Electronic Supplementary Information (ESI)

An unsual Ni₂Si₂P₈ cluster formed by complexation and thermolysis

Christoph G. P. Ziegler,^a Clemens Taube,^b John A. Kelly,^a Gabriele Hierlmeier,^a Maria Uttendorfer,^a Jan J. Weigand^{*b} and Robert Wolf^{*a}

Table of Contents

1.	General Information	2
2.	Synthetic Procedures	3
2.1	Modified Procedure for the Synthesis of $[LSi(\eta^2-P_4)]$	3
2.2	Synthesis of [(IDipp)Ni{(μ - $\eta^{2:2}$ -P ₄)SiL} ₂] (1a)	4
2.3	Synthesis of [(IMes)Ni{(μ - $\eta^{2:2}$ -P ₄)SiL} ₂] (1b)	9
2.4	Synthesis of [(IDipp)Ni(μ - $\eta^{2:2}$ -P ₄)SiL] (2)	. 14
2.5	Synthesis of [(IDipp)NiP ₈ Si ₂ L ₂] (3)	. 17
3.	Single crystal X-ray diffraction	. 22
3.1	Refinement of the solid-state molecular structure of [(IDipp)Ni{(μ - $\eta^{2:2}$ -P ₄)SiL} ₂] (1a)	. 22
3.2	Refinement of the solid-state molecular structure of [(IMes)Ni{(μ - $\eta^{2:2}$ -P ₄)SiL} ₂] (1b)	23
3.3	Refinement of the solid-state molecular structure of [(IDipp)Ni(μ - $\eta^{2:2}$ -P ₄)SiL] (2)	.24
3.4	Discussion of the structural and NMR spectroscopic data of 2	.24
3.5	Refinement of the solid-state molecular structure of [(IDipp)Ni ₂ P ₈ (SiL) ₂] (3)	26
4.	Theoretical investigations	.29
4.1	Computational Methods	. 29
4.2	NBO Analysis of complex 2	. 29
4.3	Intrinsic bond orbital analysis of compound 3'	. 32

1. General Information

All manipulations were performed under an atmosphere of dry argon using standard Schlenk techniques or an MBraun UniLab glovebox. Solvents were dried and degassed with an MBraun SPS800 solventpurification system. THF, diethyl ether, and toluene were stored over molecular sieves (3 Å). *n*-hexane was stored over a potassium mirror. Deuterated solvents (C₆D₆, tol-*d*₈, THF-*d*₈) were stirred over potassium, distilled, degassed and stored over molecular sieves (3 Å). The starting materials [(IDipp)Ni(η^2 -H₂C=CHSiMe₃)₂] (IDipp = 1,3-bis(2,6-diisopropylphenyl)imidazolin-2-ylidene), [(IMes)Ni(η^2 -H₂C=CHSiMe₃)₂] (IMes = 1,3-bis(2,4,6-trimethylphenyl)imidazolin-2-ylidene), LSi and [LSi(η^2 -P₄)] were prepared according to previously reported procedures.¹⁻⁴ The synthesis of [LSi(η^2 -P₄)] (L = CH[C(Me)N(Dipp)][C(CH₂)N(Dipp), Dipp = 2,6-*i*Pr₂C₆H₃) published by Driess and co-workers was slightly modified as described below.

NMR Spectroscopy:

NMR spectra were measured on a Bruker AVANCE III HD Nanobay (¹H (400.13 MHz), ¹³C (100.61 MHz), ¹⁹F (376.50 MHz), ²⁹Si (79.50 MHz), ³¹P (161.98 MHz)) 400 MHz UltraSield or on a Bruker AVANCE III HDX, 500 MHz Ascend (¹H (500.13 MHz), ¹³C (125.75 MHz), ¹⁹F (470.59 MHz), ²⁹Si (99.36 MHz), ³¹P (202.45 MHz)). All ¹³C NMR spectra were exclusively recorded with composite pulse decoupling. Reported numbers assigning atoms in the ¹³C spectra were indirectly deduced from the cross-peaks in 2D correlation experiments (HMBC, HSQC). Chemical shifts were referenced to δ_{TMS} = 0.00 ppm (¹H, ¹³C), δ_{CFCI3} = 0.00 ppm (¹⁹F), δ_{TMS} = 0.00 ppm (²⁹Si) and $\delta_{H3PO4(85\%)}$ = 0.00 ppm (³¹P). Chemical shifts (δ) are reported in ppm. Coupling constants (J) are reported in Hz.

For compounds, which give rise to a higher order spin system in the ${}^{31}P{}^{1}H$ NMR spectrum, the resolution enhanced ${}^{31}P{}^{1}H$ NMR spectrum was transferred to the software gNMR, version 5.0, by Cherwell Scientific.⁵ The full line shape iteration procedure of gNMR was applied to obtain the best match of the fitted to the experimental spectrum. ${}^{1}J({}^{31}P{}^{31}P)$ coupling constants were set to negative values and all other signs of the coupling constants were obtained accordingly.

In a glovebox, 20 mg of the respective compound were dissolved in 0.4 mL of deuterated solvent (tol- d_8 or THF- d_8). The solution was transferred into a *J. Young* valve NMR tube. ¹H and ³¹P NMR measurements were performed in a temperature range from 240 K to 360 K. Throughout the measurement the NMR tube was kept spinning with 20 Hz to obtain a homogeneous solution.

Elemental analysis: Elemental analyses were determined by the analytical department of the University of Regensburg with a Micro Vario Cube (Elementar).

2. Synthetic Procedures

2.1 Modified Procedure for the Synthesis of $[LSi(\eta^2-P_4)]$

The synthesis of LSi and [LSi(η^2 -P₄)] was performed according to a published procedure of Driess and co-workers.³ However, the synthesis of [LSi(η^2 -P₄)] was modified in order to prevent the formation of significant amounts of [{LSi}₂(μ - $\eta^{2:2}$ -P₄)].

Silylene LSi (6.29 g, 14.1 mmol, 1.0 equiv.) was dissolved in toluene (75 mL). This solution was added dropwise via a dropping funnel to a clear solution of white phosphorus (1.75 g, 14.1 mmol, 1.0 equiv.) dissolved in toluene (30 mL) at 60 °C. The reaction mixture was additionally stirred for 18 h at 60 °C. ³¹P{¹H} NMR monitoring subsequently showed the selective formation of [LSi(η^2 -P₄)]. Next, the solution was concentrated in *vacuo* to 25 mL. Crystals of [LSi(η^2 -P₄)] were obtained after storage at –30 °C over a period of 2 days.

Yield: 6.1 g (76%).

Dipp

NMR spectroscopic data agree with those reported by Driess and co-workers.³

¹H NMR (400.13 MHz, 300 K, C₆D₆): δ / ppm = 1.21 (d, ${}^{3}J_{HH}$ = 6.7 Hz, 6 H, Dipp: CH*Me*₂), 1.37 (d, ${}^{3}J_{HH}$ = 6.7 Hz, 6 H, Dipp: CH*Me*₂), 1.37 (d, ${}^{3}J_{HH}$ = 6.7 Hz, 6 H, Dipp: CH*Me*₂), 1.46 (s, 3 H, L: NC*Me*), 1.51 (d, ${}^{3}J_{HH}$ = 6.8 Hz, 6 H, Dipp: CH*Me*₂), 1.54 (d, ${}^{3}J_{HH}$ = 6.8 Hz, 6 H, Dipp: CH*Me*₂), 3.32 (s, 1 H, L: NCC*H*₂), 3.61 (sept, ${}^{3}J_{HH}$ = 6.8 Hz, 2 H, Dipp-IDipp: CH*Me*₂), 3.70 (sept, ${}^{3}J_{HH}$ = 6.7 Hz, 2 H, Dipp-IDipp: CH*Me*₂), 3.91 (s, 1 H, L: NCC*H*₂), 5.21 (s, 1 H, L: γ-C*H*), 6.98-7.36 (m, 6 H, Dipp: 2,6-*i*Pr₂C₆H₃).

³¹P{¹H} NMR (161.98 MHz, 300 K, C₆D₆): δ / ppm = ABX₂ δ (P_A) = -348.0 (dt, ¹J(P_A,P_X) = -146.8 Hz, ¹J(P_B,P_X) = -188.0 Hz, 1P), δ (P_B) = -342.4(dt, ¹J(P_B,P_X) = -144.7 Hz, ¹J(P_A,P_B) = -188.0 Hz 1P), δ (P_X) = 131.9 (dd, ¹J(P_X,P_A) = 146.8 Hz, ¹J(P_X,P_B) = -144.7 Hz, 2P) ²⁹Si satellites: ¹J(P_X,Si) = 31.5 Hz.

2.2 Synthesis of [(IDipp)Ni{(μ-η^{2:2}-P₄)SiL}₂] (1a)

A yellow solution of $[(IDipp)Ni(\eta^2-H_2C=CHSiMe_3)_2]$ (286 mg , 0.44 mmol, 1.0 equiv.) in 10 mL toluene was added to a pale-yellow solution of $[LSi(\eta^2-P_4)]$ (500 mg, 0.88 mmol, 2.0 equiv.) in 20 mL toluene at -50 °C. The reaction mixture was stirred for 18 h. Upon warming to room temperature, the color changed from yellow to burgundy. Volatiles were removed in *vacuo*, and the resulting violet solid was redissolved in toluene and filtered through a glass frit (pore size P4). The filtrate was

concentrated in *vacuo* and stored at -30 °C. Storage for 2 days resulted in the precipitation of **1a** as a violet, microcrystalline powder. According to the ¹H NMR spectrum the isolated product contains 1.7 toluene solvate molecules per formula unit after drying in *vacuo* (10⁻³ mbar) at 60 °C for 3 hours. Crystals suitable for single crystal X-ray diffraction analysis were obtained by slow diffusion of *n*-hexane into a concentrated toluene solution of **1a**.

Yield: 377 mg (50%).

¹H NMR (400.13 MHz, 300 K, C₆D₆): δ / ppm = 0.90 (d, ${}^{3}J_{HH}$ = 7 Hz, 12 H, Dipp: CH*Me*₂), 1.04 (d, ${}^{3}J_{HH}$ = 7 Hz, 12 H, Dipp-IDipp: CH*Me*₂), 1.23 (d, ${}^{3}J_{HH}$ = 7 Hz, 12 H, Dipp: CH*Me*₂), 1.44 (s, 6 H, L: NC*Me*), 1.44 (d, ${}^{3}J_{HH}$ = 7 Hz, 12 H, Dipp: CH*Me*₂), 1.51 (d, ${}^{3}J_{HH}$ = 7 Hz, 12 H, Dipp: CH*Me*₂), 1.53 (d, ${}^{3}J_{HH}$ = 7 Hz, 12 H, Dipp: CH*Me*₂), 2.95 (sept, ${}^{3}J_{HH}$ = 7 Hz, 4 H, Dipp-IDipp: CH*Me*₂), 3.25 (s, 2 H, L: NCC*H*₂), 3.67 (sept, ${}^{3}J_{HH}$ = 7 Hz, 4 H, Dipp-IDipp: CH*Me*₂), 6.43 (s, 2 H, IDipp: *H*C=C*H*), 6.82 (s, 4 H, IDipp: Ar-*H*), 7.22-7.47 (m, 12 H, Dipp: 2,6-*i*Pr₂C₆H₃).

¹³C{¹H} NMR (125.75 MHz, 300 K, C₆D₆): δ / ppm = 21.9 (L: NC*Me*), 24.10 (Dipp: CH*Me*₂), 28.8 (Dipp: CH*Me*₂), 25.3 (Dipp: CH*Me*₂), 25.4 (Dipp: CH*Me*₂), 25.8 (Dipp: CH*Me*₂), 27.3 (Dipp: CH*Me*₂), 28.0 (Dipp: CHMe₂), 28.8 (Dipp: CHMe₂), 29.2 (Dipp: CHMe₂), 86.6 (L: NCCH₂), 103.4 (L: γ-CH), 122.9 (IDipp: HC=CH),

123.9 (Dipp, CH), 124.6 (Dipp, CH), 124.7 (Dipp, CH), 125.3 (Dipp, CH), 128.2 (Dipp, CH), 129.0 (Dipp, CH), 129.5 (Dipp, CH), 136.6 (Dipp), 137.2 (Dipp), 137.5 (Dipp), 140.2 (L: NCMe), 145.4 (Dipp), 147.8 (L: NCCH₂), 148.0 (Dipp), 148.4 (Dipp). The signal of the quaternary carbon atom of the IDipp ligand could not be detected in the ¹³C{¹H} NMR spectrum.

 $^{31}P{^{1}H} NMR (161.98 MHz, 300 K, C_6D_6): \delta / ppm = -234.3 (br, 4 P), 190.6 (br, 4 P).$

²⁹Si NMR (99.36 MHz, 300 K, C₆D₆): δ / ppm = -50.5 (br).

Elemental analysis calcd. for $C_{85}H_{116}N_6NiP_8Si_2 \cdot 1.7 C_7H_8$ (Mw = 1741.20 g·mol⁻¹): C 66.84, H 7.50, N 4.83; found C 67.20, H 7.46, N 4.80.

Figure S5. ³¹P{¹H} NMR spectrum (161.98 MHz, 300 K, C₆D₆) of [(IDipp)Ni{(μ - $\eta^{2:2}$ -P₄)SiL}₂] (**1a**).

Figure S7. VT ³¹P{¹H} NMR spectra of [(IDipp)Ni{(μ - $\eta^{2:2}$ -P₄)SiL}₂] (**1a**) in tol- d_8 . The sample used for the VT ³¹P{¹H} NMR experiments shows a minor impurity which resonates at -153.0 ppm. Upon heating to 350 K complex **1a** thermolysis to form cluster compound **3**.

Figure S8. V1 ³¹P{¹H} NMR spectra of [(IDipp)Ni{(μ - η^{2i2} -P₄)SiL}₂] (1a) in tol-*a*₈. The sample used for the V1 ³¹P{¹H} NMR exper some minor impurities which resonate at –153.0 ppm as well as small amounts of [LSi(η^2 -P₄)].

2.3 Synthesis of [(IMes)Ni{(µ-ŋ^{2:2}-P₄)SiL}₂] (1b)

A yellow solution of $[(IMes)Ni(\eta^2-H_2C=CHSiMe_3)_2]$ (0.91 g, 1.60 mmol, 1.0 equiv.) in 20 mL toluene was added to a pale yellow solution of $[LSi(\eta^2-P_4)]$ (1.81 g, 3.20 mmol, 2.0 equiv.) in 30 mL toluene at -50 °C. The reaction mixture was stirred for 18 h. Upon warming to room temperature, the color changed from yellow to burgundy red. Volatiles were removed in *vacuo*, and the resulting violet solid was redissolved in toluene and filtered through a glass frit (pore size P4). The filtrate was

concentrated in *vacuo* and stored at -30 °C. After 2 day, a violet microcrystalline precipitate of **1b** had formed. According to the ¹H NMR spectrum, the isolated product contains 0.21 toluene solvate molecules per formula unit after drying in *vacuo* (10^{-3} mbar) over 5 hours. Crystals suitable for single crystal X-ray diffraction analysis were obtained by slow evaporation of a concentrated solution of **1b** dissolved in *n*-hexane.

Yield: 620 mg (26%).

¹H NMR (400.13 MHz, 300 K, C₆D₆): δ / ppm = 1.19 (d, ${}^{3}J_{HH}$ = 7 Hz, 12 H, Dipp: CH*Me*₂), 1.44 (d, ${}^{3}J_{HH}$ = 7 Hz, 12 H, Dipp: CH*Me*₂), 1.48 (s, 6 H, L: NC*Me*), 1.52 (d, ${}^{3}J_{HH}$ = 7 Hz, 24 H, Dipp: CH*Me*₂), 1.75 (s, 12 H, IMes: *o*-Ar-*Me*), 2.43 (s, 6 H, IMes: *p*-Ar-*Me*), 3.28 (s, 2 H, L: NCC*H*₂), 3.60 (sept, ${}^{3}J_{HH}$ = 7 Hz, 4 H, Dipp: CHMe₂), 3.66 (sept, ${}^{3}J_{HH}$ = 7 Hz, 4 H, Dipp: CHMe₂), 3.91 (s, 2 H, L: NCC*H*₂), 5.21 (s, 2 H, L: γ-C*H*), 6.12 (s, 2 H, IMes: *H*C=C*H*), 6.82 (s, 4 H, IMes: Ar-*H*), 7.22-7.47 (m, 12 H, Dipp: 2,6-*i*Pr₂C₆H₃).

¹³C{¹H} NMR (100.61 MHz, 300 K, C₆D₆): δ / ppm = 19.1 (IMes: *o*-C₆H₂*Me*₃), 21.3 (IMes: *p*-C₆H₂*Me*₃), 22.1 (L: NC*Me*), 24.8 (Dipp: CH*Me*₂), 25.3 (Dipp: CH*Me*₂), 26.0 (Dipp: CH*Me*₂), 27.7 (Dipp: CH*Me*₂), 29.0 (Dipp: CHMe₂), 29.4 (Dipp: CHMe₂), 86.6 (L: NCCH₂), 103.2 (L: γ-CH), 121.5 (IMes: HC=CH), 124.6 (Ar: CH), 124.8 (Ar: CH), 129.2 (Ar: CH), 136.1 (Ar), 136.7 (Ar), 137.4 (Ar), 137.5 (Ar), 137.7 (Ar), 140.7 (L: NCMe), 148.3 (L: NCCH₂), 148.7 (Ar), 149.2 (Ar). The quaternary carbon atom of the IMes ligand could not be detected in the ¹³C{¹H} NMR spectrum.

 $^{31}P{^{1}H} NMR (161.98 MHz, 300 K, C_6D_6): \delta / ppm = -236.4 (m, 4 P), 194.2 (m, 4 P).$

²⁹Si NMR (99.36 MHz, 300 K, THF- d_8): δ / ppm = -52.1 (broad pseudo-triplet).

Elemental analysis calcd. for $C_{79}H_{104}N_6NiP_8Si_2 \cdot 0.21 C_7H_8$ (Mw = 1519.73 g·mol⁻¹): C 63.43, H 7.00, N 5.56; found C 63.60, H 7.01, N 5.53.

Electronic Supplementary Information (ESI)

Electronic Supplementary Information (ESI)

2.4 Synthesis of [(IDipp)Ni(μ - $\eta^{2:2}$ -P₄)SiL] (2)

A pale-yellow solution of [LSi(η^2 -P₄)] (432.6 mg, 0.77 mmol, 1.0 equiv.) in toluene (15 ml) was added dropwise to a yellow solution of [(IDipp)Ni(η^2 -H₂C=CHSiMe₃)₂] (500 mg, 0.77 mmol, 1.0 equiv.) in toluene (15 ml) at room temperature. The reaction mixture was stirred for 18 hours at room temperature, whereupon the color changed to brown. Volatiles

were removed in *vacuo* and the brown residue was extracted with *n*-hexane (60 mL) using a glass frit (pore size P4). The filtrate was concentrated to 25 mL. Storage at -30 °C for 2 days gave **2** as an analytically pure, microcrystalline powder. According to the ¹H NMR spectrum the isolated product contains 0.36 *n*-hexane solvate molecules per formula unit after drying in *vacuo* (10^{-3} mbar) over period of 3 hours. Crystals suitable for single crystal X-ray diffraction analysis were obtained by slow evaporation of a concentrated solution of **2** dissolved in *n*-hexane.

N.B. Complex **2** is unstable in solution and converts slowly into compound **3** at room temperature.

Yield: 240 mg (33%).

¹H NMR (400.13 MHz, 300 K, C₆D₆): δ / ppm = 1.02 (d, ³J_{HH} = 7 Hz, 12 H, Dipp: CH*Me*₂), 1.14 (d, ³J_{HH} = 7 Hz, 6 H, Dipp: CH*Me*₂), 1.42 (d, ³J_{HH} = 7 Hz, 18 H, Dipp: CH*Me*₂), 1.49 (m, 12 H, Dipp: CH*Me*₂ and 3 H L: NC*Me*), 2.57 (sept, ³J_{HH} = 7 Hz, 4 H, Dipp-IDipp: CH*Me*₂), 3.25 (s, 1 H, L: NCC*H*₂), 3.73 (sept, ³J_{HH} = 7 Hz, 2 H, Dipp: CH*Me*₂), 3.89 (s, 1 H, L: NCC*H*₂), 5.26 (s, 1 H, L: γ -C*H*), 6.16 (s, 2 H, IDipp: *H*C=C*H*), 6.98-7.35 (m, 12 H, Dipp: 2,6-*i*Pr₂C₆H₃).

¹³C{¹H} NMR (100.61 MHz, 300 K, C₆D₆): δ / ppm = 21.8 (L: NC*Me*), 23.9 (Dipp: CH*Me*₂), 24.6 (Dipp: CH*Me*₂), 25.6 (Dipp: CH*Me*₂), 27.2 (Dipp: CH*Me*₂), 28.5 (IDipp: CHMe₂), 28.6 (L: CHMe₂), 29.0 (L: CHMe₂), 85.6 (L: NCCH₂), 102.8 (L: γ-CH), 121.6 (IDipp: HC=CH), 123.7 (Dipp, CH), 124.2 (Dipp, CH),124.4 (Dipp, CH), 130.0 (Dipp, CH), 135.1 (Dipp), 137.3 (Dipp), 137.6 (Dipp), 140.3 (L: NCMe), 145.3 (Dipp), 148.1 (L: NCCH₂), 148.5 (Dipp). The quaternary carbon atom of the IDipp ligand could not be detected in the ¹³C{¹H} NMR spectrum.

³¹P{¹H} NMR (161.98 MHz, 300 K, C₆D₆): ABX₂ spin system; δ / ppm ABX₂ δ (P_A) = -155.1 (dt, ¹J(P_A,P_X) = -114.2 Hz, ¹J(P_A,P_B) = -25.6 Hz), δ (P_B) = -138.0 (dt, ¹J(P_B,P_X) = -114.1 Hz, ¹J(P_A,P_B) = -25.6 Hz), δ (P_X) = 147.3 (dd, ¹J(P_X,P_A) = -114.2 Hz, ¹J(P_X,P_B) = -114.1 Hz).

²⁹Si NMR (99.36 MHz, 300 K, C₆D₆): δ / ppm = -37.1 (br).

Elemental analysis calcd. for $C_{56}H_{76}N_4NiP_4Si \cdot 0.36 C_6H_{14}$ (Mw = 1046.95 g·mol⁻¹): C 66.72, H 7.80, N 5.35; found C 66.91, H 7.40, N 5.38.

Electronic Supplementary Information (ESI)

2.5 Synthesis of [(IDipp)Ni₂P₈(SiL)₂] (3)

A pale-yellow solution of $[LSi(\eta^2-P_4)]$ (217.2 mg, 0.38 mmol, 1.0 equiv.) in toluene (15 ml) was added dropwise to a yellow solution of $[(IDipp)Ni(\eta^2-H_2C=CHSiMe_3)_2]$ (247.8 mg, 0.38 mmol, 1.0 equiv.) in toluene (15 ml) at room temperature. The reaction mixture was stirred for 18 hours at 60 °C, whereupon the color changed to brown. Volatiles were removed in *vacuo* and the remaining brown solid was transferred to a sublimation apparatus. Free carbene IDipp, was removed by vacuum sublimation (95 °C, 1·10⁻⁵ mbar).

The residual solid was redissolved in toluene (60 mL) and filtered through a glass frit (pore size P4). The solution was concentrated to a volume of 15 mL. Layering the concentrated toluene solution with *n*-hexane gave brownish crystals of **3** after one week. Crystals suitable for single crystal X-ray diffraction analysis were obtained by slow evaporation of a concentrated *n*-hexane solution of **3**.

Yield: 240 mg (33%).

N.B. Two isomers (labelled A and B) were detected in the NMR spectra and by single crystal X-ray diffraction experiments. These isomers cannot be separated and are assigned via their respective integrations in the ¹H and ³¹P{¹H} NMR spectra (major isomer: A, minor isomer: B).

¹H NMR (400.13 MHz, 300 K, C₆D₆): signals of isomers A and B partly overlap strongly; δ / ppm = 0.09 (m, Dipp: CH*Me*₂), 0.59 (d, Isomer B, Dipp: CH*Me*₂), 0.67 (d, Isomer B, Dipp: CH*Me*₂), 0.75 (d, Isomer A, Dipp: CH*Me*₂), 0.851–1.65 (m, Dipp: CH*Me*₂) overlap with L: NC*Me*), 1.71 (d, Isomer B, Dipp: CH*Me*₂), 1.75 (d, Isomer A, Dipp: CH*Me*₂), 1.86 (d, Isomer A, Dipp: CH*Me*₂); (integrals fit to the 78 expected hydrogen atoms); 1.97 (m, Dipp: CH*Me*₂), 2.34 (sept, Isomer B, Dipp: CH*Me*₂), 2.48 (sept, Isomer A, Dipp: CH*Me*₂), 2.62 (m, Isomer A, Dipp: CH*Me*₂), 2.67 (m, Isomer B, Dipp: CH*Me*₂), 2.74 (sept, Isomer A, Dipp: CH*Me*₂), 2.85 (sept, Isomer B, Dipp: CH*Me*₂), 3.23 (m, Dipp: CH*Me*₂), 3.60 (sept, Isomer B, Dipp: CH*Me*₂), 3.66–3.90 (m, Dipp: CH*Me*₂), 4.11 (sept, Isomer A, Dipp: CH*Me*₂); (integrals fit to the 12 expected hydrogen atoms of the Dipp: CH*Me*₂), 3.92 (s, Isomer B, L: NCC*H*₂), 3.97 (s, Isomer A, L: NCC*H*₂), 3.39 (s, Isomer B, L: NCC*H*₂), 3.92 (s, Isomer A, L: NCC*H*₂); (integrals fit to the 4 expected hydrogen atoms of the L: NCC*H*₂), 4.00 (s, Isomer B, L: NCC*H*₂), 5.35 (s, Isomer A, L: NCC*H*₂); (integrals fit to the 4 expected hydrogen atoms of the 2 expected hydrogen atoms of the L: NCC*H*₂); (integrals fit to the 2 expected hydrogen atoms of the L: γ -CH moiety); 6.34 (m, IDipp: *H*C=C*H*), 6.50 (m, IDipp: *H*C=C*H*); (integrals fit to the 2 expected hydrogen atoms of the L: γ -CH moiety); 6.34 (m, IDipp: *H*C=C*H*), 6.50 (m, Dipp: 2,6-*iP*r₂C₆*H*₃; (integrals fit to the 18 expected hydrogen atoms of the Dipp: 2,6-*iP*r₂C₆*H*₃ group).

¹³C{¹H} NMR (100.61 MHz, 300 K, C₆D₆): δ / ppm = 21.6, 21.7, 22.2, 22.3, 22.5, 22.5, 23.1, 23.2, 23.6, 23.7, 23.8, 23.9, 23.9, 24.3, 24.3, 24.4, 24.6, 24.7, 25.1, 25.3, 25.4, 25.4, 25.5, 25.7, 25.9, 26.0, 26.2, 26.4, 26.5, 26.6, 26.7, 26.9, 27.0, 27.1, 27.3, 27.4, 27.7, 27.8, 27.9, 28.0, 28.1, 28.1, 28.2, 28.3, 28.4, 28.7, 28.8, 28.9, 28.9, 29.0, 29.2, 29.4, 29.5 (Dipp: CHMe₂, Dipp: CH*Me*₂, and L: NC*Me*), 87.4, 90.6 (L: NCCH₂ Isomer B), 89.4, 90.6 (L: NCCH₂, Isomer A), 103.1, 109.4 (L: γ-CH, Isomer B), 106.4, 108.6 (L: γ-CH, Isomer A), 123.4, 123.7, 123.8, 123.9, 123.9, 124.1, 124.1, 124.2, 124.3, 124.5, 124.9, 125.0, 125.1, 128.2, 128.2, 128.3, 128.3, 129.0, 130.2, 130.3, 130.8 (Dipp, CH),126 (IDipp: HC=CH, Isomer B), 126.3 (IDipp: HC=CH, Isomer A), 126.5 (IDipp: HC=CH, Isomer B), 126.7 (IDipp: HC=CH, Isomer B), 140.6 (L: NCMe, Isomer B), 140.7 (L: NCMe, Isomer A), 141.6 (L: NCMe Isomer A), 141.8 (L: NCMe, Isomer B), 147.6, 147.7, 148.3, 148.4 (L: NCCH₂), 135.9, 136.2, 136.6, 136.9, 137.0, 137.0, 137.3, 137.9, 137.9, 138.1, 138.3, 138.5, 145.1, 145.4, 145.4, 145.6, 146.7, 146.8, 147.0, 147.1, 147.2, 147.9, 148.6, 148.8, 148.9, 149.1, 149.2, 149.5, 149.5, 149.5 (Dipp), 187.4 (IDipp: NCN, Isomer A), 187.8 (IDipp: NCN, Isomer B).

³¹P{¹H} NMR (161.98 MHz, 300 K, C₆D₆): ABCDEMSX spin system: Isomer A: -237.1 (m, P_A), -190.3 (m, P_B), -162.2 (m, P_C), -149.2 m, P_D), -123.5 (m, P_E), -60.5 (m, P_M), 51.3 (m, P_S), 191.1(m, P_X); Isomer B: -232.2 (m, P_A), -199.3 (m, P_B), -164.8 (m, P_C), -145.0 (m, P_D), -113.7 (m, P_E), -46.5 (m, P_M), 46.4 (m, P_S), 208.8 (m, P_X).

²⁹Si NMR (99.36 MHz, 300 K, C₆D₆): δ / ppm = -3.9 (br), 60.8 (br).

Elemental analysis calcd. for $C_{85}H_{116}N_6Ni_2P_8Si_2$ (Mw = 1643.25 g·mol⁻¹): C 62.13, H 7.12, N 5.11; found C 62.86, H 7.09, N 5.08. The deviation in the carbon content might be explained by small amounts of residual carbone IDipp.

Figure S22. ²⁹Si NMR spectrum (99.36 MHz, 300 K, C₆D₆) of [(IDipp)NiP₈{SiL}₂] (3).

Electronic Supplementary Information (ESI)

Table S1. Calculated $J({}^{31}P, {}^{31}P)$ coupling constants (TPSS/pcSseg-2 level of theory) and $J({}^{31}P, {}^{31}P)$ coupling constants obtained by an iterative fitting procedure using the calculated $J({}^{31}P, {}^{31}P)$ coupling constants as starting point. $J({}^{31}P, {}^{31}P)$ coupling constants are given in Hz. Extended signals (upwards) and simulations (downwards) with a representation of the core of the cluster **3**; thermal ellipsoids are drawn at the 40 % probability level (bottom).

Assignment of nuclei	Calculated J(³¹ P, ³¹ P)	Iterative fitting J(³¹ P, ³¹ P)	Assignment of nuclei	Calculated J(³¹ P, ³¹ P)	Iterative fitting J(³¹ P, ³¹ P)
AB	-9.2	-7.5	BC	-6.2	-14.1
AC	-162.4	-175.8	BD	-248.2	-247.9
AD	-7.1	-13.8	BE		
AE	0.3	28.0	BM	-11.7	-26.8
AM	-388.0	-409.7	BS	-198.9	-204.2
AS	20.8	35.2	вх	33.7	32.2
AX	11.9	17.1	DE		
CD	-7.1	-8.0	DM	201.8	218.1
CE	-294.0	-325.3	DS	43.0	49.3
CM	19.7	19.9	DX	23.0	14.1
CS	26.5	20.9	MS	20.3	35.1
СХ	73.1	48.1	МХ	39.6	28.0
EM	-40.4	-13.0	sx	61.0	45.2
ES					
EX	-233.6	-241.6			
			1		

С В D А -149 -150 -163 ·161 <u>-1</u>89 Х S Ε M + 197 52 51 -123 125 -61

Note on the fitting procedure: The siliconphosphorus coupling constants were not included in the simulation due to the rather broad signals observed in the experimental ${}^{31}P{}^{1}H$ NMR spectra.

3. Single crystal X-ray diffraction

Crystallographic data were recorded on a Super Nova with a Mikrofocus Cu anode and an Atlas CCD Detector. In all cases, Cu-K_{α} radiation (λ = 1.54184 Å) was used. Crystals were selected under mineral oil, mounted on micromount loops and quench-cooled using an Oxford Cryosystems open flow N₂ cooling device. The diffraction pattern was indexed and the total number of runs and images was based on the strategy calculation from the program CrysAlisPro (Rigaku, V1.171.40.18b, 2018). The unit cell was refined using CrysAlisPro (Rigaku, V1.171.40.18b, 2018). Either semi-empirical multi-scan absorption corrections⁶ or analytical⁷ ones were applied to the data. Using Olex2,⁸ the structures were solved with SHELXT⁹ using intrinsic phasing and refined with SHELXL¹⁰ using least squares refinement on *F*². The hydrogen atoms were located in idealized positions and refined isotropically with a riding model. Crystallographic data for the structures in this paper have been deposited with the Cambridge Crystallographic Data Centre, CCDC, 12 Union Road, Cambridge CB21EZ, UK. Copies of these data can be obtained free of charge (http://www.ccdc.cam.ac.uk) on quoting the depository number: 2009284 (**1a**), 2009285 (**1b**), 2009286 (**2**), 2009287 (**3**).

3.1 Refinement of the solid-state molecular structure of [(IDipp)Ni{(μ - $\eta^{2:2}$ -P₄)SiL}₂] (1a)

Figure S25. Solid-state molecular structure of **1a**. Hydrogen atoms and solvate molecules are omitted for clarity; thermal ellipsoids are drawn at the 40 % probability level. Selected bond lengths [Å] and angles [°] for **1a**: P1–P3 2.2651 (6), P1–P4 2.2511 (7), P2–P3 2.2565 (7), P2–P4 2.2724 (7), P3–P4 2.2686 (6), Si1–P1 2.2512 (8), Si1–P2 2.2422(7), Ni1–P3 2.2923 (8), Ni1–P4 2.2674 (8), P5–P7 2.2451 (6), P5–P8 2.2603 (7), P6–P7 2.2714 (9), P6–P8 2.2607 (7), P7–P8 2.4749 (7), Si2–P5 2.2475 (9), Si2–P6 2.2455 (6), Ni1–P7 2.2657 (6), Ni1–P8 2.2847 (7), Ni1–C1 1.9761 (16); P1–P3–P2 86.95 (3), P1–P4–P2 86.90 (3), P3–P1–P4 59.54 (2), P3–P2–P4 60.12 (6), P3–Ni1–P4 59.67 (2), P5–P7–P6 86.95 (3), P5–P8–P6 86.85 (2), P7–P5–P8 60.65 (2), P7–P6–P8 60.26 (2), C1–Ni1–P3 105.87 (5), C1–Ni1–P4 131.99 (5), C1–Ni1–P7 128.92 (5), C1–Ni1–P8 104.22 (6).

3.2 Refinement of the solid-state molecular structure of [(IMes)Ni{(μ - $\eta^{2:2}$ -P₄)SiL}₂] (1b)

Figure S26. Solid-state molecular structure of **1b**. Hydrogen atoms and solvate molecules are omitted for clarity; thermal ellipsoids are drawn at the 40 % probability level. Selected bond lengths [Å] and angles [°] for **1b**: P1–P3 2.2589 (6), P1–P4 2.2685 (7), P2–P3 2.2652 (7), P2–P4 2.2417 (7), P3–P4 2.2553 (7), Si1–P1 2.2457 (7), Si1–P2 2.2300 (6), Ni1–P3 2.2610 (7), Ni1–P4 2.2531 (7), P5–P7 2.2539 (6), P5–P8 2.2352 (8), P6–P7 2.2594 (8), P6–P8 2.2659 (7), P7–P8 2.2561 (7), Si2–P5 2.2473 (8), Si2–P6 2.2362 (6), Ni1–P7 2.2775 (6), Ni1–P8 2.2482 (6), Ni1–C1 1.957 (2); P1–P3–P2 87.07 (2), P1–P4–P2 87.40 (3), P3–P1–P4 59.76 (2), P3–P2–P4 60.05 (2), P3–Ni1–P4 59.95 (2), P5–P7–P6 86.97 (2), P5–P8–P6 87.26 (3), P7–P5–P8 60.24 (2), P7–P6–P8 59.81 (2), C1–Ni1–P3 124.23 (7), C1–Ni1–P4 105.57 (7), C1–Ni1–P7 112.80 (7), C1–Ni1–P8 126.99 (7).

3.3 Refinement of the solid-state molecular structure of [(IDipp)Ni(μ - $\eta^{2:2}$ -P₄)SiL] (2)

Figure S27. Ball and Stick representation of the solid-state molecular structure of **2**. Hydrogen atoms are omitted for clarity. Disordered part is highlighted in green (PART 2).

The asymmetric unit of the solid-state molecular structure of **2** is disordered over two positions. The occupancy distribution of the backbone of the [LSi] ligand was refined to 82:18 and restrained with a SIMU. Additionally, an AFIX66 was applied the phenylring of the disordered diisopropyphenly group. The bridging P₄ unit is also disorder over two positions with crystallographic occupancies of 70:30. The anisotropic displacement factors were restrained with a SIMU.

3.4 Discussion of the structural and NMR spectroscopic data of 2

Complex **2** crystallizes in the orthorhombic space group Pbca. The solid-state molecular structure is presented in Figure S28a and reveals a heterodinuclear $[Si(\mu-\eta^{2:2}-P_4)Ni]$ core which resembles Driess Ni¹ complex **D**.¹¹ Similar to complexes **1a,b** and **D** the conformation of the side-on coordinated $[(L)Si(\eta^2-P_4)]$ moiety remains untouched except for the nickel coordinated P3–P4 bond (2.389 (6) Å) which is about 0.23 Å longer than in the staring material $[LSi(\eta^2-P_4)]$ and even slightly elongated compared to the related compound **D** (2.335 (4) Å).¹¹ Interestingly, the Ni–P distances (Ni1–P3 2.151 (6), Ni1–P4 2.1223 (10) Å) are considerably shorter than those observed in in complex **D** (Ni1-P3 2.255(4), Ni1-P4 2.277(2) Å).¹¹ This might be explained by significant back-donation of electron density form the Ni centre toward the phosphorus framework.

The bonding-situation was investigated by means of natural bond orbital analysis (NBO) of the optimized structure of **2**, calculated at the PBE/def2-TZVP level of theory. Looking at the composition of the constructed orbitals five occupied 3d¹⁰ orbitals together with five two electron two centre P–P bonds were found, suggesting the presence of nickel in its formal oxidation state zero (Figure S31 and S32). By

looking more closely, a strong interaction of a filled Ni(d) orbital with the antibonding σ^* orbital of the P3–P4 bond can be observed with a donor-acceptor stabilization energy of 36.5 kcal \cdot mol⁻¹ (Figure S28b). This supports the notion that there is strong back-donation of the nickel centre, which is more pronounced in the Ni⁰ complex **2** than in the Ni^I compound **D**.¹¹

The ³¹P{¹H} NMR spectrum of **2** dissolved in C₆D₆ at room temperature shows three chemically different ³¹P nuclei resonating at $\delta(P_A) = -155.1$ ppm, $\delta(P_B) = -138.0$ ppm, and $\delta(P_X) = 147.3$ ppm. The two signals shifted to higher field are each split into a doublet of triplets (¹J(P_A,P_X) = -114.2 Hz, ¹J(P_A,P_B) = -25.6 Hz) while the low-field shifted signal $\delta(P_X)$ shows a pseudo triplet (¹J(P_X,P_A) = -114.2 Hz, ¹J(P_X,P_B) = -114.1 Hz), giving rise to an ABX₂ spin system (Figure S17).

Upon coordination of the [(NHC)Ni] fragment the resonances P_A and P_B are shifted to lower field compared to the starting material⁴ and to other comparable diamagnetic [LM(η^2 -P₄)] (M = Ga,¹² Ge,¹³ Zr, Hf¹⁴) type complexes with a tricyclo[3.1.0]pentane-like structure. The coordination of the nickel atom is also reflected in the ¹J(P_A,P_B) coupling constant (¹J(P_A,P_B) = -25.6 Hz) which is about 162.4 Hz smaller in magnitude than in the non-coordinated case (¹J(P_A,P_B) = -188.0 Hz). The recorded ²⁹Si NMR spectrum of **2** in C₆D₆ reveals a broad resonance at δ = -37.1ppm.

Figure S28. a) Solid-state molecular structure of **2**. Hydrogen atoms and disorder are omitted for clarity; thermal ellipsoids are drawn at the 40 % probability level. Selected bond lengths [Å] and angles [°] for **2** (in case of disorder bond lengths and angles were derived from the part with highest occupancy): P1–P3 2.265 (6), P1–P4 2.244 (6), P2–P3 2.186 (11), P2–P4 2.2469 (14), P3–P4 2.389 (6), Si1–P1 2.249 (5), Si1–P2 2.2235(14), Ni1–P3 2.151 (6), Ni1–P4 2.1223 (10), Ni1–C1 1.930 (3); P1–P3–P2 87.2 (3), P1–P4–P2 86.25 (16), P3–P1–P4 64.0 (2), P3–P2–P4 65.20 (18), P3–N11–P4 67.97 (18), C1–Ni1–P3 132.00 (19), C1–Ni1–P4 159.79 (11); b) Natural bond orbitals representing the back-bonding of back-bonding of an occupied Ni d-orbital into the antibonding orbital of the coordinated P–P bond. Ni(d) $\rightarrow \sigma^*$ (P3–P4) 36.5 kcal · mol⁻¹. Surface isovalue = 0.07. H atoms have been omitted for clarity.

3.5 Refinement of the solid-state molecular structure of [(IDipp)NiP₈{SiL}₂] (3)

Figure S29. Ball and Stick representation of the solid-state molecular structure of **3**. Hydrogen atoms are omitted for clarity. Disordered part is highlighted in green (PART 2). Selected bond distances [Å] of Part 1: C1–C2 1.350 (9), C3–C4 1.473 (7); Selected bond distances [Å] of Part 2 (highlighted in green): C1–C2 1.57 (3), C3–C4 1.36(2).

The asymmetric unit of the solid-state molecular structure of **3** is disordered over two positions. The occupancy distribution of the backbone of the [LSi] ligand was refined to 73:27 and restrained with a SIMU. Additionally, an AFIX66 was applied the phenylring of the disordered diisopropyphenly group. The disorder of the LSi moiety is likely caused by the presence of two isomers of **3**, which differ in the relative orientation of the C=C double bond in the ligand backbone (Figure S29). A solvent mask was calculated, and 366 electrons were found in a volume of 2140 Å³ in 2 voids per unit cell. This is consistent with the presence of two *n*-hexane solvent molecules per asymmetric unit, which account for 400 electrons per unit cell.

Figure S30. Solid-state molecular structure of **3.** Hydrogen atoms and disorder are omitted for clarity; thermal ellipsoids are drawn at the 40 % probability level. Selected bond distances [Å] and angles [°] for **3**: P1–P3 2.1702 (8), P1–P4 3.4219 (8), P1–P6 3.0176(7), P2–P4 2.2160 (9), P2–P5 2.1704 (10), P4–P5 2.5499 (9), P3–P8 2.4018 (7), P6–P7 2.1946 (7), P7–P8 2.3083 (7), Si1–P1 2.2539 (8), Si1–P2 2.2832 (11), Si2–P6 2.2265 (7), Si2–P7 2.2709 (7), Ni1–Ni2 2.4126 (4), Ni1–P1 2.2717 (6), Ni1–P3 2.4280 (6), Ni1–P6 2.3132 (6), Ni1–P8 2.4143 (6), Ni2–P4 2.1983 (8), Ni2–P5 2.2448 (6), Ni2–P7 2.1811 (7); P1–P3–P8 98.26 (3), P3–P8–P6 97.79 (3), P3–P1–P6 82.91 (2), P3–P1–P4 84.04 (3), P1–P4–P5 68.31 (2), P4–P5–P3 104.92 (4), P2–P4–P5 53.63 (3), P4–P5–P2 55.29 (3), P5–P2–P4 71.08 (3), P5–P3–P8 95.97 (3), P3–P8–P7 107.97 (3), P6–P8–P7 79.88 (3), P8–P7–P6 48.896 (18), P7–P6–P8 51.23 (2), P4–P1–P6 85.977 (19), P1–P6–P7 96.32 (2), P1–Ni1–P4 98.25 (3), P3–Ni1–P5 56.10 (2), P6–Ni1–P7 79.03 (2), P8–Ni–P7 59.00 (2).

Compound 1a 1b 2 3 Empirical formula C91H130N6NiP8Si2 C85H118N6NiP8Si2 C56H76N4NiP4Si C85H116N6Ni2P8Si2 Formula weight 1670.65 1586.50 1015.88 1643.19 123.00(10) Temperature [K] 123.00(10) 123.00(10) 123.00(10) Crystal system monoclinic monoclinic orthorhombic monoclinic Space group $P2_1/c$ P21/c Pbca P21/c a [Å] 23.6231(4) 17.4645(3) 17.4813(3) 23.3638(5) b [Å] 13.31130(10) 22.9979(3) 15.4359(3) 16.0951(3) c [Å] 30.4842(5) 22.0196(3) 42.6490(6) 27.7549(6) α [°] 90 90 90 90 β [°] 90 105.741(2) 97.889(2) 107.229(2) γ [°] 90 90 90 90 Volume [Å³] 9226.4(2) 8768.8(2) 11497.3(3) 9968.7(4) Ζ 4 4 8 4 $\rho_{calc} [g/cm^3]$ 1.203 1.202 1.174 1.095 μ [mm⁻¹] 2.213 2.303 2.020 2.217 3488.0 F(000) 3576.0 3384.0 4336.0 Crystal size [mm³] $0.304 \times 0.112 \times 0.051$ $0.372 \times 0.081 \times 0.027$ $0.32 \times 0.107 \times 0.088$ $0.192 \times 0.114 \times 0.057$ Radiation $CuK_{\alpha} (\lambda = 1.54184)$ Cu K_{α} ($\lambda = 1.54184$) CuK_{α} ($\lambda = 1.54184$) Cu K_{α} ($\lambda = 1.54184$) 20 range for data 7.292 to 148.682 7.182 to 146.22 6.542 to 147.986 6.668 to 148.204 collection [°] $-29 \le h \le 28, -16 \le k \le$ $-21 \le h \le 16, -28 \le k \le$ $-21 \le h \le 20, -18 \le k \le$ $-28 \le h \le 28, -19 \le k \le$ Index ranges 10, -37 ≤ I ≤ 37 26, -24 ≤ l ≤ 27 $16, -52 \le | \le 52$ $14, -34 \le | \le 34$ **Reflections collected** 55783 41046 46160 58661 Independent 18506 [R_{int} = 0.0253, 16774 [R_{int} = 0.0293, 11392 [Rint = 0.0388, 19509 [Rint = 0.0257, reflections R_{sigma} = 0.0258] R_{sigma} = 0.0362] R_{sigma} = 0.0307] R_{sigma} = 0.0254] Data / restraints / 11392/468/769 18506/6/1033 16774/146/984 19509/654/1183 parameters Goodness-of-fit on F² 1.015 1.018 1.137 1.029 Final R indexes $R_1 = 0.0334$, $R_1 = 0.0390$, $R_1 = 0.0664$, $R_1 = 0.0446$, $wR_2 = 0.0816$ $wR_2 = 0.1626$ $[1>=2\sigma(1)]$ $wR_2 = 0.0939$ $wR_2 = 0.1149$ Final R indexes $R_1 = 0.0397$, $R_1 = 0.0518$, $R_1 = 0.0759$, $R_1 = 0.0533$, [all data] $wR_2 = 0.0854$ $wR_2 = 0.1021$ $wR_2 = 0.1680$ $wR_2 = 0.1215$ Largest diff. 0.50/-0.51 0.53/-0.59 0.70/-0.62 0.78/-0.35 peak/hole [e Å⁻³]

Table S2. Crystallographic data for compounds 1a, 1b, 2, and 3.

4. Theoretical investigations

4.1 Computational Methods

All calculations were performed with the ORCA program package¹⁵ and were conducted in the gas phase. The RI¹⁶ approximation was used for GGA calculations whereas the RIJCOSX¹⁷ approximation was used for hybrid-DFT calculations. Geometry optimisations have been carried out at the PBE/def2-TZVP^{18,19,20} level of theory and the nature of stationary point was confirmed by a numerical frequency analysis. For compound **3**, a model **3'** in which the *iso*-propyl substituents of at the diisopropylphenyl moieties have been truncated to methyl groups. The higher occupied part of the single X-ray crystals structure was chosen as initial geometry for **3'**.

4.2 NBO Analysis of complex 2

An NBO(version 6.0)²¹ analysis was carried out using the Gaussian 09 program package²² (using the ORCA PBE singlet geometry, and using the def2-TZVP basis). The donor properties of the nickel atom in complex **2** were quantified in a second order perturbation theory analysis.

114

115

Figure S 31. Natural bond orbitals of 2 showing five P–P bonds. Surface isovalue = 0.07. H atoms have been omitted for clarity.

Figure S32. Natural bond orbitals of 2 showing five occupied Ni 3d-orbitals. Surface isovalue = 0.05. H atoms have been omitted for clarity.

Figure S33. Natural bond orbitals representing the back-bonding of back-bonding of an occupied Ni d-orbital into the antibonding orbital of the coordinated P–P bond. Ni(d) $\rightarrow \sigma^*$ (P1–P2) 36.5 kcal \cdot mol⁻¹. Surface isovalue = 0.07. H atoms have been omitted for clarity.

4.3 Intrinsic bond orbital analysis of compound 3'

Intrinsic bond orbitals (IBO) have been constructed from the occupied PBE orbitals according to Knizia *et al.*²³ To investigate the bonding interactions within the cluster we analysed the composition and shape of the respective IBOs. Thereby, IBOs with a Ni contribution greater than 70% were assigned to be occupied 3d orbitals. This criterion ensures that only significant bonding interactions between the cluster atoms are considered. Orbitals with comparatively low Ni contribution 71% to 73% may be explained by a significant back-donation of electron density from the Ni atoms to the electron-deficient cluster.

Figure S34. Intrinsic bond orbitals of **3'** showing 2-centre-2-electron bonding interactions between the cluster atoms. Surface isovalue = 0.05. H atoms have been omitted for clarity.

Figure S35. Intrinsic bond orbitals of **3'** multicentre bonding interactions between the cluster atoms. Surface isovalue = 0.05. H atoms have been omitted for clarity.

144 (93% Ni)

147 (89% Ni)

Figure S36. Intrinsic bond orbitals of **3**' showing the filled 3d-orbitals at the Ni atoms (highest contribution of a single Ni atom is given in parentheses). Surface isovalue = 0.05. H atoms have been omitted for clarity.

Calculation of ³¹P NMR shieldings

The chemical shielding constants of the optimized geometries of complexes **2** and **3'** and were calculated at the TPSS/pcSseg-2 level of theory.^{24,25} Calculated coupling constants are given in Table S1, *vide supra*.

Table S3. Calculated chemical shielding constants and chemical shifts of **3'**. Complex **2** was used as reference. Representation and assignment of ³¹P nuclei of core of **3** (bottom).

assignment of	isotropic	calculated	experimental	absolute
the ³¹ P	shielding	chemical shift	chemical shift	deviation from
	constant	[ppm]	[ppm]	the experimental
				values
A	545.167	-233.5	-236.7	3.2
В	504.562	-192.9	-189.8	3.1
С	444.44	-132.7	-161.4	28.7
D	439.386	-127.7	-148.5	20.8
E	396.255	-84.5	-122.8	38.3
Μ	361.048	-49.3	-59.7	10.4
S	244.308	67.4	51.9	15.5
X	87.693	224.0	197.7	26.3

Table S4. Calculated chemical shielding constants and chemical shifts of **3'**. Complex **2** was used as reference. Representation and assignment of ²⁹Si nuclei of core of **3** (bottom).

assignment of	isotropic	calculated	experimental	absolute
the ²⁹ Si	shielding	chemical shift	chemical shift	deviation from
	constant	[ppm]	[ppm]	the experimental
				values
Si1	360.958	-8.6	-3.9	4.7
Si2	294.852	57.5	60.8	3.3

 Table S5. Calculated chemical shielding constants and chemical shifts of reference system 2. Representation and assignment of ³¹P nuclei of core of 2 (bottom).

assignment of the ³¹ P and ²⁹ Si nuclei	isotropic shieling constant	calculated chemical shift [ppm]	experimental chemical shift [ppm]	absolute deviation from the experimental
				values
P1	148.7	163.0	147.3	15.7
P2	164.4	reference	147.3	0.0
Р3	468.6	-156.9	-138.0	18.9
P4	489.2	-177.5	-155.1	22.4

Cartesian Coordinates of Optimized Structures

Cartesian coordinates of the optimized gas phase geometry of the complex 2 (PBE/def2-TZVP, S= 0)

			Sus phase geometri
NI	7.04674659858483	7.77380192561013	25.95004525916821
Si	9.42411136763949	11.42440432603290	27.44306874250845
Ρ	8.29946996869168	9.45075309790504	25.41415003450989
Р	7.30926338697802	11.04394117932097	26,71892808243584
, D	0.070520330037002	0.2277702250256	27.04000520004216
r D	3.67032737100240	9.23777923380330	27.04900329004210
Ρ	7.67347323011013	8.97533710856267	27.62965200103657
Ν	5.84922695366098	5.75176064802026	24.11778150849454
Ν	5.36411844088936	5.33073450702456	26.17438532961149
Ν	9.60749592260333	11.96471264953618	29.11203950327963
c	6 382891100928/2	6 367285/287/326	22 92736274254545
ĉ	6.04050001715002	6.32071115646047	25.32730274234343
C	0.04850881715092	0.230/111504004/	25.39145269493477
N	10.36/8/4628/9/15	12.61455122053654	26.52261729076772
С	9.11287071446023	11.11817375469191	30.17672998871487
С	4.76625181760074	4.33514696075697	25.41435950134098
н	4.18416293411810	3.53786615127133	25.86121274172554
c	1 20030508725000	6 12937023187050	28 18570055735500
ĉ	4.2000000000000000000000000000000000000	A CU10020C022122	20.103733337333333
C	5.07276745140605	4.00108280855125	24.11440254801107
н	4.81196562060927	4.08237736441493	23.19948512523417
С	5.27784417229504	5.41097488690136	27.61226967408099
С	7.78790913578659	11.28553847182430	30.65544427914755
С	9.98458258368918	10.16791337470641	30.76867640046171
C	7 65046091938277	5 95902220779767	22 46566746386945
ĉ	E 6112201E220006	7 24647002287670	22.10300710300313
C	5.01152015229000	1.34347993387079	22.2081313/10/801
C	6.26224895774307	4.76345643040253	28.38560170007807
С	4.15142874990748	6.19192304705052	29.58395702351892
Н	3.34253377309090	6.74874085400559	30.06063889217476
С	10.84116367450554	12.27231560087542	25.19626341104923
С	10.09372905174045	12,62770729566998	24.04382244090683
ĉ	6 831326/05/1612	12 33701600100/08	30 107/051309/1//5
ц	7 764052043341012	12.33731033103430	20 17449612290497
П	7.20485303400718	12.72912994040556	29.1/44801338948/
C	3.159838//98/0/3	6.846/6642668255	27.34974134185663
Н	3.34132753958628	6.59927628205284	26.29327123552740
С	10.60357282003821	12.27416298010641	22.78614217149041
н	10.03737256908611	12.53961767489080	21.89096807548109
С	4.25512333531782	7.80486543600117	22.78245693247280
н	3.98523501295557	7.16978609903067	23.63922151538369
С	6.15164871736355	7,92115107552500	21,11100343863953
н	5 58377774226253	8 68811145700852	20 58097507535985
с С	7 10101200060000	7 E 20E 01 2761 2724	20.50057507555505
	7.40181288809809	7.55858157015724	20.03132012383822
н	7.80513510366215	8.00322194859336	19.72985489407803
С	7.35427520910689	10.46897790717632	31.70896410484486
н	6.33648352960505	10.58411117278380	32.08649868349347
С	11.44147366014708	10.00836686514950	30.35051891765110
н	11.57486694887234	10.54875538411912	29.40108215544419
c	7 42474582810610	4 00192317279300	27 76616190822924
ц	7 28470088262652	2 00207052000270	26 67502060088615
	7.20470088202032	3.55857552500270	20.07505005088015
C	6.15392255801080	4.85956778254312	29.77889782878109
н	6.90545677408554	4.37818470886738	30.40744517776874
С	8.49294251418387	4.91993363637269	23.19040341889643
н	7.90264968392212	4.53480550997056	24.03495215852408
С	5.11220149299702	5.56615512246403	30.37408072274598
н	5 0511/605867821	5 633/201/716831	31 /6182733172065
с С	0 1/05726565752/	6 ECONO7E 1260E00	21 2022929605590
	0.1403/20303/334	0.30606734206300	21.30328038093389
н	9.12282852914336	6.28080706249976	20.92339564518143
С	5.44563466797540	11.75983332797894	29.77714196686681
Н	5.51480513244075	10.88210209936972	29.12005020867641
Н	4.83366188450083	12.51818795516508	29.26670397153446
н	4.90535130390895	11.46216685766984	30.68875891336959
С	3.29488398542191	8.37242205470351	27.48939582917828
н	3.12526718727548	8.69427275584627	28.52803233011637
ц	2 55638720502220	8 88300086126622	26 85310/0726752/
11	A 200E0404662427	0 70004100700245	20.00010497007024
	4.2303040100343/	0.70004100700345	21.10334000030849
	11 ALL 11	9 3/X4X6534/3/54	31 81 / 5343 / 446 / 34
C	9.49526898845027	0.0000000000000000000000000000000000000	31.01/33332340233
н	9.49526898845027 10.15381625159499	8.64167547739911	32.28140474045884
н С	9.49526898845027 10.15381625159499 10.82913541571979	8.64167547739911 13.80141695940076	32.28140474045884 27.12551853171590
H C C	9.49526898845027 10.15381625159499 10.82913541571979 10.72263985179429	8.64167547739911 13.80141695940076 14.04896793408987	32.28140474045884 27.12551853171590 28.45837833951209
H C C H	9.49526898845027 10.15381625159499 10.82913541571979 10.72263985179429 11.09166642714970	8.64167547739911 13.80141695940076 14.04896793408987 15.01322572594295	32.28140474045884 27.12551853171590 28.45837833951209 28.80595306894586

н	1.62852385553816	5.29105125086285	27.57182777165266
н	1.00581351603025	6.86977606866229	27.03115336337875
н	1 46507193272365	6 63019020394768	28 72774031736320
с С	1.400071002725000	11 507202754708	26.72774031730320
C	12.08020577568777	11.58729376464960	25.0/21/83991/595
С	8.19309418725749	9.52167077003963	32.28656540120505
н	7.83331314563806	8.89702386061514	33.10680113826626
С	10.19318952935727	13.19378730800493	29.50226012166081
Ċ	7 45723227782609	2 53609166996639	28 22857889003978
	7.43723227702003	2.55005100550055	20.22037005005570
п	7.03030535895950	2.45790802050095	29.31223215080509
н	8.27154849865334	1.99554179434384	27.72363337457938
н	6.51257324409347	2.02018641281702	28.00272350428594
С	3.15289972850787	7.63942828475675	21.72401391916899
н	3,33306494166397	8.27959981995375	20.84763578718469
ц	2 17665884256201	7 02280426188225	22 14/50//1028026
	2.17003884230201	7.92280430188333	22.14450441558020
н	3.08451865929907	6.60011268472058	21.37099908713245
С	11.81250202318032	11.60111096322915	22.65232872045299
н	12.18883218929098	11.33871681417808	21.66157527737224
С	10.28069135059773	13.58636392219894	30.80422783542227
н	9,90967794380501	12,98481104066564	31,62967820408744
н	10 7/8678/8/66252	14 54075403127510	31 03794040583599
~	4 225 4 4 21 1 900 92 4	0.25240462567524	22 20466000066070
C	4.32344211809824	9.25340402507534	23.29400090900079
н	5.07703579847075	9.35336358859830	24.09159852637888
н	3.35082198909228	9.56523544366330	23.69940143891304
н	4.59346218352376	9.94955001585516	22.48545852209750
С	8.78208933815535	13.40459944627531	24.09170487891562
н	8 51652716516465	13 54725163311247	25,15058189427233
с С	6.51052710510405 6.69E37037141103	12 530767303311247	21 0002066050746
	0.0652/95/141105	15.5226/0/5052/1/	31.08085060858746
н	6.25772360595811	13.18926112333750	32.03948654980739
н	6.00943000160389	14.28145419325505	30.65697040849183
н	7.65508936591891	13.99751383769784	31.27950490227369
С	12.54148126623332	11.26591205416322	23.78954071778429
н	13 49277147673968	10 74189769780036	23 68033330326424
с С	0 761260060E1170	4 706074006E00EE	20.0000122126979
	0.70130090031179	4.70097499050055	28.03039133130878
н	8.75195309996339	5./38/20/2125/84	27.67008297392830
н	9.58958835260579	4.16819667001430	27.56645857250148
н	8.97045543521860	4.74568263543164	29.13067392399838
С	11.83683691676567	8.54202662884754	30.11653571238368
н	11.81558286050051	7.96161592242921	31.05132301108179
н	12 86309893667626	8 48761148109309	29 72295395132302
ц	11 1711/665000682	8 051/270/052802	20 20271120707221
с С	11.17114005055005	14 0570200210000	25.55271120707251
C	11.421001/2/2820/	14.85782098318099	20.23199554029149
н	12.15825283369421	14.45035309165515	25.52605807001256
н	11.90821823951117	15.62868279687893	26.84114182071805
н	10.64095633901779	15.34489043072409	25.62919488044285
С	7.63039275763056	12.64797559233364	23.40746202133334
н	7 80728100427441	12 55478354257603	22 32495913030391
ц.	6 68486002884001	12 10266708000700	22.52 133313030331
	7 50212620202402	11.02740901250000	23.34413831801330
н	7.50312638392482	11.63/49861358009	23.81593532598957
С	12.94846729058941	11.23122295148325	26.27498592218447
н	12.32515709516953	11.32566162789137	27.17718431340966
С	12.38523964115773	10.65354860495738	31.38307203845021
н	12.15620892874765	11.71868274655352	31.52025611247923
н	13 43144708257245	10 56406883283751	31 05206057319552
ц	12 20670102002727	10 15066022887020	22 25 201222020202
	12.29079198908787	10.15000022887050	32.33891332980808
C	8.83133073390235	3.72553964540709	22.28365437627571
н	7.92289878395933	3.25165520913920	21.88400372541036
н	9.39322075145881	2.96639473090724	22.84775750316009
н	9.45334744504199	4.03047208632862	21.42893222698349
С	9.76504487951549	5.55413872484442	23.77727307859755
й	10 41244288360019	5 957890/6325067	22 98428460885510
	10.41244288300918	3.93789040323007	22.38428400885513
Ч	10.34450959374235	4.803/488//34251	24.3338/401/4052/
Н	9.51498221139763	6.37680698332211	24.46296987550628
С	8.91768027335686	14.79226816551053	23.43575359058903
н	9.73514994580703	15.38513191289205	23.86614029760136
н	7.98347843792312	15.36142590796928	23.55443662017678
н	9.11395550365062	14.69632028482400	22.35694735754071
c	13 /76652/2777070	Q 7807200277E 407	26 22505 1, 357 540, 1
	13.4/003543///0/8	3./03233032/343/	
Н	12.66109613503967	9.06343/85399141	26.10016555434891
Н	14.00167710229958	9.55120011846136	27.16227202648466
н	14.19546420931568	9.64507866793052	25.40441939569680
С	14 12327356349195	12,21565507962175	26.42698869124569
	111232/3303 13133	12121000007002170	20112030003121000
Н	14.77287317526423	12.18752403541831	25.53838991983670

Electronic Supplementary Information (ESI) H 14.73430942375266 11.94684898422087 27.30180298386289

н	13.77865928454108	13.24891808004947	26.56409384296799
Ca	rtesian coordinate	s of the ontimized	gas phase geometry of the complex 3 (PRF/def2-T7)/P S= 0)
		8 2484880111122U	gas phase geometry of the complex 5 (FBL/UEI2-12VF, 5-0)
	3.40992935001479	6.24848891114341	9.42394021291902
	5.99945139093572	0.50415556000208	7.010111191020001
r D	J.45002409050400	0.23134300433334	10.10000279102079
r D	4.30101039301300 E EADE020702AD26	7 00522214122070	0.12900370103270
г D	3 33021560240204	7.05552214155878	11 612081/1382603
ı D	1 95928025350554	8 86440610564872	11.01200141302003
P	1 98769244389277	7 42772188551576	7 94189049390136
Si	6 19775518786027	10 08590306182417	8 59125307813643
P	3.03811412892156	5.85559703933306	9.76398130776037
Р	0.92025785582594	5.92504414723546	9.19025352326131
Si	0.17882377280012	7.45958588247207	10.74315362369082
N	7.91835691136872	10.25101080937710	8.92771041929245
Ν	5.94524775562550	11.25223961616107	7.29714716796257
Ν	4.66270746557256	3.82708029602057	6.80730040053223
Ν	4.07596441236421	5.11155268750884	5.17535444381488
Ν	-0.35251256947311	6.66204958938008	12.23807110575826
Ν	-1.29048766039089	8.27048312199405	10.19762943542857
С	8.31791876215020	11.58999752164214	6.90637987306788
Н	9.07811065361695	11.99787788315683	6.24062275214401
С	8.46995513236494	9.54734096977946	10.06072947224468
С	8.41850732214850	10.14485981765447	11.33799795865046
С	7.02052353217213	11.76020526796878	6.54140873502059
С	8.83136311988285	10.97134402647939	8.11676136638077
С	9.09648379431490	8.29609648385081	9.86572197145038
С	0.59330717355261	6.24718152304036	13.24823486824612
С	4.24541542037167	5.11406528264357	6.53988442820260
C	9.23017649433681	7.69380439232699	8.49454867978549
C	8.95374378505459	9.44243518335806	12.426626/3/14601
н	8.91282618198720	9.89631145122093	13.4193556/285490
C	0.23209553027205	3.45///588130/64	8.65390979784171
C C	7.82446842625212 4.75100712244002	2 06649520250602	11.54056434766739
L L	4.75190712244003	3.00046520550002	5.04842953918348
п С	A 05152557124074	2.05150095012051	2 105 820 2007 7 400
c c	4.55155557154074	11 93522382423819	7 20672519774513
c	3.79740810554365	10.09089671976678	5.70179203765313
c	3.62862511544296	11.38745500039146	6.43741015413357
С	4.51808828244569	13.16731328547652	7.88106781833575
С	3.95368536175127	2.51328847600257	8.74443684317723
С	10.15018805741364	11.09117702214225	8.43348286001411
Н	10.58200493106136	10.66035181404718	9.33369022313237
Н	10.80527804408264	11.65039034260954	7.76844484192579
С	5.62995568083753	13.75078999678194	8.71054878756912
С	9.61742947626346	7.63063666538721	10.98178195452914
Н	10.09746987434477	6.65928147867487	10.84070639227881
C	7.29262794536191	4.23569304484085	7.92611455156622
C	4.38250295988599	3.8/313081377325	4.02103354441219 2.55604040075852
н	4.31235356914549	3.6903296/516/30	3.55604010975853
U	9.540930925631/0	0.19154042396075	12.2009063602300/
H C	9.951488/05/7263	7.05753030730043	13.1148955155004/
C C	0.07909641456544	7 02001150142074	4.125455555564655
C C	4.02413312004707	12 5211/1200/2007	5.77250071040507
ч	6.03559606193510	11 92592305600115	J.25008555545758
н	7 59072527664939	12 79422201731720	4.0157040570000
н	6.11826788859180	13,44391998797047	5.51510292173181
C	3.64511908779630	6.20750560649312	4.34459931835980
C	1.15935235455759	4.95560535240541	13.22238696962057
C	2.39458607186821	5.49241429409397	15.25072136878633
н	3.10374913623561	5.20005762632715	16.02727208478739
С	-1.21612280510547	9.26236963658676	9.14958375256752
С	3.29582837186696	13.84095649922917	7.76737146036496
Н	3.16711592908399	14.79396409043817	8.28581294765775
С	2.59311045753372	2.32254487166951	8.13159780676526
С	6.48994547192097	2.88761348009227	9.90736192896030
Н	7.47377242313162	3.02935069673223	10.35915813251260
С	4.26319594510977	1.95477300325269	9.99084843530459

н	3.50238357319896	1.36781719083663	10.50967556851989
С	-1.03179468548414	10.61634839596460	9.50637024378026
С	5.51551335074401	2.14617496275781	10.57243229047188
н	5 73544953256485	1 70965844509765	11 54825649134192
с С	2 41022421262070	12 00011272202020	6 26026656045046
	2.41922451202970	12.090112/2295929	5.30020030943940
н	1.59983868982583	11.66461285029849	5.77786349200931
С	0.89631454803634	7.15149012284907	14.29440353330113
С	2.06516285027838	4.60255385424746	14.23433185020166
Н	2.51037228716587	3.60473931955749	14.21768348938735
С	4.19520542240781	8.01481158277493	2.86403736927009
н	4.93676923932244	8.67088541225609	2.40350684306077
c	2 27583026016973	6 32767560265333	4 04812682956313
ĉ	1 25/66761212881	5 /1/10808978077	4 66784854790697
ĉ	2 04464004111742	0 15701525000766	2 E4001807624044
	2.04404004111745	0.15/01525009/00	2.54551657054044
н	2.52945865068256	8.92444367679069	1.83982122321137
C	1.89527713093682	7.32761398590185	3.14354248102227
н	0.83721158213261	7.44407557938107	2.90019761689878
С	0.82178510769384	3.93851590248659	12.16398542738922
С	2.25091620106568	13.30729027860133	7.01549041450496
н	1.30151845586896	13.84116781025367	6.94271298256785
С	-1.72042470434779	6.44993458202417	12.49964356624129
С	1.80507814327490	6.75611462177416	15.28132143365424
н	2 04786869126308	7 45314343971763	16 08652737360059
c	-0 93985225/27282	11 0//51266990933	10 9/605/73939897
ç	0.55565225427262	0 51215515010001	14 25524212277700
C	0.25969690744747	8.51315515010991	14.35534313277780
C	-2.59081454318014	7.97805547463608	10.68160412866780
С	-1.38911377740464	9.88185067102083	6.82008083132104
н	-1.55997330463528	9.59947014010445	5.77841780869356
С	-1.43515128790326	8.88649103549922	7.80590651907534
С	-2.71115957882509	7.02078273725284	11.76450247425228
н	-3.73453055014770	6.77017460781433	12.04101618740744
С	-0.99087367204020	11.57573775780120	8.48700498031152
н	-0.84273121591943	12.62392711324315	8.75601296938574
С	-2.07170841448027	5.54610134518581	13.65108738112157
н	-1.64435790915826	4.53931644101767	13.52781771919434
н	-3.16139721163083	5.45496691124431	13.72855733393954
н	-1.68749932922261	5,93449241835319	14,60675035804782
c	-3 70910825104113	8 57583043642078	10 18340425816843
н	-3 68220856058039	9 31321641000346	9 38529691728951
н	-4 67659520159823	8 32161813766952	10 61180758215770
Ċ	-4.07055520155025	11 21/151915060679	7 15215154745067
с	1 1251 17200220455	11.21431813000078	6 271100E0200607
	-1.15514720925045	11.9//2904/0956//	0.5/11005629606/
C	-1.//40030/40593/	7.47151145707219	7.42023655320214
н	0.621/362841/346	9.15/11206884//4	13.53/14131902252
н	-0.83471707132173	8.46271643196355	14.25623957787775
н	0.50142095432538	9.00934873518965	15.30439710877910
н	0.63253564178636	2.95624010848339	12.62263759965502
н	-0.05763890736069	4.22228080401074	11.57422343357774
н	1.66186545903586	3.80981327140906	11.46170250884641
н	-0.89031368637709	6.81483483441701	7.43749601707643
н	-2.51776761927018	7.03949533388831	8.10497005964896
н	-2.18501466243520	7.44433917636976	6.40146435960109
н	0.01683901703649	10.74382437024811	11.40165630010324
н	-1.01635205326333	12.13713665045987	11.02465534283358
н	-1.74519643547853	10,59397118406766	11,54402352927781
н	7 47879952172722	3 82745625602253	6 92084682239098
н	6 99143417092665	5 28678966120053	7 79868304024160
н	8 23718560525024	A 215/33956857/2	8 /8/022896179/6
	2 64022120466726	1 000/1001000/42	7 12/01167666726
	2.04922156400750	1.00941201009400	7.15491107000725
н , .	1.3/0/490530310/	1.00100/10090401	0./000/4/3043228
н	2.0/338/69990181	3.28640933030244	8.01206989547824
H	1.44422903935501	4.3592/093474100	4.4155/88/291643
Н	1.27057107778604	5.49123891338691	5./6584661567284
Н	0.24582942331580	5.67065562311349	4.32096648911068
Н	6.68587038447577	7.62613354203288	3.57906392766407
Н	6.24172952309925	7.04084869010975	5.20215204641253
Н	6.46063455790751	5.88755080289535	3.87964476819556
Н	8.18020213759558	12.21903198872817	10.77789660253789
Н	6.72360278643056	11.48639542475399	11.47640558123149
Н	8.08913385273479	11.90330131241577	12.53179051235173
Н	9.78295599231105	6.74611235222298	8.54107384876029

Н	9.76160535229059	8.37690451841043	7.81491001202126
Н	6.54618298432566	13.91542056621985	8.12295081211379
Н	5.32289191242751	14.71045972550698	9.14625665362460
Н	5.90838238567164	13.07780603005748	9.53672435315346
Н	4.69595423186427	10.09605714597483	5.06768118333333
Н	3.91037642877044	9.24432623798799	6.39767471911179
н	2.92751097040386	9.88572031999116	5.06597393068944

5 References

- 1 M. R. Elsby and S. A. Johnson, J. Am. Chem. Soc., 2017, 139, 9401.
- a) M. R. Elsby, J. Liu, S. Zhu, L. Hu, G. Huang and S. A. Johnson, *Organometallics*, 2019, **38**, 436; b)
 D. Wang, X. Leng, S. Ye and L. Deng, *J. Am. Chem. Soc.*, 2019, **141**, 7731.
- 3 M. Driess, S. Yao, M. Brym, C. van Wüllen and D. Lentz, J. Am. Chem. Soc., 2006, 128, 9628.
- 4 Y. Xiong, S. Yao, M. Brym and M. Driess, Angew. Chem. Int. Ed., 2007, 46, 4511.
- 5 P. H. M. Budzelaar, gNMR for Windows (5.0.6.0), NMR Simulation Programm, 2006.
- 6 a) SCALE3ABS, CrysAlisPro, Aglient Technologies Inc. Oxford, GB, 2015; b) G. M. Sheldrick, SADABS, Bruker AXS, Madison, USA, 2007.
- 7 R. C. Clark, J. S. Reid, Acta Crystallogr. A, 1995, 51, 887.
- 8 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, *J. Appl. Cryst.* 2009, **42**, 339.
- 9 G. M. Sheldrick, Acta Cryst., 2015, A17, 3.
- 10 G. M. Sheldrick, Acta Cryst., 2015, C71, 3.
- 11 Y. Xiong, S. Yao, E. Bill and M. Driess, Inorg. Chem., 2009, 48, 7522.
- 12 G. Prabusankar, A. Doddi, C. Gemel, M. Winter and R. A. Fischer, Inorg. Chem., 2010, 49, 7976.
- 13 J. W. Dube, C. M. E. Graham, C. L. B. Macdonald, Z. D. Brown, P. P. Power and P. J. Ragogna, *Chem. Eur. J.*, 2014, **20**, 6739.
- 14 O. J. Scherer, M. Swarowsky, H. Swarowsky and G. Wolmershäuser, *Angew. Chem. Int. Ed. Engl.*, 1988, **27**, 694.
- 15 F. Neese, Wiley Interdiscip. Rev. Comput. Mol. Sci., 2012, 2, 73.
- 16 F. Weigend, Phys. Chem. Chem. Phys. 2002, 4, 4285
- 17 F. Neese, F. Wennmohs, A. Hansen, U. Becker, Chem. Phys., 2009, 356, 98.
- 18 Perdew, Burke and Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865.
- 19 F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys., 2005, 7, 3297.
- 20 F. Weigend, Phys. Chem. Chem. Phys., 2006, 8, 1057.
- 21 E. D. Glendening, C. R. Landis, F. Weinhold, J. Comput. Chem., 2013, 34, 1429.
- Gaussian 09, Revision E.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, *Gaussian, Inc., Wallingford CT*, 2009.
- 23 G. Knizia, J. Chem. Theory Comput., 2013, 9, 4834.
- 24 J. Tao, J. P. Perdew, V. N. Staroverov and G. E. Scuseria, Phys. Rev. Lett., 2003, 91, 146401.
- 25 F. Jensen, J. Chem. Theory Comput., 2015, 11, 132.