Supporting Information

Synthesis of P-Chiral Phosphine Compounds by Palladium-Catalyzed C–P Coupling Reactions

Cuiying Wang, ^{&a} Chang-Duo Yue, ^{&a} Jia Yuan, ^{*a} Jia-Lian Zheng,^a Ying Zhang,^a Hong Yu,^a Jian Chen,^a Sixuan Meng,^a Yang Yu,^c Guang-Ao Yu, ^{*a} and Chi-Ming Che^{*b}

& These authors contributed equally to this work.

Table of Contents

1. General considerations.	S2
2. Procedures for palladium-catalyzed C–P coupling reactions	S2
3. Procedures for palladium-catalyzed C–P coupling reactions under microwave conditions	S12
4. X-ray Structural Determination	S15
5. References	
S16	
6. ¹ H, ¹³ C, ¹⁹ F and ³¹ P NMR spectra for all products	S17
7. HPLC spectra for all products	S77

1. General considerations

All manipulations of air-sensitive materials were carried out under an atmosphere of dry argon by using modified Schlenk line and glovebox techniques. Aryl halides, heteroaryl halides, bases, and catalysts were purchased from Alfa-Aesar and J&K Scientific Ltd. All solvents were distilled from appropriate drying agents under argon before use. The ¹H, ¹³C, ¹⁹F and ³¹P NMR spectroscopic data were recorded on Bruker Mercury Plus 400 MHz NMR spectrometers. Chemical shifts (δ) for ¹H and ¹³C are referenced to internal solvent resonances and reported relative to SiMe₄. Chemical shifts for ¹⁹F are reported relative to an external CFCl₃ standard. Chemical shifts for ³¹P are reported relative to an external 85% H₃PO₄ standard. High resolution mass analysis is performed on Varian 7.0T Fourier-transform mass spectrometry with ESI resource. High performance liquid chromatography (HPLC) was performed on Agilent 1100 series chromatographs using a Daicel Chiracel *AD-H* (4.6 mm Ø x 250 mm) or *OD-H* (4.6 mm Ø x 250 mm) or *AS-H* (4.6 mm Ø x 250 mm) column or *IBN-H* (4.6 mm Ø x 250 mm) with *n*-hexane/*i*-PrOH as an eluent. Microwave reaction was determined by Disover SP microwave instrument. (*S*)-*tert*- butyl(methyl)phosphine borane and (*R*)-*tert*- butyl(methyl)phosphine borane was synthesized according to the published procedures.^[1]

Synthesis of (*R*)-1 was similar as (*S*)-1

Scheme S1. Synthesis of optically pure P-stereogenic tert-butyl(methyl)phosphine borane^[1]

2. Procedures for palladium-catalyzed C-P coupling reactions

To a reaction tube, (*S*)-*tert*-butyl(methyl)phosphine borane (35.0 mg, 0.3 mmol), aryl and heteroaryl halides (0.5 mmol), Pd(OAc)₂ (3.4 mg, 0.015 mmol), dppf (27.7 mg, 0.03 mmol), *t*BuONa (57.6 mg, 0.6 mmol) and toluene (3 mL) were added under argon. The mixture was stirred for 72 h at room temperature. After removal of volatile materials under reduced pressure, the crude product was purified by chromatograph on silica gel. (*n*-hexane / dichloromethane).

(*R*)-*tert*-butyl(methyl)(naphthalen-1-yl)phosphine Borane.² Performed according to the general procedure to afford 41.0 mg (71%) of (*R*)-2a as white solid. ¹H NMR (400 MHz, CDCl₃): δ 8.90 (d, *J* = 8.0 Hz, 1 H, Ar), 7.99 (d, *J* = 8.0 Hz, 1 H, Ar), 7.87 (d, *J* = 8.0 Hz, 1 H, Ar), 7.75 - 7.80 (m, 1 H, Ar), 7.61 - 7.75 (m, 1 H, Ar), 7.49 - 7.53 (m, 2 H, Ar),

1.78 (d, J = 12.0 Hz, 3 H, CH_3), 1.16 (d, J = 16.0 Hz, 9 H, $C(CH_3)_3$), 0.79 - 1.57 (m, 3 H, BH_3). ¹³C NMR (101 MHz, CDCl₃): δ 135.4 (d, $J_{C-P} = 10.6$ Hz, Ar), 133.9 (d, $J_{C-P} = 7.7$ Hz, Ar), 133.4 (d, $J_{C-P} = 4.0$ Hz, Ar), 132.4 (d, $J_{C-P} = 2.6$ Hz, Ar), 128.8 (s, Ar), 128.2 (d, $J_{C-P} = 5.9$ Hz, Ar), 126.6 (s, Ar), 126.3 (s, Ar), 125.0 (d, $J_{C-P} = 44.8$ Hz, Ar), 124.3 (d, $J_{C-P} = 9.2$ Hz, Ar), 30.5 (d, $J_{C-P} = 31.5$ Hz, $C(CH_3)_3$), 25.8 (d, $J_{C-P} = 2.9$ Hz, $C(CH_3)_3$), 8.9 (d, $J_{C-P} = 39.6$ Hz, CH_3). ³¹P NMR (162 MHz, CDCl₃): δ 23.8 (q, J = 69.7 Hz). HPLC (Daicel Chiralcel AS-H, *n*-hexane/*i*-PrOH = 95/5, UV = 250 nm, flow rate = 1.0 mL/min) t_{R1} = 5.452 min (minor) and t_{R2} = 6.546 min (major), ee = 91%. [α]_D²⁵ = +8.5 (c = 2.0, CHCl₃).

(*R*)-*tert*-butyl(methyl)(phenyl)phosphine Borane.² Performed according to the general procedure to afford 41 mg (71%) of (*R*)-2b as white solid. ¹H NMR (400 MHz, CDCl₃): δ 7.71 (t, *J* = 8.0 Hz, 2 H, Ar), 7.39 – 7.58 (m, 3 H, Ar), 1.58 (d, *J* = 8.0 Hz, 3 H, CH₃), 1.11 (d, *J* = 12.0 Hz, 9 H, C(CH₃)₃), 0.12 – 0.97 (m, 3 H, BH₃). ¹³C NMR (101 MHz, CDCl₃): δ 132.9 (d, *J*_{C-P} = 8.0 Hz, Ar), 131.1 (s, Ar), 128.3 (s, Ar), 128.2 (s, Ar), 28.5 (d, *J*_{C-P} = 33.3 Hz, C(CH₃)₃), 25.1 (d, *J*_{C-P} = 2.9 Hz, C(CH₃)₃), 5.2 (d, *J*_{C-P} = 37.8 Hz, CH₃). ³¹P NMR (162 MHz, CDCl₃): δ 25.0 (q, *J* = 64.8 Hz). HPLC (Daicel Chiralcel AS-H, *n*-hexane/*i*-PrOH = 95/5, UV = 254 nm, flow rate = 1.0 mL/min) t_{R1} = 7.131 min (minor) and t_{R2} = 8.103 min (major), ee = 65%. [α]_D²⁵ = +23.0 (c = 2.0, CHCl₃).

(*R*)-*tert*-butyl(3,5-dimethylphenyl)(methyl)phosphine Borane. Performed according to the general procedure to afford 50 mg (75%) of (*R*)-2c as yellow solid. ¹H NMR (400 MHz, CDCl₃): δ 7.30 (s, 1 H, Ar), 7.27 (s, 1 H, Ar), 7.12 (s, 1 H, Ar), 2.36 (s, 6 H, CH₃), 1.53 (d, *J* = 8.0 Hz, 3 H, CH₃), 1.10 (d, *J* = 12.0 Hz, 9 H, C(CH₃)₃), 0.24 – 0.86 (m, 3 H, BH₃). ¹³C NMR (101 MHz, CDCl₃): δ 137.8 (d, *J*_{C-P} = 9.9 Hz, Ar), 132.8 (d, *J*_{C-P} = 2.6 Hz, Ar), 130.4 (d, *J*_{C-P} = 8.4 Hz, Ar), 127.2 (d, *J*_{C-P} = 50.3 Hz, Ar), 28.4 (d, *J*_{C-P} = 33.4 Hz, C(CH₃)₃), 25.2 (d, *J*_{C-P} = 2.6 Hz, C(CH₃)₃), 21.3 (s, CH₃), 5.3 (d, *J*_{C-P} = 37.8 Hz, CH₃). ³¹P NMR (162 MHz, CDCl₃): δ 24.3 (q, *J* = 69.7 Hz). HRMS (ESI): m/z: [M+H-BH₃]⁺ calculated for C₁₃H₂₂P: 209.1454, found 209.1455. HPLC (Daicel Chiralcel AS-H, *n*-hexane/*i*-PrOH = 95/5, UV = 220 nm, flow rate = 1.0 mL/min) t_{R1} = 4.240 min (minor) and t_{R2} = 5.678 min (major), ee = 94%. [α]_D²⁵ = +38.0 (c = 2.0, CHCl₃).

(*R*)-*tert*-butyl(methyl)(*o*-tolyl)phosphine Borane.² Performed according to the general procedure to afford 34 mg (42%) of (*R*)-2d as white solid. ¹H NMR (400 MHz, CDCl₃): δ 7.52 - 7.56 (m, 1 H, Ar), 7.37 (t, *J* = 8.0 Hz, 1 H, Ar), 7.13 - 7.26 (m, 2 H, Ar), 2.66 (s, 3 H, CH₃), 1.64 (d, *J* = 8.0 Hz, 3 H, CH₃), 1.14 (d, *J* = 16.0 Hz, 9 H, C(CH₃)₃), 0.43 - 1.10 (m, 3 H, BH₃). ¹³C NMR (101 MHz, CDCl₃): δ 144.1 (d, *J*_{C-P} = 10.5 Hz, Ar), 133.9 (d, *J*_{C-P} = 6.1 Hz, Ar), 132.1 (d, *J*_{C-P} = 8.8 Hz, Ar), 131.0 (d, *J*_{C-P} = 2.4 Hz, Ar), 125.7 (d, *J*_{C-P} = 46.0 Hz, Ar), 125.3 (d, *J*_{C-P} = 8.3 Hz, Ar), 30.5 (d, *J*_{C-P} = 31.9 Hz, C(CH₃)₃), 25.4 (d, *J*_{C-P} = 2.7 Hz, C(CH₃)₃), 23.3 (d, *J* = 3.3 Hz, CH₃), 8.8 (d, *J*_{C-P} = 39.0 Hz, CH₃). ³¹P NMR (162 MHz, CDCl₃): δ 25.1 (q, *J* = 61.6 Hz). HPLC (Daicel Chiralcel OD-H, *n*-hexane/*i*-PrOH = 98/2, UV = 230 nm, flow rate = 0.5 mL/min) t_{R1} = 12.580 min (minor) and t_{R2} = 14.134 min (major), ee = 90%. [α]₀²⁵ = +1.0 (c = 2.0, CHCl₃).

(*R*)-*tert*-butyl(4-(tert-butyl)phenyl)(methyl)phosphine Borane. Performed according to the general procedure to afford 67.5 mg (90%) of (*R*)-2e as yellow solid. ¹H NMR (400 MHz, CDCl₃): δ 7.61 – 7.65 (m, 2 H, Ar), 7.45 – 7.47 (m, 2 H, Ar), 1.55 (d, *J* = 8.0 Hz, 3 H, *CH*₃), 1.33 (s, 9 H, C(*CH*₃)₃), 1.11 (d, *J* = 12.0 Hz, 9 H, C(*CH*₃)₃), 0.48 – 1.05 (m, 3 H, BH₃). ¹³C NMR (101 MHz, CDCl₃): δ 154.4 (d, *J*_{C-P} = 2.4 Hz, Ar), 132.7 (d, *J*_{C-P} = 8.4 Hz, Ar), 125.3 (d, *J*_{C-P} = 9.7 Hz, Ar), 124.2 (d, *J*_{C-P} = 6.1 Hz, Ar), 34.9 (s, *C*(*CH*₃)₃), 31.2 (s, C(*CH*₃)₃), 28.6 (d, *J*_{C-P} = 33.3 Hz, *C*(*CH*₃)₃), 25.2 (d, *J*_{C-P} = 3.0 Hz, C(*CH*₃)₃), 5.4 (d, *J*_{C-P} = 30.3 Hz, *CH*₃). ³¹P NMR (162 MHz, CDCl₃): δ 23.7 (q, *J* = 66.4 Hz). HRMS (ESI): m/z: [M+H-BH₃]⁺ calculated for C₁₅H₂₆P:237.1767, found 237.1766. HPLC (Daicel Chiralcel AS-H, *n*-hexane/*i*-PrOH = 99/1, UV = 234 nm, flow rate = 1 mL/min) t_{R1} = 5.365 min (major) and t_{R2} = 6.045 min (minor), ee = 90%. [α]_D²⁵ = +13.0 (c = 2.0, CHCl₃).

(*R*)-*tert*-butyl(4-methoxyphenyl)(methyl)phosphine Borane. Performed according to the general procedures to afford 47 mg (70%) of (*R*)-2f as white solid. ¹H NMR (400 MHz, CDCl₃): δ 7.61 - 7.65 (m, 2 H, Ar), 6.96 - 6.98 (m, 2 H, Ar), 3.85 (s, 3 H, OCH₃), 1.54 (d, *J* = 8.0 Hz, 3 H, CH₃), 1.09 (d, *J* = 16.0 Hz, 9 H, C(CH₃)₃). 0.35 - 0.91 (m, 3 H, BH₃). ¹³C NMR (101 MHz, CDCl₃): δ 161.8 (d, *J*_{C-P} = 2.4 Hz, Ar), 134.5 (d, *J*_{C-P} = 9.4 Hz, Ar), 118.4 (d, *J*_{C-P} = 6.2 Hz, Ar), 113.9 (d, *J*_{C-P} = 10.3 Hz, Ar), 55.3 (s, OCH₃), 28.7 (d, *J*_{C-P} = 30.3 Hz, C(CH₃)₃), 25.2 (d, *J*_{C-P} = 2.7 Hz, C(CH₃)₃), 5.5 (d, *J*_{C-P} = 30.3 Hz, CH₃). ³¹P NMR (162 MHz, CDCl₃): δ 23.2 (q, *J* = 61.6 Hz). HRMS (ESI): m/z: [M+H-BH₃]⁺ calculated for C₁₂H₂₀OP: 211.1246, found 211.1248. HPLC (Daicel Chiralcel AS-H, *n*-hexane/*i*-PrOH = 98/2, UV = 254 nm, flow rate = 0.8 mL/min) t_{R1} = 21.843 min (minor) and t_{R2} = 23.093 (major), ee = 98%. [α]_D²⁵ = +5.0 (c = 2.0, CHCl₃).

(*R*)-(4-(1,3-dioxolan-2-yl)phenyl)(*tert*-butyl)(methyl)phosphine Borane. Performed according to the general procedure to afford 34 mg (42%) of (*R*)-2g as yellow solid. ¹H NMR (400 MHz, CDCl₃): δ 7.69 – 7.78 (m, 2 H, Ar), 7.56 – 7.58 (m, 2 H, Ar), 5.84 (s, 1 H, CH), 4.10 – 4.15 (m, 2 H, CH₂), 4.04 – 4.09 (m, 2 H, CH₂), 1.57 (d, *J* = 9.7 Hz, 3 H, CH₃), 1.10 (d, *J* = 14.0 Hz, 9 H, C(CH₃)₃), 0.13 – 0.99 (m, 3 H, BH₃). ¹³C NMR (101 MHz, CDCl₃): δ 141.1 (s, Ar), 133.0 (d, *J*_{C-P} = 8.1 Hz, Ar), 128.7 (d, *J*_{C-P} = 50.5 Hz, Ar), 126.3 (d, *J*_{C-P} = 9.1 Hz, Ar), 103.0 (s, CH), 65.4 (s, CH₂), 28.6 (d, *J*_{C-P} = 40.4 Hz, *C*(CH₃)₃), 25.1(d, *J*_{C-P} = 2.7 Hz, C(CH₃)₃), 5.3 (d, *J*_{C-P} = 40.4 Hz, CH₃). ³¹P NMR (162 MHz, CDCl₃): δ 25.2 (q, *J* = 66.4 Hz). HRMS (ESI): m/z: [M+H-BH₃]⁺ calculated for C₁₄H₂₂O₂P: 253.1352, found 253.1352. HPLC (Daicel Chiralcel AS-H, *n*-hexane/*i*-PrOH = 98/2, UV = 250 nm, flow rate = 1.0 mL/min) t_{R1} = 26.610 min (major) and t_{R2} = 34.227 min (minor), ee = 89%. [α]_D²⁵ = +11.0 (c = 2.0, CHCl₃).

(*R*)-(4-(1,3-dioxolan-2-yl)phenyl)(*tert*-butyl)(methyl)phosphine Borane. Performed according to the general procedure to afford 34 mg (42%) of (*R*)-2h as yellow solid. ¹H NMR (400 MHz, CDCl₃): δ 7.75 – 7.80 (m, 2 H, Ar), 7.66 – 7.68 (m, 2 H, Ar), 7.60 – 7.61 (m, 2 H, Ar), 7.45 – 7.49 (m, 2 H, Ar), 7.37 – 7.41 (m, 1 H, Ar), 1.61 (d, *J* = 9.7 Hz, 3 H, CH₃), 1.15 (d, *J* = 14.0 Hz, 9 H, C(CH₃)₃), 0.41 – 0.88 (m, 3 H, BH₃). ¹³C NMR (101 MHz, CDCl₃): δ 143.9 (s, Ar), 139.9 (s, Ar), 133.3 (d, *J*_{C-P} = 8.7 Hz, Ar), 128.9 (s, Ar), 128.0 (s, Ar), 127.2 (s, Ar), 126.9 (d, *J*_{C-P} = 9.5 Hz, Ar), 126.3 (d, *J*_{C-P} = 51.3 Hz, Ar), 28.6 (d, *J*_{C-P} = 34.3 Hz, C(CH₃)₃), 25.0 (d, *J*_{C-P} = 24.2 Hz, C(CH₃)₃), 5.3 (d, *J*_{C-P} = 37.4 Hz, CH₃). ³¹P NMR (162 MHz, CDCl₃): δ 24.7 (q, *J* = 66.4 Hz). HRMS (ESI): m/z: [M+H-BH₃]⁺ calculated for C₁₇H₂₂P: 257.1454, found 257.1454. HPLC (Daicel Chiralcel OD-H, *n*-hexane/*i*-PrOH = 95/5, UV = 250 nm, flow rate = 0.8 mL/min) t_{R1} = 7.891 min (major) and t_{R2} = 8.692 min (minor), ee = 79%. [α]_D²⁵ = +11.0 (c = 2.0, CHCl₃).

(*R*)-4-(borane *tert*-butyl(methyl)phosphino)phenyl)methanol. Performed according to the general procedure to afford 64 mg (95%) of (*R*)-2i as white solid. ¹H NMR (400 MHz, CDCl₃): δ 7.68 (t, *J* = 8.7 Hz, 2 H, Ar), 7.44 (d, *J* = 7.6 Hz, 2 H, Ar), 4.72 (s, 2 H, CH₂), 2.37 (s, 1 H, CH₂OH), 1.56 (d, *J* = 9.7 Hz, 3 H, CH₃), 1.09 (d, *J* = 14.0 Hz, 9 H, C(CH₃)₃), 0.17 – 0.91 (m, 3 H, BH₃). ¹³C NMR (101 MHz, CDCl₃): δ 144.1 (s, Ar), 133.0 (d, *J*_{C-P} = 8.4 Hz, Ar), 126.4 (d, *J*_{C-P} = 51.5 Hz, Ar), 126.4 (d, *J*_{C-P} = 10.1 Hz, Ar), 64.4 (s, CH₂), 28.4 (d, *J*_{C-P} = 33.0 Hz, C(CH₃)₃), 25.0 (d, *J*_{C-P} = 2.6 Hz, C(CH₃)₃), 5.2 (d, *J*_{C-P} = 37.8 Hz, CH₃). ³¹P NMR (162 MHz, CDCl₃): δ 24.6 (q, *J* = 68.0 Hz). HRMS (ESI): m/z: [M+H-BH₃]⁺ calculated for C₁₂H₂₀OP: 211.1246, found 211.1246. HPLC (Daicel Chiralcel OD-H, *n*-hexane/*i*-PrOH = 90/10, UV = 254 nm, flow rate = 1.0 mL/min) t_{R1} = 9.399 min (major) and t_{R2} = 12.921 min (minor), ee = 84%. [α]_D²⁵ = +58.0 (c = 2.0, CHCl₃).

(*R*)-*tert*-butyl(4-chlorophenyl)(methyl)phosphine Borane. Performed according to the general procedure to afford 46 mg (68%) of (*R*)-2j as white solid. ¹H NMR (400 MHz, CDCl₃): δ 7.61 – 7.69 (m, 2 H, Ar), 7.41 – 7.48 (m, 2 H, Ar), 1.57 (d, *J* = 9.7 Hz, 3 H, CH₃), 1.10 (d, *J* = 14.1 Hz, 9 H, C(CH₃)₃), 0.11 - 0.95 (m, 3 H, BH₃). ¹³C NMR (101 MHz, CDCl₃): δ 137.8 (s, Ar), 134.2 (d, *J*_{C-P} = 8.9 Hz, Ar), 128.6 (d, *J*_{C-P} = 9.9 Hz, Ar), 126.6 (d, *J*_{C-P} = 50.5 Hz, Ar), 28.6 (d, *J*_{C-P} = 30.3 Hz, *C*(CH₃)₃), 25.1 (d, *J*_{C-P} = 2.7 Hz, C(CH₃)₃), 5.3 (d, *J*_{C-P} = 38.4 Hz, CH₃). ³¹P NMR (162 MHz, CDCl₃): δ 25.5 (q, *J* = 59.9 Hz). HRMS (ESI): m/z: [M+H-BH₃]⁺ calculated for C₁₁H₁₇CIP: 215.0751, found 215.0752. HPLC (Daicel Chiralcel AS-H, *n*-hexane/*i*-PrOH = 99/1, UV = 234 nm, flow rate = 1.0 mL/min) t_{R1} = 9.339 min (major) and t_{R2} = 11.765 min (minor), ee = 94%. [α]₀²⁵ = +1.5 (c = 2.0, CHCl₃).

(*R*)-*tert*-butyl(methyl)(4-(trifluoromethyl)phenyl)phosphine Borane. Performed according to the general procedure to afford 47 mg (60%) of (*R*)-2k as yellow solid. ¹H NMR (400 MHz, CDCl₃): δ 7.83 - 7.88 (m, 2 H, Ar), 7.72 (d, *J* = 8.0 Hz, 2 H, Ar), 1.61 (d, *J* = 9.5 Hz, 3 H, CH₃), 1.12 (d, *J* = 14.2 Hz, 9 H, C(CH₃)₃), 0.21 – 0.94 (m, 3 H, BH₃). ¹³C NMR (101 MHz, CDCl₃): δ 133.3 (d, *J*_{C-P} = 8.4 Hz, Ar), 133.2 (d, *J*_{C-F} = 2.0 Hz, Ar), 133.0 (d, *J*_{C-F} = 5.1 Hz, Ar), 132.4 (s, Ar), 123.6 (q, *J*_{C-F} = 273.7 Hz, *C*F₃), 122.2 (s, Ar), 28.6 (d, *J*_{C-P} = 32.6 Hz, *C*(CH₃)₃), 25.1 (d, *J*_{C-P} = 2.6 Hz, C(CH₃)₃), 5.2 (d, *J*_{C-P} = 37.0 Hz, *C*H₃). ³¹P NMR (162 MHz, CDCl₃): δ 26.9 (q, *J* = 40.5 Hz). ¹⁹F NMR (377 MHz, CDCl₃): δ -63.1 (s). HRMS (ESI): m/z: [M+H-BH₃]⁺ calculated for C₁₂H₁₇F₃P: 249.1014, found 249.1016. HPLC (Daicel Chiralcel AS-H, *n*-hexane/*i*-PrOH = 99/1, UV = 254 nm, flow rate = 1.0 mL/min) t_{R1} = 6.392 min (minor) ang t_{R2} = 6.672 min (major), ee = 89%. [α]_D²⁵ = +5.5 (c = 2.0, CHCl₃).

(*R*)-1-(4-(borane *tert*-butyl(methyl)phosphino)phenyl)ethan-1-one. Performed according to the general procedure to afford 20 mg (28%) of (*R*)-2I as white solid. ¹H NMR (400 MHz, CDCl₃): δ 7.95 – 8.05 (m, 2 H, Ar), 7.82 (t, *J* = 7.4 Hz, 2 H, Ar), 2.64 (d, *J* = 2.8 Hz, 3 H, COCH₃), 1.61 (d, *J* = 6.8 Hz, 3 H, CH₃), 1.12 (d, *J* = 14.2 Hz, 9 H, C(CH₃)₃). ¹³C NMR (101 MHz, CDCl₃): δ 197.6 (s, COCH₃), 138.8 (s, Ar), 133.2 (d, *J*_{C-P} = 8.1 Hz, Ar), 127.7 (d, *J*_{C-P} = 9.1 Hz, Ar), 28.8 (d, *J*_{C-P} = 30.3 Hz, *C*(CH₃)₃), 28.5(s, COCH₃), 25.1 (d, *J*_{C-P} = 2.7 Hz, C(CH₃)₃), 5.2 (d, *J*_{C-P} = 38.4 Hz, CH₃). ³¹P NMR (162 MHz, CDCl₃): δ 26.5 (q, *J* = 61.6 Hz). HRMS (ESI): m/z: [M+H-BH₃]⁺ calculated for C₁₃H₂₀OP: 223.1246, found 223.1247. HPLC (Daicel Chiralcel OD-H, *n*-hexane/*i*-PrOH = 90/10, UV = 254 nm, flow rate = 1.0 mL/min) t_{R1} = 7.292 min (major) and t_{R2} = 8.536 min (minor), ee = 63%. [α]_D²⁵ = +1.5 (c = 2.0, CHCl₃).

(*R*)-(4-(borane *tert*-butyl(methyl)phosphino)phenyl)(phenyl)methanone. Performed according to the general procedure to afford 22 mg (25%) of (*R*)-2m as yellow solid. ¹H NMR (400 MHz, CDCl₃): δ 7.77 – 7.90 (m, 6 H, Ar), 7.61 – 7.65 (m, 1 H, Ar), 7.49 – 7.53 (m, 2 H, Ar), 1.63 (d, *J* = 8.0 Hz, 3 H, CH₃), 1.14 (d, *J* = 12.0 Hz, 9 H, C(CH₃)₃), 0.11 – 1.02 (m, 3 H, BH₃). ¹³C NMR (101 MHz, CDCl₃): δ 196.1 (s, *C*O), 139.8 (s, Ar), 136.8 (s, Ar), 133.0 (s, Ar), 132.8 (d, *J*_{C-P} = 8.1 Hz, Ar), 132.4 (s, Ar), 131.6 (s, Ar), 130.2(s, Ar), 129.4 (d, *J*_{C-P} = 10.0 Hz, Ar), 128.5 (s, Ar), 126.5 (s, Ar), 28.7 (d, *J*_{C-P} = 32.3 Hz, *C*(CH₃)₃), 25.2 (d, *J*_{C-P} = 2.7 Hz, C(CH₃)₃), 5.2 (d, *J*_{C-P} = 37.4 Hz, *C*H₃). ³¹P NMR (162 MHz, CDCl₃): δ 26.5 (q, *J* = 76.1 Hz). HRMS (ESI): m/z: [M+H-BH₃]⁺ calculated for C₁₈H₂₂P: 285.1408, found 285.1413. HPLC (Daicel Chiralcel OD-H, *n*-hexane/*i*-PrOH = 98/2, UV = 250 nm, flow rate = 1.0 mL/min) t_{R1} = 54.504 min (minor) and t_{R2} = 57.362 min (major), ee = 65%. [α]_D²⁵ = +52.0 (c = 2.0, CHCl₃).

(*R*)-ethyl 4-(borane *tert*-butyl(methyl)phosphino)benzoate. Performed according to the general procedure to afford 50 mg (63%) of (*R*)-2n as yellow solid. ¹H NMR (400 MHz, CDCl₃): δ 8.08 – 8.14 (m, 2 H, Ar), 7.76 – 7.83 (m, 2 H, Ar), 4.41 (q, *J* = 7.0 Hz, 2 H, CH₂CH₃), 1.61 (d, *J* = 9.8 Hz, 3 H, CH₂CH₃), 1.41 (t, *J* = 7.0 Hz, 3 H, CH₃), 1.11 (d, *J* = 14.0 Hz, 9 H, C(CH₃)₃), 0.19 – 0.94 (m, 3 H, BH₃). ¹³C NMR (101 MHz, CDCl₃): δ 165.9 (s, *CO*₂Et), 133.4 (d, *J*_{C-P} = 2.0 Hz, Ar), 132.9 (d, *J*_{C-P} = 8.3 Hz, Ar), 132.8 (d, *J*_{C-P} = 2.0 Hz, Ar), 129.1 (d, *J*_{C-P} = 9.5 Hz, Ar), 61.4 (s, CO₂CH₂CH₃), 28.7 (d, *J*_{C-P} = 33.3 Hz, *C*(CH₃)₃), 25.1(d, *J*_{C-P} = 2.8 Hz, C(CH₃)₃), 14.3 (s, CO₂CH₂CH₃), 5.2 (d, *J*_{C-P} = 37.4 Hz, CH₃). ³¹P NMR (162 MHz, CDCl₃): δ 26.4 (q, *J* = 66.4 Hz). HRMS (ESI): m/z: [M+H-BH₃]⁺ calculated for C₁₄H₂₂O₂P: 253.1352, found 253.1353. HPLC (Daicel Chiralcel OD-H, *n*-hexane/*i*-PrOH = 98/2, UV = 230 nm, flow rate = 0.8 mL/min) t_{R1} = 15.308 min (major) and t_{R2} = 16.976 min (minor), ee = 92%. [α]_D²⁵ = +11.0 (c = 2.0, CHCl₃).

(*R*)-4-(borane *tert*-butyl(methyl)phosphino)benzonitrile. Performed according to the general procedure to afford 24 mg (36%) of (*R*)-20 as white solid. ¹H NMR (400 MHz, CDCl₃): δ 7.85 (d, *J* = 6.0 Hz, 2 H, Ar), 7.77 (d, *J* = 5.0 Hz, 2 H, Ar), 1.63 (d, *J* = 7.0 Hz, 3 H, *CH*₃), 0.98 – 1.19 (d, *J* = 14.0 Hz, 9 H, C(*CH*₃)₃), 0.11 – 0.95 (m, 3 H, B*H*₃). ¹³C NMR (101 MHz, CDCl₃): δ 134.3 (d, *J*_{C-P} = 44.4 Hz, Ar), 133.5 (d, *J*_{C-P} = 7.1 Hz, Ar), 131.7 (d, *J*_{C-P} = 8.1 Hz, Ar), 117.9 (s, *C*N), 115.0 (d, *J*_{C-P} = 40.0 Hz, Ar), 28.6 (d, *J*_{C-P} = 30.3 Hz, *C*(*C*H₃)₃), 25.1 (d, *J*_{C-P} = 2.7 Hz, C(*C*H₃)₃), 5.1 (d, *J*_{CP} = 40.4 Hz, *C*H₃). ³¹P NMR (162 MHz, CDCl₃): δ 28.1 (q, *J* = 71.3 Hz). HRMS (ESI): m/z: [M+H-BH₃]⁺ calculated for C₁₂H₁₇NP: 206.1093, found 206.1094. HPLC (Daicel Chiralcel OD-H, *n*-hexane/*i*-PrOH = 90/10, UV = 250 nm, flow rate = 1.0 mL/min) t_{R1} = 7.383 min (major) and t_{R2} = 8.712 min (minor), ee = 74%. [α]_D²⁵ = +4.7 (c = 2.0, CHCl₃).

(*R*)-*tert*-butyl(4-methoxynaphthalen-1-yl)(methyl)phosphine Borane. Performed according to the general procedure to afford 37 mg (40%) of (*R*)-2p as white solid. ¹H NMR (400 MHz, CDCl₃): δ 8.79 (d, *J* = 8.4 Hz, 1 H, Ar), 8.33 (d, *J* = 8.4 Hz, 1 H, Ar), 7.74 (s, 1 H, Ar), 7.47 - 7.63 (m, 2 H, Ar), 6.86 (d, *J* = 8.2 Hz, 1 H, Ar), 4.05 (s, 3 H, OCH₃), 1.76 (d, *J* = 9.0 Hz, 3H, CH₃), 1.15 (d, *J* = 14.0 Hz, 9 H, C(CH₃)₃), 0.21 - 0.88 (m, 3 H, BH₃). ¹³C NMR (101 MHz, CDCl₃): δ 158.4 (d, *J*_{C-P} = 3.0 Hz, Ar), 136.4 (d, *J*_{C-P} = 11.1 Hz, Ar), 134.7 (d, *J*_{C-P} = 6.1 Hz, Ar), 127.9 (d, *J*_{C-P} = 5.1 Hz, Ar), 127.1 (s, Ar), 126.0 (d, *J*_{C-P} = 8.1 Hz, Ar), 125.6 (s, Ar), 122.4 (s, Ar), 115.7 (d, *J*_{C-P} = 49.5 Hz, Ar), 102.7 (d, *J*_{C-P} = 11.1 Hz, Ar), 55.7 (s, OMe), 30.7 (d, *J*_{C-P} = 32.3 Hz, *C*(CH₃)₃), 25.9 (d, *J*_{C-P} = 3.0 Hz, C(CH₃)₃), 9.0 (d, *J*_{C-P} = 39.4 Hz, CH₃). ³¹P NMR (162 MHz, CDCl₃): δ 22.4 (q, *J* = 68.0 Hz). HRMS (ESI): m/z: [M+H-BH₃]⁺ calculated for C₁₆H₂₂OP: 261.1403, found 261.1403. HPLC (Daicel Chiralcel OD-H, *n*-hexane/*i*-PrOH = 98/2, UV = 250 nm, flow rate = 1 mL/min) t_{R1} = 7.585 min (minor) and t_{R2} = 12.549 min (major), ee = 46%. [α]_D²⁵ = +16.0 (c = 2.0, CHCl₃).

(*R*)-*tert*-butyl(9,9-dimethyl-9*H*-fluoren-2-yl)(methyl)phosphine Borane. Performed according to the general procedure to afford 76 mg (82%) of (*R*)-2q as white solid. ¹H NMR (400 MHz, CDCl₃): δ 7.72 – 7.81 (m, 3 H, Ar), 7.67 (t, *J* = 8.6 Hz, 1 H, Ar), 7.43 – 7.49 (m, 1 H, Ar), 7.34 – 7.38 (m, 2 H, Ar), 1.62 (t, *J* = 7.6 Hz, 3 H, CH₃), 1.51 (d, *J* = 4.0 Hz, 6 H, CH₃), 1.12 (d, *J* = 16.0 Hz, 9 H, C(CH₃)₃), 0.11 – 0.99 (m, 3 H, BH₃). ¹³C NMR (101 MHz, CDCl₃): δ 154.1 (s, Ar), 153.5 (d, *J*_{C-P} = 9.1 Hz, Ar), 142.2 (s, Ar), 138.0 (d, *J*_{C-P} = 10.0 Hz, Ar), 131.8 (s, Ar), 131.7 (d, *J*_{C-P} = 5.0 Hz, Ar), 128.4 (s, Ar), 127.2 (d, *J*_{C-P} = 8.1 Hz, Ar), 126.0 (s, Ar), 122.8 (s, Ar), 120.7 (s, Ar), 119.7 (d, *J*_{C-P} = 10.0 Hz, Ar), 47.0 (s, *C*(CH₃)₂), 28.6 (d, *J*_{C-P} = 34.4 Hz, *C*(CH₃)₃), 27.0 (s, C(CH₃)₂), 25.2 (d, *J*_{C-P} = 2.8 Hz, C(CH₃)₃), 5.5 (d, *J*_{C-P} = 38.4 Hz, CH₃). ³¹P NMR (162 MHz, CDCl₃): δ 25.3 (q, *J* = 72.9 Hz). HRMS (ESI): m/z: [M+H-BH₃]⁺ calculated for C₂₀H₂₆P: 297.1767, found 297.1769. HPLC (Daicel Chiralcel IBN-H, *n*-hexane/*i*-PrOH = 99/1, UV = 254 nm, flow rate = 0.5 mL/min) t_{R1} = 11.612 min (minor) and t_{R2} = 12.325 min (major), ee = 74%. [α]_D²⁵ = +7.5 (c = 2.0, CHCl₃).

(*R*)-*tert*-butyl(methyl)(phenanthren-9-yl)phosphine Borane. Performed according to the general procedure to afford 79 mg (85%) of (*R*)-2r as white solid. ¹H NMR (400 MHz, CDCl₃): δ 8.96 (d, *J* = 8.1 Hz, 1 H, Ar), 8.68 – 8.74 (m, 2 H, Ar), 8.08 (d, *J* = 12.4 Hz, 1 H, Ar), 7.94 (d, *J* = 7.7 Hz, 1 H, Ar), 7.61 – 7.80 (m, 4 H, Ar), 1.87 (d, *J* = 9.0 Hz, 3 H, CH₃), 1.21 (d, *J* = 14.1 Hz, 9 H, C(CH₃)₃), 0.11 - 0.94 (m, 3 H, BH₃). ¹³C NMR (101 MHz, CDCl₃): δ 136.2 (d, *J*_{C-P} = 4.0 Hz, Ar), 132.7 (d, *J*_{C-P} = 7.1 Hz, Ar), 131.7 (d, *J*_{C-P} = 2.0 Hz, Ar), 130.6 (d, *J*_{C-P} = 7.1 Hz, Ar), 130.0 (d, *J*_{C-P} = 10.0 Hz, Ar), 129.5 (s, Ar), 129.4 (d, *J*_{C-P} = 17.2 Hz, Ar), 128.8 (s, Ar), 127.1 (d, *J*_{C-P} = 6.1 Hz, Ar), 126.6 (s, Ar), 124.3 (d, *J*_{C-P} = 47.5 Hz, Ar), 122.8 (d, *J*_{C-P} = 38.4 Hz, Ar), 30.7 (d, *J*_{C-P} = 30.3 Hz, *C*(CH₃)₃), 26.1 (d, *J*_{C-P} = 2.8 Hz, C(CH₃)₃), 9.2 (d, *J*_{C-P} = 40.4 Hz, CH₃). ³¹P NMR (162 MHz, CDCl₃): δ 24.6 (q, *J* = 58.3 Hz). HRMS (ESI): m/z: [M+H-BH₃]⁺ calculated for C₁₉H₂₂P: 281.1454, found 281.1455. HPLC (Daicel Chiralcel AS-H, *n*-hexane/*i*-PrOH = 90/10, UV = 254 nm, flow rate = 1.0 mL/min) t_{R1} = 13.414 min (minor) and t_{R2} = 28.472 min (major), ee =91%. [α]_D²⁵ = +13.5 (c = 2.0, CHCl₃).

H₃B^{-P}Me

(*R*)-3-(borane *tert*-butyl(methyl)phosphino)-N,N-dimethylaniline. Performed according to the general procedure to afford 37 mg (52%) of (*R*)-3a as yellow solid. ¹H NMR (400 MHz, CDCl₃): δ 7.26 – 7.39 (m, 1 H, Ar), 7.09 (d, *J* = 12.0 Hz, 1 H, Ar), 6.92 – 6.96 (m, 1 H, Ar), 6.82 (d, *J* = 8.0 Hz, 1 H, Ar), 2.98 (s, 6 H, N(CH₃)₂), 1.54 (d, *J* = 12.0 Hz, 3 H, CH₃), 1.12 (d, *J* = 24.0 Hz, 9 H, C(CH₃)₃), 0.18 – 0.74 (m, 3 H, BH₃). ¹³C NMR (101 MHz, CDCl₃): δ 150.1 (d, *J*_{C-P} = 11.8 Hz, Ar), 128.8 (d, *J*_{C-P} = 10.3 Hz, Ar), 127.3 (d, *J*_{C-P} = 51.5 Hz, Ar), 120.1 (d, *J*_{C-P} = 6.0 Hz, Ar), 117.2 (d, *J*_{C-P} = 12.8 Hz, Ar), 114.8 (d, *J*_{C-P} = 2.3 Hz, Ar), 40.4 (s, N(CH₃)₂), 28.5 (d, *J*_{C-P} = 30.3 Hz, *C*(CH₃)₃), 25.4 (d, *J*_{C-P} = 2.7 Hz, C(CH₃)₃), 5.4 (d, *J*_{C-P} = 38.4 Hz, CH₃). ³¹P NMR (162 MHz, CDCl₃): δ 25.6 (q, *J* = 64.8 Hz). HRMS (ESI): m/z: [M+H-BH₃]⁺ calculated for C₁₃H₂₃NP: 224.1563, found 224.1562. HPLC (Daicel Chiralcel OD-H, *n*-hexane/*i*-PrOH = 98/2,

UV = 250 nm, flow rate = 0.8 mL/min) t_{R1} = 8.667 min (minor) and t_{R2} = 10.155 min (major), ee = 80%. $[\alpha]_D^{25}$ = +24.0 (c = 2.0, CHCl₃).

(*R*)-4-(4-(borane *tert*-butyl(methyl)phosphino)phenyl)morpholine. Performed according to the general procedure to afford 44 mg (53%) of (*R*)-**3b** as white solid. ¹H NMR (400 MHz, CDCl₃): δ 7.55 – 7.60 (m, 2 H, Ar), 6.91 – 6.94 (m, 2 H, Ar), 3.84 – 3.87 (m, 4 H, CH₂), 3.23 – 3.25 (m, 4 H, CH₂), 1.52 (d, *J* = 9.7 Hz, 3 H, CH₃), 1.09 (d, *J* = 13.9 Hz, 9 H, C(CH₃)₃), 0.25 – 0.84 (m, 3 H, BH₃). ¹³C NMR (101 MHz, CDCl₃): δ 152.8 (d, *J*_{C-P} = 3.0 Hz, Ar), 134.1 (d, *J*_{C-P} = 9.1 Hz, Ar), 116.0 (d, *J*_{C-P} = 56.6 Hz, Ar), 114.1 (d, *J*_{C-P} = 10.1 Hz, Ar), 66.6 (s, CH₂), 47.8 (s, CH₂), 28.7 (d, *J*_{C-P} = 34.3 Hz, C(CH₃)₃), 25.1 (d, *J*_{C-P} = 3.0 Hz, C(CH₃)₃), 5.3 (d, *J*_{C-P} = 38.4 Hz, CH₃). ³¹P NMR (162 MHz, CDCl₃): δ 22.4 (q, *J* = 74.5 Hz). HRMS (ESI): m/z: [M+H-BH₃]⁺ calculated for C₁₅H₂₅NOP: 266.1668, found 266.1668. HPLC (Daicel Chiralcel OD-H, *n*-hexane/*i*-PrOH = 90/10, UV = 250 nm, flow rate = 1.0 mL/min) t_{R1} = 11.953 min (major) and t_{R2} = 16.618 min (minor), ee = 46%. [α]_D²⁵ = +24.0 (c = 2.0, CHCl₃).

(*R*)-1-(4-(borane *tert*-butyl(methyl)phosphino)phenyl)-1*H*-pyrrole. Performed according to the general procedure to afford 57 mg (74%) of (*R*)-3c as white solid. ¹H NMR (400 MHz, CDCl₃): δ 7.74 – 7.79 (m, 2 H, Ar), 7.46 – 7.49 (m, 2 H, Ar), 7.13 – 7.15 (m, 2 H, Ar), 6.38 – 6.39 (m, 2 H, Ar), 1.59 (d, *J* = 3.0 Hz, 3 H, CH₃), 1.13 (d, *J* = 4.0 Hz, 9 H, C(CH₃)₃), 0.11 – 1.07 (m, 3 H, BH₃). ¹³C NMR (101 MHz, CDCl₃): δ 142.7 (d, *J*_{C-P} = 3.0 Hz, Ar), 134.4 (d, *J*_{C-P} = 9.9 Hz, Ar), 124.2 (d, *J*_{C-P} = 51.2 Hz, Ar), 119.5 (d, *J*_{C-P} = 10.0 Hz, Ar), 119.0 (s, Ar), 111.4 (s, Ar), 28.7 (d, *J*_{C-P} = 33.3 Hz, *C*(CH₃)₃), 25.1 (d, *J*_{C-P} = 3.0 Hz, C(CH₃)₃), 5.3 (d, *J*_{C-P} = 37.4 Hz, CH₃). ³¹P NMR (162 MHz, CDCl₃): δ 24.6 (q, *J* = 68.0 Hz). HRMS (ESI): m/z: [M+H-BH₃]⁺ calculated for C₁₅H₂₁NP: 246.1406, found 246.1407. HPLC (Daicel Chiralcel OD-H, *n*-hexane/*i*-PrOH = 98/2, UV = 254 nm, flow rate = 0.8 mL/min) t_{R1} = 13.659 min (minor) and t_{R2} = 15.300 min (major), ee = 94%. [α]_D²⁵ = +0.5 (c = 2.0, CHCl₃).

(*R*)-9-(4-(borane *tert*-butyl(methyl)phosphino)phenyl)-9*H*-carbazole. Performed according to the general procedure to afford 67.8 mg (63%) of (*R*)-3d as white solid. ¹H NMR (400 MHz, CDCl₃): δ 8.15 (d, *J* = 8.0 Hz, 2 H, Ar), 7.93 – 7.98 (m, 2 H, Ar), 7.70 – 7.72 (m, 2 H, Ar), 7.41 – 7.49 (m, 4 H, Ar), 7.30 – 7.34 (m, 2 H, Ar), 1.67 (d, *J* = 8.0 Hz, 3 H, CH₃), 1.21 (d, *J* = 16.0 Hz, 9 H, C(CH₃)₃), 0.26 – 0.93 (m, 3 H, BH₃). ¹³C NMR (101 MHz, CDCl₃): δ 140.5 (d, *J*_{C-P} = 2.0 Hz, Ar), 140.2 (s, Ar), 134.5 (d, *J*_{C-P} = 9.1 Hz, Ar), 126.7 (s, Ar), 126.3 (d, *J*_{C-P} = 10.0 Hz, Ar), 126.1 (s, Ar), 123.7 (s, Ar), 120.5 (d, *J*_{C-P} = 6.1 Hz, Ar), 109.7 (s, Ar), 28.7 (d, *J*_{C-P} = 3.3 Hz, *C*(CH₃)₃), 25.2 (d, *J*_{C-P} = 3.0 Hz, C(CH₃)₃),

5.4 (d, $J_{C-P} = 37.4 \text{ Hz}$, CH_3). ³¹P NMR (162 MHz, CDCl₃): δ 25.6 (q, J = 53.5 Hz). HRMS (ESI): m/z: [M+H-BH₃]⁺ calculated for C₂₃H₂₅NP: 346.1719, found 346.1721. HPLC (Daicel Chiralcel AS-H, *n*-hexane/*i*-PrOH = 98/2, UV = 254 nm, flow rate = 0.5 mL/min) t_{R1} = 18.239 min (major) and t_{R2} = 20.275 min (minor), ee = 69%. [α]_D²⁵ = +4.5 (c = 2.0, CHCl₃).

(*R*)-4-(borane *tert*-butyl(methyl)phosphino)-*N*,*N*-diphenylaniline. Performed according to the general procedure to afford 58 mg (47%) of (*R*)-**3e** as white solid. ¹H NMR (400 MHz, CDCl₃): δ 7.46 – 7.51 (m, 2 H, Ar), 7.28 – 7.32 (m, 4 H, Ar), 7.09 – 7.14 (m, 6 H, Ar), 7.02 – 7.04 (m, 2 H, Ar), 1.52 (d, *J* = 8.0 Hz, 3 H, CH₃), 1.11 (d, *J* = 12.0 Hz, 9 H, C(CH₃)₃), 0.26 – 0.86 (m, 3 H, BH₃). ¹³C NMR (101 MHz, CDCl₃): δ 150.3 (d, *J*_{C-P} = 2.0 Hz, Ar), 146.7 (s, Ar), 133.8 (d, *J*_{C-P} = 9.1 Hz, Ar), 125.6 (s, Ar), 124.2 (s, Ar), 120.4 (d, *J*_{C-P} = 10.0 Hz, Ar), 118.4 (s, Ar), 117.8 (s, Ar), 28.7 (d, *J*_{C-P} = 33.3 Hz, *C*(CH₃)₃), 25.2 (d, *J*_{C-P} = 3.0 Hz, C(CH₃)₃), 5.4 (d, *J*_{C-P} = 38.4 Hz, CH₃) ³¹P NMR (162 MHz, CDCl₃): δ 25.4 (q, *J* = 61.6 Hz). HRMS (ESI): m/z: [M+H-BH₃]⁺ calculated for C₂₃H₂₇NP: 348.1876, found 348.1877. HPLC (Daicel Chiralcel OD-H, *n*-hexane/*i*-PrOH = 98/2, UV = 250 nm, flow rate = 1.0 mL/min) t_{R1} = 5.476 min (minor) and t_{R2} = 5.912 min (major), ee = 84%. [α]_D²⁵ = +8.0 (c = 2.0, CHCl₃).

(*R*)-4-(borane *tert*-butyl(methyl)phosphino)-*N*,*N*-bis(4-iodophenyl)aniline. Performed according to the general procedure to afford 93.7 mg (51%) of (*R*)-**3f** as white solid. ¹H NMR (400 MHz, CDCl₃): δ 7.46 – 7.51 (m, 2 H, Ar), 7.28 – 7.32 (m, 4 H, Ar), 7.13 (d, *J* = 8.0 Hz, 4 H, Ar), 7.02 – 7.04 (m, 2 H, Ar), 1.52 (d, *J* = 8.0 Hz, 3 H, CH₃), 1.12 (d, *J* = 12.0 Hz, 9 H, C(CH₃)₃), 0.26 – 0.86 (m, 3 H, BH₃). ¹³C NMR (101 MHz, CDCl₃): δ 149.2 (d, *J*_{C-P} = 3.0 Hz, Ar), 146.1 (s, Ar), 138.6 (s, Ar), 134.0 (d, *J*_{C-P} = 9.1 Hz, Ar), 127.7 (d, *J*_{C-P} = 39.9 Hz, Ar), 121.6 (d, *J*_{C-P} = 10.1 Hz, Ar), 120.5 (s, Ar), 87.6 (s, Ar), 28.6 (d, *J*_{C-P} = 33.3 Hz, *C*(CH₃)₃), 25.2 (d, *J*_{C-P} = 2.0 Hz, C(CH₃)₃), 5.3 (d, *J*_{C-P} = 38.4 Hz, CH₃). ³¹P NMR (162 MHz, CDCl₃): δ 23.7 (q, *J* = 38.9 Hz). HRMS (ESI): m/z: [M+H-BH₃]⁺ calculated for C₂₃H₂₅I₂NP: 599.9808, found 599.9811. HPLC (Daicel Chiralcel OD-H, *n*-hexane/*i*-PrOH = 90/10, UV = 254 nm, flow rate = 1.0 mL/min) t_{R1} = 9.428 min (major) and t_{R2} = 11.065 min (minor), ee = 94%. [α]_D²⁵ = +1.5 (c = 2.0, CHCl₃).

(*R*)-2-(borane *tert*-butyl(methyl)phosphino)-6-fluoropyridine. Performed according to the general procedure to afford 59 mg (62%) of (*R*)-3g as white solid. ¹H NMR (400 MHz, CDCl₃): δ 7.88 – 7.92 (m, 1 H, Ar), 7.69 – 7.73 (m, 1 H, Ar), 7.37 (d, *J* = 8.0 Hz, 1 H, Ar), 1.60 (d, *J* = 8.0 Hz, 3 H, CH₃), 1.11 (d, *J* = 16.0 Hz, 9 H, C(CH₃)₃), 0.26 – 0.98 (m, 3 H, BH₃). ¹³C NMR (101 MHz, CDCl₃): δ 154.5 (d, *J*_{C-P} = 61.6 Hz, Ar), 151.5 (d, *J*_{C-P} = 11.1 Hz, Ar), 138.4 (d, *J*_{C-P} = 10.0 Hz, Ar), 129.1 (d, *J*_{C-P} = 23.2 Hz, Ar), 125.7 (d, *J*_{C-P} = 2.0 Hz, Ar), 28.8 (d, *J*_{C-P} = 32.3 Hz, *C*(CH₃)₃), 25.2 (d, *J*_{C-P} = 3.0 Hz, C(CH₃)₃), 4.5 (d, *J*_{C-P} = 39.4 Hz, CH₃). ³¹P NMR (162 MHz, CDCl₃): δ 30.3 (q, *J* = 61.6 Hz). ¹⁹F NMR (376 MHz, CDCl₃): δ -68.4 (s). HRMS (ESI): m/z: [M+H-BH₃]⁺ calculated for C₁₀H₁₆FNP: 200.0999, found 200.1001. HPLC (Daicel

Chiralcel AS-H, *n*-hexane/*i*-PrOH = 98/2, UV = 250 nm, flow rate = 1.0 mL/min) t_{R1} = 11.503 min (minor) and t_{R2} = 12.124 min (major), ee = 97%. [α]_D²⁵ = +12.0 (c = 2.0, CHCl₃).

(*R*)-methyl 6-(borane *tert*-butyl(methyl)phosphino)picolinate. Performed according to the general procedure to afford 35.7 mg (47%) of (*R*)-**3h** as white solid. ¹H NMR (400 MHz, CDCl₃): ¹H NMR (400 MHz, CDCl₃): δ 8.11 – 8.15 (m, 2 H, Ar), 7.86 – 7.91 (m, 1 H, Ar), 3.97 (s, 3 H, CH₃), 1.66 (d, *J* = 8.0 Hz, 3 H, CH₃), 1.13 (d, *J* = 16.0 Hz, 9 H, C(CH₃)₃), 0.20 – 0.95 (m, 3 H, BH₃). ¹³C NMR (101 MHz, CDCl₃): δ 165.2 (s, CO), 154.3 (d, *J*_{C-P} = 64.6 Hz, Ar), 148.1 (d, *J*_{C-P} = 11.1 Hz, Ar), 136.7 (d, *J*_{C-P} = 8.1 Hz, Ar), 132.9 (d, *J*_{C-P} = 25.3 Hz, Ar), 125.8 (d, *J*_{C-P} = 2.0 Hz, Ar), 52.8 (s, CH₃), 28.8 (d, *J*_{C-P} = 32.3 Hz, C(CH₃)₃), 25.3 (d, *J*_{C-P} = 2.5 Hz, C(CH₃)₃), 4.6 (d, *J*_{C-P} = 39.4 Hz, CH₃). ³¹P NMR (162 MHz, CDCl₃): δ 30.3 (q, *J* = 66.4 Hz). HRMS (ESI): m/z: [M+H-BH₃]⁺ calculated for C₁₂H₁₉NO₂P: 240.1148, found 240.1150. HPLC (Daicel Chiralcel AS-H, *n*-hexane/*i*-PrOH = 95/5, UV = 230 nm, flow rate = 1.0 mL/min) t_{R1} = 8.140 min (minor) and t_{R2} = 9.308 min (major), ee = 73%. [α]_D²⁵ = +42.0 (c = 2.0, CHCl₃).

(*R*)-2-(borane *tert*-butyl(methyl)phosphino)quinoline. Performed according to the general procedure to afford 68 mg (56%) of (*R*)-3i as white solid. ¹H NMR (400 MHz, CDCl₃): δ 8.20 – 8.22 (m, 1 H, Ar), 8.15 (d, *J* = 8.0 Hz, 1 H, Ar), 8.02 – 8.05 (m, 1 H, Ar), 7.87 (d, *J* = 8.0 Hz, 1 H, Ar), 7.75 – 7.79 (m, 1 H, Ar), 7.60 – 7.64 (m, 1 H, Ar), 1.76 (d, *J* = 8.0 Hz, 3 H, CH₃), 1.18 (d, *J* = 16.0 Hz, 9 H, C(CH₃)₃), 0.25 – 1.11 (m, 3 H, BH₃). ¹³C NMR (101 MHz, CDCl₃): δ 154.7 (s, Ar), 154.1 (s, Ar), 148.0 (d, *J*_{C-P} = 13.1 Hz, Ar), 135.1 (d, *J*_{C-P} = 10.0 Hz, Ar), 130.1 (s, Ar), 129.9 (s, Ar), 127.9 (s, Ar), 127.8 (s, Ar), 125.6 (d, *J*_{C-P} = 26.3 Hz, Ar), 29.1 (d, *J*_{C-P} = 32.3 Hz, *C*(CH₃)₃), 25.4 (d, *J*_{C-P} = 3.0 Hz, C(CH₃)₃), 4.6 (d, *J*_{C-P} = 40.4 Hz, CH₃). ³¹P NMR (162 MHz, CDCl₃): δ 30.1 (q, *J* = 63.2 Hz). HRMS (ESI): m/z: [M+H-BH₃]⁺ calculated for C₁₄H₁₉NP: 232.1250, found 232.1250. HPLC (Daicel Chiralcel AS-H, *n*-hexane/*i*-PrOH = 98/2, UV = 250 nm, flow rate = 0.8 mL/min) t_{R1} = 6.452 min (minor) and t_{R2} = 6.937 min (major), ee = 81%. [α]_D²⁵ = +49.5 (c = 2.0, CHCl₃).

(*R*)-8-(borane *tert*-butyl(methyl)phosphino)quinoline. Performed according to the general procedure to afford 20.7 mg (20%) of (*R*)-3j as white solid. ¹H NMR (400 MHz, CDCl₃): δ 8.91 – 8.93 (m, 1 H, Ar), 8.50 – 8.55 (m, 1 H, Ar), 8.19 (d, *J* = 8.0 Hz, 1 H, Ar), 7.96 (d, *J* = 8.0 Hz, 1 H, Ar), 7.57 – 7.64 (m, 1 H, Ar), 7.42 – 7.45 (m, 1 H, Ar), 2.10 (d, *J* = 8.0 Hz, 3 H, CH₃), 1.18 (d, *J* = 12.0 Hz, 9 H, C(CH₃)₃), 0.26 - 0.90 (m, 3 H, BH₃). ¹³C NMR (101 MHz, CDCl₃): δ 149.6 (d, *J*_{C-P} = 2.0 Hz, Ar), 149.4 (s, Ar), 140.2 (d, *J*_{C-P} = 16.2 Hz, Ar), 136.6 (s, Ar), 132.0 (d, *J*_{C-P} = 2.5 Hz, Ar), 128.4 (d, *J*_{C-P} = 5.1 Hz, Ar), 126.0 (s, Ar), 125.9 (s, Ar), 121.2 (s, Ar), 30.3 (d, *J*_{C-P} = 34.3 Hz, *C*(CH₃)₃), 26.6 (d, *J*_{C-P} = 3.0 Hz, C(CH₃)₃), 8.6 (d, *J*_{C-P} = 39.4 Hz, CH₃). ³¹P NMR (162 MHz, CDCl₃): δ 31.0 (q, *J* = 58.3 Hz). HRMS (ESI): m/z: [M+H-BH₃]⁺ calculated for C₁₄H₁₉NP: 232.1250, found 232.1250. HPLC (Daicel Chiralcel OD-H, *n*-hexane/*i*-PrOH = 98/2, UV = 250 nm, flow rate = 1.0 mL/min) t_{R1} = 6.324 min (minor) and t_{R2} = 7.473 min (major), ee = 71%. [α]_D²⁵ = +42.0 (c = 2.0, CHCl₃).

(*R*)-2-(borane *tert*-butyl(methyl)phosphino)-5-methoxypyrazine. Performed according to the general procedure to afford 40.0 mg (59%) of (*R*)-3k as white solid. ¹H NMR (400 MHz, CDCl₃): δ 8.66 (s, 1 H, Ar), 8.31 (s, 1 H, Ar), 4.01 (s, 3 H, OCH₃), 1.58 (d, *J* = 8.0 Hz, 3 H, CH₃), 1.14 (d, *J* = 12.0 Hz, 9 H, C(CH₃)₃), 0.20 – 0.98 (m, 3 H, BH₃). ¹³C NMR (101 MHz, CDCl₃): δ 161.0 (d, *J*_{C-P} = 20.0 Hz, Ar), 147.5 (d, *J*_{C-P} = 28.3 Hz, Ar), 138.7 (d, *J*_{C-P} = 66.7 Hz, Ar), 136.2 (d, *J*_{C-P} = 10.0 Hz, Ar), 55.0 (s, OMe), 28.9 (d, *J*_{C-P} = 33.3 Hz, C(CH₃)₃), 25.3 (d, *J*_{C-P} = 3.0 Hz, C(CH₃)₃), 4.7 (d, *J*_{C-P} = 39.4 Hz, CH₃). ³¹P NMR (162 MHz, CDCl₃): δ 24.4 (q, *J* = 59.9 Hz). HRMS (ESI): m/z: [M+H-BH₃]⁺ calculated for C₁₀H₁₈N₂OP: 213.1151, found 213.1152. HPLC (Daicel Chiralcel OD-H, *n*-hexane/*i*-PrOH = 98/2, UV = 254 nm, flow rate = 0.8 mL/min) t_{R1} = 5.752 min (major) and t_{R2} = 6.206 min (minor), ee = 77%. [α]_D²⁵ = +9.5 (c = 2.0, CHCl₃).

(*R*)-2-(borane *tert*-butyl(methyl)phosphino)-3-chloroquinoxaline. Performed according to the general procedure to afford 64 mg (76%) of (*R*)-3I as yellow solid. ¹H NMR (400 MHz, CDCl₃): δ 8.15 – 8.17 (m, 1 H, Ar), 8.05 – 8.08 (m, 1 H, Ar), 7.83 – 7.92 (m, 2 H, Ar), 1.81 (d, *J* = 8.0 Hz, 3 H, *CH*₃), 1.28 (d, *J* = 12.0 Hz, 9 H, C(*CH*₃)₃), 0.18 – 1.14 (m, 3 H, BH₃). ¹³C NMR (101 MHz, CDCl₃): δ 150.3 (d, *J*_{C-P} = 22.6 Hz, Ar), 149.9 (d, *J*_{C-P} = 9.3 Hz, Ar), 141.4 (s, Ar), 140.3 (s, Ar), 132.9 (s, Ar), 130.8 (s, Ar), 129.6 (s, Ar), 128.3 (s, Ar), 31.5 (d, *J*_{C-P} = 29.3 Hz, *C*(CH₃)₃), 26.0 (d, *J*_{C-P} = 2.0 Hz, C(*CH*₃)₃), 7.7 (d, *J*_{C-P} = 41.4 Hz, *CH*₃). ³¹P NMR (162 MHz, CDCl₃): δ 37.9 (q, *J* = 53.5 Hz). HRMS (ESI): m/z: [M+H-BH₃]⁺ calculated for C₁₃H₁₇ClN₂P: 267.0812, found 267.0813. HPLC (Daicel Chiralcel OD-H, *n*-hexane/*i*-PrOH = 98/2, UV = 254 nm, flow rate = 0.8 mL/min) t_{R1} = 11.847 min (minor) and t_{R2} = 13.672 min (major), ee = 94%. [α]_D²⁵ = +2.5 (c = 2.0, CHCl₃).

3. Procedures of palladium-catalyzed C-P coupling reactions under microwave conditions

To a reaction tube, (*R*)-*tert*-butyl(methyl)phosphine borane (35 mg, 0.3 mmol), aryl and heteroaryl halides (0.5 mmol), Pd(OAc)₂ (3.37 mg, 0.015 mmol), dppf (27.75 mg, 0.03 mmol), *t*BuONa (57.66 mg, 0.60 mmol) and toluene (3 mL) were added under argon. The mixture was stirred for 6 h under microwave conditions. After removal of the volatile materials under reduced pressure, the crude product was purified by chromatograph on silica gel. (*n*-hexane / dichloromethane).

(*S*)-*tert*-butyl(methyl)(naphthalen-1-yl)phosphine Borane.² Performed according to the microwave reactions procedure to afford 47.2 mg (64%) of (*S*)-2a as white solid. ¹H NMR (400 MHz, CDCl₃): δ 8.90 (d, *J* = 8.0 Hz, 1 H, Ar), 7.99 (d, *J* = 8.0 Hz, 1 H, Ar), 7.87 (d, *J* = 8.0 Hz, 1 H, Ar), 7.75 - 7.80 (m, 1 H, Ar), 7.61 - 7.75 (m, 1 H, Ar), 7.49 - 7.53 (m, 2 H, Ar), 1.78 (d, *J* = 12.0 Hz, 3 H, CH₃), 1.16 (d, *J* = 16.0 Hz, 9 H, C(CH₃)₃), 0.79 - 1.57 (m, 3 H, BH₃). ³¹P NMR (162 MHz, CDCl₃): δ 23.9 (q, *J* = 66.4 Hz). HPLC (Daicel Chiralcel AS-H, *n*-hexane/*i*-PrOH = 95/5, UV = 250 nm, flow rate = 1.0 mL/min) t_{R1} = 5.430 min (major), ee = 99%. [α]_D²⁵ = -23.0 (c = 2.0, CHCl₃).

(*S*)-*tert*-butyl(methyl)(phenyl)phosphine Borane.² Performed according to the microwave reactions procedure to afford 50.6 mg (87%) of (*S*)-2b as white solid. ¹H NMR (400 MHz, CDCl₃): δ 7.69 – 7.73 (m, 2 H, Ar), 7.43 – 7.52 (m, 3 H, Ar), 1.58 (d, *J* = 12.0 Hz, 3 H, CH₃), 1.11 (d, *J* = 12.0 Hz, 9 H, C(CH₃)₃), 0.24 – 1.07 (m, 3 H, BH₃). ³¹P NMR (162 MHz, CDCl₃): δ 25.0 (q, *J* = 63.2 Hz). HPLC (Daicel Chiralcel AS-H, *n*-hexane/*i*-PrOH = 95/5, UV = 230 nm, flow rate = 1.0 mL/min) t_{R1} = 7.908 min (major) and t_{R2} = 8.829 min (minor), ee = 99%. [α]_D²⁵ = -14.5 (c = 2.0, CHCl₃).

(*S*)-*tert*-butyl(methyl)(o-tolyl)phosphine Borane. ² Performed according to the microwave reactions procedure to afford 40.7 mg (65%) of (*S*)-2d as white solid. ¹H NMR (400 MHz, CDCl₃): δ 7.52 – 7.56 (m, 1 H, Ar), 7.35 – 7.39 (m, 1 H, Ar), 7.23 – 7.26 (m, 2 H, Ar), 2.66 (s, 3 H, CH₃), 1.64 (d, *J* = 8.0 Hz, 3 H, CH₃), 1.14 (d, *J* = 16.0 Hz, 9 H, C(CH₃)₃), 0.19 – 1.10 (m, 3 H, BH₃). ³¹P NMR (162 MHz, CDCl₃): δ 25.1 (q, *J* = 59.9 Hz). HPLC (Daicel Chiralcel OD-H, *n*-hexane/*i*-PrOH = 98/2, UV = 230 nm, flow rate = 0.5 mL/min) t_{R1} = 13.211 min (major) and t_{R2} = 14.302 min (minor), ee = 92%. [α]_D²⁵ = -12.5 (c = 2.0, CHCl₃).

(*S*)-*tert*-butyl(4-(tert-butyl)phenyl)(methyl)phosphine Borane. Performed according to the microwave reactions procedure to afford 35.3 mg (50%) of (*S*)-2e as white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.61 – 7.65 (m, 2 H, Ar), 7.45 – 7.47 (m, 2 H, Ar), 1.55 (d, *J* = 8.0 Hz, 3 H, *CH*₃), 1.33 (s, 9 H, C(*CH*₃)₃), 1.11 (d, *J* = 12.0 Hz, 9 H, C(*CH*₃)₃), 0.18 – 1.05 (m, 3 H, BH₃). ³¹P NMR (162 MHz, CDCl₃): δ 23.7 (q, *J* = 66.4 Hz). HPLC (Daicel Chiralcel AS-H, *n*-hexane/*i*-PrOH = 99/1, UV = 254 nm, flow rate = 1.0 mL/min) t_{R1} = 4.992 min (minor) and t_{R2} = 5.519 min (major), ee = 88%. [α]_D²⁵ = -7.3 (c = 2.0, CHCl₃).

H₃B Me¹

(*S*)-*tert*-butyl(4-methoxyphenyl)(methyl)phosphine Borane. Performed according to the microwave reactions procedure to afford 53.7 mg (80%) of (*S*)-2f as white solid. ¹H NMR (400 MHz, CDCl₃): δ 7.61 – 7.65 (m, 2 H, Ar), 6.96 – 6.98 (m, 2 H, Ar), 3.85 (s, 3 H, OCH₃), 1.54 (d, *J* = 8.0 Hz, 3 H, CH₃), 1.09 (d, *J* = 16.0 Hz, 9 H, C(CH₃)₃). 0.35 – 0.91 (m, 3 H, BH₃). ³¹P NMR (162 MHz, CDCl₃): δ 23.2 (q, *J* = 69.7 Hz). HPLC (Daicel Chiralcel AS-H, n-hexane/i-PrOH = 98/2, UV = 250 nm, flow rate = 0.8 mL/min) t_{R1} = 21.932 min (major) and t_{R2} = 24.014 min (minor), ee = 95%. [α]_D²⁵ = -8.3 (c = 2.0, CHCl₃).

(*S*)-[1,1'-biphenyl]-4-yl(*tert*-butyl)(methyl)phosphine Borane. Performed according to the microwave reactions procedure to afford 57.4 mg (70%) of (*S*)-2h as white solid. ¹H NMR (400 MHz, CDCl₃): δ 7.75 – 7.81 (m, 2 H, Ar), 7.66 – 7.68 (m, 2 H, Ar), 7.61 (d, *J* = 4.0 Hz, 2 H, Ar), 7.45 – 7.49 (m, 2 H, Ar), 7.37 – 7.41 (m, 1 H, Ar), 1.61 (d, *J* = 12.0 Hz, 3 H, CH₃), 1.14 (d, *J* = 12.0 Hz, 9 H, C(CH₃)₃), 0.24 – 0.95 (m, 3 H, BH₃). ³¹P NMR (162 MHz, CDCl₃): δ 24.7 (q, *J* = 77.8 Hz). HPLC (Daicel Chiralcel OD-H, n-hexane/i-PrOH = 95/5, UV = 250 nm, flow rate = 0.8 mL/min) t_{R1} = 7.872 min (minor) and t_{R2} = 8.778 min (major), ee = 93%. [α]_D²⁵ = -12.0 (c = 2.0, CHCl₃).

(*S*)-*tert*-butyl(4-chlorophenyl)(methyl)phosphine Borane. Performed according to the microwave reactions procedure to afford 46.6 mg (68%) of (*S*)-2j as white solid. ¹H NMR (400 MHz, CDCl₃): δ 7.60 – 7.69 (m, 2 H, Ar), 7.37 – 7.51 (m, 2 H, Ar), 1.57 (d, *J* = 12.0 Hz, 3 H, CH₃), 1.10 (d, *J* = 16.0 Hz, 9 H, C(CH₃)₃), 0.22 – 0.85 (m, 3 H, BH₃). ³¹P NMR (162 MHz, CDCl₃): δ 25.4 (q, *J* = 63.2 Hz). HPLC (Daicel Chiralcel AS-H, *n*-hexane/*i*-PrOH = 99/1, UV = 234 nm, flow rate = 1.0 mL/min) t_{R1} = 9.679 min (major) and t_{R2} = 12.252 min (minor), ee = 95%. [α]_D²⁵ = -12.3 (c = 2.0, CHCl₃).

(*S*)-*tert*-butyl(methyl)(4-(trifluoromethyl)phosphine Borane. Performed according to the microwave reactions procedure to afford 31.4 mg (40%) of (*S*)-2k as white solid. ¹H NMR (400 MHz, CDCl₃): δ 7.83 – 7.88 (m, 2 H, Ar), 7.72 (d, *J* = 8.0 Hz, 2 H, Ar), 1.61 (d, *J* = 12.0 Hz, 3 H, CH₃), 1.13 (d, *J* = 12.0 Hz, 9 H, C(CH₃)₃), 0.25 – 0.85 (m, 3 H, BH₃). ³¹P NMR (162 MHz, CDCl₃): δ 26.9 (q, *J* = 59.9 Hz). HPLC (Daicel Chiralcel AS-H, *n*-hexane/*i*-PrOH = 99/1, UV = 254 nm, flow rate = 1.0 mL/min) t_{R1} = 6.399 min (major) and t_{R2} = 6.745 min (minor), ee = 94%. [α]_D²⁵ = -33.0 (c = 2.0, CHCl₃).

(*S*)-ethyl 4-(borane *tert*-butyl(methyl)phosphino)benzoate. Performed according to the microwave reactions procedure to afford 50.3 mg (63%) of (*S*)-2n as white solid. ¹H NMR (400 MHz, CDCl₃): δ 8.10 – 8.12 (m, 2 H, Ar), 7.77 – 7.81 (m, 2 H, Ar), 4.41 (q, *J* = 7.1 Hz, 2 H, *CH*₂CH₃), 1.61 (d, *J* = 12.0 Hz, 3 H, CH₂CH₃), 1.39 – 1.43 (m, 3 H, CH₃), 1.11 (d, *J* = 16.0 Hz, 9 H, C(CH₃)₃), 0.21 – 0.87 (m, 3 H, BH₃). ³¹P NMR (162 MHz, CDCl₃): δ 26.4 (q, *J* = 74.5 Hz). HPLC (Daicel Chiralcel OD-H, *n*-hexane/*i*-PrOH = 98/2, UV = 230 nm, flow rate = 0.8 mL/min) t_{R1} = 14.957 min (minor) and t_{R2} = 16.501 min (major), ee = 97%. [α]_D²⁵ = -28.0 (c = 2.0, CHCl₃).

(*S*)-4-(4-(borane *tert*-butyl(methyl)phosphino)phenyl)morpholine. Performed according to the microwave reactions procedure to afford 65.8 mg (79%) of (*S*)-**3b** as white solid. ¹H NMR (400 MHz, CDCl₃): δ 7.56 – 7.60 (m, 2 H, Ar), 6.91 – 6.94 (m, 2 H, Ar), 3.83 – 3.90 (m, 4 H, CH₂), 3.21 – 3.29 (m, 4 H, CH₂), 1.52 (d, *J* = 12.0 Hz, 3 H, CH₃), 1.09 (d, *J* = 16.0 Hz, 9 H, C(CH₃)₃), 0.19 – 0.88 (m, 3 H, BH₃). ³¹P NMR (162 MHz, CDCl₃): δ 22.4 (q, *J* = 77.8 Hz). HPLC (Daicel Chiralcel OD-H, *n*-hexane/*i*-PrOH = 90/10, UV = 250 nm, flow rate = 1.0 mL/min) t_{R1} = 11.772 min (major) and t_{R2} = 16.287 min (minor), ee = 91%. [α]_D²⁵ = -12.0 (c = 2.0, CHCl₃).

(S)-9-(4-(borane *tert*-butyl(methyl)phosphino)phenyl)-9*H*-carbazole. Performed according to the microwave reactions procedure to afford 52.1 mg (43%) of (S)-3d as white solid. ¹H NMR (400 MHz, CDCl₃): δ 8.15 (d, *J* = 8.0

Hz, 2 H, Ar), 7.91 – 7.99 (m, 2 H, Ar), 7.67 – 7.74 (m, 2 H, Ar), 7.41 – 7.49 (m, 4 H, Ar), 7.29 – 7.35 (m, 2 H, Ar), 1.67 (d, J = 8.0 Hz, 3 H, CH_3), 1.21 (d, J = 16.0 Hz, 9 H, $C(CH_3)_3$), 0.26 – 0.93 (m, 3 H, BH_3). ³¹P NMR (162 MHz, CDCl₃): δ 25.5 (q, J = 66.4 Hz). HPLC (Daicel Chiralcel AS-H, *n*-hexane/*i*-PrOH = 98/2, UV = 254 nm, flow rate = 0.5 mL/min) t_{R1} = 18.379 min (minor) and t_{R2} = 20.599 min (major), ee = 90%. [α]_D²⁵ = -6.0 (c = 2.0, CHCl₃).

(*S*)-4-(borane *tert*-butyl(methyl)phosphino)-*N*,*N*-bis(4-iodophenyl)aniline. Performed according to the microwave reactions procedure to afford 81.5 mg (45%) of (*S*)-**3f** as white solid. ¹H NMR (400 MHz, CDCl₃): δ 7.46 – 7.51 (m, 2 H, Ar), 7.28 – 7.32 (m, 4 H, Ar), 7.13 (d, *J* = 8.0 Hz, 4 H, Ar), 7.02 – 7.04 (m, 2 H, Ar), 1.52 (d, *J* = 8.0 Hz, 3 H, *CH*₃), 1.12 (d, *J* = 12.0 Hz, 9 H, C(*CH*₃)₃), 0.26 – 0.86 (m, 3 H, BH₃). ³¹P NMR (162 MHz, CDCl₃): δ 23.7 (q, *J* = 45.4 Hz). HPLC (Daicel Chiralcel OD-H, *n*-hexane/*i*-PrOH = 90/10, UV = 254 nm, flow rate = 1.0 mL/min) t_{R1} = 9.797 min (minor) and t_{R2} = 11.418 min (major), ee = 95%. [α]_D²⁵ = -6.5 (c = 2.0, CHCl₃).

(*S*)-2-(borane *tert*-butyl(methyl)phosphino)-6-fluoropyridine. Performed according to the microwave reactions procedure to afford 43.2 mg (56%) of (*S*)-3g as white solid. ¹H NMR (400 MHz, CDCl₃): δ 7.88 – 7.92 (m, 1 H, Ar), 7.69 – 7.73 (m, 1 H, Ar), 7.37 (d, *J* = 8.0 Hz, 1 H, Ar), 1.60 (d, *J* = 8.0 Hz, 3 H, CH₃), 1.11 (d, *J* = 16.0 Hz, 9 H, C(CH₃)₃), 0.26 – 0.98 (m, 3 H, BH₃). ³¹P NMR (162 MHz, CDCl₃): δ 30.5 (q, *J* = 61.6 Hz). HPLC (Daicel Chiralcel AS-H, *n*-hexane/*i*-PrOH = 98/2, UV = 250 nm, flow rate = 1.0 mL/min) t_{R1} = 11.471 min (major) and t_{R2} = 12.718 min (minor), ee = 93%. [α]_D²⁵ = -34.0 (c = 2.0, CHCl₃).

(*S*)-8-(borane *tert*-butyl(methyl)phosphino)quinoline. Performed according to the microwave reactions procedure to afford 22.6 mg (26%) of (*S*)-**3j** as white solid. ¹H NMR (400 MHz, CDCl₃): δ 8.91 – 8.93 (m, 1 H, Ar), 8.50 – 8.55 (m, 1 H, Ar), 8.19 (d, *J* = 8.0 Hz, 1 H, Ar), 7.96 (d, *J* = 8.0 Hz, 1 H, Ar), 7.57 – 7.64 (m, 1 H, Ar), 7.42 – 7.45 (m, 1 H, Ar), 2.10 (d, *J* = 8.0 Hz, 3 H, CH₃), 1.18 (d, *J* = 12.0 Hz, 9 H, C(CH₃)₃), 0.26 - 0.90 (m, 3 H, BH₃). ³¹P NMR (162 MHz, CDCl₃): δ 31.0 (q, *J* = 63.2 Hz). HPLC (Daicel Chiralcel OD-H, *n*-hexane/*i*-PrOH = 98/2, UV = 250 nm, flow rate = 1.0 mL/min) t_{R1} = 6.791 min (major) and t_{R2} = 7.931 min (minor), ee = 71%. [α]_D²⁵ = -27.0 (c = 2.0, CHCl₃).

4. X-ray structural determination

The X-ray date was collected on a Rigaku Saturn CCDC diffractometer using graphite-monochromated Mo K α radiation (λ = 0.71073 Å). The structure was solved by direct methods (SHELXS-97)³ and refined by full-matrix least squares on F^2 . All non-hydrogen atoms were refined anisotropically and hydrogen atoms by a riding model (SHELXL-97).⁴ The crystal data and structural refinements details are listed in Table S1. CCDC 2017943 ((S)-2q), and CCDC 2017887 ((R)-2h) contain the supplementary crystallographic data for this paper. This data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

	(S)- 2q	(<i>R</i>)- 2h
formula	C ₂₀ H ₂₈ BP	C ₁₇ H ₂₄ BP
fw	310.20	270.14
<i>Т</i> (К)	296	296
space group	P 21 21 21	P 21 21 21
crystal system	Orthorhombic	Orthorhombic
<i>a</i> (Å)	11.2902(16)	6.6359(9)
b (Å)	12.3392(18)	7.5137(10)
<i>c</i> (Å)	13.6341(19)	34.018(5)
lpha (deg.)	90°	90°
<i>β</i> (deg.)	90°	90°
γ (deg.)	90°	90°
V (Å3)	1899.4(5)	90(19)
Ζ	4	4
dcalcd. (mg/cm3)	1.085	1.058
F(000)	672.0	584
GOF	1.078	1.248
R1 (<i>I</i> > 2σ (<i>I</i>))	0.0358	0.0840
wR2 (all data)	0.1017	0.1430

Table S1. Crystal Data and Summary of X-ray Data Collection for compound (S)-2q and (R)-2h

5. References

- 1. (*a*) E. Salomó, A. Prades, A. Riera, and X. Verdaguer, *J. Org. Chem.*, 2017, **82**, 7065; (*b*) E. Salomó, S. Orgué, A. Riera, X. Verdaguer, *Synthesis*, 2016, **48**, 2659.
- 2. D. Gatineau, L. Giordano and G. Buono, J. Am. Chem. Soc., 2011, 133, 10728.
- 3. G. M. Sheldrick, SHELXS-90/96, Program for Structure Solution, Acta Crystallogr. Sect A 1990, 46, 467.
- 4. G. M. Sheldrick, SHELXL 97, Program for Crystal structure Refinement, University of Goettingen: Geottingen, Germany, 1997.

6. ¹H, ¹³C, ¹⁹F and ³¹P NMR spectra for all products.

Figure S1. ¹H NMR spectrum of (R)-2a in CDCl₃

Figure S2. ¹³C NMR spectrum of (R)-2a in CDCl₃

Figure S3. ³¹P NMR spectrum of (R)-**2a** in CDCl₃

Figure S4. ¹H NMR spectrum of (R)-2b in CDCl₃

Figure S5. ¹³C NMR spectrum of (*R*)-2b in CDCl₃

Figure S6. ³¹P NMR spectrum of (R)-2b in CDCl₃

Figure S7. ¹H NMR spectrum of (*R*)-2c in CDCl₃

Figure S8. ¹³C NMR spectrum of (*R*)-2c in CDCl₃

Figure S9. ³¹P NMR spectrum of (*R*)-2c in CDCl₃

24.86 24.13 24.13 23.81

Figure S11. ¹³C NMR spectrum of (*R*)-2d in CDCl₃

25.63 25.33 24.95 24.64

Figure S12. ³¹P NMR spectrum of (R)-2d in CDCl₃

Figure S14. ¹³C NMR spectrum of (*R*)-2e in CDCl₃

24.20 23.87 23.46 23.15

Figure S15. ³¹P NMR spectrum of (*R*)-2e in CDCl₃

Figure S17. ¹³C NMR spectrum of (*R*)-2f in CDCl₃

Figure S21. ³¹P NMR spectrum of (R)-2g in CDCl₃

25.68 25.40 24.99 24.70

Figure S24. ³¹P NMR spectrum of (*R*)-2h in CDCl₃

Figure S26. ¹³C NMR spectrum of (*R*)-2i in CDCl₃

25.16 24.83 24.41 24.09

Figure S29. ¹³C NMR spectrum of (*R*)-2j in CDCl₃

Figure S30. ³¹P NMR spectrum of (*R*)-2j in CDCl₃

Figure S32. ¹³C NMR spectrum of (*R*)-2k in CDCl₃

27.15 26.99 26.47 26.47

Figure S34. ¹⁹F NMR spectrum of (R)-2k in CDCl₃

8.03 8.02 8.01 8.01 8.01 7.83 7.83 7.83 7.83

Figure S37. ³¹P NMR spectrum of (R)-2I in CDCl₃

26.96 26.68 26.30 25.99

 $\begin{array}{c} + 0.02\\ - 0.02\\ - 0.02\\ - 0.02\\ - 0.02\\ - 0.01\\ - 0.00\\ - 0.00\\ - 0.00\\ \end{array}$

Figure S40. ³¹P NMR spectrum of (*R*)-2m in CDCl₃

Figure S42. ¹³C NMR spectrum of (R)-2n in CDCl₃

26.80 26.61 26.20 25.90

Figure S45. ¹³C NMR spectrum of (*R*)-20 in CDCl₃

Figure S46. ³¹P NMR spectrum of (R)-20 in CDCl₃

Figure S47. ¹H NMR spectrum of (*R*)-2p in CDCl₃

Figure S48. ¹³C NMR spectrum of (*R*)-2p in CDCl₃

22.10 22.58 22.16 22.03

Figure S49. ³¹P NMR spectrum of (R)-2p in CDCl₃

Figure S51. ¹³C NMR spectrum of (*R*)-2q in CDCl₃

Figure S52. ³¹P NMR spectrum of (*R*)-2q in CDCl₃

 $\begin{array}{c} \swarrow 1.88\\ -1.86\\ -1.97\\ -1.01\\ \sim 0.87\\ -0.45\\ -0.45\\ \end{array}$

24.95 24.15 24.39 24.27

Figure S57. ¹³C NMR spectrum of (*R*)-3a in CDCl₃

Figure S58. ³¹P NMR spectrum of (R)-3a in CDCl₃

Figure S60. ¹³C NMR spectrum of(*R*)-3b in CDCl₃

22.88 22.60 22.14 21.93

Figure S62. ¹H NMR spectrum of (R)-3c in CDCl₃

Figure S63. ¹³C NMR spectrum of (*R*)-3c in CDCl₃

Figure S64. ³¹P NMR spectrum of (*R*)-3c in CDCl₃

Figure S65. ¹H NMR spectrum of (*R*)-3d in CDCl₃

Figure S66. ¹³C NMR spectrum of (R)-3d in CDCl₃

Figure S68. ¹H NMR spectrum of (*R*)-3e in CDCl₃

Figure S70. ³¹P NMR spectrum of (R)-3e in CDCl₃

$\begin{array}{c} 7.51\\ 7.51\\ 7.52\\ 7.02\\ 7.04\\ 7.02\\ 7.04\\ 7.02\\$

20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00

24.16 23.79 23.55 23.11

Figure S73. ³¹P NMR spectrum of (*R*)-3f in CDCl₃

Figure S75. ¹³C NMR spectrum of (*R*)-3g in CDCl₃

Figure S76. ³¹P NMR spectrum of (R)-3g in CDCl₃

Figure S77. ¹⁹F NMR spectrum of (*R*)-3g in CDCl₃

Figure S78. ¹H NMR spectrum of (R)-3h in CDCl₃

Figure S79. ¹³C NMR spectrum of (*R*)-3h in CDCl₃

Figure S80. ³¹P NMR spectrum of (R)-3h in CDCl₃

~1.75 ~1.75 ~1.75 ~1.76 ~0.90 ~0.68 ~0.48 ~0.48

$\begin{array}{c} 8.22\\ 8.21\\ 8.21\\ 8.21\\ 8.22\\ 8.22\\ 8.23\\$

30.55 30.28 29.89 29.59

Figure S83. ³¹P NMR spectrum of (*R*)-3i in CDCl₃

Figure S85. ¹³C NMR spectrum of (*R*)-3j in CDCl₃

Figure S86. ³¹P NMR spectrum of (R)-3j in CDCl₃

Figure S87. ¹H NMR spectrum of (*R*)-3k in CDCl₃

24.92 24.56 24.19 23.93

Figure S90. ¹H NMR spectrum of (*R*)-3I in CDCl₃

Figure S91. ¹³C NMR spectrum of (*R*)-3I in CDCl₃

Figure S94. ³¹P NMR spectrum of (S)-2a in CDCl₃

Figure S95. ¹H NMR spectrum of (S)-2b in CDCl₃

Figure S97. ¹H NMR spectrum of (S)-2d in CDCl₃

Figure S100. ³¹P NMR spectrum of (S)-2e in CDCl₃

Figure S102. ³¹P NMR spectrum of (S)-2f in CDCl₃

$\begin{array}{c} 7.80\\ 7.78\\ 7.78\\ 7.68\\ 7.68\\ 7.66\\ 7.61\\ 7.61\\ 7.49\\ 7.61\\ 7.41\\ 7.49\\ 7.61\\ 7.49\\ 7.61\\$

Figure S104. ³¹P NMR spectrum of (S)-2h in CDCl₃

Figure S106. ³¹P NMR spectrum of (S)-3j in CDCl₃

<1.63 <1.60

Figure S110. ³¹P NMR spectrum of (S)-2n in CDCl₃

130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 fl (ppm)

Figure S112. ³¹P NMR spectrum of (S)-3b in CDCl₃

Figure S117. ¹H NMR spectrum of (S)-3g in CDCl₃

Figure S118. ³¹P NMR spectrum of (S)-3g in CDCl₃

211 209 211 2119 7116 -0.87 -0.67

Figure S120. ³¹P NMR spectrum of (S)-3j in CDCl₃

7. HPLC spectra for all products.

Chiral HPLC chromatographic analysis of (R)-2a

Condition: Daicel Chiralcel AS-H, *n*-hexane/*i*-PrOH = 95/5, UV = 250 nm, flow rate: 1.0 mL/min, retention time: t (minor) = 5.452 min, t (major) = 6.546 min, ee = 91%.

2 6.546 VB 0.1358 3393.25806 381.34229 95.5377

Chiral HPLC chromatographic analysis of (S)-2a

Condition: Daicel Chiralcel AS-H, *n*-hexane/*i*-PrOH = 95/5, UV = 250 nm, flow rate: 1.0 mL/min, retention time: t (major) = 5.430 min, ee = 99%.

Chiral HPLC chromatographic analysis of (R)-2b

Condition: Daicel Chiralcel AS-H, n-hexane/i-PrOH = 95/5, UV = 254 nm, flow rate: 1.0 mL/min, retention time: t

Chiral HPLC chromatographic analysis of (S)-2b

Condition: Daicel Chiralcel AS-H, *n*-hexane/*i*-PrOH = 95/5, UV = 230 nm, flow rate: 1.0 mL/min, retention time: t (major) = 7.908 min, t (minor) = 8.829 min, ee = 99%.

1	7.908	MM	0.1832	1.72364e4	1568.28149	99.5125
2	8.829	VBA	0.2526	84.43401	4.67756	0.4875

Chiral HPLC chromatographic analysis of (R)-2c

Condition: Daicel Chiralcel AS-H, *n*-hexane/*i*-PrOH = 95/5, UV = 220 nm, flow rate: 1.0 mL/min, retention time: t (minor) = 4.240 min, t (major) = 5.678 min, ee = 94%.

峰 #	保留时间 [min]	类型	峰宽 [min]	峰面积 [mAU*s]	峰高 [mAU]	峰面积 %
1	4. 242	BB	0. 1538	2173.64209	222. 77597	49.9249
2	5. 690	BB	0.1767	2180. 18311	191.62512	50.0751

峰 #	保留时间 [min]	类型	峰宽 [min]	峰面枳 [mAU*s]	峰高 [mAU]	峰面枳 %
1	4.240	BB	0. 1654	115.81202	11. 31580	2.9885
2	5.678	BB	0.1845	3759. 42749	321. 34906	97.0115

Chiral HPLC chromatographic analysis of (R)-2d

Condition: Daicel Chiralcel OD-H, n-hexane/i-PrOH = 98/2, UV = 230 nm, flow rate: 0.5 mL/min, retention time: t (minor)= 12.580 min, t (major) = 14.134 min, ee = 90%.

Chiral HPLC chromatographic analysis of (S)-2d

Condition: Daicel Chiralcel OD-H, n-hexane/i-PrOH = 98/2, UV = 230 nm, flow rate: 0.5 mL/min, retention time: t

Chiral HPLC chromatographic analysis of (R)-2e

Condition: Daicel Chiralcel AS-H, *n*-hexane/*i*-PrOH = 99/1, UV = 234 nm, flow rate: 1 mL/min, retention time: t (major) = 5.365 min, t (minor) = 6.045 min, ee = 90%.

Chiral HPLC chromatographic analysis of (S)-2e

Condition: Daicel Chiralcel AS-H, *n*-hexane/*i*-PrOH = 99/1, UV = 254 nm, flow rate: 1.0 mL/min, retention time: t (minor) = 4.992 min, t (major) = 5.519 min, ee = 88%.

Chiral HPLC chromatographic analysis of (R)-2f

Condition: Daicel Chiralcel AS-H, *n*-hexane/*i*-PrOH = 98/2, UV = 250 nm, flow rate: 0.8 mL/min, retention time: t (minor) = 21.843 min, t (major) = 23.093 min, ee = 98%.

Condition: Daicel Chiralcel AS-H, *n*-hexane/*i*-PrOH = 98/2, UV = 250 nm, flow rate: 0.8 mL/min, retention time: t (major) = 21.932 min, t (minor) = 24.014 min, ee = 95%.

1	21.932	BВ	0.6487	1.3391204	327.13892	97.4981
2	24.014	BB	0.6021	348.76962	8.69236	2.5019

Chiral HPLC chromatographic analysis of (R)-2g

Condition: Daicel Chiralcel AS-H, *n*-hexane/*i*-PrOH = 98/2, UV = 250 nm, flow rate: 1.0 mL/min, retention time: t (major) = 26 610 min t (minor) = 24 227 min as = 80%

Chiral HPLC chromatographic analysis of (R)-2h

Condition: Daicel Chiralcel OD-H, *n*-hexane/*i*-PrOH = 95/5, UV = 250 nm, flow rate: 0.8 mL/min, retention time: t (major) = 7.891 min, t (minor) = 8.692 min, ee = 79%.

Chiral HPLC chromatographic analysis of (S)-2h

Condition: Daicel Chiralcel OD-H, *n*-hexane/*i*-PrOH = 95/5, UV = 250 nm, flow rate: 0.8 mL/min, retention time: t (minor) = 7.872 min, t (major) = 8.778 min, ee = 93%.

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	7.872	VV	0.1703	580.03973	51.13816	3.6508
2	8.778	VB	0.2049	1.53080e4	1152.85278	96.3492

Chiral HPLC chromatographic analysis of (R)-2i

Condition: Daicel Chiralcel OD-H, *n*-hexane/*i*-PrOH = 90/10, UV = 254 nm, flow rate: 1.0 mL/min, retention time: t (major) = 9.399 min, t (minor) = 12.921 min, ee = 84%.

Chiral HPLC chromatographic analysis of (R)-2j

Condition: Daicel Chiralcel AS-H, *n*-hexane/*i*-PrOH = 99/1, UV = 234 nm, flow rate: 1.0 mL/min, retention time: t (minor) = 9.339 min, t (major) = 11.765 min, ee = 94%.

Chiral HPLC chromatographic analysis of (S)-2j

Condition: Daicel Chiralcel AS-H, *n*-hexane/*i*-PrOH = 99/1, UV = 234 nm, flow rate: 1.0 mL/min, retention time: t (major) = 9.679 min, t (minor) = 12.252 min, ee = 95%.

Chiral HPLC chromatographic analysis of (R)-2k

Condition: Daicel Chiralcel AS-H, *n*-hexane/*i*-PrOH = 99/1, UV = 254 nm, flow rate: 1.0 mL/min, retention time: t (minor) = 6.392 min, t (major) = 6.672 min, ee = 89%.

Condition: Daicel Chiralcel AS-H, *n*-hexane/*i*-PrOH = 99/1, UV = 254 nm, flow rate: 1.0 mL/min, retention time: t (major) = 6.399 min, t (minor) = 6.745 min, ee = 94%.

Chiral HPLC chromatographic analysis of (R)-2I

Condition: Daicel Chiralcel OD-H, *n*-hexane/*i*-PrOH = 90/10, UV = 254 nm, flow rate: 1.0 mL/min, retention time: t (major) = 7.292 min, t (minor) = 8.536 min, ee = 63%.

Chiral HPLC chromatographic analysis of (R)-2m

Condition: Daicel Chiralcel OD-H, *n*-hexane/*i*-PrOH = 98/2, UV = 250 nm, flow rate = 1.0 mL/min, retention time: t (minor) = 54.504 min, t (major) = 57.362 min, ee = 65%.

Chiral HPLC chromatographic analysis of (R)-2n

Condition: Daicel Chiralcel OD-H, *n*-hexane/*i*-PrOH = 98/2, UV = 230 nm, flow rate: 0.8 mL/min, retention time: t (major) = 15.308 min, t (minor) = 16.976 min, ee = 92%.

Chiral HPLC chromatographic analysis of (S)-2n

Condition: Daicel Chiralcel OD-H, *n*-hexane/*i*-PrOH = 98/2, UV = 230 nm, flow rate: 0.8 mL/min, retention time: t (minor)= 14.957 min, t (major) = 16.501 min, ee = 97%.

Peak	RetTime	Type	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	8	
1	14.957	BB	0.3703	964.50848	40.14457	1.3745	
2	16.501	BB	0.4558	6.92074e4	2390.02808	98.6255	

Chiral HPLC chromatographic analysis of (R)-20

Condition: Daicel Chiralcel OD-H, *n*-hexane/*i*-PrOH = 90/10, UV = 250 nm, flow rate: 1.0 mL/min, retention time: t (major) = 7.383 min, t (minor) = 8.712 min, ee = 74%.

Chiral HPLC chromatographic analysis of (R)-2p

Condition: Daicel Chiralcel OD-H, *n*-hexane/*i*-PrOH = 98/2, UV = 250 nm, flow rate: 1 mL/min, retention time: t (minor) = 7.585 min, t (major) = 12.549 min, ee = 46%.

1	7.585	MM	0.2464	388.42853	26.27163	26.8371
2	12.549	MM	0.4311	1058.92957	40.94217	73.1629

Chiral HPLC chromatographic analysis of (R)-2q

Condition: Daicel Chiralcel IBN-H, *n*-hexane/*i*-PrOH = 99/1, UV = 254 nm, flow rate: 0.5 mL/min, retention time: t (minor) = 11.612 min, t (major) = 12.325 min, ee = 74%.

Chiral HPLC chromatographic analysis of (R)-2r

Condition: Daicel Chiralcel AS-H, *n*-hexane/*i*-PrOH = 90/10, UV = 254 nm, flow rate: 1.0 mL/min, retention time: t (minor) = 13.414 min, t (major) = 28.472 min, ee = 91%.

Chiral HPLC chromatographic analysis of (R)-3a

Condition: Daicel Chiralcel OD-H, *n*-hexane/*i*-PrOH = 98/2, UV = 250 nm, flow rate: 0.8 mL/min, retention time: t (minor) = 8.667 min, t (major) = 10.155 min, ee = 80%.

1	8.667	MM	0.2614	208.48915	13.29100	10.1917
2	10.155	MM	0.2600	1837.17725	117.78152	89.8083

Chiral HPLC chromatographic analysis of (R)-3b

Condition: Daicel Chiralcel OD-H, *n*-hexane/*i*-PrOH = 90/10, UV = 250 nm, flow rate: 1.0 mL/min, retention time: t (major) = 11.953 min, t (minor) = 16.618 min, ee = 46%.

Chiral HPLC chromatographic analysis of (S)-3b

Condition: Daicel Chiralcel OD-H, *n*-hexane/*i*-PrOH = 90/10, UV = 250 nm, flow rate: 1.0 mL/min, retention time: t (minor) = 11.772 min, t (major) = 16.287 min, ee = 91%.

Chiral HPLC chromatographic analysis of (R)-3c

Condition: Daicel Chiralcel OD-H, *n*-hexane/*i*-PrOH = 98/2, UV = 254 nm, flow rate: 0.8 mL/min, retention time: t (major) =13.659 min, t (minor) = 15.300 min, ee = 94%.

Chiral HPLC chromatographic analysis of (R)-3d

Condition: Daicel Chiralcel AS-H, *n*-hexane/*i*-PrOH = 98/2, UV = 254 nm, flow rate: 0.5 mL/min, retention time: t (major) = 18.239 min, t (minor) = 20.275 min, ee = 69%.

Chiral HPLC chromatographic analysis of (S)-3d

Condition: Daicel Chiralcel AS-H, n-hexane/i-PrOH = 98/2, UV = 254 nm, flow rate: 0.5 mL/min, retention time: t

(minor) = 18.379 min, t (major) = 20.599 min, ee = 90%.

Chiral HPLC chromatographic analysis of (R)-3e

Condition: Daicel Chiralcel OD-H, *n*-hexane/*i*-PrOH = 98/2, UV = 250 nm, flow rate: 1.0 mL/min, retention time: t (minor) = 5.476 min, t (major) = 5.912 min, ee = 84%.

Chiral HPLC chromatographic analysis of (R)-3f

Condition: Daicel Chiralcel OD-H, *n*-hexane/*i*-PrOH = 90/10, UV = 254 nm, flow rate: 1.0 mL/min, retention time: t (major) = 9.428 min, t (minor) = 11.065 min, ee = 94%.

Chiral HPLC chromatographic analysis of (S)-3f

Condition: Daicel Chiralcel OD-H, *n*-hexane/*i*-PrOH = 90/10, UV = 254 nm, flow rate: 1.0 mL/min, retention time: t (minor) = 9.797 min, t (major) = 11.418 min, ee = 95%.

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	Ŷ
1	9.797	MM	0.3612	34.38400	1.58657	2.4392
2	11.418	BB	0.3653	1375.23950	58.27720	97.5608

Chiral HPLC chromatographic analysis of (R)-3g

Condition: Daicel Chiralcel AS-H, *n*-hexane/*i*-PrOH = 98/2, UV = 250 nm, flow rate: 1.0 mL/min, retention time: t (minor) = 11.503 min, t (major) = 12.124 min, ee = 97%.

2 12.124 MM 0.4272 1917.28198 74.80308 98.7447

Chiral HPLC chromatographic analysis of (S)-3g

Condition: Daicel Chiralcel AS-H, *n*-hexane/*i*-PrOH = 98/2, UV = 250 nm, flow rate: 1.0 mL/min, retention time: t (major) = 11.471 min, t (minor) = 12.718 min, ee = 93%.

Chiral HPLC chromatographic analysis of (R)-3h

Condition: Daicel Chiralcel AS-H, *n*-hexane/*i*-PrOH = 95/5, UV = 230 nm, flow rate: 1.0 mL/min, retention time: t (minor) = 8.140 min, t (major) = 9.308 min, ee = 73%.

Chiral HPLC chromatographic analysis of (R)-3i

Condition: Daicel Chiralcel AS-H, *n*-hexane/*i*-PrOH = 98/2, UV = 250 nm, flow rate: 0.8 mL/min, retention time: t (minor) = 6.452 min, t (major) = 6.937 min, ee = 81%.

Chiral HPLC chromatographic analysis of (R)-3j

Condition: Daicel Chiralcel OD-H, *n*-hexane/i-PrOH = 98/2, UV = 250 nm, flow rate: 1.0 mL/min, retention time: t (minor) = 6.324 min, t (major) = 7.473 min, ee = 71%.

#	[min]		[min]	[mAU*s]	[mAU]	Ŷ
1	6.324	MM	0.1537	1331.55420	144.35512	14.3851
2	7.473	MM	0.1960	7924.94189	673.93359	85.6149

Chiral HPLC chromatographic analysis of (S)-3j

Chiral HPLC chromatographic analysis of (R)-3k

Condition: Daicel Chiralcel OD-H, *n*-hexane/*i*-PrOH = 98/2, UV = 254 nm, flow rate: 0.8 mL/min, retention time: t (major) = 5.752 min, t (minor) = 6.206 min, ee = 77%.

Chiral HPLC chromatographic analysis of (R)-3I

Condition: Daicel Chiralcel OD-H, *n*-hexane/*i*-PrOH = 98/2, UV = 254 nm, flow rate: 0.8 mL/min, retention time: t (minor) = 11.874 min, t (major) = 13.672 min, ee = 94%.

