3}$

## $\underset{\sim}{\sim}$



Figure S109．${ }^{1} \mathrm{H}$ NMR spectrum of $(S) \mathbf{-} \mathbf{2 n}$ in $\mathrm{CDCl}_{3}$


Figure S110．${ }^{31} \mathrm{P}$ NMR spectrum of $(S) \mathbf{- 2} \mathbf{n}$ in $\mathrm{CDCl}_{3}$

(S)-3b


Figure S111. ${ }^{1} \mathrm{H}$ NMR spectrum of $(S)$ - $\mathbf{3 b}$ in $\mathrm{CDCl}_{3}$

(S)-3b



Figure $\mathbf{S 1 1 2 .}{ }^{31} \mathrm{P}$ NMR spectrum of $(S)$ - $\mathbf{3 b}$ in $\mathrm{CDCl}_{3}$

(S)-3d


Figure S113. ${ }^{1} \mathrm{H}$ NMR spectrum of $(S)$-3d in $\mathrm{CDCl}_{3}$




Figure S114. ${ }^{31} \mathrm{P}$ NMR spectrum of $(S)$-3d in $\mathrm{CDCl}_{3}$

(S)-3f


Figure S115. ${ }^{1} \mathrm{H}$ NMR spectrum of $(S)$ - 3 f in $\mathrm{CDCl}_{3}$

## 


$\begin{array}{lllllllllllllllllllllllllllllllllllllllllllll}130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 & -20 & -30 & -40 & -50 & -60 & -70 & -80 & -90 & -100 & -110 & -120 & -130\end{array}$
Figure S116. ${ }^{31} \mathrm{P}$ NMR spectrum of $(S)$ - $\mathbf{3 f}$ in $\mathrm{CDCl}_{3}$


Figure S117. ${ }^{1} \mathrm{H}$ NMR spectrum of $(S)-\mathbf{3 g}$ in $\mathrm{CDCl}_{3}$

## 



Figure S118. ${ }^{31} \mathrm{P}$ NMR spectrum of $(S)-\mathbf{3 g}$ in $\mathrm{CDCl}_{3}$

(S)-3j


Figure S119. ${ }^{1} \mathrm{H}$ NMR spectrum of $(S)-\mathbf{3} \mathbf{j}$ in $\mathrm{CDCl}_{3}$

(S)-3j


Figure S120. ${ }^{31} \mathrm{P}$ NMR spectrum of $(S)-\mathbf{3} \mathbf{j}$ in $\mathrm{CDCl}_{3}$

## 7. HPLC spectra for all products.

Chiral HPLC chromatographic analysis of ( $R$ ) - $\mathbf{2 a}$
Condition: Daicel Chiralcel AS-H, $n$-hexane $/ i-\mathrm{PrOH}=95 / 5, \mathrm{UV}=250 \mathrm{~nm}$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$, retention time: t $($ minor $)=5.452 \mathrm{~min}, \mathrm{t}$ (major) $=6.546 \mathrm{~min}, \mathrm{ee}=91 \%$.



Chiral HPLC chromatographic analysis of (S)-2a
Condition: Daicel Chiralcel AS-H, n-hexane/i-PrOH $=95 / 5$, UV $=250 \mathrm{~nm}$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$, retention time: t $($ major $)=5.430 \mathrm{~min}$, ee $=99 \%$.


Chiral HPLC chromatographic analysis of ( $R$ )-2b
Condition: Daicel Chiralcel AS-H, $n$-hexane $/ i-\operatorname{PrOH}=95 / 5, \mathrm{UV}=254 \mathrm{~nm}$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$, retention time: t $($ minor $)=7.131 \mathrm{~min}, \mathrm{t}($ major $)=8.103 \mathrm{~min}, \mathrm{ee}=65 \%$.



Chiral HPLC chromatographic analysis of (S)-2b
Condition: Daicel Chiralcel AS-H, $n$-hexane $/ i-\mathrm{PrOH}=95 / 5$, UV $=230 \mathrm{~nm}$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$, retention time: t $($ major $)=7.908 \mathrm{~min}, \mathrm{t}($ minor $)=8.829 \mathrm{~min}$, ee $=99 \%$.


Chiral HPLC chromatographic analysis of（R）－2c
Condition：Daicel Chiralcel AS－H，n－hexane／i－PrOH $=95 / 5$ ，UV $=220 \mathrm{~nm}$ ，flow rate： $1.0 \mathrm{~mL} / \mathrm{min}$ ，retention time： t $($ minor $)=4.240 \mathrm{~min}, \mathrm{t}($ major $)=5.678 \mathrm{~min}, \mathrm{ee}=94 \%$ ．



| 峰 $\#$ | 保留时间 <br> ［min］ |  | 峰宽 <br> ［min］ | 峰面积 [mAU*s] | $\begin{gathered} \text { 峰高 } \\ \text { [mAU] } \end{gathered}$ | 峰面积 \％ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 4． 240 | BB | 0． 1654 | 115.81202 | 11． 31580 | 2． 9885 |
| 2 | 5． 678 |  | 0． 1845 | 3759． 42749 | 321． 34906 | 97.0115 |

Chiral HPLC chromatographic analysis of (R)-2d
Condition: Daicel Chiralcel OD-H, $n$-hexane/i-PrOH $=98 / 2, U V=230 \mathrm{~nm}$, flow rate: $0.5 \mathrm{~mL} / \mathrm{min}$, retention time: t $(\operatorname{minor})=12.580 \mathrm{~min}, \mathrm{t}($ major $)=14.134 \mathrm{~min}, \mathrm{ee}=90 \%$.



Chiral HPLC chromatographic analysis of (S)-2d
Condition: Daicel Chiralcel OD-H, n-hexane/i-PrOH $=98 / 2$, UV $=230 \mathrm{~nm}$, flow rate: $0.5 \mathrm{~mL} / \mathrm{min}$, retention time: t $($ major $)=13.211 \mathrm{~min}, \mathrm{t}($ minor $)=14.302 \mathrm{~min}$, ee $=92 \%$.


Chiral HPLC chromatographic analysis of (R)-2e
Condition: Daicel Chiralcel AS-H, n-hexane/i-PrOH $=99 / 1, \mathrm{UV}=234 \mathrm{~nm}$, flow rate: $1 \mathrm{~mL} / \mathrm{min}$, retention time: t $($ major $)=5.365 \mathrm{~min}, \mathrm{t}($ minor $)=6.045 \mathrm{~min}, \mathrm{ee}=90 \%$.



Chiral HPLC chromatographic analysis of (S)-2e
Condition: Daicel Chiralcel AS-H, $n$-hexane $/ i-\operatorname{PrOH}=99 / 1$, UV $=254 \mathrm{~nm}$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$, retention time: t $($ minor $)=4.992 \mathrm{~min}, \mathrm{t}($ major $)=5.519 \mathrm{~min}, \mathrm{ee}=88 \%$.


## Chiral HPLC chromatographic analysis of ( $R$ )-2f

Condition: Daicel Chiralcel AS-H, $n$-hexane/i-PrOH $=98 / 2, \mathrm{UV}=250 \mathrm{~nm}$, flow rate: $0.8 \mathrm{~mL} / \mathrm{min}$, retention time: t $($ minor $)=21.843 \mathrm{~min}, \mathrm{t}($ major $)=23.093 \mathrm{~min}, \mathrm{ee}=98 \%$.



Chiral HPLC chromatographic analysis of (S)-2f
Condition: Daicel Chiralcel AS-H, $n$-hexane/i-PrOH $=98 / 2, ~ U V=250 \mathrm{~nm}$, flow rate: $0.8 \mathrm{~mL} / \mathrm{min}$, retention time: t $($ major $)=21.932 \mathrm{~min}, \mathrm{t}($ minor $)=24.014 \mathrm{~min}, \mathrm{ee}=95 \%$


Chiral HPLC chromatographic analysis of ( $R$ ) - $\mathbf{2 g}$
Condition: Daicel Chiralcel AS-H, $n$-hexane $/ i-\operatorname{PrOH}=98 / 2, U V=250 \mathrm{~nm}$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$, retention time: t $($ major $)=26.610 \mathrm{~min}, \mathrm{t}($ minor $)=34.227 \mathrm{~min}, \mathrm{ee}=89 \%$.



| Peak \# | $\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$ | Type | Width <br> [min] | $\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$ | Height <br> [mAU] | Area $\%$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 26.610 | BB | 0.6988 | 9841.18945 | 218.75577 | 94.5897 |
| 2 | 34.227 | BB | 0.9137 | 562.89392 | 7.29899 | 5.4103 |

Chiral HPLC chromatographic analysis of ( $R$ )-2h
Condition: Daicel Chiralcel OD-H, $n$-hexane/i-PrOH $=95 / 5$, UV $=250 \mathrm{~nm}$, flow rate: $0.8 \mathrm{~mL} / \mathrm{min}$, retention time: t $($ major $)=7.891 \mathrm{~min}, \mathrm{t}($ minor $)=8.692 \mathrm{~min}, \mathrm{ee}=79 \%$.



Chiral HPLC chromatographic analysis of (S)-2h
Condition: Daicel Chiralcel OD-H, $n$-hexane $/ i-\mathrm{PrOH}=95 / 5$, UV $=250 \mathrm{~nm}$, flow rate: $0.8 \mathrm{~mL} / \mathrm{min}$, retention time: t $($ minor $)=7.872 \mathrm{~min}, \mathrm{t}($ major $)=8.778 \mathrm{~min}, \mathrm{ee}=93 \%$.


## Chiral HPLC chromatographic analysis of ( $R$ ) - $\mathbf{2 i}$

Condition: Daicel Chiralcel OD-H, $n$-hexane/i-PrOH $=90 / 10, \mathrm{UV}=254 \mathrm{~nm}$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$, retention time: t $($ major $)=9.399 \mathrm{~min}, \mathrm{t}($ minor $)=12.921 \mathrm{~min}, \mathrm{ee}=84 \%$.



Chiral HPLC chromatographic analysis of ( $R$ )-2j
Condition: Daicel Chiralcel AS-H, n-hexane/i-PrOH $=99 / 1, \mathrm{UV}=234 \mathrm{~nm}$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$, retention time: t $($ minor $)=9.339 \min , \mathrm{t}($ major $)=11.765 \mathrm{~min}, \mathrm{ee}=94 \%$.



Chiral HPLC chromatographic analysis of (S)-2j
Condition: Daicel Chiralcel AS-H, $n$-hexane $/ i-\mathrm{PrOH}=99 / 1$, UV $=234 \mathrm{~nm}$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$, retention time: t $($ major $)=9.679 \mathrm{~min}, \mathrm{t}($ minor $)=12.252 \mathrm{~min}$, ee $=95 \%$.


Chiral HPLC chromatographic analysis of $(R)-\mathbf{2 k}$
Condition: Daicel Chiralcel AS-H, n-hexane/i-PrOH $=99 / 1, ~ U V=254 n m$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$, retention time: t $($ minor $)=6.392 \mathrm{~min}, \mathrm{t}($ major $)=6.672 \mathrm{~min}, \mathrm{ee}=89 \%$.


Chiral HPLC chromatographic analysis of (S)-2k
Condition: Daicel Chiralcel AS-H, $n$-hexane $/ i-\operatorname{PrOH}=99 / 1, U V=254 \mathrm{~nm}$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$, retention time: t $($ major $)=6.399 \mathrm{~min}, \mathrm{t}($ minor $)=6.745 \mathrm{~min}, \mathrm{ee}=94 \%$.


## Chiral HPLC chromatographic analysis of ( $R$ )-2l

Condition: Daicel Chiralcel OD-H, $n$-hexane/i-PrOH $=90 / 10, \mathrm{UV}=254 \mathrm{~nm}$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$, retention time: t $($ major $)=7.292 \mathrm{~min}, \mathrm{t}($ minor $)=8.536 \mathrm{~min}, \mathrm{ee}=63 \%$.




| Peak \# | $\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$ | Type | Width <br> [min] | $\begin{gathered} \text { Area } \\ {\left[\mathrm{MAU}^{*} \mathrm{~s}\right]} \end{gathered}$ | Height <br> [mAU] | Area \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 7.292 |  | 0.2148 | 1.73500 e 4 | 1274.82043 | 81.5114 |
| 2 | 8.536 | VB | 0.2391 | 3935.37378 | 259.18015 | 18.4886 |

Chiral HPLC chromatographic analysis of $(R)-\mathbf{2 m}$
Condition: Daicel Chiralcel OD-H, $n$-hexane/i-PrOH $=98 / 2, ~ U V=250 n m$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, retention time: t $($ minor $)=54.504 \mathrm{~min}, \mathrm{t}($ major $)=57.362 \mathrm{~min}, \mathrm{ee}=65 \%$.



Chiral HPLC chromatographic analysis of ( $R$ )-2 $\mathbf{n}$
Condition: Daicel Chiralcel OD-H, $n$-hexane/i-PrOH $=98 / 2, U V=230 \mathrm{~nm}$, flow rate: $0.8 \mathrm{~mL} / \mathrm{min}$, retention time: t $($ major $)=15.308 \mathrm{~min}, \mathrm{t}($ minor $)=16.976 \mathrm{~min}, \mathrm{ee}=92 \%$.



Chiral HPLC chromatographic analysis of (S)-2n
Condition: Daicel Chiralcel OD-H, $n$-hexane/i-PrOH $=98 / 2, \mathrm{UV}=230 \mathrm{~nm}$, flow rate: $0.8 \mathrm{~mL} / \mathrm{min}$, retention time: t $(\operatorname{minor})=14.957 \mathrm{~min}, \mathrm{t}($ major $)=16.501 \mathrm{~min}, \mathrm{ee}=97 \%$.


Chiral HPLC chromatographic analysis of ( $R$ )-20
Condition: Daicel Chiralcel OD-H, $n$-hexane/i-PrOH $=90 / 10$, UV $=250 \mathrm{~nm}$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$, retention time: t $($ major $)=7.383 \mathrm{~min}, \mathrm{t}($ minor $)=8.712 \mathrm{~min}, \mathrm{ee}=74 \%$.


| Peak <br> RetTime <br> \# <br> [min] | Width <br> [min] | Area <br> [mAU*s] | Height <br> [mAU] | Area | \% |
| :---: | :---: | :---: | :---: | :---: | :---: |



| Peak \# | $\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$ | Type | Width [min] | $\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$ | Height <br> [mAU] | Area $\%$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 7.383 | MM | 0.2504 | 8693.47656 | 578.62793 | 87.2889 |
| 2 | 8.712 | MM | 0.2651 | 1265.95020 | 79.58189 | 12.7111 |

Chiral HPLC chromatographic analysis of ( $R$ )-2p
Condition: Daicel Chiralcel OD-H, n-hexane/i-PrOH = 98/2, UV $=250 \mathrm{~nm}$, flow rate: $1 \mathrm{~mL} / \mathrm{min}$, retention time: t $($ minor $)=7.585 \min , \mathrm{t}($ major $)=12.549 \mathrm{~min}, \mathrm{ee}=46 \%$.



Chiral HPLC chromatographic analysis of (R)-2q
Condition: Daicel Chiralcel IBN-H, $n$-hexane/i-PrOH $=99 / 1, ~ U V=254 \mathrm{~nm}$, flow rate: $0.5 \mathrm{~mL} / \mathrm{min}$, retention time: t $($ minor $)=11.612 \mathrm{~min}, \mathrm{t}($ major $)=12.325 \mathrm{~min}, \mathrm{ee}=74 \%$.



Chiral HPLC chromatographic analysis of ( $R$ )-2r
Condition: Daicel Chiralcel AS-H, $n$-hexane/i-PrOH $=90 / 10$, UV $=254 \mathrm{~nm}$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$, retention time: t $($ minor $)=13.414 \mathrm{~min}, \mathrm{t}($ major $)=28.472 \mathrm{~min}, \mathrm{ee}=91 \%$.

| Peak \# | $\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$ | Type | Width <br> [min] | $\begin{gathered} \text { Area } \\ {\left[\mathrm{MAU}^{*} \mathrm{~S}\right]} \end{gathered}$ | Height <br> [mAU] | Area $\%$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 13.472 | BB | 0.2857 | 2014.30762 | 107.95863 | 50.4901 |
| 2 | 28.207 | BB | 0.7027 | 1975.20361 | 43.75396 | 49.5099 |



Chiral HPLC chromatographic analysis of $(R)$-3a
Condition: Daicel Chiralcel OD-H, $n$-hexane/i-PrOH $=98 / 2, U V=250 \mathrm{~nm}$, flow rate: $0.8 \mathrm{~mL} / \mathrm{min}$, retention time: t $($ minor $)=8.667 \mathrm{~min}, \mathrm{t}($ major $)=10.155 \mathrm{~min}, \mathrm{ee}=80 \%$.



| Peak <br> \# | $\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$ | Type | Width <br> [min] | $\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$ | Height <br> [mAU] | Area $\%$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 8.667 | MM | 0.2614 | 208.48915 | 13.29100 | 10.1917 |
| 2 | 10.155 | MM | 0.2600 | 1837.17725 | 117.78152 | 89.8083 |

Chiral HPLC chromatographic analysis of ( $R$ )-3b
Condition: Daicel Chiralcel OD-H, $n$-hexane/i-PrOH $=90 / 10$, UV $=250 \mathrm{~nm}$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$, retention time: t $($ major $)=11.953 \mathrm{~min}, \mathrm{t}($ minor $)=16.618 \mathrm{~min}, \mathrm{ee}=46 \%$.



## Chiral HPLC chromatographic analysis of (S)-3b

Condition: Daicel Chiralcel OD-H, $n$-hexane $/ i-\mathrm{PrOH}=90 / 10, \mathrm{UV}=250 \mathrm{~nm}$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$, retention time: t $($ minor $)=11.772 \mathrm{~min}, \mathrm{t}($ major $)=16.287 \mathrm{~min}, \mathrm{ee}=91 \%$.


Chiral HPLC chromatographic analysis of (R)-3c
Condition: Daicel Chiralcel OD-H, $n$-hexane/i-PrOH $=98 / 2, ~ U V=254 \mathrm{~nm}$, flow rate: $0.8 \mathrm{~mL} / \mathrm{min}$, retention time: t $($ major $)=13.659 \mathrm{~min}, \mathrm{t}($ minor $)=15.300 \mathrm{~min}, \mathrm{ee}=94 \%$.



| Peak <br> \# | $\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$ | Type | Width [min] | $\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$ | Height <br> [mAU] | Area <br> $\%$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 13.659 | BB | 0.3100 | 1.55394 e 4 | 768.12622 | 96.8499 |
| 2 | 15.300 | BB | 0.3310 | 505.42291 | 23.30959 | 3.1501 |

Chiral HPLC chromatographic analysis of (R)-3d
Condition: Daicel Chiralcel AS-H, n-hexane/i-PrOH $=98 / 2$, UV $=254 \mathrm{~nm}$, flow rate: $0.5 \mathrm{~mL} / \mathrm{min}$, retention time: t $($ major $)=18.239 \mathrm{~min}, \mathrm{t}($ minor $)=20.275 \mathrm{~min}, \mathrm{ee}=69 \%$.



Chiral HPLC chromatographic analysis of (S)-3d
Condition: Daicel Chiralcel AS-H, $n$-hexane $/ i-\mathrm{PrOH}=98 / 2, \mathrm{UV}=254 \mathrm{~nm}$, flow rate: $0.5 \mathrm{~mL} / \mathrm{min}$, retention time: t $($ minor $)=18.379 \mathrm{~min}, \mathrm{t}($ major $)=20.599 \mathrm{~min}, \mathrm{ee}=90 \%$.


Chiral HPLC chromatographic analysis of (R)-3e
Condition: Daicel Chiralcel OD-H, $n$-hexane/i-PrOH $=98 / 2, ~ U V=250 n m$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$, retention time: t $($ minor $)=5.476 \mathrm{~min}, \mathrm{t}($ major $)=5.912 \mathrm{~min}, \mathrm{ee}=84 \%$.


| Peak \# | $\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$ | Type | Width <br> [min] | $\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$ | Height <br> [mAU] | Area $\%$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 5.501 |  | 0.2049 | 459.19754 | 35.03112 | 50.1799 |
| 2 | 5.948 | VB | 0.2327 | 455.90411 | 30.79701 | 49.8201 |



| Peak \# | $\begin{gathered} \text { RetTime } \\ {[\text { min] }} \end{gathered}$ | Type | Width [min] | $\begin{gathered} \text { Area } \\ {\left[m A U^{*} s\right]} \end{gathered}$ | Height <br> [mAU] | Area \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 5.476 |  | 0.2041 | 535.24298 | 43.70932 | 7.7900 |
| 2 | 5.912 | MM | 0.2519 | 6335.65332 | 419.17145 | 92.2100 |

## Chiral HPLC chromatographic analysis of $(R)-\mathbf{3 f}$

Condition: Daicel Chiralcel OD-H, $n$-hexane $/ i-\operatorname{PrOH}=90 / 10, \mathrm{UV}=254 \mathrm{~nm}$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$, retention time: t $($ major $)=9.428 \mathrm{~min}, \mathrm{t}($ minor $)=11.065 \mathrm{~min}, \mathrm{ee}=94 \%$.



Chiral HPLC chromatographic analysis of (S)-3f
Condition: Daicel Chiralcel OD-H, $n$-hexane/i- $\mathrm{PrOH}=90 / 10, \mathrm{UV}=254 \mathrm{~nm}$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$, retention time: t $($ minor $)=9.797 \mathrm{~min}, \mathrm{t}($ major $)=11.418 \mathrm{~min}, \mathrm{ee}=95 \%$.


Chiral HPLC chromatographic analysis of $(R)-3 \mathrm{~g}$
Condition: Daicel Chiralcel AS-H, $n$-hexane $/ i-\mathrm{PrOH}=98 / 2, \mathrm{UV}=250 \mathrm{~nm}$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$, retention time: t $($ minor $)=11.503 \mathrm{~min}, \mathrm{t}($ major $)=12.124 \mathrm{~min}, \mathrm{ee}=97 \%$.



Chiral HPLC chromatographic analysis of (S)-3g
Condition: Daicel Chiralcel AS-H, n-hexane/i-PrOH $=98 / 2$, UV $=250 \mathrm{~nm}$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$, retention time: t
$($ major $)=11.471 \mathrm{~min}, \mathrm{t}($ minor $)=12.718 \mathrm{~min}, \mathrm{ee}=93 \%$.


Chiral HPLC chromatographic analysis of (R)-3h
Condition: Daicel Chiralcel AS-H, $n$-hexane/i-PrOH $=95 / 5, \mathrm{UV}=230 \mathrm{~nm}$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$, retention time: t $($ minor $)=8.140 \mathrm{~min}, \mathrm{t}($ major $)=9.308 \mathrm{~min}, \mathrm{ee}=73 \%$.



| Peak \# | $\begin{gathered} \text { RetTime } \\ {[\text { min] }} \end{gathered}$ | Type | Width <br> [min] | $\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$ | Height <br> [mAU] | Area \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 8.140 | MM | 0.2612 | 465.47260 | 29.70196 | 13.4696 |
| 2 | 9.308 | BB | 0.2891 | 2990.25122 | 165.27945 | 86.5304 |

## Chiral HPLC chromatographic analysis of ( $R$ )-3i

Condition: Daicel Chiralcel AS-H, n-hexane/i-PrOH $=98 / 2, \mathrm{UV}=250 \mathrm{~nm}$, flow rate: $0.8 \mathrm{~mL} / \mathrm{min}$, retention time: t $($ minor $)=6.452 \mathrm{~min}, \mathrm{t}($ major $)=6.937 \mathrm{~min}, \mathrm{ee}=81 \%$.



Chiral HPLC chromatographic analysis of $(R)-3 \mathbf{j}$
Condition: Daicel Chiralcel OD-H, $n$-hexane/i-PrOH $=98 / 2, \mathrm{UV}=250 \mathrm{~nm}$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$, retention time: t $(\operatorname{minor})=6.324 \mathrm{~min}, \mathrm{t}($ major $)=7.473 \mathrm{~min}, \mathrm{ee}=71 \%$.



## Chiral HPLC chromatographic analysis of (S)-3j

Condition: Daicel Chiralcel OD-H, n-hexane/i-PrOH $=98 / 2$, UV $=250 \mathrm{~nm}$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$, retention time: t (major) $=6.791 \mathrm{~min}, \mathrm{t}($ minor $)=7.931 \mathrm{~min}, \mathrm{ee}=71 \%$.


Chiral HPLC chromatographic analysis of ( $R$ )-3k
Condition: Daicel Chiralcel OD-H, $n$-hexane/i-PrOH $=98 / 2, U V=254 \mathrm{~nm}$, flow rate: $0.8 \mathrm{~mL} / \mathrm{min}$, retention time: t $($ major $)=5.752 \mathrm{~min}, \mathrm{t}($ minor $)=6.206 \mathrm{~min}, \mathrm{ee}=77 \%$.



| Peak \# | RetTime <br> [min] | Type | Width <br> [min] | $\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$ | Height <br> [mAU] | Area $\%$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 5.752 |  | 0.1468 | 1417.11865 | 144.04102 | 88.7869 |
| 2 | 6.206 |  | 0.1627 | 178.97156 | 16.22691 | 11.2131 |

## Chiral HPLC chromatographic analysis of $(R)-31$

Condition: Daicel Chiralcel OD-H, $n$-hexane/i-PrOH $=98 / 2, ~ U V=254 \mathrm{~nm}$, flow rate: $0.8 \mathrm{~mL} / \mathrm{min}$, retention time: t $(\operatorname{minor})=11.874 \mathrm{~min}, \mathrm{t}($ major $)=13.672 \mathrm{~min}, \mathrm{ee}=94 \%$.



| Peak \# | $\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$ | Type | Width [min] | $\begin{gathered} \text { Area } \\ {[\mathrm{mAU*S}]} \end{gathered}$ | Height [mAU] | Area \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 11.874 |  | 0.3169 | 116.17851 | 6.10941 | 2.7512 |
| 2 | 13.672 | MM | 0.3198 | 4106.69238 | 214.00578 | 97.2488 |


[^0]:    $\begin{array}{llllllllllllllllllllllllllllllllll}130 & 110 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 & -30 & -50 & -70 & -90 & -110 & -130 & -150 & -170 & -190 & -210 & -230\end{array}$

