Supporting Information

Arylacetylenes as Two-carbon Synthons: Synthesis of Eight-membered Rings via C≡C Bond Cleavage

Peng Zhao,^a Xiao-Xiao Yu,^a You Zhou,^a Chun Huang,^a Yan-Dong Wu,^a Yan-Ping

Zhu^{b,} * and An-Xin Wu^{a,} *

^aKey Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China

^bSchool of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Shandong, Yantai 264005, P. R. China

E-mail: chemzyp@foxmail.com; chwuax@mail.ccnu.edu.cn.

e of Contents	page
General	S2
General procedure for the synthesis of 3	S2
Optimization of the bicyclization reaction	
Mechanism studies	S3-S5
Characterization data for compounds 3 , 4 and 9a	S6-S16
Crystallographic data and molecular structure of 3a , 3k	S17-S18
¹ H and ¹³ C NMR spectra of compounds 3 , 4 , 9a	S19-S47
	General General procedure for the synthesis of 3 Optimization of the bicyclization reaction Mechanism studies Characterization data for compounds 3 , 4 and 9a Crystallographic data and molecular structure of 3a , 3k ¹ H and ¹³ C NMR spectra of compounds 3 , 4 , 9a

1. General

All other substrates and reagents were commercially available and used without further purification. TLC analysis was performed using pre-coated glass plates. Column chromatography was performed using silica gel (200–300 mesh). ¹H spectra were recorded in CDCl₃/DMSO on 600/400MHz NMR spectrometers and resonances (δ) are given in parts per million relative to tetramethylsilane. Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet), coupling constants (Hz) and integration. ¹³C spectra were recorded in CDCl₃/DMSO on 150/100 MHz NMR spectrometers and resonances (δ) are given in prm. HRMS were obtained on a Bruker 7-tesla FT-ICR MS equipped with an electrospray source. The X-ray crystal-structure determinations of **3a**, **3k** were obtained on a Bruker SMART APEX CCD system. Melting points were determined using XT-4 apparatus and not corrected.

2. General procedure for the synthesis of 3 (3a as an example)

A mixture of phenylacetylene **1a** (1.2 mmol), **2a** (2.0 mmol), H₂O (2.0 mmol) and Iron(III) trifluoromethanesulfonate (1.0 mmol), iodine (1.0 mmol) in DMSO (4 mL), the mixture was stirred at 130 °C, untill almost completed conversion of the substrates by TLC analysis, the mixture was quenched with saturation Na₂S₂O₃ solution (50 mL), extracted with EtOAc (3 × 50 mL). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel (eluent: petroleum ether/EtOAc = 3:1) to afford the product **3a**.

3. Optimization of the bicyclization reaction^{*a*} (Table S1)

Entry	I ₂ (mmol)	Temp (°C)	Additive	Yield $(\%)^b$
1	1.6	120	-	40
2	1.6	80	-	trace
3	1.6	100	-	15
4	1.6	110	-	23
5	1.6	130	-	45
6	1.6	140	-	32
7	1.0	130	-	55
8	0.8	130	-	38
9	0.5	130	-	20
10	2.0	130	-	37

11	-	130	-	ND
12	1.0	130	TFA	60
13	1.0	130	TfOH	46
14	1.0	130	HCl	35
15	1.0	130	Cu(OTf) ₂	38
16	1.0	130	Fe(OTf) ₃	62
17	1.0	130	Fe(OTf) ₃	$65^{c}(60)^{d}(57)^{e}$

^{*a*}Reaction conditions: **1a** (1.2 mmol), **2a** (2.0 mmol), I_2 (mmol), additive (1.0 mmol), indicated temperature, DMSO 4 mL, 3 h, unless otherwise noted. ^{*b*}Isolated yields. ^{*c*}2.0 mmol of water was added. ^{*d*}4.0 mmol of water was added. ^{*e*}6.0 mmol of water was added.

4. Mechanistic studies

4.1 Spectra for ¹⁸O-labling experiment

We have conducted ¹⁸O-labling to investigate the source of oxygen in eight-membered N-Heterocycles ring. ring, as determined by GC-MS. Moreover, an oxygen atom exchange experiment have excluded the oxygen atom exchange between ¹⁶O-labeled product 3a and $H_2^{18}O$ under the reaction conditions. The $H_2^{18}O$ ¹⁸O-labeling experiment suggests that participated in this bicyclization/ring-opening process to provide the oxygen atom in the eight-membered N-Heterocycles ring.

The MS-spectrums of ¹⁸O-labling experiment

The MS-spectrums of oxygen atom exchange experiment

4.2 Research on intermediates

1ac reacted with *p*-toluidine **2a** with adding Iron(III) trifluoromethanesulfonate in DMSO at room temperature for 3 h, affording bicyclization structure **E** (detected by GC-MS), which was further transformed into eight-membered ring **3a** at 130 $^{\circ}$ C.

The MS-spectrums see below: Retention time: [17.265]

5. Characterization data for compounds 3, 4 and 9a

(Z)-2,8-dimethyl-12-phenyldibenzo[b,f][1,5]diazocin-6(5H)-one (3a):

Yield 65%; 211.9 mg; yellow solid; mp > 300 °C; ¹H NMR (600 MHz, DMSO- d_6) δ (ppm) 9.89 (s, 1H), 7.64 (d, J = 7.8 Hz, 2H), 7.54 (t, J = 7.2 Hz, 1H), 7.48 (t, J = 7.2 Hz, 2H), 7.19 (d, J = 7.8 Hz, 1H), 7.12 (d, J = 7.8 Hz, 1H), 7.07 (d, J = 8.4 Hz, 1H), 7.03 (s, 1H), 6.90 (s, 1H), 6.78 (d, J = 7.8 Hz, 1H), 2.20 (s, 6H). ¹³C NMR (150 MHz, DMSO- d_6) δ (ppm) 170.7, 167.1, 145.7, 137.5, 136.2, 134.7, 133.3, 133.0, 131.5, 131.0, 130.9, 128.70, 128.68, 128.0, 127.7, 125.8, 125.7, 120.4, 20.4, 20.2 HRMS (ESI): m/z [M+H]⁺ calcd for C₂₄H₁₈NO₂: 327.1492, found: 327.1496.

(Z)-2,8-dimethyl-12-(p-tolyl)dibenzo[b,f][1,5]diazocin-6(5H)-one (3b):

Yield 68%; 231.2 mg; yellow solid; mp 250-252 °C; ¹H NMR (600 MHz, CDCl₃): δ (ppm) 8.94 (s, 1H), 7.66 (d, J = 7.8 Hz, 2H), 7.22 (d, J = 7.8 Hz, 2H), 7.18 (s, 1H), 7.10-7.07 (m, 3H), 6.87 (s, 1H), 6.83 (d, J = 7.8 Hz, 1H), 2.41 (s, 3H), 2.25 (s, 6H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 173.2, 166.8, 146.4, 141.5, 136.7, 135.4, 134.0, 133.6, 133.4, 131.4, 130.7, 129.2, 129.0, 128.5, 128.3, 125.5, 124.5, 121.0, 21.4, 20.9, 20.6; HRMS (ESI) m/z calcd for C₂₃H₂₁N₂O⁺ (M+H)⁺ 341.1648, found 341.1649.

(Z)-12-(4-methoxyphenyl)-2,8-dimethyldibenzo[b,f][1,5]diazocin-6(5H)-one (3c): Yield 53%; 189.2 mg; yellow solid; mp 228-230 °C; ¹H NMR (600 MHz, DMSO- d_6) δ (ppm) 9.87 (s, 1H), 7.62 (d, J = 8.4 Hz, 2H), 7.16 (d, J = 7.8 Hz, 1H), 7.08 (d, J =

7.8 Hz, 2H), 7.06-6.98 (m, 3H), 6.89 (s, 1H), 6.76 (d, J = 7.8 Hz, 1H), 3.80 (s, 3H), 2.18 (s, 3H), 2.17 (s, 3H); ¹³C NMR (150 MHz, DMSO- d_6) δ (ppm) 170.8, 166.2, 161.9, 146.0, 136.0, 134.7, 133.2, 132.8, 130.8, 130.6, 130.5, 130.1, 127.9, 127.8, 126.0, 125.6, 120.5, 113.9, 55.4, 20.3, 20.1; HRMS (ESI) m/z calcd for C₂₃H₂₁N₂O₂⁺ (M+H)⁺ 357.1598, found 357.1599.

(Z)-12-(4-ethoxyphenyl)-2,8-dimethyldibenzo[b,f][1,5]diazocin-6(5H)-one (3d):

Yield 52%; 192.4 mg; yellow solid; mp 237-239 °C; ¹H NMR (600 MHz, DMSO- d_6) δ (ppm) 9.84 (s, 1H), 7.59 (d, J = 8.4 Hz, 2H), 7.16 (d, J = 7.8 Hz, 1H), 7.09 (d, J = 7.8 Hz, 1H), 7.06 (d, J = 8.4 Hz, 1H), 7.03-6.97 (m, 3H), 6.89 (s, 1H), 6.75 (d, J = 7.8 Hz, 1H), 4.07 (q, J = 6.6 Hz, 2H), 2.20 (s, 3H), 2.18 (s, 3H), 1.34 (t, J = 6.6 Hz, 3H). ¹³C NMR (150 MHz, DMSO- d_6) δ (ppm) 170.7, 166.1, 161.1, 146.0, 136.0, 134.7, 133.1, 132.8, 130.8, 130.6, 130.4, 129.9, 127.9, 127.7, 126.0, 125.5, 120.5, 114.3, 63.4, 20.3, 20.1, 14.5; HRMS (ESI) m/z calcd for C₂₄H₂₃N₂O₂⁺ (M+H)⁺ 371.1754, found 371.1758.

(Z)-12-(4-(tert-butyl)phenyl)-2,8-dimethyldibenzo[b,f][1,5]diazocin-6(5H)-one

(3e): Yield 62%; 236.8 mg; yellow solid; mp 286-288 °C; ¹H NMR (600 MHz, CDCl₃) δ (ppm) 8.92 (s, 1H), 7.70 (d, J = 7.8 Hz, 2H), 7.43 (d, J = 7.8 Hz, 2H), 7.17 (s, 1H), 7.10-7.07 (m, 3H), 6.89 (s, 1H), 6.82 (d, J = 7.8 Hz, 1H), 2.24 (d, J = 9.6 Hz, 6H), 1.35 (s, 9H). ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 173.2, 166.8, 154.7, 146.3, 136.7, 135.2, 134.0, 133.5, 131.5, 130.7, 129.1, 128.5, 128.3, 125.5, 125.3, 124.4, 121.0, 34.9, 31.1, 20.9, 20.6. HRMS (ESI) m/z calcd for C₃₂H₂₃N₂O⁺ (M+H)⁺ 383.2118, found 383.2129.

(Z)-12-(4-ethylphenyl)-2,8-dimethyldibenzo[b,f][1,5]diazocin-6(5H)-one (3f):

Yield 65%; 230.1 mg; yellow solid; mp 256-258 °C; ¹H NMR (600 MHz, CDCl₃) δ (ppm) 8.63 (s, 1H), 7.66 (d, J = 7.8 Hz, 2H), 7.23 (d, J = 7.8 Hz, 2H), 7.16 (s, 1H), 7.10 (d, J = 8.4 Hz, 2H), 7.07 (d, J = 8.4 Hz, 1H), 6.87 (s, 1H), 6.81 (d, J = 8.4 Hz, 1H), 2.69 (q, J = 7.8 Hz, 2H), 2.23 (d, J = 8.4 Hz, 6H), 1.25 (t, J = 7.8 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 173.0, 166.8, 147.9, 146.3, 136.8, 135.5, 133.9, 133.7, 133.5, 131.5, 130.8, 129.3, 128.5, 128.3, 127.8, 125.5, 124.4, 121.0, 103.8, 28.8, 20.9, 20.6, 15.3. HRMS (ESI) m/z calcd for C₂₄H₂₂N₂ONa⁺ (M+Na)⁺ 377.1624, found 377.1629.

(Z)-2,8-dimethyl-12-(m-tolyl)dibenzo[b,f][1,5]diazocin-6(5H)-one (3g):

Yield 59%; 200.6 mg; yellow solid; mp 220–222 °C; ¹H NMR (600 MHz, CDCl₃): δ (ppm) ¹H 8.98 (s, 1H), 7.67 (s, 1H), 7.43 (d, J = 6.0 Hz, 1H), 7.28 (d, J = 7.2 Hz, 2H), 7.17 (s, 1H), 7.11-7.08 (m, 3H), 6.87-6.79 (m, 2H), 2.38 (s, 3H), 2.24 (s, 3H), 2.23 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 173.2, 167.3, 146.2, 138.1, 137.9, 136.8, 134.0, 133.6, 132.0, 131.5, 130.8, 129.4, 128.5, 128.2, 128.1, 126.8, 125.5, 124.4, 120.9, 21.3, 20.9, 20.6; HRMS (ESI) m/z calcd for C₂₃H₂₁N₂O⁺ (M+H)⁺ 341.1648, found 341.1649.

(Z)-12-(3-methoxyphenyl)-2,8-dimethyldibenzo[b,f][1,5]diazocin-6(5H)-one (3h): Yield 61%; 217.4 mg; yellow solid; mp 220–222 °C; ¹H NMR (600 MHz, CDCl₃): δ (ppm) 8.69 (s, 1H), 7.48 (s, 1H), 7.28 (d, J = 7.8 Hz, 1H), 7.19-7.13 (m, 2H), 7.13-7.08 (m, 2H), 7.06 (d, J = 8.4 Hz, 1H), 7.02 (d, J = 7.8 Hz, 1H), 6.87 (s, 1H), 6.82 (d, J = 8.4 Hz, 1H), 3.84 (s, 3H), 2.24 (s, 3H), 2.23 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 173.0, 166.7, 159.6, 146.2, 139.3, 136.8, 133.9, 133.6, 133.5, 131.5, 130.8, 129.2, 128.6, 128.3, 125.5, 124.3, 122.4, 120.9, 117.5, 113.2, 55.4, 20.9, 20.6; HRMS (ESI) m/z calcd for C₂₃H₂₁N₂O₂⁺(M+H)⁺ 357.1597, found 357.1598.

(Z)-12-(4-fluorophenyl)-2,8-dimethyldibenzo[b,f][1,5]diazocin-6(5H)-one (3i):

Yield 66%; 227.2 mg; yellow solid; mp 250-252 °C; ¹H NMR (600 MHz, DMSO- d_6) δ (ppm) 9.92 (s, 1H), 7.73-7.71 (m, 2H), 7.31 (t, J = 8.4 Hz, 2H), 7.18 (d, J = 7.8 Hz, 1H), 7.14-7.08 (m, 2H), 7.06 (s, 1H), 6.91 (s, 1H), 6.79 (d, J = 7.8 Hz, 1H), 2.18 (s, 6H); ¹³C NMR (150 MHz, DMSO- d_6) δ (ppm) 170.6, 165.9, 164.9, 163.2, 145.6, 136.2, 134.7, 134.1, 133.3, 132.7, 131.2, 131.1, 130.9, 128.0, 127.6, 125.8, 125.7, 120.4, 115.7, 115.6, 20.3, 20.1.; HRMS (ESI) m/z calcd for C₂₂H₁₈FN₂O⁺ (M+H)⁺ 345.1398, found 345.1402.

(Z)-12-(4-chlorophenyl)-2,8-dimethyldibenzo[b,f][1,5]diazocin-6(5H)-one (3j):

Yield 64%; 230.4 mg; yellow solid; mp 242-244 °C; ¹H NMR (600 MHz, DMSO- d_6) δ (ppm) 9.86 (s, 1H), 7.18-7.13 (m, 4H), 7.08 (s, 2H), 7.04 (s, 1H), 6.96 (d, J = 8.4 Hz, 1H), 6.90 (s, 1H), 6.76 (d, J = 7.8 Hz, 1H), 2.18 (s, 6H). ¹³C NMR (150 MHz, DMSO- d_6) δ (ppm) 170.6, 166.0, 145.4, 136.4, 136.3, 136.2, 134.8, 133.3, 132.5, 130.95, 130.91, 130.3, 128.7, 128.0, 127.6, 125.8, 125.7, 120.4, 20.3, 20.1; HRMS (ESI) m/z calcd for C₂₂H₁₈ClN₂O⁺ (M+H)⁺ 361.1102, found 361.1107.

(**Z**)-12-(4-bromophenyl)-2,8-dimethyldibenzo[b,f][1,5]diazocin-6(5H)-one (3k): Yield 60%; 243.6 mg; yellow solid; mp 268-270 °C; ¹H NMR (600 MHz, CDCl₃): δ (ppm) 9.34 (s, 1H), 7.60 (d, *J* = 7.8 Hz, 2H), 7.51 (d, *J* = 8.4 Hz, 2H), 7.16 (s, 1H), 7.09 (s, 3H), 6.81 (d, *J* = 10.2 Hz, 2H), 2.22 (s, 6H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 173.3, 166.1, 145.9, 136.9, 134.2, 134.1, 133.8, 132.8, 131.5, 131.4, 131.0, 130.6, 128.5, 128.0, 125.9, 125.6, 124.3, 120.8, 20.9, 20.6.; HRMS (ESI) m/z calcd for C₂₂H₁₈BrN₂O⁺ (M+H)⁺ 407.0597, found 407.0602.

(Z)-12-(3-fluorophenyl)-2,8-dimethyldibenzo[b,f][1,5]diazocin-6(5H)-one (3l): Yield 56%; 192.6 mg; yellow solid; mp 270-272°C; ¹H NMR (600 MHz, DMSO- d_6) δ (ppm) 9.96 (s, 1H), 7.53-7.49 (m, 2H), 7.41-7.37 (m, 2H), 7.18 (d, J = 8.4 Hz, 1H), 7.11 (d, J = 8.4 Hz, 2H), 7.08 (s, 1H), 6.93 (s, 1H), 6.81 (d, J = 7.8 Hz, 1H), 2.17 (s, 6H); ¹³C NMR (150 MHz, DMSO- d_6) δ 170.6, 166.0, 163.1, 161.4, 145.3, 140.04, 140.00, 136.3, 134.8, 133.6, 132.5, 131.1, 131.0, 130.8, 128.0, 127.7, 125.8, 125.2, 120.4, 118.5, 118.3, 114.7, 114.5, 20.3, 20.1; HRMS (ESI) m/z calcd for $C_{22}H_{18}FN_2O^+$ (M+H)⁺ 345.1398, found 345.1402.

(Z)-12-(3-chlorophenyl)-2,8-dimethyldibenzo[b,f][1,5]diazocin-6(5H)-one (3m): Yield 65 %; 234.5 mg; yellow solid; mp 252-254 °C;¹H NMR (600 MHz, DMSO- d_6) δ (ppm) 9.95 (s, 1H), 7.72 (s, 1H), 7.60 (d, J = 7.2 Hz, 1H), 7.54–7.46 (m, 2H), 7.18 (d, J = 7.8 Hz, 1H), 7.11 (d, J = 7.8 Hz, 2H), 7.07 (s, 1H), 6.92 (s, 1H), 6.81 (d, J = 7.8 Hz, 1H), 2.17 (d, J = 5.4 Hz, 6H). ¹³C NMR (150 MHz, DMSO- d_6) δ 170.6, 165.9, 145.3, 139.7, 136.4, 134.8, 133.7, 133.6, 132.4, 131.22, 131.18, 131.0, 130.7, 128.0, 127.9, 127.6, 127.5, 125.81, 125.76, 120.4, 20.3, 20.2. HRMS (ESI) m/z calcd for C₂₂H₁₈ClN₂O⁺ (M+H)⁺ 361.1102, found 361.1096.

(Z)-12-(3-bromophenyl)-2,8-dimethyldibenzo[b,f][1,5]diazocin-6(5H)-one (3n): Yield 52%; 211.1 mg; yellow solid; mp 258-260 °C; ¹H NMR (600 MHz, DMSO-*d*₆) δ (ppm) 9.96 (s, 1H), 7.92 (s, 1H), 7.71 (d, *J* = 7.8 Hz, 1H), 7.56 (d, *J* = 7.8 Hz, 1H), 7.43-7.38 (m, 1H), 7.17 (d, *J* = 7.8 Hz, 1H), 7.13 (d, *J* = 8.4 Hz, 1H), 7.09 (s, 2H), 6.92 (s, 1H), 6.82 (d, *J* = 8.4 Hz, 1H), 2.16 (s, 3H), 2.14 (s, 3H); ¹³C NMR (150 MHz, DMSO-*d*₆) δ (ppm) 170.5, 165.8, 145.3, 139.8, 136.3, 134.8, 134.0, 133.5, 132.3, 131.1, 130.9, 130.8, 128.0, 127.9, 127.5, 125.8, 125.7, 122.1, 120.4, 20.3, 20.1; HRMS (ESI) m/z calcd for C₂₂H₁₈BrN₂O⁺ (M+H)⁺ 407.0579, found 407.0585.

(Z)-12-(3,4-dichlorophenyl)-2,8-dimethyldibenzo[b,f][1,5]diazocin-6(5H)-one (3o): Yield 49%; 193.0 mg; yellow solid; mp 290-292 °C; ¹H NMR (600 MHz, DMSO- d_6 + CDCl₃) δ (ppm) 9.78 (s, 1H), 7.84 (s, 1H), 7.69 (d, J = 8.4 Hz, 1H), 7.50 (d, J = 8.4 Hz, 1H), 7.19 (d, J = 7.8 Hz, 1H), 7.12 (d, J = 7.8 Hz, 1H), 7.09 (d, J = 8.4 Hz, 1H), 7.05 (s, 1H), 6.90 (s, 1H), 6.79 (d, J = 7.8 Hz, 1H), 2.21 (s, 6H); ¹³C NMR (150 MHz, DMSO- d_6 + CDCl₃) δ (ppm) 170.3, 164.9, 145.0, 137.9, 136.3, 134.8, 134.3, 133.5, 131.8, 131.7, 131.1, 130.85, 130.81, 129.7, 128.6, 127.9, 127.5, 125.7, 125.6, 120.3, 20.3, 20.1; HRMS (ESI) m/z calcd for C₂₂H₁₇Cl₂N₂O⁺ (M+H)⁺ 395.0712, found 395.0718.

(Z)-12-(benzo[d][1,3]dioxol-5-yl)-2,8-dimethyldibenzo[b,f][1,5]diazocin-6(5H)-on e (3p): Yield 47%; 173.9 mg; yellow solid; mp 265-267 °C; ¹H NMR (600 MHz, CDCl₃) δ (ppm) 9.39 (s, 1H), 7.58 (s, 1H), 7.18 (s, 2H), 7.12 (d, J = 7.8 Hz, 1H), 6.96 (s, 1H), 6.89 (d, J = 8.4 Hz, 1H), 6.84 (d, J = 8.4 Hz, 1H), 6.08 (d, J = 6.6 Hz, 2H), 2.33 (s, 3H), 2.32 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 173.3, 166.0, 150.2, 147.9, 146.3, 136.6, 134.0, 133.4, 133.3, 132.5, 131.4, 130.7, 128.4, 128.2, 125.5, 125.2, 124.5, 120.9, 108.3, 107.5, 101.5, 20.8, 20.5; HRMS (ESI) m/z calcd for C₂₃H₁₉N₂O₃⁺(M+H)⁺ 371.1390, found 371.1395.

(Z)-12-([1,1'-biphenyl]-4-yl)-2,8-dimethyldibenzo[b,f][1,5]diazocin-6(5H)-one

(**3q**):Yield 38%; 152.7 mg; yellow solid; mp 264-266 °C; ¹H NMR (600 MHz, DMSO- d_6) δ (ppm) 9.99 (s, 1H), 7.78 (t, J = 5.4 Hz, 4H), 7.72 (d, J = 7.2 Hz, 2H), 7.48 (t, J = 7.2 Hz, 2H), 7.40 (t, J = 7.2 Hz, 1H), 7.18 (d, J = 7.8 Hz, 1H), 7.14 (d, J = 7.8 Hz, 1H), 7.10 (d, J = 6.6 Hz, 2H), 6.93 (s, 1H), 6.83 (d, J = 7.8 Hz, 1H), 2.18 (s, 6H); ¹³C NMR (150 MHz, DMSO- d_6) δ (ppm) 170.7, 166.7, 145.8, 142.9, 139.1, 136.5, 136.1, 134.8, 133.1, 132.9, 130.9, 130.8, 129.3, 129.0, 128.1, 128.0, 127.7, 126.81, 126.77, 125.9, 125.6, 120.5, 20.3, 20.1; HRMS (ESI) m/z calcd for C₂₈H₂₃N₂O⁺ (M+H)⁺ 403.1805, found 403.1811.

(Z)-methyl4-(2,8-dimethyl-12-oxo-11,12-dihydrodibenzo[b,f][1,5]diazocin-6-yl)be nzoate (3r): Yield 53%; 203.5 mg; yellow solid; mp 230-232 °C; ¹H NMR (600 MHz, CDCl₃) δ (ppm) 8.06 (d, J = 8.4 Hz, 3H), 7.81 (d, J = 8.4 Hz, 2H), 7.19 (s, 1H), 7.15 (t, J = 6.6 Hz, 2H), 7.09 (d, J = 8.4 Hz, 1H), 6.87–6.81 (m, 2H), 3.94 (s, 3H), 2.26 (d, J = 6.6 Hz, 6H). ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 172.5, 166.5, 166.2, 145.8, 141.7, 137.3, 134.2, 133.8, 133.2, 132.2, 131.7, 131.2, 129.5, 129.1, 128.7, 128.2, 125.7, 124.0, 120.9, 52.4, 21.0, 20.7. HRMS (ESI) m/z calcd for C₂₄H₂₂N₂O₃⁺ (M+H)⁺ 385.1547, found 385.1551.

(E)-2,8-dimethyl-12-(quinolin-3-yl)dibenzo[b,f][1,5]diazocin-6(5H)-one (3s):

Yield 55%; 207.4 mg; yellow solid; mp 295-297 °C; ¹H NMR (600 MHz, DMSO- d_6) δ (ppm) 9.93 (s, 1H), 9.38 (d, J = 1.8 Hz, 1H), 8.28 (s, 1H), 8.10 (t, J = 9.0 Hz, 2H), 7.87 (t, J = 7.8 Hz, 1H), 7.67 (t, J = 7.2 Hz, 1H), 7.26 (d, J = 7.8 Hz, 1H), 7.18 (d, J = 7.8 Hz, 1H), 7.14 (d, J = 8.4 Hz, 1H), 7.06 (d, J = 10.8 Hz, 2H), 6.87 (d, J = 7.8 Hz, 1H), 2.23 (s, 3H), 2.23 (s, 3H); ¹³C NMR (150 MHz, DMSO- d_6) δ (ppm) 170.5, 165.7, 149.3, 148.3, 145.2, 137.2, 136.6, 134.8, 133.7, 132.1, 131.5, 131.3, 131.1, 130.2, 129.4, 128.8, 128.0, 127.8, 127.6, 126.6, 125.9, 125.8, 120.5, 20.4, 20.2; HRMS (ESI) m/z calcd for C₂₅H₂₀N₃O⁺ (M+H)⁺ 378.1601, found 378.1606.

(Z)-2,8-diethyl-12-phenyldibenzo[b,f][1,5]diazocin-6(5H)-one (4a):

Yield 66%; 234.3 mg; yellow solid; mp 226-226 °C; ¹H NMR (400 MHz, DMSO- d_6) δ (ppm) 9.83 (s, 1H), 7.57 (d, J = 7.2 Hz, 2H), 7.46 (d, J = 7.2 Hz, 1H), 7.41 (t, J = 7.6 Hz, 2H), 7.16 (d, J = 7.2 Hz, 1H), 7.10 (d, J = 8.0 Hz, 1H), 7.06–6.99 (m, 2H), 6.85 (s, 1H), 6.75 (d, J = 8.0 Hz, 1H), 2.47-2.41 (m, 4H), 1.04 (t, J = 7.6 Hz, 3H); ¹³C NMR (100 MHz, DMSO- d_6) δ (ppm) 170.7, 166.9, 145.9, 142.2, 139.3, 137.6, 134.9, 132.9, 131.4, 129.8, 129.5, 128.64, 128.60, 126.8, 126.7, 125.71, 125.67, 120.5, 27.3, 27.2, 15.1, 15.0; HRMS (ESI) m/z calcd for C₂₄H₂₃N₂O⁺ (M+H)⁺ 355.1805, found 355.1810.

(2-benzoyl-6-methylquinolin-3-yl)(4-chlorophenyl)methanone (4b):

Yield 53%; 202.5 mg; orange solid; mp 224-226 °C; ¹H NMR (600 MHz, DMSO- d_6) δ (ppm) 9.93 (s, 1H), 7.64 (d, J = 8.4 Hz, 2H), 7.54–7.49 (m, 1H), 7.46 (t, J = 7.8 Hz, 2H), 7.27 (d, J = 8.4 Hz, 1H), 7.21 (d, J = 8.4 Hz, 1H), 7.13 (d, J = 7.2 Hz, 2H), 6.94 (s, 1H), 6.85–6.82 (m, 1H), 1.14–1.09 (m, 6H), 1.08-1.06 (m, 6H); ¹³C NMR (150 MHz, DMSO- d_6) δ (ppm) 170.7, 166.7, 146.6, 145.9, 143.9, 137.7, 135.1, 132.7, 131.4, 128.7, 128.6, 128.5, 128.1, 125.8, 125.7, 125.6, 125.5, 120.7, 32.6, 32.5, 23.8, 23.7, 23.5, 23.3; HRMS (ESI) m/z calcd for C₂₆H₂₇N₂O⁺ (M+H)⁺ 383.2118, found 383.2122.

(Z)-2,8-di-tert-butyl-12-phenyldibenzo[b,f][1,5]diazocin-6(5H)-one (4c):

Yield 55%; 225.5 mg; yellow solid; mp 244-266 °C; ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.81 (s, 1H), 7.76 (d, J = 7.5 Hz, 2H), 7.48 (d, J = 7.2 Hz, 1H), 7.42-7.39 (m, 3H), 7.38 – 7.34 (m, 2H), 7.14 – 7.08 (m, 2H), 6.86 (d, J = 8.3 Hz, 1H), 1.26 (s, 9H), 1.24 (s, 9H). ¹³C NMR (150 MHz, DMSO- d_6) δ (ppm) 170.8, 166.6, 148.9, 146.2, 145.6, 137.7, 134.8, 132.3, 131.4, 128.7, 128.6, 127.7, 127.2, 125.5, 125.4, 125.0, 124.6, 124.5, 120.7, 113.8, 34.3, 34.1, 31.0, 30.9. HRMS (ESI) m/z calcd for C₂₈H₃₁N₂O⁺ (M+H)⁺ 411.2431, found 411.2430.

(Z)-2,8-bis(methylthio)-12-phenyldibenzo[b,f][1,5]diazocin-6(5H)-one (4d):

Yield 58%; 226.2 mg; yellow soild; mp 219-221°C; ¹H NMR (600 MHz, DMSO-*d*₆) δ (ppm) 9.99 (s, 1H), 7.66 (d, *J* = 7.8 Hz, 2H), 7.59-7.54 (m, 1H), 7.50 (t, *J* = 7.2 Hz, 2H), 7.28 (d, *J* = 7.2 Hz, 1H), 7.24 (d, *J* = 8.4 Hz, 1H), 7.15 (d, *J* = 8.4 Hz, 1H), 7.07 (s, 1H), 6.96 (s, 1H), 6.87 (d, *J* = 8.4 Hz, 1H), 2.42 (s, 3H), 2.38 (s, 3H); ¹³C NMR (150 MHz, DMSO-*d*₆) δ (ppm) 169.8, 166.8, 145.2, 137.2, 137.0, 133.8, 133.54, 133.52, 131.7, 128.72, 128.67, 128.1, 127.2, 126.54, 126.46, 124.8, 123.9, 121.3, 14.8, 14.4; HRMS (ESI) m/z calcd for C₂₂H₁₉N₂OS₂⁺ (M+H)⁺ 391.0933, found 391.0940.

(Z)-1,3,7,9-tetramethyl-12-phenyldibenzo[b,f][1,5]diazocin-6(5H)-one (4e):

Yield 52%; 184.1 mg; yellow solid; mp 254-256 °C; ¹H NMR (600 MHz, DMSO- d_6) δ (ppm) 10.02 (s, 1H), 7.59 (d, J = 7.8 Hz, 2H), 7.54-7.51 (m, 1H), 7.46 (t, J = 7.2 Hz, 2H), 6.86 (s, 1H), 6.83 (s, 1H), 6.64 (s, 1H), 6.54 (s, 1H), 2.21 (s, 3H), 2.16 (s, 3H), 2.15 (s, 3H), 1.82 (s, 3H); ¹³C NMR (150 MHz, DMSO- d_6) δ (ppm) 169.8, 167.7, 149.1, 139.2, 138.6, 137.1, 137.0, 134.8, 131.4, 130.1, 129.1, 128.8, 127.7, 126.4, 123.1, 122.7, 116.6, 20.7, 20.5, 19.4, 18.9; HRMS (ESI) m/z calcd for C₂₄H₂₃N₂O⁺(M+H)⁺ 355.1805, found 355.1809.

(Z)-1,2,3,7,8,9-hexamethoxy-12-phenyldibenzo[b,f][1,5]diazocin-6(5H)-one (4f): Yield 60%; 286.8 mg; yellow solid; mp 229-231°C; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 9.49 (s, 1H), 7.65 (d, *J* = 7.6 Hz, 2H), 7.37 (t, *J* = 7.2 Hz, 1H), 7.31 (t, *J* = 7.6 Hz, 2H), 6.47 (s, 1H), 6.26 (s, 1H), 3.76 (s, 3H), 3.75 (s, 3H), 3.72 (s, 6H), 3.71 (s, 3H), 3.44 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 169.2, 166.2, 154.43, 154.41, 150.7, 150.0, 145.6, 140.5, 138.3, 138.2, 132.5, 130.7, 128.03, 128.02, 120.1, 112.5, 104.1, 99.3, 61.4, 60.7, 60.6, 60.5, 55.9, 55.8; HRMS (ESI) m/z calcd for C₂₆H₂₇N₂O₇⁺ (M+H)⁺ 479.1813, found 479.1820.

(Z)-2,8-dichloro-12-phenyldibenzo[b,f][1,5]diazocin-6(5H)-one (4g):

Yield 43%; 157.4 mg; yellow solid; mp 257-259 °C; ¹H NMR (600 MHz, DMSO- d_6) δ 10.20 (s, 1H), 7.65 (d, J = 7.2 Hz, 2H), 7.59 (t, J = 7.2 Hz, 1H), 7.51 (t, J = 7.8 Hz, 3H), 7.41 (d, J = 8.4 Hz, 1H), 7.30 (s, 2H), 7.26 (d, J = 8.4 Hz, 1H), 6.95 (d, J = 8.4 Hz, 1H); ¹³C NMR (150 MHz, DMSO- d_6) δ 168.7, 166.4, 146.7, 136.4, 135.8, 134.4, 132.0, 131.3, 130.5, 130.4, 128.8, 128.7, 128.4, 127.9, 127.6, 127.29, 127.26, 122.5; HRMS (ESI) m/z calcd for C₂₀ H₁₃Cl₂N₂O⁺ (M+H)⁺ 367.0399, found 367.0404.

(Z)-16-phenyldinaphtho[2,1-b:2',1'-f][1,5]diazocin-8(7H)-one (4h):

Yield 64%; 254.7 mg; yellow solid; mp > 300°C; ¹H NMR (600 MHz, DMSO- d_6) δ (ppm) 10.64 (s, 1H), 7.89 (d, J = 9.0 Hz, 1H), 7.85 (d, J = 7.2 Hz, 1H), 7.81 (d, J = 8.4 Hz, 1H), 7.77 (t, J = 9.0 Hz, 2H), 7.60 (d, J = 7.2 Hz, 2H), 7.54-7.50 (m, 2H), 7.47-7.43 (m, 2H), 7.43-7.36 (m, 4H), 7.33 (d, J = 9.0 Hz, 1H), 7.14 (d, J = 9.0 Hz, 1H); ¹³C NMR (150 MHz, DMSO- d_6) δ (ppm) 169.0, 167.2, 146.8, 137.2, 135.6, 131.8, 131.3, 130.5, 130.3, 130.0, 129.7, 129.6, 128.9, 128.34, 128.32, 128.1, 128.0, 127.6, 127.4, 126.2, 125.05, 124.99, 124.4, 123.4, 119.5; HRMS (ESI) m/z calcd for C₂₈H₁₉N₂O⁺ (M+H)⁺ 399.1492, found 399.1497.

(Z)-2,8,12-triphenyldibenzo[b,f][1,5]diazocin-6(5H)-one (4i):

Yield 58%; 261.3 mg; yellow solid; mp 264-266 °C; ¹H NMR (400 MHz, DMSO- d_6) δ (ppm) 10.18 (s, 1H), 7.77–7.73 (m, 2H), 7.71-7.69 (m, 1H), 7.64-7.62 (m, 1H), 7.58 (s, 1H), 7.58-7.55 (m, 3H), 7.53-7.49 (m, 4H), 7.42 (d, J = 2.4 Hz, 1H), 7.40 (s, 1H), 7.38 (s, 1H), 7.36 (s, 1H), 7.34 (s, 1H), 7.33-7.29 (m, 3H), 7.04 (d, J = 8.4 Hz, 1H); ¹³C NMR (100 MHz, DMSO- d_6) δ (ppm) 170.3, 167.0, 147.5, 138.6, 138.2, 138.1, 137.2, 136.4, 135.9, 133.5, 131.7, 128.9, 128.8, 128.7, 128.6, 128.4, 127.9, 127.4, 126.6, 126.5, 126.4, 126.2, 125.8, 125.5, 121.3; HRMS (ESI) m/z calcd for $C_{32}H_{23}N_2O^+$ (M+H)⁺ 451.1805, found 451.1810.

2-oxo-2-phenyl-N-(p-tolyl)acetamide (9a):

¹H NMR (600 MHz, CDCl₃) δ (ppm) 9.02 (s, 1H), 8.39 (d, J = 7.2 Hz, 2H), 7.66–7.57 (m, 3H), 7.48 (t, J = 7.8 Hz, 2H), 7.18 (d, J = 7.8 Hz, 2H), 2.34 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 187.5, 158.8, 134.8, 134.4, 134.0, 133.0, 131.3, 129.6, 128.4, 119.8, 20.9.

6. Crystallographic data and molecular structure of 3a, 3k

Figure S1. X-ray crystal structure of 3a

·

Crystal Data for Compound **3a**: CCDC 2021412 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic.

Bond precision:	C-C = 0.002	27 A	Wavelength=0.71073		
Cell:	a=13.602(3)	k	=13.68	5(3)	c=19.401(4)
Temperature:	alpha=90 293 K	Ľ	eta=99	.361(3)	gamma=90
	Calculated			Reported	
Volume	3563.3(13)			3563.2(12)	
Space group	C 2/c			C 1 2/c 1	
Hall group	-C 2yc			-C 2yc	
Moiety formula	C22 H18 N2 O			C22 H18 N2	0
Sum formula	C22 H18 N2 O			C22 H18 N2	0
Mr	326.38			326.38	
Dx,g cm-3	1.217			1.217	
Z	8			8	
Mu (mm-1)	0.075			0.075	
F000	1376.0			1376.0	
F000'	1376.52				
h,k,lmax	16,16,23			16,16,23	
Nref	3328			3323	
Tmin,Tmax	0.985,0.989			0.669,0.74	6
Tmin'	0.985				
Correction method= # Reported T Limits: Tmin=0.669 Tmax=0.746 AbsCorr = MULTI-SCAN					
Data completeness= 0.998 Theta(max)= 25.500					
R(reflections) = 0.0486(2732) wR2(reflections) = 0.1557(3323)					
S = 1.057	N	par= 2	29		

Figure S2. X-ray crystal structure of **3**k

Crystal Data for Compound **3k**: CCDC 2021411 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic.

Bond precision: $C-C = 0.0057 A$			Wavelength=0.71073		
Cell:	a=8.4050(19) alpha=71.488(4)	b=10.003(beta=78.9	(2) 914(5)	c=15.623(4) gamma=66.772(3)	
Temperature:	273 К				
	Calculated		Reported	ł	
Volume	1141.2(5)		1141.2(5	5)	
Space group	P -1		P -1		
Hall group	-P 1		-P 1		
Moiety formula	C22 H17 Br N2 O,	C H Cl3	C22 H17	Br N2 O, C H Cl3	
Sum formula	C23 H18 Br Cl3 N2	0	C23 H18	Br Cl3 N2 O	
Mr	524.64		524.65		
Dx,g cm-3	1.527		1.527		
Z	2		2		
Mu (mm-1)	2.170		2.170		
F000	528.0		528.0		
F000′	528.47				
h,k,lmax	10,12,18		10,12,18	3	
Nref	4233		4184		
Tmin, Tmax	0.771,0.805		0.315,0	.746	
Tmin'	0.771				
Correction method= # Reported T Limits: Tmin=0.315 Tmax=0.746 AbsCorr = MULTI-SCAN					
Data completene	ess= 0.988	Theta(ma	ax)= 25.5	500	
R(reflections) = 0.0606(3381) wR2(reflections) = 0.1799(4184)					
S = 1.082	Npar= 2	273			

7. ¹H and ¹³C NMR spectra of compounds 3, 4, 9a

190 170 150 130 110 90 80 70 60 50 40 30 20 10 0

190 170 150 130 110 90 80 70 60 50 40 30 20 10 0

