Supporting Information

Co-catalyzed Ring-opening Addition of Azabenzonorbornadienes *via* C(sp³)-H bond Activation of 8-Methylquinoline

Heng Tan,^{[a]‡} Ruhima Khan,^{[a]‡} Dandan Xu,^[a] Yongyun Zhou, *^[a,b] Xuexin Zhang,^[a] Guangrui Shi,^[a] and

Baomin Fan*^[a,b]

- a Key Laboratory of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University, Yuehua Street, Kunming, 650500, China. E-mail: zhouyy@ynni.edu.cn (Yongyun Zhou), FanBM@ynni.edu.cn (Baomin Fan)
- b School of Chemistry and Environment, Institution Yunnan Minzu University, Yuehua Street, Kunming, 650500, China.
- These authors contributed equally.

Table of contents

1. General information	1
2.Optimization table for the formation of 3aa	1
3.Furhter optimization of reaction conditions	2
4. General procedure	4
5. Reference	4
6. Mechanistic Experiments	5
7. Characterization Dataof Products	7
8. NMR spectra	.16
9: X-Ray Crystallography of Compound 4ae	.39

1. General information

The reactions and manipulations were performed under an atmosphere of argon by using standard Schlenk techniques and Drybox ((Mikrouna, Supper1220/750). ¹H NMR and ¹³C NMR spectra were recorded on Bruker-Avance 400 MHz spectrometer. CDCl₃ was used as solvent. Chemical shifts (δ) were reported in ppm with tetramethylsilane (TMS) as internal standard and *J* values were given in Hz. Melting points were measured on X-4 melting point apparatus and uncorrected. High resolution mass spectra (HRMS) were performed on a VG Autospec-3000 spectrometer. Column chromatography was performed with silica gel (200-300 mesh) with petroleum ether and ethyl acetate as eluents. Anhydrous THF (Tetrahydrofuran), toluene, 1,4-dioxane were distilled from sodium benzophenone ketyl prior to use. Anhydrous DCE (dichloroethane), were distilled from calcium hydride. Commercially available reagents and solvents were used without further purification unless indicated otherwise.

2.Optimization table for the formation of 3aa^{a,b}

3aa

Entry	[M]	Ag	Additive	Solvent	Temp. (°C)	Time (h)	Yield (%) ^b
1	[Cp*CoI ₂ (CO)]	AgSbF ₆	NaOAc	DCE	80	48	44
2	[Cp*CoI ₂ (CO)]	AgPF ₆	NaOAc	DCE	80	48	35
3	[Cp*CoI ₂ (CO)]	AgBF ₄	NaOAc	DCE	80	48	9
4	[Cp*CoI ₂ (CO)]	AgOTf	NaOAc	DCE	80	48	29
5	[Cp*CoI ₂ (CO)]	AgNTf ₂	NaOAc	DCE	80	48	35

6	[Cp*CoI ₂ (CO)]	-	NaOAc	DCE	80	48	NR ^c
7	[Cp*CoI ₂ (CO)]	AgSbF ₆	LiOAc	DCE	80	48	44
8	[Cp*CoI ₂ (CO)]	$AgSbF_6$	KOAc	DCE	80	48	NR
9	[Cp*CoI ₂ (CO)]	AgSbF ₆	CsOAc	DCE	80	48	NR
10	[Cp*CoI ₂ (CO)]	AgSbF ₆	AgOAc	DCE	80	48	14
11	[Cp*CoI ₂ (CO)]	AgSbF ₆	Fe(OAc) ₂	DCE	80	48	54
12	[Cp*CoI ₂ (CO)]	AgSbF ₆	Cu(OAc) ₂	DCE	80	48	18
13	[Cp*CoI ₂ (CO)]	AgSbF ₆	$Zn(OAc)_2$	DCE	80	48	36
14	[Cp*CoI ₂ (CO)]	AgSbF ₆	PhI(OAc) ₂	DCE	80	48	ND
15	[Cp*CoI ₂ (CO)]	$AgSbF_6$	Ag ₂ CO ₃	DCE	80	48	Trace
16	[Cp*CoI ₂ (CO)]	AgSbF ₆	AcOH	DCE	80	48	Trace
17	[Cp*CoI ₂ (CO)]	AgSbF ₆	PivOH	DCE	80	48	32
18	[Cp*CoI ₂ (CO)]	AgSbF ₆	-	DCE	80	48	9
19 ^d	[Cp*CoI ₂ (CO)]	$AgSbF_6$	Fe(OAc) ₂	DCE	80	48	50
20 ^e	[Cp*CoI ₂ (CO)]	AgSbF ₆	Fe(OAc) ₂	DCE	80	48	56
21 ^f	[Cp*CoI ₂ (CO)]	AgSbF ₆	Fe(OAc) ₂	DCE	80	48	57

^{*a*}reaction conditions: **1a** (0.4 mmol), **2a** (0.2 mmol), [Cp*CoI₂(CO)] (5 mol%), Lewis acid (30 mol%), Additive (0.2 mmol), DCE (2 mL) 80 °C under argon atmosphere. ^{*b*}Isolated yield. ^{*c*}NR = No Reaction. ^{*d*}Fe(OAc) (2 equiv). ^{*e*}Fe(OAc) (50 mol%). ^{*f*}Fe(OAc) (10 mol%).

3. Furhter optimization of reaction conditions^{a,b}

3aa

Entw	IMI	A a Additivo		Salvant	Temp.	Time	Yield
Entry		Ag	Auditive	Solvent	(°C)	(h)	(%) ^b
1	[Cp*CoI ₂ (CO)]	AgSbF ₆	Fe(OAc) ₂	Toluene	80	48	55
2	[Cp*CoI ₂ (CO)]	AgSbF ₆	Fe(OAc) ₂	1,4-dioxane	80	48	25
3	[Cp*CoI ₂ (CO)]	AgSbF ₆	Fe(OAc) ₂	THF	80	48	10
4	[Cp*CoI ₂ (CO)]	AgSbF ₆	Fe(OAc) ₂	DCM	80	48	51
5	[Cp*CoI ₂ (CO)]	AgSbF ₆	Fe(OAc) ₂	TFE	80	48	20
6	[Cp*CoI ₂ (CO)]	AgSbF ₆	Fe(OAc) ₂	MTBE	80	48	16
7	[Cp*CoI ₂ (CO)]	AgSbF ₆	Fe(OAc) ₂	PhCl	80	48	46
8	[Cp*CoI ₂ (CO)]	AgSbF ₆	Fe(OAc) ₂	PhOMe	80	48	64
9 ^c	[Cp*CoI ₂ (CO)]	AgSbF ₆	Fe(OAc) ₂	PhOMe	80	16	70
10	[Cp*CoI ₂ (CO)]	AgSbF ₆	Fe(OAc) ₂	PhOMe	60	48	70
11	[Cp*CoI ₂ (CO)]	AgSbF ₆	Fe(OAc) ₂	PhOMe	70	24	78
12	[Cp*CoI ₂ (CO)]	AgSbF ₆	Fe(OAc) ₂	PhOMe	90	24	69
13 ^{<i>d</i>}	[Cp*CoI ₂ (CO)]	AgSbF ₆	Fe(OAc) ₂	PhOMe	70	24	30
14 ^e	[Cp*CoI ₂ (CO)]	AgSbF ₆	Fe(OAc) ₂	PhOMe	70	24	72
15 ^f	[Cp*CoI ₂ (CO)]	AgSbF ₆	Fe(OAc) ₂	PhOMe	70	24	71
16 ^{<i>g</i>}	[Cp*CoI ₂ (CO)]	AgSbF ₆	Fe(OAc) ₂	PhOMe	70	24	70
17 ^{<i>h</i>}	[Cp*CoI ₂ (CO)]	AgSbF ₆	Fe(OAc) ₂	PhOMe	70	18	87
18 ^{<i>i</i>}	[Cp*CoI ₂ (CO)]	AgSbF ₆	Fe(OAc) ₂	PhOMe	70	17	82

^{*a*}Reaction conditions: **1a** (0.4 mmol), **2a** (0.2 mmol), [Cp*CoI₂(CO)] (5 mol%), AgSbF₆ (30 mol%), Fe(OAc)₂ (10 mol%), Solvent (2mL) at 80 °C under argon atmosphere. ^{*b*}Isolated yields.

^{*c*}[Cp*CoI₂(CO)] (10 mol%). ^{*d*}AgSbF₆ (20 mol%). ^{*e*}AgSbF₆ (40 mol%). ^{*f*}PhOMe (1 mL). ^{*g*}PhOMe (3 mL). ^{*h*}**1a** (0.6 mmol). ^{*i*}**1a** (0.8 mmol).

4. General procedure

a) Typical procedure for the Ring-opening Addition of Azabenzonorbornadiene with 8-Methylquinoline:

Under argon atmosphere, $[Cp*CoI_2(CO)]$ (9.8 mg, 0.02 mmol, 10 mol%), Fe(OAc)₂ (3.5 mg, 0.02 mmol, 10 mol%), AgSbF₆ (21.5 mg, 0.06 mmol, 30 mol%), 8-methylquinoline **1a** (0.6 mmol), Azabenzonorbornadiene **2a** (0.2 mmol), and PhOMe (2 mL) were added sequentially to a 25 mL Schlenk tube equipped with a magnetic stir bar. The reaction mixture was stirred at 70 °C under argon atmosphere with TLC monitoring until the complete consumption of **2a**. The resulting solution was concentrated in vacuum and the residue was purified by chromatography on silica gel, eluting with the mixture of ethyl acetate/petroleum ether to give the ring-opening addition product **3aa** in 87% yield.

b) General procedure for the synthesis of substituted 8-methylquinolines:¹

The substrates 1f, 1m, 1p, ² 8-methylquinoline-d3, ³ were prepared according to the literatures.

Glycerine (12 mmol) was added over a period of 0.5 h to a solution of substituted *o*-toluidine (10 mmol), NaI (0.13 mmol) and 80% H_2SO_4 (45 mmol) at 140 °C. The reaction mixture was allowed tostir at the same temperature for 24 h. Next the mixture was neutralized with 25% aq. NaOH solution and PH was adjusted to 9-10 and extracted with toluene (30 mL x 3). The organic-extracts were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The crude products were purified by column chromatography on silica gel with hexane/ethyl acetate as eluant. All of yields were not optimized.

5. Reference

C. O'Murchu, *Synthesis*, **1989**, *11*, 880.
Evans, P.; Hogg, P.; Grigg, R.; Nurnabi, M.; Hinsley, J.; Sridharan, V.; Suganthan, S.;Korn, S.; Collard, S.; Muir, J. E. *Tetrahedron*, **2005**, *61*, 9696.
Suggs, J.W.; Pearson, G. D. N. *J. Org. Chem.* **1980**, *45*, 1514.

6. Mechanistic Experiments

a) H/D exchange experiments:

Procedures for the reaction without Azabenzonorbornadienes: Under argon atmosphere, $[Cp*CoI_2(CO)]$ (9.8 mg, 0.02 mmol, 10 mol%), Fe(OAc)₂ (3.5 mg, 0.02 mmol, 10 mol%), AgSbF₆ (21.5 mg, 0.06 mmol, 30 mol%), 8-methylquinoline (0.2 mmol), CD₃OD (10 equiv.), and PhOMe (2 mL) were added sequentially to a 25 mL Schlenk tube equipped with a magnetic stir bar. The reaction was stirred at 70 °C for 24 h. Afterwards it was evaporated under reduced pressure and the residue was absorbed to small amounts of silica. The recovered 8-methylquinoline was obtained by flash columnchromatography on silica gel (eluent: EtOAc/PE = 1:10).

¹H NMR (400 MHz CDCl₃) spectra of H/D exchange experiments

b) Parallel Experiment

<mark>Time (h)</mark>	1	<mark>3</mark>	<mark>5</mark>	<mark>7</mark>	<mark>9</mark>	<mark>12</mark>
<mark>3aa</mark>	<mark>24%</mark>	<mark>63%</mark>	<mark>74%</mark>	<mark>76%</mark>	<mark>77%</mark>	<mark>79%</mark>
<mark>d2-3aa</mark>	<mark>3%</mark>	<mark>8%</mark>	<mark>10%</mark>	<mark>24%</mark>	<mark>26%</mark>	<mark>30%</mark>
<mark>KIE (K_H/K_D)</mark>	<mark>8</mark>	<mark>7.9</mark>	<mark>7.4</mark>	<mark>3.2</mark>	<mark>3.0</mark>	<mark>2.6</mark>

Under an argon atmosphere, in two 25 mL Schlenk test tubes equipped with a magnetic stir bar, sequentially weigh the azabenzonorbornene substrate (0.2 mmol) and $[Cp*CoI_2(CO)]$ (0.02 mmol), AgSbF₆ (0.06 mmol) Fe(OAc)₂ (0.02 mmol), **1a** (0.6 mmol) or *d3*-**1a**- (0.6 mmol) were added to different test tubes with micro syringes, and labeled, and finally added 2 mL of anhydrous PhOMe solvent, plug it with a rubber stopper and send it out of the glove box, placed in a 70 °C oil bath and heated to react for 3 hours. The reaction mixture was cooled to room temperature, concentrated under reduced pressure and purified by silica gel column chromatography, the pure product obtained was weighed to calculate the yield, and measured KIE = 7.9.

c) Competitive Experiment:

Under an argon atmosphere, in a 25 mL Schlenk tube equipped with a magnetic stirrer, weigh azabenzonorbornadiene **2a** (0.2 mmol), $[Cp*CoI_2(CO)]$ (0.02 mmol), AgSbF₆ (0.06 mmol), Fe(OAc)₂ (0.02 mmol), then **1a** (0.3 mmol) and *d3-1a* (0.3 mmol) were added to the test tube with a micro syringe, and finally added 2 mL of anhydrous PhOMe solvent, plug the rubber stopper and taken out of the glove box, then put into an oil bath at 70 °C to heat the reaction for 3 hours. The reaction mixture was cooled to room temperature, concentrated under reduced pressure and purified by silica gel column chromatography. KIE = 5.7 was measured by ¹H NMR spectrum analysis of the product.

7. Characterization Data of Products

tert-butyl (2-(quinolin-8-ylmethyl)-1,2-dihydronaphthalen-1-yl)carbamate (3aa)

White solid (67.3 mg, 87%), M. p. = 138-140 \Box . ¹H NMR (400 MHz, CDCl₃) δ 8.92 (dd, J = 4.0, 1.5 Hz, 1H), 8.05 (dd, J = 8.2, 1.5 Hz, 1H), 7.59 (d, J = 8.0 Hz, 1H), 7.53 (d, J = 6.8 Hz, 1H), 7.39 (t, J = 7.6 Hz, 1H), 7.34 (dd, J = 8.2, 4.2 Hz, 1H), 7.10 (d, J = 7.4 Hz, 1H), 7.03 (t, J = 7.2 Hz, 1H), 6.97 (t, J = 7.2 Hz, 1H), 6.89 (d, J = 7.2 Hz, 1H), 6.48 (d, J = 9.5 Hz, 1H), 6.37 (d, J = 9.8 Hz, 1H), 6.00 (dd, J = 9.6, 3.9 Hz, 1H), 4.96 (dd, J = 9.6, 6.0 Hz, 1H), 3.60 (dd, J = 13.2, 7.1 Hz, 1H), 3.37 (dd, J = 13.2, 5.9 Hz, 1H), 3.25 (s, 1H), 1.51 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 155.9, 149.0, 146.8, 137.7, 136.5, 136.2, 132.9, 131.0, 130.6, 128.3, 128.0, 127.3, 127.2, 126.5, 126.0, 125.8, 125.7, 120.8, 78.9, 51.1, 39.6, 31.2, 28.5. HRMS(EI): m/z calculated for C₂₅H₂₆N₂O₂ [M]⁺: 386.1994, found: 386.2000.

Colorless oily liquid (74.5 mg, 93%). ¹H NMR (400 MHz, CDCl₃) δ 8.80 (d, J = 2.7 Hz, 1H), 8.14 (dd, J = 8.5, 1.4 Hz, 1H), 7.31 (d, J = 7.2 Hz, 1H), 7.28 (dd, J = 8.5, 4.1 Hz, 1H), 7.12 (d, J = 7.1 Hz, 1H), 7.01 – 6.91 (m, 2H), 6.87 (t, J = 7.3 Hz, 1H), 6.80 (d, J = 7.2 Hz, 1H), 6.37 (d, J = 9.4 Hz, 1H), 6.10 (d, J = 9.6 Hz, 1H), 5.88 (dd, J = 9.5, 3.6 Hz, 1H), 4.79 (dd, J = 9.4, 5.9 Hz, 1H), 3.43 (dd, J = 13.1, 7.1 Hz, 1H), 3.23 (dd, J = 13.1, 6.1 Hz, 1H), 3.12 (s, 1H), 2.50 (s, 3H), 1.38 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 155.9, 148.6, 147.2, 136.4, 135.8, 133.0, 132.9, 131.3, 130.3, 127.9, 127.7, 127.3, 127.1, 126.6, 125.9, 120.4, 79.0, 51.2, 39.8, 31.3, 28.6, 18.6. HRMS(ESI): m/z calculated for C₂₆H₂₈N₂NaO₂ [M+Na]⁺: 423.2049, found: 423.2046.

tert-butyl (2-((5-methoxyquinolin-8-yl)methyl)-1,2-dihydronaphthalen-1-yl)carbamate (3ca)

White solid (72.5 mg, 87%), M. p. = 78-80 \Box . ¹H NMR (400 MHz, CDCl₃) δ 8.89 (dd, J = 4.1, 1.6 Hz, 1H), 8.51 (dd, J = 8.4, 1.6 Hz, 1H), 7.42 (d, J = 7.9 Hz, 1H), 7.34 (dd, J = 8.4, 4.2 Hz, 1H), 7.06 (dd, J = 15.9, 7.4 Hz, 2H), 6.97 (t, J = 7.2 Hz, 1H), 6.90 (d, J = 7.3 Hz, 1H), 6.72 (d, J = 7.9 Hz, 1H), 6.48 (d,

J = 9.6 Hz, 1H, 6.21 (d, J = 9.8 Hz, 1H), 5.99 (dd, J = 9.6, 3.7 Hz, 1H), 4.88 (dd, J = 9.8, 5.7 Hz, 1H), 3.95 (s, 3H), 3.49 (dd, J = 13.2, 6.8 Hz, 1H), 3.25 (dd, J = 13.1, 6.3 Hz, 1H), 3.19 (d, J = 5.6 Hz, 1H), 1.48 (s, 9H).¹³C NMR (100 MHz, CDCl₃) δ 155.9, 154.0, 149.4, 147.4, 136.4, 133.0, 131.4, 131.1, 130.3, 129.4, 127.9, 127.3, 127.2, 125.9, 125.8, 120.9, 119.9, 79.0, 55.7, 51.1, 39.7, 30.9, 28.6. HRMS(ESI): m/z calculated for C₂₆H₂₈N₂NaO₃ [M+Na]⁺: 439.1998, found: 439.1995.

tert-butyl (2-((5-fluoroquinolin-8-yl)methyl)-1,2-dihydronaphthalen-1-yl)carbamate(3da)

White solid (53.4 mg, 66%), M. p. = 138-140 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.93 (dd, J = 4.0, 1.5 Hz, 1H), 8.34 (dd, J = 8.4, 1.6 Hz, 1H), 7.47 – 7.39 (m, 2H), 7.10 – 6.99 (m, 3H), 6.93 (t, J = 7.2 Hz, 1H), 6.87 (d, J = 7.2 Hz, 1H), 6.48 (d, J = 9.4 Hz, 1H), 6.21 (d, J = 9.9 Hz, 1H), 5.96 (dd, J = 9.6, 3.7 Hz, 1H), 4.88 (dd, J = 9.9, 5.7 Hz, 1H), 3.56 (dd, J = 12.8, 6.4 Hz, 1H), 3.30 – 3.15 (m, 2H), 1.49 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 157.9, 155.9, 155.4, 149.9, 147.1, 136.1, 133.5, 132.9, 130.8, 129.8, 128.2, 127.3, 125.9, 125.7, 120.9, 119.0, 109.5, 79.1, 50.9, 39.6, 30.9, 28.6. HRMS(ESI): m/z calculated for C₂₅H₂₅FN₂NaO₂ [M+Na]⁺: 427.1798, found: 427.1793.

tert-butyl (2-((5-chloroquinolin-8-yl)methyl)-1,2-dihydronaphthalen-1-yl)carbamate (3ea)

White solid (58.1 mg, 69%), M. p. = 150-152 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.93 (dd, J = 4.0, 1.4 Hz, 1H), 8.49 (dd, J = 8.5, 1.5 Hz, 1H), 7.45 (dt, J = 9.0, 6.0 Hz, 3H), 7.07 – 6.98 (m, 2H), 6.93 (t, J = 7.2 Hz, 1H), 6.87 (d, J = 7.4 Hz, 1H), 6.47 (d, J = 9.5 Hz, 1H), 6.13 (d, J = 9.9 Hz, 1H), 5.95 (dd, J = 9.6, 3.9 Hz, 1H), 4.88 (dd, J = 9.9, 5.9 Hz, 1H), 3.55 (dd, J = 13.1, 6.9 Hz, 1H), 3.27 (dd, J = 13.1, 6.2 Hz, 1H), 3.20 (d, J = 5.8 Hz, 1H), 1.47 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 155.9, 149.6, 147.4, 137.2, 136.1, 133.4, 132.9, 130.7, 130.3, 129.6, 128.3, 127.4, 127.3, 126.2, 126.1, 125.9, 125.7, 121.63, 8.16, 50.9, 39.7, 31.1, 28.6. HRMS(ESI): m/z calculated for C₂₅H₂₅ClN₂NaO₂ [M+Na]⁺: 443.1502, found: 443.1507.

tert-butyl (2-((5-bromoquinolin-8-yl)methyl)-1,2-dihydronaphthalen-1-yl)carbamate (3fa)

White solid (63.3 mg, 69%), M. p. = 150-152 \Box . ¹H NMR (400 MHz, CDCl₃) δ 8.90 (dd, J = 4.0, 1.3 Hz, 1H), 8.46 (dd, J = 8.5, 1.5 Hz, 1H), 7.66 (d, J = 7.7 Hz, 1H), 7.46 (dd, J = 8.5, 4.2 Hz, 1H), 7.38 (d, J = 7.7 Hz, 1H), 7.08 – 6.99 (m, 2H), 6.94 (t, J = 7.2 Hz, 1H), 6.88 (d, J = 7.4 Hz, 1H), 6.51 – 6.44 (m, 1H), 6.11 (d, J = 10.0 Hz, 1H), 5.95 (dd, J = 9.6, 3.9 Hz, 1H), 4.89 (dd, J = 9.9, 5.8 Hz, 1H), 3.55 (dd, J = 13.1, 6.9 Hz, 1H), 3.28 (dd, J = 13.1, 6.2 Hz, 1H), 3.21 (d, J = 5.8 Hz, 1H), 1.48 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 155.9, 149. 7, 147.6, 138.0, 136.1, 136.00, 132.8, 130.9, 130.7, 129.8, 128.3, 127.5, 127.4, 127.2, 125.9, 125.7, 122.0, 120.2, 79.2, 51.0, 39.6, 31.2, 28.6. HRMS(ESI): m/z calculated for C₂₅H₂₅BrN₂NaO₂ [M+Na]⁺: 487.0997, found: 487.0992.

tert-butyl (2-((5-iodoquinolin-8-yl)methyl)-1,2-dihydronaphthalen-1-yl)carbamate (3ga)

White solid (68.7 mg, 67%), M. p. = 154-156 \square . ¹H NMR (400 MHz, CDCl₃) δ 8.84 (dd, J = 4.0, 1.3 Hz, 1H), 8.29 (dd, J = 8.5, 1.5 Hz, 1H), 7.94 (d, J = 7.6 Hz, 1H), 7.42 (dd, J = 8.5, 4.2 Hz, 1H), 7.24 (d, J = 7.6 Hz, 1H), 7.03 (dd, J = 12.4, 6.8 Hz, 2H), 6.93 (t, J = 7.2 Hz, 1H), 6.87 (d, J = 7.4 Hz, 1H), 6.47 (d, J = 9.6 Hz, 1H), 6.10 (d, J = 9.9 Hz, 1H), 5.94 (dd, J = 9.6, 3.9 Hz, 1H), 4.88 (dd, J = 9.9, 5.8 Hz, 1H), 3.54 (dd, J = 13.1, 6.9 Hz, 1H), 3.28 (dd, J = 13.1, 6.2 Hz, 1H), 3.20 (d, J = 5.8 Hz, 1H), 1.47 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 155.87, 149.82, 147.42, 140.88, 139.05, 137.21, 136.05, 132.85, 131.70, 130.73, 129.95, 128.27, 127.43, 127.22, 125.93, 125.66, 122.55, 96.70, 79.18, 50.99, 39.60, 31.11, 28.59. HRMS(ESI): m/z calculated for C₂₅H₂₅IN₂NaO₂ [M+Na]⁺: 535.0858, found: 535.0852.

tert-butyl (2-((5-(trifluoromethyl)quinolin-8-yl)methyl)-1,2-dihydronaphthalen-1-yl)carbamate (3ha)

White solid (69.9 mg, 67%), M. p. = 139-141 \Box . ¹H NMR (400 MHz, CDCl₃) δ 9.04 – 8.95 (m, 1H), 8.41 (d, *J* = 8.7 Hz, 1H), 7.75 (d, *J* = 7.5 Hz, 1H), 7.55 (d, *J* = 7.5 Hz, 1H), 7.49 (dd, *J* = 8.7, 4.1 Hz, 1H), 7.04 – 6.95 (m, 2H), 6.91 (t, *J* = 7.1 Hz, 1H), 6.85 (d, *J* = 7.4 Hz, 1H), 6.49 (d, *J* = 9.6 Hz, 1H), 6.20 (d, *J* = 10.0 Hz, 1H), 5.97 (dd, *J* = 9.6, 4.1 Hz, 1H), 4.91 (dd, *J* = 10.0, 5.9 Hz, 1H), 3.66 (dd, *J* = 13.0, 6.7 Hz, 1H), 3.31 (dd, *J* = 13.0, 6.1 Hz, 1H), 3.27 – 3.16 (m, 1H), 1.49 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 155.9, 149.6, 147.0, 143.1, 135.9, 133.0, 132.8 – 132.6, 130.5, 129.0, 128.5, 127.4 (d, *J* = 11.2 Hz), 125.9, 125.7, 125.4, 124.9, 124.6 (d, *J* = 5.7 Hz), 124.3, 122.9, 122.1, 79.3, 51.0, 39.6, 31.5, 28.6. HRMS(ESI): m/z calculated for C₂₆H₂₅F₃N₂NaO₂ [M+Na]⁺: 477.1766, found: 477.1765.

tert-butyl (2-((5-nitroquinolin-8-yl)methyl)-1,2-dihydronaphthalen-1-yl)carbamate (3ia)

White solid (38.8 mg, 45%), M. p. = 183-185 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.99 (dd, J = 4.0, 1.4 Hz, 1H), 8.96 (dd, J = 8.8, 1.5 Hz, 1H), 8.21 (d, J = 8.0 Hz, 1H), 7.62 – 7.60 (m, 1H), 7.60 – 7.57 (m, 1H), 7.01 (dd, J = 7.8, 6.8 Hz, 1H), 6.96 (d, J = 7.1 Hz, 1H), 6.90 (td, J = 7.4, 1.2 Hz, 1H), 6.84 (d, J = 7.4 Hz, 1H), 6.50 (d, J = 9.6 Hz, 1H), 6.10 (d, J = 10.1 Hz, 1H), 5.95 (dd, J = 9.6, 4.0 Hz, 1H), 4.88 (dd, J = 10.1, 5.9 Hz, 1H), 3.70 (dd, J = 12.8, 6.7 Hz, 1H), 3.33 (dd, J = 12.9, 6.3 Hz, 1H), 3.27 – 3.20 (m, 1H), 1.49 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 155.9, 150., 146.5, 146.4, 144.2, 135.8, 132.7, 132.6, 130.1, 128.8, 128.7, 127.6, 127.4, 126.0, 125.4, 124.2, 123.7, 121.1, 79.4, 50.8, 39.7, 31.9, 28.6. HRMS(ESI): m/z calculated for C₂₅H₂₅N₃NaO₄ [M+Na]⁺: 454.1743, found: 454.1741.

tert-butyl (2-(1-(quinolin-8-yl)ethyl)-1,2-dihydronaphthalen-1-yl)carbamate (3ja)

Colorless oily liquid (20 mg, 25%). ¹H NMR (400 MHz, CDCl₃) δ 8.90 (dd, J = 4.1, 1.8 Hz, 1H), 8.15 (dd, J = 8.3, 1.8 Hz, 1H), 7.72 (dd, J = 7.9, 1.4 Hz, 1H), 7.61 (dd, J = 7.1, 1.2 Hz, 1H), 7.58 – 7.51 (m, 1H), 7.37 (dd, J = 8.2, 4.1 Hz, 1H), 7.24 – 7.08 (m, 4H), 6.66 (dd, J = 9.7, 2.4 Hz, 1H), 6.17 (dd, J = 9.7, 3.0 Hz, 1H), 5.27 (d, J = 7.6 Hz, 1H), 4.58 (s, 1H), 4.46 (s, 1H), 3.26 (s, 1H), 1.44 (d, J = 4.8 Hz, 3H), 1.11 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 154.8, 149.2, 146.4, 144.46, 137.0, 136.7, 132.9, 129.6, 128.8, 128.6, 127.7, 127.3, 127.0, 126.6, 126.3, 126.2, 120.9, 78.6, 50.4, 43.7, 28.2, 19.9. HRMS(ESI): m/z calculated for C₂₆H₂₈N₂NaO₂ [M+Na]⁺: 423.2049, found: 423.2050.

tert-butyl (2-((6-methylquinolin-8-yl)methyl)-1,2-dihydronaphthalen-1-yl)carbamate (3ka)

White solid (73.6 mg, 92%), M. p. = 134-136 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.84 (d, J = 2.7 Hz, 1H), 7.98 (dd, J = 8.2, 1.7 Hz, 1H), 7.37 (d, J = 2.7 Hz, 2H), 7.31 (dd, J = 8.2, 4.2 Hz, 1H), 7.10 (d, J = 7.4 Hz, 1H), 7.05 (t, J = 7.2 Hz, 1H), 6.98 (t, J = 7.2 Hz, 1H), 6.91 (d, J = 7.2 Hz, 1H), 6.49 (dd, J = 9.6, 1.8 Hz, 1H), 6.25 (d, J = 9.6 Hz, 1H), 6.00 (dd, J = 9.5, 3.6 Hz, 1H), 4.88 (dd, J = 9.4, 5.9 Hz, 1H), 3.56 (dd, J = 13.0, 6.9 Hz, 1H), 3.31 (dd, J = 13.0, 6.3 Hz, 1H), 3.23 (s, 1H), 2.48 (s, 3H), 1.49 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 155.9, 148.2, 145.6, 137.4, 136.435, 135.8, 135.8, 133.0, 131.2, 128.5, 128.0, 127.4, 127.3, 126.0, 125.8, 125.4, 120.9, 79.0, 51.1, 39.8, 31.2, 28.6, 21.7. HRMS(ESI): m/z calculated for $C_{26}H_{28}N_2NaO_2$ [M+Na]⁺: 423.2049, found: 423.2044.

tert-butyl (2-((6-methoxyquinolin-8-yl)methyl)-1,2-dihydronaphthalen-1-yl)carbamate (3la)

MeO

Colorless oily liquid (80 mg, 96%). ¹H NMR (400 MHz, CDCl₃) δ 8.75 (dd, J = 4.1, 1.5 Hz, 1H), 7.95 (d, J = 8.2 Hz, 1H), 7.30 (dd, J = 8.2, 4.2 Hz, 1H), 7.21 (d, J = 2.4 Hz, 1H), 7.12 – 7.00 (m, 2H), 6.96 (t, J = 7.2 Hz, 1H), 6.90 (d, J = 7.3 Hz, 1H), 6.86 (d, J = 2.1 Hz, 1H), 6.49 (d, J = 9.5 Hz, 1H), 6.29 (d, J = 9.6 Hz, 1H), 5.98 (dd, J = 9.5, 3.8 Hz, 1H), 4.92 (dd, J = 9.5, 6.0 Hz, 1H), 3.88 (s, 3H), 3.50 (dd, J = 13.1, 7.3 Hz, 1H), 3.31 (dd, J = 13.2, 5.7 Hz, 1H), 3.21 (s, 1H), 1.48 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 157.1, 156.0, 146.6, 143.3, 139.6, 136.3, 135.3, 133.0, 131.0, 129.6, 128.1, 127.4, 127.3, 125.8, 123.2, 121.3, 104.0, 79.1, 55.5, 51.2, 39.6, 31.7, 28.6. HRMS(ESI): m/z calculated for C₂₆H₂₈N₂NaO₃ [M+Na]⁺: 439.1998, found: 439.1994.

tert-butyl (2-((6-bromoquinolin-8-yl)methyl)-1,2-dihydronaphthalen-1-yl)carbamate (3ma)

White solid (67 mg, 72%), M. p. = 85-87 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.89 (dd, J = 4.0, 1.5 Hz, 1H), 7.94 (dd, J = 8.3, 1.4 Hz, 1H), 7.72 (d, J = 1.8 Hz, 1H), 7.59 (d, J = 1.9 Hz, 1H), 7.36 (dd, J = 8.3, 4.2 Hz, 1H), 7.05 – 6.97 (m, 2H), 6.90 (dd, J = 11.0, 7.1 Hz, 2H), 6.51 (d, J = 9.5 Hz, 1H), 6.27 (d, J = 9.9 Hz, 1H), 5.96 (dd, J = 9.5, 3.6 Hz, 1H), 4.91 (dd, J = 9.9, 5.4 Hz, 1H), 3.56 (td, J = 8.9, 3.7 Hz, 1H), 3.32 – 3.12 (m, 2H), 1.50 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 155.9, 149.3, 145.5, 140.0, 136.0, 135.6, 133.8, 132.9, 130.4, 129.3, 128.4, 127.4, 127.3, 125.9, 125.5, 121.7, 120.0, 79.2, 50.9, 39.5, 30.8, 28.6. HRMS(ESI): m/z calculated for C₂₅H₂₅BrN₂NaO₂ [M+Na]⁺: 487.0997, found: 487.0987.

tert-butyl (2-((7-methylquinolin-8-yl)methyl)-1,2-dihydronaphthalen-1-yl)carbamate (3na)

Colorless oily liquid (36 mg, 45%). ¹H NMR (400 MHz, CDCl₃) δ 8.91 (dd, J = 4.2, 1.8 Hz, 1H), 8.07 (dd, J = 8.2, 1.7 Hz, 1H), 7.58 (d, J = 8.3 Hz, 1H), 7.40 – 7.30 (m, 3H), 7.17 (dd, J = 5.5, 3.2 Hz, 2H), 7.01 (dd, J = 5.6, 3.1 Hz, 1H), 6.43 (dd, J = 9.6, 1.5 Hz, 2H), 5.99 (dd, J = 9.5, 3.9 Hz, 1H), 4.97 (dd, J

= 8.6, 6.0 Hz, 1H), 3.62 (dd, J = 13.5, 5.0 Hz, 1H), 3.40 (dd, J = 13.4, 8.1 Hz, 1H), 3.06 (s, 1H), 2.54 (s, 3H), 1.42 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 156.2, 149.2, 147.2, 138.0, 136.4, 133.2, 131.9, 130.0, 127.6, 127.5, 127.3, 126.9, 126.4 126.1, 125.8, 120.2, 79.0, 52.5, 39.9, 28.6, 26.9, 20.9. HRMS(ESI): m/z calculated for C₂₆H₂₈N₂NaO₂ [M+Na]⁺: 423.2049, found: 423.2044.

tert-butyl (2-((7-bromoquinolin-8-yl)methyl)-1,2-dihydronaphthalen-1-yl)carbamate (30a)

White solid (57.7 mg, 62%), M. p. = 89-91 \Box . ¹H NMR (400 MHz, CDCl₃) δ 8.94 (dd, J = 4.2, 1.7 Hz, 1H), 8.08 (dd, J = 8.2, 1.7 Hz, 1H), 7.68 (d, J = 8.7 Hz, 1H), 7.52 (d, J = 8.8 Hz, 1H), 7.43 – 7.34 (m, 2H), 7.20 – 7.14 (m, 2H), 7.00 (dd, J = 5.9, 2.8 Hz, 1H), 6.42 (dd, J = 9.6, 2.0 Hz, 1H), 6.02 (dd, J = 8.9, 4.1 Hz, 2H), 5.05 (dd, J = 9.1, 5.8 Hz, 1H), 3.75 (dd, J = 13.0, 4.9 Hz, 1H), 3.70 – 3.56 (m, 1H), 3.24 (s, 1H), 1.39 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 155.9, 150.1, 147.6, 138.9, 136.6, 136.1, 133.0, 131.3, 131.1, 127.6, 127.5, 127.4, 127.3, 127.2, 126.8, 126.7, 126.1, 121.3, 79.0, 52.1, 39.7, 30.4, 28.5. HRMS(ESI): m/z calculated for C₂₅H₂₅BrN₂NaO₂ [M+Na]⁺: 487.0997, found: 487.0988.

tert-butyl (2-((3-ethyl-5-methylquinolin-8-yl)methyl)-1,2-dihydronaphthalen-1-yl)carbamate(3pa)

Colorless oily liquid (48 mg, 56%). ¹H NMR (400 MHz, CDCl₃) δ 8.80 (d, J = 1.7 Hz, 1H), 8.01 (d, J = 2.1 Hz, 1H), 7.35 (d, J = 7.1 Hz, 1H), 7.21 (d, J = 7.1 Hz, 1H), 7.13 (d, J = 7.3 Hz, 1H), 7.07 (t, J = 7.1 Hz, 1H), 7.00 (td, J = 7.4, 1.3 Hz, 1H), 6.92 (d, J = 7.2 Hz, 1H), 6.47 (d, J = 9.5 Hz, 1H), 6.18 (d, J = 9.4 Hz, 1H), 5.99 (dd, J = 9.5, 3.5 Hz, 1H), 4.89 (dd, J = 9.2, 5.9 Hz, 1H), 3.48 (dd, J = 13.1, 7.3 Hz, 1H), 3.36 (dd, J = 13.2, 6.1 Hz, 1H), 3.22 (s, 1H), 2.85 (q, J = 7.6 Hz, 2H), 2.60 (s, 3H), 1.48 (s, 9H), 1.37 (t, J = 7.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 155.9, 149.9, 145.6, 136.4, 135.9, 135.7, 133.0, 132.5, 131.4, 130.5, 129.3, 127.8, 127.6, 127.3, 127.2, 126.6, 126.1, 125.9, 79.0, 51.3, 39.8, 31.4, 28.6, 26.6, 18.6, 15.7. HRMS(ESI): m/z calculated for C₂₈H₃₂N₂NaO₂ [M+Na]⁺: 451.2362, found: 451.2360. *tert*-butyl (2-((3-ethyl-6-methylquinolin-8-yl)methyl)-1,2-dihydronaphthalen-1-yl)carbamate (3ga)

Colorless oily liquid (59 mg, 69%). ¹H NMR (400 MHz, CDCl₃) δ 8.71 (d, J = 1.7 Hz, 1H), 7.75 (d, J = 2.2 Hz, 1H), 7.32 (d, J = 7.1 Hz, 2H), 7.13 (d, J = 7.4 Hz, 1H), 7.11 – 7.04 (m, 1H), 7.00 (td, J = 7.4, 1.4 Hz, 1H), 6.93 (d, J = 7.3 Hz, 1H), 6.49 (dd, J = 9.6, 1.8 Hz, 1H), 6.20 (d, J = 9.6 Hz, 1H), 5.99 (dd, J = 9.5, 3.6 Hz, 1H), 4.87 (dd, J = 9.5, 5.8 Hz, 1H), 3.50 (dd, J = 13.1, 7.2 Hz, 1H), 3.33 (dd, J = 13.1, 6.3 Hz, 1H), 3.22 (s, 1H), 2.80 (q, J = 7.6 Hz, 2H), 2.47 (s, 3H), 1.48 (s, 9H), 1.34 (t, J = 7.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 155.9, 149.7, 144.1, 137.2, 136.4, 136.3, 135.8, 133.3, 133.0, 132.0, 131.3, 128.5, 127.9, 127.4, 127.3, 126.1, 125.9, 125.0, 79.0, 51.2, 39.8, 31.3, 28.6, 26.3, 21.7, 15.4. HRMS(ESI): m/z calculated for C₂₈H₃₂N₂NaO₂ [M+Na]⁺: 451.2362, found: 451.2361.

tert-butyl (6,7-dimethyl-2-(quinolin-8-ylmethyl)-1,2-dihydronaphthalen-1-yl)carbamate (4ab)

White solid (42.3 mg, 51%), M. p. = 105-107 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.93 – 8.87 (m, 1H), 8.09 (dd, J = 8.2, 1.5 Hz, 1H), 7.64 (d, J = 7.9 Hz, 1H), 7.56 (d, J = 6.9 Hz, 1H), 7.42 (t, J = 7.6 Hz, 1H), 7.36 (dd, J = 8.2, 4.2 Hz, 1H), 6.92 (s, 1H), 6.72 (s, 1H), 6.42 (d, J = 9.4 Hz, 1H), 5.96 – 5.80 (m, 2H), 4.80 (dd, J = 9.8, 5.6 Hz, 1H), 3.53 (dd, J = 13.1, 7.6 Hz, 1H), 3.41 (dd, J = 13.1, 6.5 Hz, 1H), 3.22 (s, 1H), 2.14 (s, 3H), 2.12 (s, 3H), 1.47 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 155.8, 149.2, 147.00, 138.2, 136.5, 135.77, 135.4, 133.8, 130.6, 130.6, 130.1, 128.4, 127.7, 127.4, 126.5, 126.2, 120.8, 79.00, 50.8, 40.1, 31.6, 28.6, 19. 7, 19.4. HRMS(ESI): m/z calculated for C₂₇H₃₀N₂NaO₂ [M+Na]⁺: 437.2205, found: 437.2203.

tert-butyl (6,7-difluoro-2-(quinolin-8-ylmethyl)-1,2-dihydronaphthalen-1-yl)carbamate (4ac)

White solid (38 mg, 45%), M. p. = 120-122 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.92 (dd, J = 4.0, 1.5 Hz, 1H), 8.06 (dd, J = 8.2, 1.4 Hz, 1H), 7.56 (d, J = 7.8 Hz, 1H), 7.43 (d, J = 6.7 Hz, 1H), 7.38 (dd, J = 8.2, 4.2 Hz, 1H), 7.32 (t, J = 7.6 Hz, 1H), 7.10 (d, J = 9.7 Hz, 1H), 6.63 (dd, J = 10.8, 8.1 Hz, 1H), 6.50 (dd, J = 10.6, 7.8 Hz, 1H), 6.33 (d, J = 9.7 Hz, 1H), 6.08 (dd, J = 9.6, 4.3 Hz, 1H), 4.89 (dd, J = 9.3, 6.1 Hz, 1H), 3.69 (dd, J = 15.1, 7.6 Hz, 1H), 3.21 – 3.02 (m, 2H), 1.52 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 156.2, 150.1 (d, J = 12.8 Hz), 149.0, 147.6 (d, J = 12.8 Hz), 146.6, 136.9, 136.7, 133.1, 131.5, 130.9, 129.8, 128.1, 126.7, 125.9, 121.0, 114.4 – 113.5, 79.4, 50.4, 39.0, 30.4, 28.6. HRMS(ESI): m/z calculated for C₂₅H₂₄F₂N₂NaO₂ [M+Na]⁺: 445.1704, found: 4445.1703.

tert-butyl (6,7-dibromo-2-(quinolin-8-ylmethyl)-1,2-dihydronaphthalen-1-yl)carbamate (4ad)

White solid (38.1 mg, 35%), M. p. = 101-103 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.92 (s, 1H), 8.04 (d, J = 8.2 Hz, 1H), 7.54 (d, J = 8.0 Hz, 1H), 7.44 – 7.35 (m, 2H), 7.29 (t, J = 7.5 Hz, 1H), 7.18 (d, J = 9.6 Hz, 1H), 6.93 (s, 1H), 6.84 (s, 1H), 6.31 (d, J = 9.6 Hz, 1H), 6.14 (dd, J = 9.5, 5.0 Hz, 1H), 4.97 – 4.83 (m, 1H), 3.73 (dd, J = 13.3, 5.7 Hz, 1H), 3.19 – 2.95 (m, 2H), 1.53 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 156.20, 149.00, 146.58, 136.86, 136.78, 136.25, 133.94, 132.82, 130.89, 129.70, 129.27, 128.12, 126.74, 126.67, 125.85, 122.30, 121.16, 79.44, 50.46, 39.17, 30.12, 28.62. HRMS(ESI): m/z calculated for C₂₅H₂₄Br₂N₂NaO₂ [M+Na]⁺: 565.0102, found: 565.0086.

White solid (52.7 mg, 60%), M. p. = 98-100 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.93 (dd, J = 4.3, 1.8 Hz, 1H), 8.42 (d, J = 9.0 Hz, 1H), 7.93 (dd, J = 8.3, 1.8 Hz, 1H), 7.72 – 7.63 (m, 2H), 7.39 (dd, J = 8.2, 1.4 Hz, 1H), 7.34 – 7.25 (m, 2H), 7.22 – 7.15 (m, 1H), 7.11 (d, J = 8.0 Hz, 2H), 6.78 (d, J = 7.8 Hz, 1H), 6.69 (t, J = 7.4 Hz, 1H), 6.57 – 6.49 (m, 2H), 6.31 (d, J = 9.6 Hz, 1H), 5.91 (dd, J = 9.6, 5.5 Hz, 1H), 4.57 (dd, J = 9.1, 6.6 Hz, 1H), 3.46 (dd, J = 13.8, 5.9 Hz, 1H), 2.96 (dd, J = 13.8, 4.1 Hz, 1H), 2.76 – 2.62 (m, 1H), 2.29 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 149.0, 146.2, 142.8, 139.1, 137.1, 136.4, 134.5, 133.1, 131.1, 130.2, 129.6, 128.6, 128.1, 127.0, 126.9, 126.8, 126.7, 125.9, 125.3, 124.5, 121.0, 54.8, 39.6, 30.5, 21.6. HRMS(ESI): m/z calculated for C₂₇H₂₄N₂NaO₂S [M+Na]⁺: 463.1456, found: 463.1449.

benzyl (2-(quinolin-8-ylmethyl)-1,2-dihydronaphthalen-1-yl)carbamate (4af)

Colorless oily liquid (52.1 mg, 62%). ¹H NMR (400 MHz, CDCl₃) δ 8.85 (s, 1H), 8.04 (d, J = 6.5 Hz, 1H), 7.57 (d, J = 6.8 Hz, 1H), 7.47 (d, J = 5.7 Hz, 1H), 7.37 (dd, J = 17.3, 11.5 Hz, 7H), 7.09 – 6.95 (m,

2H), 6.95 - 6.80 (m, 2H), 6.74 (d, J = 7.9 Hz, 1H), 6.46 (d, J = 8.2 Hz, 1H), 6.05 - 5.84 (m, 1H), 5.15 (q, J = 12.3 Hz, 2H), 4.97 (s, 1H), 3.65 - 3.54 (m, 1H), 3.37 - 3.17 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 156.6, 149.1, 146.9, 137.5, 137.0, 136.6, 135.8, 132.9, 130.7, 128.6, 128.3, 128.3, 128.2, 128.1, 127.4, 126.7, 126.1, 125.9, 125.7, 120.9, 66.7, 51.8, 39.7, 31.6. HRMS(ESI): m/z calculated for C₂₈H₂₄N₂NaO₂ [M+Na]⁺: 443.1736, found: 443.1734.

8. NMR spectra

9: X-Ray Crystallography of Compound 4ae

Crystal data for qth1: C₂₇H₂₄N₂O₂S, M = 440.54, a = 8.1661(2) Å, b = 25.3026(5) Å, c = 10.7553(2) Å, $a = 90^{\circ}$, $\beta = 96.5120(10)^{\circ}$, $\gamma = 90^{\circ}$, V = 2207.96(8) Å³, T = 100.(2) K, space group P121/n1, Z = 4, μ (Cu K α) = 1.516 mm⁻¹, 25622 reflections measured, 4363 independent reflections ($R_{int} = 0.0373$). The final R_I values were 0.0354 ($I > 2\sigma(I)$). The final $wR(F^2)$ values were 0.0923 ($I > 2\sigma(I)$). The final R_I values were 0.0384 (all data). The final $wR(F^2)$ values were 0.0949 (all data). The goodness of fit on F^2 was 1.037.

View of a molecule of qth1 with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

View of the pack drawing of qth1. Hydrogen-bonds are shown as dashed lines.

Identification code	global		
Empirical formula	C27 H24 N2 O2 S		
Formula weight	440.54		
Temperature	100(2) K		
Wavelength	1.54178 Å		
Crystal system	Monoclinic		
Space group	P 1 21/n 1		
Unit cell dimensions	a = 8.1661(2) Å	α= 90°.	
	b = 25.3026(5) Å	β=96.5120(10)°.	
	c = 10.7553(2) Å	$\gamma = 90^{\circ}$.	
Volume	2207.96(8) Å ³		
Z	4		
Density (calculated)	1.325 Mg/m ³		
Absorption coefficient	1.516 mm ⁻¹		
F(000)	928		
Crystal size	0.250 x 0.150 x 0.130 mm ³		
Theta range for data collection	3.49 to 72.44°.		
Index ranges	-9<=h<=10, -31<=k<=31, -13<=l<=12		
Reflections collected	25622		
Independent reflections	4363 [R(int) = 0.0373]		
Completeness to theta = 72.44°	99.7 %		

Table 1. Crystal data and structure refinement for qth1_0m.

Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F² Final R indices [I>2sigma(I)] R indices (all data) Largest diff. peak and hole Semi-empirical from equivalents 0.83 and 0.57Full-matrix least-squares on F² 4363 / 0 / 290 1.037R1 = 0.0354, wR2 = 0.0923 R1 = 0.0384, wR2 = 0.0949 0.357 and -0.431 e.Å⁻³