Supporting Information

Electrochemical Decarboxylative C3 Alkylation of Quinoxalin-2(1H)-ones with N-hydroxyphthalimide

Esters

Kaikai Niu, ${ }^{\dagger}$ Lingyun Song, ${ }^{\dagger}$ Yanke Hao, ${ }^{\dagger}$ Yuxiu Liu ${ }^{\dagger}$ and Qingmin Wang ${ }^{* \dagger \dagger}$
${ }^{\dagger}$ State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
${ }^{\ddagger}$ Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, People's Republic of China

Contents

1. General Information S3
2. Preparation of N-hydroxyphthalimide Ester S3
3. Preparation of Quinoxalin-2(1H)-one. S3
4. General procedure for the electrolysis S3
5. Gram-scale Reaction S4
6. One-pot synthesis S4
7. Use of 3-V battery as a readily available power source S5
8. Mechanistic Studies S6-8
9. Cyclic voltammetry (CV) tests S8
10. Characterization Data for Electrolysis Products S8-21
11. X-ray Crystallography S21-27
12. Spectra of prepared compounds. S28-64
13. References S65

1. General Information

Unless otherwise noted, Reagents were purchased from commercial sources and were used as received. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Nuclear Magnetic Resonance (NMR) spectra were recorded on Bruker Avance 400 Ultrashield NMR spectrometers. Chemical shifts (δ) were given in parts per million (ppm) and were measured downfield from internal tetramethylsilane. High-resolution mass spectrometry (HRMS) data were obtained on an FTICR-MS instrument (Ionspec 7.0 T). The melting points were determined on an X-4 microscope melting point apparatus and are uncorrected. Conversion was monitored by thin layer chromatography (TLC). Flash column chromatography was performed over silica gel (100-200 mesh).

2. Preparation of N-hydroxyphthalimide ester

N-hydroxyphthalimide Esters was prepared from alkyl carboxylic acids following the procedure of Baran and co-workers ${ }^{1}$ on 20 mmol scale. To a solution of the corresponding acid ($20 \mathrm{mmol}, 1.0$ equiv.), 4-dimethylaminepyridine ($244 \mathrm{mg}, 2 \mathrm{mmol}, 0.1$ equiv.) and $\mathrm{N}, \mathrm{N}^{\prime}$ diisopropylcarbodiimide ($3.4 \mathrm{~mL}, 22 \mathrm{mmol}, 1.1$ equiv.) in $\mathrm{DCM}(100 \mathrm{~mL})$ was stirred under air at room temperature for 5 min . Then, the NHPI ($3.26 \mathrm{~g}, 20 \mathrm{mmol}, 1.0$ equiv.) was added into the solution and stirred overnight at room temperature. After reaction, the mixture was filtered and the filtrate was concentrated in vacuo. Finally, the residue was purified by chromatography on silica gel, eluted with petroleum/ethyl acetate to afford the desired product. The compound $\mathbf{2 a - 2 q}$ was previously reported.

3. Preparation of quinoxalin- $2(1 H)$-one

Quinoxalin-2(1H)-one was prepared from 1,2-phenylenediamines following the procedure of Cui and co-workers ${ }^{2}$ on 5 mmol scale. To a solution of 1,2-phenylenediamines ($5 \mathrm{mmol}, 1.0$ equiv.) in ethanol (40 mL) was added ethyl glyoxalate ($6 \mathrm{mmol}, 1.2$ equiv.). The resultant reaction mixture was stirred at reflux until the raw material disappears. Then, the mixture was filtered and washed by ethanol. The solid was dried in vacuo. For alkylation, the corresponding halogenoalkane (1.6 equiv.) was added to a suspension of quinoxalinone (1.0 equiv.) and potassium carbonate (1.2 equiv.) in DMF (16 mL). The mixture was stirred at room temperature overnight. After complete reaction, brine was added, and then extracted three times with EtOAc. The combined organic layers were washed with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$ then brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated in vacuo. The residue was purified by column chromatography on silica gel to afford the desired product. The compound $\mathbf{1 a - 1 q}$ was previously reported.

4. General procedure for the electrolysis

An oven-dried 10 mL undivided bottle was equipped with two graphite sheet electrodes (10 $\mathrm{mm} \times 10 \mathrm{~mm} \times 3 \mathrm{~mm}$) . The corresponding quinoxalin-2($1 H$)-one ($80.0 \mathrm{mg}, 0.5 \mathrm{mmol}, 1.0$ equiv.), the N-hydroxyphthalimide ester ($273.1 \mathrm{mg}, 1.0 \mathrm{mmol}, 2.0$ equiv.) and ${ }^{n} \mathrm{Bu}_{4} \mathrm{NBF}_{4}$ ($329 \mathrm{mg}, 1.0$ mmol, 2.0 equiv.) was added into the undivided cell. And then DMA (5 mL) was added. The reaction mixture was stirred and electrolyzed at a constant current of 5.0 mA under room temperature for 12 h . The reaction was quenched with brine $(50 \mathrm{~mL})$ and extracted with EtOAc (3 $\times 20 \mathrm{~mL}$). Then the combined organic layers were filtered, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The pure product was obtained by flash column chromatography on silica gel (petroleum ether/ethyl acetate).

5. Gram-scale reaction

A 200 mL bottle with a stir bar was charged with quinoxalin- $2(1 H)$-one ($0.96 \mathrm{~g}, 6.0 \mathrm{mmol}, 1.0$ equiv.), N hydroxyphthalimide ester ($3.28 \mathrm{~g}, 12.0 \mathrm{mmol}, 2.0$ equiv.), ${ }^{n} \mathrm{Bu}_{4} \mathrm{NBF}_{4}$ ($3.95 \mathrm{~g}, 12.0 \mathrm{mmol}, 2.0$ equiv.) and DMA (50 mL). The bottle equipped with two graphite sheet electrodes ($300 \mathrm{~mm} \times 500 \mathrm{~mm} \times 3 \mathrm{~mm}$) were inserted into the mixture. The reaction mixture was electrolyzed under a constant current of 15 mA for 40 h . After the reaction, the electrodes were removed and rinsed with EtOAc. Brine was then added; the resulting mixture was extracted with EtOAc. The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude material was purified by column chromatography (petroleum ether/ethyl acetate $=10: 1$) to furnish the desired product in 88% yield as a white solid.

6. One-pot synthesis

3aa, 87\%

An oven-dried 10 mL undivided bottle was charged with cyclohexanecarboxylic acid (128.2 $\mathrm{mg}, 1.0 \mathrm{mmol}, 1.0$ equiv.), 4-dimethylaminepyridine ($24.4 \mathrm{mg}, 0.2 \mathrm{mmol}, 0.2$ equiv.), N, N^{\prime} diisopropylcarbodiimide ($0.2 \mathrm{~mL}, 1.2 \mathrm{mmol}, 1.2$ equiv.), NHPI ($179.4 \mathrm{mg}, 1.1 \mathrm{mmol}, 1.1$ equiv.) and DCM (1 mL). After stirred for 30 min , quinoxalin-2(1 H)-one ($80.0 \mathrm{mg}, 0.5 \mathrm{mmol}$, 1.0 equiv.), ${ }^{n} \mathrm{Bu}_{4} \mathrm{NBF}_{4}$ ($329 \mathrm{mg}, 1.0 \mathrm{mmol}, 2.0$ equiv.) and DMA (5 mL) was added into the undivided bottle. Two graphite sheet electrodes ($10 \mathrm{~mm} \times 10 \mathrm{~mm} \times 3 \mathrm{~mm}$) were inserted into the mixture, and the reaction mixture was electrolyzed under a constant current of 5 mA for 12 h . After the reaction, brine was then added and extracted with EtOAc. The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude material was purified by column chromatography (petroleum ether/ethyl acetate $=10: 1$) to furnish the desired product in 87% yield as a white solid.

7. Use of 3-V battery as a readily available power source

An oven-dried 10 mL undivided bottle was charged with quinoxalin- $2(1 \mathrm{H}$)-one ($80.0 \mathrm{mg}, 0.5$ mmol, 1.0 equiv.), N-hydroxyphthalimide ester ($273.1 \mathrm{mg}, 1.0 \mathrm{mmol}, 2.0$ equiv.), ${ }^{n} \mathrm{Bu}_{4} \mathrm{NBF}_{4}$ (329 $\mathrm{mg}, 1.0 \mathrm{mmol}, 2.0$ equiv.) and DMA (5 mL). Two graphite sheet electrodes ($10 \mathrm{~mm} \times 10 \mathrm{~mm} \times 3$ mm) were inserted into the mixture. Two 1.5 v NanFu batteries were connected by copper wires in series and were used as the power source. After the reaction, the resulting mixture was was quenched with brine and extracted with EtOAc. The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude material was purified by column chromatography (petroleum ether/ethyl acetate $=10: 1$) to furnish the desired product in 90%
yield as a white solid.

8. Mechanistic Studies

To a 10 mL oven-dried undivided bottle was added quinoxalin- $2(1 H)$-one ($80.0 \mathrm{mg}, 0.5 \mathrm{mmol}$, 1.0 equiv.), N-hydroxyphthalimide ester ($273.1 \mathrm{mg}, 1.0 \mathrm{~m} \mathrm{~mol}, 2.0$ equiv.), TEMPO (156.3 mg , $1.0 \mathrm{mmol}, 2.0$ equiv.), ${ }^{n} \mathrm{Bu}_{4} \mathrm{NBF}_{4}(329 \mathrm{mg}, 1.0 \mathrm{mmol}, 2.0$ equiv.) and DMA (5 mL). The reaction mixture was stirred and electrolyzed at a constant current of 5.0 mA under room temperature for 12 h . The reaction was completely suppressed. The radical trapping product 1-(cyclohexyloxy)-2,2,6,6-tetramethylpiperidine can be observed by HR-MS (positive mode ESI). A similar procedure was conducted with BHT ($220.4 \mathrm{mg}, 1.0 \mathrm{mmol}, 2.0$ equiv.). The reaction was also completely suppressed.

To a 10 mL oven-dried undivided bottle was added N-phenylmethacrylamide $\mathbf{1 r}(87.6 \mathrm{mg}, 0.5$ mmol, 1.0 equiv.), N-hydroxyphthalimide ester $\mathbf{2 a}\left(273.1 \mathrm{mg}, 1.0 \mathrm{mmol}, 2.0\right.$ equiv.), ${ }^{n} \mathrm{Bu}_{4} \mathrm{NBF}_{4}$ ($329 \mathrm{mg}, 1.0 \mathrm{mmol}, 2.0$ equiv.) and DMA (5 mL). The reaction mixture was stirred and electrolyzed at a constant current of 5.0 mA under room temperature for 12 h . The product 3ra can be observed by HR-MS (positive mode ESI).

To a 10 mL oven-dried undivided bottle was added N -methyl-N-phenyl methacrylamide $\mathbf{1 r}$ (87.6 $\mathrm{mg}, 0.5 \mathrm{mmol}, 1.0$ equiv.), N -hydroxyphthalimide ester 2 o ($273.1 \mathrm{mg}, 1.0 \mathrm{mmol}, 2.0$ equiv.), ${ }^{n} \mathrm{Bu}_{4} \mathrm{NBF}_{4}$ ($329 \mathrm{mg}, 1.0 \mathrm{mmol}, 2.0$ equiv.) and DMA (5 mL). The reaction mixture was stirred and electrolyzed at a constant current of 5.0 mA under room temperature for 12 h . The product 3ro can be observed by HR-MS (positive mode ESI).

9. Cyclic voltammetry (CV) tests

The potential was calibrated versus an aqueous SCE by the addition of ferrocene as an internal standard taking $\mathrm{E}_{(\mathbf{F e} / \mathbf{F c}+)}{ }^{0}=0.424 \mathrm{~V}$ vs SCE. ${ }^{18} \mathrm{E}^{\mathbf{1 a} / \mathbf{1 a -}}=-1.67 \mathrm{~V}$ vs SCE; $\mathrm{E}^{\mathbf{2 a / 2 a}}=-1.23$ vs SCE.

Figure 1. Cyclic voltammograms of compounds 1 a and 2 a in $0.1 \mathrm{M}{ }^{n} \mathrm{Bu}_{4} \mathrm{NPF}_{6} / \mathrm{MeCN}$ at a scan rate of $100 \mathrm{mV} / \mathrm{s}$.

10. Characterization Data for Electrolysis Products

3-cyclohexyl-1-methylquinoxalin-2(1H)-one(3aa)

Electrolysis was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 20\% EtOAc in petroleum ether) to give 3aa as a white solid ($111.3 \mathrm{mg}, 92 \%$ yield). M. p. $=103-104{ }^{\circ} \mathrm{C}$;
$\boldsymbol{R} \boldsymbol{f}=0.50$ (Petroleum ether $/ \mathrm{EtOAc}=10: 1$);
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.83(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.23(\mathrm{~m}, 2 \mathrm{H})$, $3.69(\mathrm{~s}, 3 \mathrm{H}), 3.34(\mathrm{t}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.96(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.86(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.76(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.40-1.65(\mathrm{~m}, 4 \mathrm{H}), 1.23-1.37(\mathrm{~m}, 1 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 177.4,164.2,154.5,134.9,132.8,132.8,129.7,129.3,123.4,113.4$, 40.7, 30.5, 29.0, 26.3, 26.1;

HRMS (ESI): calc'd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$243.1497, found 243.1492.

3-ethyl-1-methylquinoxalin-2(1H)-one(3ab)

Electrolysis was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, $10 \% \mathrm{EtOAc}$ in petroleum ether) to give $\mathbf{3 a b}$ as a white solid ($62.0 \mathrm{mg}, 66 \%$ yield).
M. p. $=96-98^{\circ} \mathrm{C}$;
$\boldsymbol{R} \boldsymbol{f}=0.30$ (Petroleum ether $/ \mathrm{EtOAc}=5: 1$);
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.84(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.24(\mathrm{~m}, 2 \mathrm{H})$, $3.70(\mathrm{~s}, 3 \mathrm{H}), 2.97(\mathrm{q}, J=8.0,4.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.34(\mathrm{t}, J=4.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 161.9,154.8,133.1,132.7,129.6,129.5,123.5,113.5,28.9,27.5$, 10.8.

HRMS (ESI): calc'd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$189.1028, found 189.1022.

1-methyl-3-pentylquinoxalin-2(1H)-one(3ac)

Electrolysis was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 20\% EtOAc in petroleum ether) to give 3ac as a white solid ($80.9 \mathrm{mg}, 70 \%$ yield).
M. $\mathbf{p} .=75-76^{\circ} \mathrm{C}$;
$\boldsymbol{R} \boldsymbol{f}=0.50$ (Petroleum ether $/ \mathrm{EtOAc}=5: 1$);
${ }^{1} \mathbf{H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}: \delta 7.83(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.25(\mathrm{~m}, 2 \mathrm{H})$, $3.70(\mathrm{~s}, 3 \mathrm{H}), 2.94(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.85-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.47-1.34(\mathrm{~m}, 5 \mathrm{H}), 0.92(\mathrm{t}, J=4.0 \mathrm{~Hz}$, 3 H).
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathbf{C D C l}_{3}\right): \delta 161.4,154.9,133.1,132.7,129.6,129.5,123.5,113.5,34.4,31.8$, 29.0, 26.6, 22.5, 14.1.

HRMS (ESI): calc'd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$231.1497, found 231.1493.

3-heptyl-1-methylquinoxalin-2(1H)-one(3ad)

Electrolysis was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 10\% EtOAc in petroleum ether) to give 3ad as a yellow oil ($92.0 \mathrm{mg}, 71 \%$ yield).
$\boldsymbol{R} \boldsymbol{f}=0.50$ (Petroleum ether $/ \mathrm{EtOAc}=5: 1$);
${ }^{1} \mathbf{H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$): $\delta 7.83(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.27(\mathrm{~m}, 2 \mathrm{H})$, $3.70(\mathrm{~s}, 3 \mathrm{H}), 2.94(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.85-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.34(\mathrm{~m}, 4 \mathrm{H}), 1.33-1.28(\mathrm{~m}, 4 \mathrm{H})$, $0.88(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 161.4,154.9,133.1,132.8,129.6,129.5,123.5,113.6,34.5,31.8$, 29.6, 29.2, 29.1, 26.9, 22.7, 14.1.

HRMS (ESI): calc'd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$259.1810, found 259.1805.

1-methyl-3-undecylquinoxalin-2(1H)-one(3ae)

Electrolysis was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 10\% EtOAc in petroleum ether) to give 3ae as a white solid (84.5 $\mathrm{mg}, 54 \%$ yield).
M. p. $=58-60^{\circ} \mathrm{C}$;
$\boldsymbol{R} \boldsymbol{f}=0.40$ (Petroleum ether $/ \mathrm{EtOAc}=5: 1$);
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.83(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.23(\mathrm{~m}, 2 \mathrm{H})$, $3.70(\mathrm{~s}, 3 \mathrm{H}), 2.94(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.84-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.39(\mathrm{~m}, 2 \mathrm{H}), 1.26(\mathrm{~s}, 15 \mathrm{H}), 0.88(\mathrm{t}, J$ $=4.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 161.4,154.9,133.1,132.7,129.6,129.5,123.5,113.6,34.4,31.9$, 29.7, 29.6, 29.6, 29.5, 29.4, 29.0, 26.9, 22.7, 14.2.

1-methyl-5-(4-methyl-3-oxo-3,4-dihydroquinoxalin-2-yl)-pentanoate(3af)

Electrolysis was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 20% EtOAc in petroleum ether) to give 3af as a white solid ($96.6 \mathrm{mg}, 70 \%$ yield).
M. p. $=103-105^{\circ} \mathrm{C}$;
$\boldsymbol{R} \boldsymbol{f}=0.60$ (Petroleum ether $/ \mathrm{EtOAc}=1: 1$);
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl ${ }_{3}$): $\delta 7.82(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.38-7.26(\mathrm{~m}, 3 \mathrm{H})$, $3.70(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 2.97(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 1.96-1.74(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 174.1,160.5,154.9,134.3,133.1,129.7,129.6,123.6,113.6,51.5$, 33.9, 33.8, 29.1, 26.1, 24.8.

HRMS (ESI): calc'd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$275.1369, found 275.1389.

1-methyl-3-(4-phenylbutyl)-quinoxalin-2(1H)-one(3ag)

Electrolysis was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 20\% EtOAc in petroleum ether) to give 3ag as a yellow oil ($119.6 \mathrm{mg}, 82 \%$ yield).
$\boldsymbol{R} \boldsymbol{f}=0.50$ (Petroleum ether $/ \mathrm{EtOAc}=2: 1$);
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.82(\mathrm{dd}, J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.36-7.31(\mathrm{~m}$, $1 \mathrm{H}), 7.31-7.23(\mathrm{~m}, 3 \mathrm{H}), 7.22-7.13(\mathrm{~m}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.05-2.94(\mathrm{~m}, 2 \mathrm{H}), 2.74-2.65(\mathrm{~m}, 2 \mathrm{H})$, $1.90-1.73(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 161.1,154.9,142.6,133.1,132.7,129.6,129.6,128.5,128.3,125.6$, 123.6, 113.6, 35.8, 34.2, 31.4, 29.1, 26.5.

HRMS (ESI): calc'd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$293.1654, found 293.1648.

2-isopropyl-1-methylquinoxalin-2(1H)-one(3ah)

Electrolysis was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 10% EtOAc in petroleum ether) to give $\mathbf{3} \mathbf{a h}$ as a white solid ($76.9 \mathrm{mg}, 76 \%$ yield).
M. p. $=106-107^{\circ} \mathrm{C}$;
$\boldsymbol{R} \boldsymbol{f}=0.80$ (Petroleum ether $/ \mathrm{EtOAc}=2: 1$);
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.85(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.25(\mathrm{~m}, 2 \mathrm{H})$, $3.71(\mathrm{~s}, 3 \mathrm{H}), 3.66-3.58(\mathrm{~m}, 1 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 165.1,154.6,133.1,132.8,129.8,129.5,123.4,113.5,31.2,29.1$, 20.2.

2-cyclopentyl-1-methylquinoxalin-2(1H)-one(3ai)

Electrolysis was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 20\% EtOAc in petroleum ether) to give 3ai as a white solid ($79.7 \mathrm{mg}, 70 \%$ yield).
M. p. $=89-91^{\circ} \mathrm{C}$;
$\boldsymbol{R} \boldsymbol{f}=0.30$ (Petroleum ether $/ \mathrm{EtOAc}=5: 1$);
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.82(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.20(\mathrm{~m}, 2 \mathrm{H})$, $3.70(\mathrm{~s}, 4 \mathrm{H}), 2.06(\mathrm{~s}, 2 \mathrm{H}), 1.93(\mathrm{~s}, 2 \mathrm{H}), 1.82(\mathrm{~s}, 2 \mathrm{H}), 1.72(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 163.8,155.1,132.9,132.7,129.8,129.3,113.4,42.7,30.9,29.1,25.9$. HRMS (ESI): calc'd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$229.1341, found 229.1337.

3-(4,4-difluorocyclohexyl)-1-methylquinoxalin-2(1H)-one(3aj)

Electrolysis was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 10% EtOAc in petroleum ether) to give 3aj as a white solid ($118.9 \mathrm{mg}, 85 \%$ yield).
M. p. $=181-182{ }^{\circ} \mathrm{C}$;
$\boldsymbol{R} \boldsymbol{f}=0.25$ (Petroleum ether $/ \mathrm{EtOAc}=5: 1$);
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.84(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.28(\mathrm{~m}, 2 \mathrm{H})$, $3.71(\mathrm{~s}, 3 \mathrm{H}), 3.45-3.35(\mathrm{~m}, 1 \mathrm{H}), 2.32-2.22(\mathrm{~m}, 2 \mathrm{H}), 2.10-1.85(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 161.9,154.4,132.9,132.7,130.0,129.9,123.7,113.6,38.4,33.5(\mathrm{t}, J$ $=88.0 \mathrm{~Hz}), 29.2,26.6,26.5$.
${ }^{19}$ F NMR ($\mathbf{3 7 7} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta-91.87(\mathrm{~d}, J=235.3 \mathrm{~Hz}),-101.16(\mathrm{~d}, J=232.2 \mathrm{~Hz})$.
HRMS (ESI): calc'd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$279.1309, found 279.1305.

1-methyl-3-(tetrahydro-2H-pyran-4-yl)-quinoxalin-2(1H)-one(3ak)

Electrolysis was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 20\% EtOAc in petroleum ether) to give 3ak as a white solid ($90.5 \mathrm{mg}, 81 \%$ yield).
M. p. $=175-176^{\circ} \mathrm{C}$;
$\boldsymbol{R} \boldsymbol{f}=0.40$ (Petroleum ether $/ \mathrm{EtOAc}=1: 1$);
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $_{3}$): $\delta 7.86(\mathrm{dd}, J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.37-7.27(\mathrm{~m}$, $2 \mathrm{H}), 4.15-4.05(\mathrm{~m}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.67-3.59(\mathrm{~m}, 2 \mathrm{H}), 3.58-3.55(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.87(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathbf{C D C l}_{3}\right): \delta 162.0,154.5,132.9,132.8,130.0,129.8,123.6,113.5,67.9,38.1$, 30.1, 29.1.

HRMS (ESI): calc'd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$245.1290, found 245.1286.

1-methyl-3-(pentan-3-yl)-quinoxalin-2(1H)-one(3al)

$\boldsymbol{R} \boldsymbol{f}=0.70$ (Petroleum ether $/ \mathrm{EtOAc}=5: 1$);
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.85(\mathrm{dd}, J=8.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.38-7.21(\mathrm{~m}$, $2 \mathrm{H}), 3.71(\mathrm{~s}, 2 \mathrm{H}), 3.42-3.29(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.62(\mathrm{~m}, 3 \mathrm{H}), 0.88(\mathrm{t}, J=7.4 \mathrm{~Hz}$, 5 H).
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathbf{C D C l}_{3}\right): \delta 163.9,155.1,132.9,132.8,129.9,129.5,123.4,113.5,44.7,29.2$, 25.8, 12.0.

HRMS (ESI): calc'd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$231.1497, found 231.1493.

1-methyl-3-(1-methylcyclohexyl)-quinoxalin-2(1H)-one(3am)

Electrolysis was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 20\% EtOAc in petroleum ether) to give 3am as a white solid ($67.2 \mathrm{mg}, 52 \%$ yield).
M. p. $=70-71^{\circ} \mathrm{C}$;
$\boldsymbol{R} \boldsymbol{f}=0.50$ (Petroleum ether $/ \mathrm{EtOAc}=5: 1$);
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.84(\mathrm{dd}, J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.26(\mathrm{~m}$, $2 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 2.53-2.37(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.46(\mathrm{~m}, 8 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 164.8,153.8,133.1,132.3,130.1,129.5,123.1,113.3,42.9,35.7$, 28.8, 26.6, 24.5, 22.9.

HRMS (ESI): calc'd for $\mathrm{C}_{16} \mathrm{H}_{20}=\mathrm{N}_{2} \mathrm{O}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$257.1654, found 257.1647.

3-(tert-butyl)-1-methylquinoxalin-2(1H)-one(3an)

Electrolysis was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 20\% EtOAc in petroleum ether) to give 3an as a white solid ($42.7 \mathrm{mg}, 40 \%$ yield).
M. $\mathbf{p} .=71-72{ }^{\circ} \mathrm{C}$;
$\boldsymbol{R} \boldsymbol{f}=0.40$ (Petroleum ether $/ \mathrm{EtOAc}=10: 1$);
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.83(\mathrm{dd}, J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{ddd}, J=8.4,8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.33-7.20(\mathrm{~m}, 2 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H})$.

3-((1s, 3s)-adamantan-1-yl)-1-methylquinoxalin-2(1H)-one(3ao)

Electrolysis was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 20\% EtOAc in petroleum ether) to give 3ao as a white solid ($70.8 \mathrm{mg}, 57 \%$ yield).
M. p. $=186-187^{\circ} \mathrm{C}$;
$\boldsymbol{R} \boldsymbol{f}=0.50$ (Petroleum ether $/ \mathrm{EtOAc}=5: 1$);
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.83(\mathrm{dd}, J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.36-7.21(\mathrm{~m}$, $2 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 6 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 1.86-1.77(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 164.8,153.7,133.0,132.5,132.4,130.1,129.5,123.2,113.3,42.0$, 38.8, 37.0, 28.7, 28.6.

HRMS (ESI): calc'd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$295.1810, found 295.1806.
tert-butyl(R)-(2-methyl-1-(4-methyl-3-oxo-3,4-dihydroquinoxalin-2-yl)-propyl)carbamate(3ap)

Electrolysis was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 20% EtOAc in petroleum ether) to give 3ap as a white solid ($118.8 \mathrm{mg}, 72 \%$ yield).
M. p. $=106-107^{\circ} \mathrm{C}$;
$\boldsymbol{R} \boldsymbol{f}=0.80$ (Petroleum ether $/ \mathrm{EtOAc}=1: 1$);
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.87(\mathrm{dd}, \mathrm{J}=8.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.38-7.27(\mathrm{~m}$, $2 \mathrm{H}), 6.17(\mathrm{~s}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 1.83(\mathrm{~s}, 6 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 160.3,154.9,153.0,133.6,131.5,130.3,130.9,123.5,113.5,78.9$, 57.1, 28.9, 28.4, 25.1.

HRMS (ESI): calc'd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$318.1818, found 318.1806.
(5S,8R,9S,10S,13R,14S)-10,13-dimethyl-17-((R)-4-(4-methyl-3-oxo-3,4-dihydroquinoxalin-2yl) butan-2-yl) dodecahydro-3H-cyclopenta[a]phenanthrene-3,7,12(2H,4H)-trione(3aq)

Electrolysis was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 30\% EtOAc in petroleum ether) to give $\mathbf{3 a q}$ as a white solid ($110.3 \mathrm{mg}, 43 \%$ yield).
M. p. $>\mathbf{2 0 0}{ }^{\circ} \mathrm{C}$;
$\boldsymbol{R} \boldsymbol{f}=0.30$ (Petroleum ether $/ \mathrm{EtOAc}=1: 1$);
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.83(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.29(\mathrm{~m}, 2 \mathrm{H})$, $3.70(\mathrm{~s}, 3 \mathrm{H}), 3.09-2.99(\mathrm{~m}, 1 \mathrm{H}), 2.94-2.87(\mathrm{~m}, 4 \mathrm{H}), 2.35-2.22(\mathrm{~m}, 6 \mathrm{H}), 2.21-2.07(\mathrm{~m}, 6 \mathrm{H}), 2.05-$ $1.96(\mathrm{~m}, 4 \mathrm{H}), 1.89-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H}), 0.99(\mathrm{~d}, J=6.4 \mathrm{~Hz}$, $3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 212.0,209.2,208.8,161.5,154.8,133.1,132.7,129.5,129.5,123.5$, $113.6,56.9,51.7,49.0,46.8,45.8,45.5,45.0,42.8,38.6,36.7,36.2,36.0,35.2,32.3,31.7,29.0,27.7$, 25.2, 23.4, 21.9, 18.9, 11.9.

HRMS (ESI): calc'd for $\mathrm{C}_{32} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$517.3066, found 517.3059.

3-cyclohexyl-1,6-dimethylquinoxalin-2(1H)-one(3ba) and 3-cyclohexyl-1,7-dimethylquinoxalin-2(1H)-one (3ba')

$\mathrm{R}^{\mathbf{3}}=6-\mathrm{Me} 3 \mathrm{ba}$

$\mathbf{R}^{\mathbf{3}}=\mathbf{7 - M e} 3 \mathrm{ba}{ }^{\prime}$

Electrolysis was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 20% EtOAc in petroleum ether) to give 3ba as a white solid ($89.3 \mathrm{mg}, 70 \%$ yield).
M. p. $=98-100^{\circ} \mathrm{C}$;
$\boldsymbol{R} \boldsymbol{f}=0.40$ (Petroleum ether $/ \mathrm{EtOAc}=5: 1$);
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.70(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~s}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~s}$, $1 \mathrm{H}), 7.15(\mathrm{dd}, J=11.6,8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{~s}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 6 \mathrm{H}), 3.38-3.25(\mathrm{~m}, 2 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}), 2.44$ $(\mathrm{s}, 3 \mathrm{H}), 1.95(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 4 \mathrm{H}), 1.86(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 4 \mathrm{H}), 1.76(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.62-1.37(\mathrm{~m}$, $8 \mathrm{H}), 1.37-1.24(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 164.2,163.0,154.7,154.5,140.0,133.2,132.8,132.7,131.1,130.6$, $130.5,129.7,129.4,124.6,113.6,113.2,40.7,30.6,30.5,29.0,29.0,26.3,26.3,26.2,22.0,20.6$.
HRMS (ESI): calc'd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$257.1654, found 257.1649.

6-chloro-3-cyclohexyl-1-methylquinoxalin-2(1H)-one(3ca)

Electrolysis was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 20% EtOAc in petroleum ether) to give 3ca as a white solid ($85.8 \mathrm{mg}, 64 \%$ yield).
M. p. $=125-126^{\circ} \mathrm{C}$;
$\boldsymbol{R} \boldsymbol{f}=0.50$ (Petroleum ether $/ \mathrm{EtOAc}=5: 1$);
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.74(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.24(\mathrm{~m}, 2 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.31(\mathrm{t}, J=$ $10.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.86(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.81-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.62-1.40(\mathrm{~m}$, $4 \mathrm{H}), 1.36-1.24(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 164.4,154.3,135.2,133.7,131.4,130.8,123.8,113.5,40.8,30.5$,

HRMS (ESI): calc'd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{ClN}_{2} \mathrm{O}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$277.1108, found 277.1103.

7-chloro-3-cyclohexyl-1-methylquinoxalin-2(1H)-one(3da)

Electrolysis was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 20\% EtOAc in petroleum ether) to give 3da as a white solid ($61.1 \mathrm{mg}, 46 \%$ yield).
M. p. $=180-182^{\circ} \mathrm{C}$;
$\boldsymbol{R f}=0.80$ (Petroleum ether $/ \mathrm{EtOAc}=5: 1$);
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.83(\mathrm{~s}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~s}$, $3 \mathrm{H}), 3.32(\mathrm{t}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.86(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.80-1.72(\mathrm{~m}, 1 \mathrm{H})$, $1.60-1.40(\mathrm{~m}, 4 \mathrm{H}), 1.34-1.23(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 165.7,154.2,133.4,131.6,129.3,129.2,128.7,114.6,40.8,30.5$, 29.3, 26.3, 26.1.

HRMS (ESI): calc'd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$277.1108, found 277.1103.

3-cyclohexyl-6-fluoro-1-methylquinoxalin-2(1H)-one(3ea)

Electrolysis was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 20\% EtOAc in petroleum ether) to give 3ea as a white solid ($68.4 \mathrm{mg}, 53 \%$ yield).
M. p. $=112-113{ }^{\circ} \mathrm{C}$;
$\boldsymbol{R} \boldsymbol{f}=0.40$ (Petroleum ether $/ \mathrm{EtOAc}=5: 1$);
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.56-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.29-7.20(\mathrm{~m}, 2 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.38-3.28(\mathrm{~m}$, $1 \mathrm{H}), 1.94(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.89-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.77(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.60-1.39(\mathrm{~m}, 5 \mathrm{H})$, $1.35-1.23(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl \mathbf{H}_{3}): $\delta 165.8,159.8,157.4,154.2,133.5(\mathrm{~d}, J=11.3 \mathrm{~Hz}), 129.5(\mathrm{~d}, J=2.1$
$\mathrm{Hz}), 117.0(\mathrm{~d}, J=23.8 \mathrm{~Hz}), 115.2(\mathrm{~d}, J=22.4 \mathrm{~Hz}), 114.5(\mathrm{~d}, J=8.8 \mathrm{~Hz}), 40.8,30.5,29.3,26.2,26.1$.
${ }^{19}$ F NMR ($\mathbf{3 7 7} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta-117.45--121.07$ (m).
HRMS (ESI): calc'd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{FN}_{2} \mathrm{O}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$261.1403, found 261.1398 .

1-cyclohexyl-1-methyl-2-ox0-1,2-dihydroquinoxaline-6-carbonitrile(3fa)

Electrolysis was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 20\% EtOAc in petroleum ether) to give $\mathbf{3 f a}$ as a white solid ($100.0 \mathrm{mg}, 75 \%$ yield).
M. p. $=140-14{ }^{\circ} \mathrm{C}$;
$\boldsymbol{R} \boldsymbol{f}=0.40$ (Petroleum ether $/ \mathrm{EtOAc}=5: 1$);
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $_{3}$): $\delta 7.91(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~s}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.39-3.30(\mathrm{~m}$, $1 \mathrm{H}), 1.95(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.87(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.80-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.39(\mathrm{~m}, 4 \mathrm{H})$, $1.35-1.24(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 167.9,154.0,135.1,133.3,130.7,126.4,118.3,117.7,112.4,41.1$, 30.4, 29.3, 26.2, 26.0.

HRMS (ESI): calc'd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$268.1450, found 268.1445 .

1-cyclohexyl-1-methyl-6-(trifluoromethyl)-quinoxalin-2(1H)-one(3ga)

Electrolysis was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 20% EtOAc in petroleum ether) to give 3ga as a white solid ($85.7 \mathrm{mg}, 55 \%$ yield).
M. p. $=98-101^{\circ} \mathrm{C}$;
$\boldsymbol{R} \boldsymbol{f}=0.50$ (Petroleum ether $/ \mathrm{EtOAc}=5: 1$);
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l} 3$): $\delta 8.13(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.72$ $(\mathrm{s}, 3 \mathrm{H}), 3.34(\mathrm{t}, \mathrm{J}=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.95(\mathrm{~d}, \mathrm{~J}=11.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.88(\mathrm{~d}, \mathrm{~J}=11.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.78(\mathrm{~d}, \mathrm{~J}=12.0$ $\mathrm{Hz}, 1 \mathrm{H}), 1.62-1.42(\mathrm{~m}, 4 \mathrm{H}), 1.38-1.23(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1 ~ M H z}, \mathbf{C D C l}_{3}$): $\delta 256.0,243.5,166.0,154.3,135.2,132.2,127.2(\mathrm{q}, \mathrm{J}=3.4 \mathrm{~Hz}), 125.7$ $(\mathrm{q}, \mathrm{J}=7.0,3.6 \mathrm{~Hz}), 125.5(\mathrm{t}, \mathrm{J}=31.8 \mathrm{~Hz}), 122.5,114.1,40.8,30.5,29.3,26.2,26.1$.
${ }^{19}$ F NMR ($\mathbf{3 7 7} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta-61.89$ (s).
HRMS (ESI): calc'd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$311.1371, found 311.1368.

1-cyclohexyl-6-methoxy-1-methylquinoxalin-2(1H)-one(3ha)

Electrolysis was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 10% EtOAc in petroleum ether) to give 3ha as a white solid (73.2 $\mathrm{mg}, 54 \%$ yield).
M. p. $=105-106^{\circ} \mathrm{C}$;
$\boldsymbol{R} \boldsymbol{f}=0.40$ (Petroleum ether $/ \mathrm{EtOAc}=5: 1$);
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl ${ }_{3}$): $\delta 7.74(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~s}, 1 \mathrm{H}), 6.90(\mathrm{dd}, J=8.8,2.4 \mathrm{~Hz}, 1 \mathrm{H})$,
$6.69(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.34-3.23(\mathrm{~m}, 1 \mathrm{H}), 1.94(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.86$ $(\mathrm{d}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.79-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.61-1.41(\mathrm{~m}, 4 \mathrm{H}), 1.36-1.23(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 160.9,160.6,154.9,134.3,131.0,127.8,110.2,98.0,55.8,40.6$, 30.60, 29.11, 26.40, 26.22.

HRMS (ESI): calc'd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$273.1603, found 273.1595.

1-cyclohexyl-1, 6, 7-trimethylquinoxalin-2(1H)-one(3ia)

Electrolysis was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 20\% EtOAc in petroleum ether) to give 3ia as a white solid ($102.2 \mathrm{mg}, 76 \%$ yield).
M. $\mathbf{p} .=111-112{ }^{\circ} \mathrm{C}$;
$\boldsymbol{R} \boldsymbol{f}=0.40$ (Petroleum ether $/ \mathrm{EtOAc}=5: 1$);
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl ${ }_{3}$): $\delta 7.59(\mathrm{~s}, 1 \mathrm{H}), 7.03(\mathrm{~s}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.36-3.23(\mathrm{~m}, 1 \mathrm{H}), 2.40(\mathrm{~s}$, $3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 1.94(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.86(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.76(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.62-$ $1.40(\mathrm{~m}, 4 \mathrm{H}), 1.36-1.21(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 163.0,154.6,139.0,132.2,131.3,130.8,129.9,114.1,40.6,30.6$, 29.0, 26.4, 26.2, 20.5, 19.1.

HRMS (ESI): calc'd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$271.1801, found 271.1803.

6,7-dichloro-3-cyclohexyl-1-methylquinoxalin-2(1H)-one(3ja)

Electrolysis was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 20% EtOAc in petroleum ether) to give $\mathbf{3 j a}$ as a white solid ($78.0 \mathrm{mg}, 50 \%$ yield).
M. p. $=123-124^{\circ} \mathrm{C}$;
$\boldsymbol{R} \boldsymbol{f}=0.70$ (Petroleum ether $/ \mathrm{EtOAc}=5: 1$);
${ }^{\mathbf{1}} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.91(\mathrm{~s}, 1 \mathrm{H}), 7.35(\mathrm{~s}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.30(\mathrm{t}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.93$ (d, $J=11.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.86(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.80-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.58-1.38(\mathrm{~m}, 5 \mathrm{H}), 1.35-1.22$ ($\mathrm{m}, 2 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 165.9,153.9,133.3,132.3,132.0,130.6,127.1,115.0,40.9,30.5$, 29.3, 26.2, 26.1.

HRMS (ESI): calc'd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$311.0718, found 311.0712 .

1-cyclohexyl-6, 7-difluoro-1-methylquinoxalin-2(1H)-one(3ka)

Electrolysis was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 10% EtOAc in petroleum ether) to give 3ka as a white solid ($59.0 \mathrm{mg}, 43 \%$ yield).
M. p. $=176-178^{\circ} \mathrm{C}$;
$\boldsymbol{R} \boldsymbol{f}=0.65$ (Petroleum ether $/ \mathrm{EtOAc}=5: 1$);
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.64(\mathrm{q}, J=10.4,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{q}, J=11.4,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~s}$, $3 \mathrm{H}), 3.34-3.25(\mathrm{~m}, 1 \mathrm{H}), 1.93(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.86(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.76(\mathrm{~d}, J=12.8 \mathrm{~Hz}$, $1 \mathrm{H}), 1.58-1.39(\mathrm{~m}, 5 \mathrm{H}), 1.37-1.22(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 164.8(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 154.1,150.9(\mathrm{dd}, J=252.0,14.2 \mathrm{~Hz}), 146.5$ (dd, $J=246.3,13.9 \mathrm{~Hz}$), $130.0(\mathrm{dd}, J=8.7,1.8 \mathrm{~Hz}), 129.2(\mathrm{dd}, J=9.4,2.8 \mathrm{~Hz}), 117.4(\mathrm{dd}, J=17.9$, $2.1 \mathrm{~Hz}), 102.1(\mathrm{~d}, ~ J=23.0 \mathrm{~Hz}), 40.8,30.5,29.6,26.2,26.1$.
${ }^{19}$ F NMR ($\mathbf{3 7 7} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta-130.90--136.79(\mathrm{~m}),-141.91--144.83(\mathrm{~m})$.
HRMS (ESI): calc'd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$279.1309, found 279.1303.

3-cyclohexyl-1-propylquinoxalin-2(1H)-one(3la)

Electrolysis was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 20% EtOAc in petroleum ether) to give 3la as a white solid ($89.9 \mathrm{mg}, 67 \%$ yield).
M. p. $=103-104^{\circ} \mathrm{C}$;
$\boldsymbol{R f}=0.80$ (Petroleum ether $/ \mathrm{EtOAc}=5: 1$);
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.84(\mathrm{dd}, J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.29(\mathrm{dd}, J=13.2$, $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.25-4.14(\mathrm{~m}, 2 \mathrm{H}), 3.39-3.29(\mathrm{~m}, 1 \mathrm{H}), 1.96(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.90-1.84(\mathrm{~m}, 2 \mathrm{H})$, $1.83-1.74(\mathrm{~m}, 4 \mathrm{H}), 1.63-1.41(\mathrm{~m}, 4 \mathrm{H}), 1.36-1.24(\mathrm{~m}, 1 \mathrm{H}), 1.05(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 164.3,154.3,133.2,132.0,130.0,129.3,123.2,113.5,43.8,40.7$, 30.5, 26.4, 26.2, 20.7, 11.4.

HRMS (ESI): calc'd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$271.1801, found 271.1800.

1-benzyl-3-cyclohexylquinoxalin-2(1H)-one(3ma)

Electrolysis was conducted following the general procedure. The crude
 material was purified by flash column chromatography (silica gel, 10% EtOAc in petroleum ether) to give 3ma as a white solid ($89.0 \mathrm{mg}, 56 \%$ yield)
M. p. $=133-134^{\circ} \mathrm{C}$;
$\boldsymbol{R} \boldsymbol{f}=0.40$ (Petroleum ether $/ \mathrm{EtOAc}=5: 1$);
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, CDCl $_{3}$): $\delta 7.84(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.17(\mathrm{~m}, 7 \mathrm{H})$, $5.49(\mathrm{~s}, 2 \mathrm{H}), 3.49-3.31(\mathrm{~m}, 1 \mathrm{H}), 2.01(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.88(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.82-1.70(\mathrm{~m}$, $1 \mathrm{H}), 1.67-1.40(\mathrm{~m}, 5 \mathrm{H}), 1.40-1.21(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 164.4,154.6,135.5,133.2,132.2,129.9,129.4,128.9,127.6,126.9$, 123.5, 114.3, 45.9, 40.8, 30.6, 26.4, 26.2.

HRMS (ESI): calc'd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$319.1810, found 319.1803.
ethyl 2-(3-cyclohexyl-2-oxoquinoxalin-1(2H)-yl)-acetate(3na)

Electrolysis was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 20% EtOAc in petroleum ether) to give 3 na as a white solid ($135.2 \mathrm{mg}, 86 \%$ yield).
M. p. $=84-85^{\circ} \mathrm{C}$;
$\boldsymbol{R f}=0.40$ (Petroleum ether $/ \mathrm{EtOAc}=5: 1$);
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.85(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.05(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{~s}, 2 \mathrm{H}), 4.25(\mathrm{q}, J=13.6,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.32(\mathrm{t}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H})$, $1.97(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.87(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.77(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.64-1.38(\mathrm{~m}, 5 \mathrm{H})$, $1.37-1.30(\mathrm{~m}, 1 \mathrm{H}), 1.27(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 167.3,164.0,154.1,133.0,132.0,130.1,129.6,123.7,112.9,62.0$, 43.6, 40.8, 30.5, 26.3, 26.2, 14.1.

HRMS (ESI): calc'd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$315.1709, found 315.1704.

1-allyl-3-cyclohexylquinoxalin-2(1H)-one(3oa)

Electrolysis was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 20\% EtOAc in petroleum ether) to give 3oa as a white solid ($87.3 \mathrm{mg}, 65 \%$ yield).
M. p. $=91-92{ }^{\circ} \mathrm{C}$;
$\boldsymbol{R f}=0.50$ (Petroleum ether $/ \mathrm{EtOAc}=5: 1$);
${ }^{1} H$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.84(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.21(\mathrm{~m}, 2 \mathrm{H})$, $6.00-5.81(\mathrm{~m}, 1 \mathrm{H}), 5.26(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.35$ (t, $J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.97(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.87(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.80-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.65-$ $1.40(\mathrm{~m}, 5 \mathrm{H}), 1.38-1.25(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 164.3,154.0,133.0,132.0,130.8,129.8,129.3,123.4,118.0,114.0$, 44.5, 40.7, 30.5, 26.3, 26.1.

HRMS (ESI): calc'd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$269.1654, found 269.1650 .

2-cyclohexyl-1-(prop-2-yn-1-yl)-quinoxalin-2(1H)-one(3pa)

Electrolysis was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 10% EtOAc in petroleum ether) to give 3pa as a white solid ($84.0 \mathrm{mg}, 63 \%$ yield).
M. p. $=148-149{ }^{\circ} \mathrm{C}$;
$\boldsymbol{R} \boldsymbol{f}=0.70$ (Petroleum ether $/ \mathrm{EtOAc}=5: 1$);
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.85(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.34(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.39-3.26(\mathrm{~m}, 1 \mathrm{H}), 2.29(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $1.96(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.86(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.76(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.62-1.40(\mathrm{~m}, 4 \mathrm{H})$, $1.37-1.25(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) : $\delta 164.2,153.5,133.1,131.3,129.9,129.5,123.8,114.0,73.1,40.8$, 31.5, 30.5, 26.3, 26.1.

HRMS (ESI): calc'd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$267.1497, found 267.1491.

tert-butyl 4-(3-oxo-3,4-dihydroquinoxalin-2-yl)-piperidine-1-carboxylate(3qa)

Electrolysis was conducted following the general procedure. The
 crude material was purified by flash column chromatography (silica gel, 30% EtOAc in petroleum ether) to give 3qa as a white solid ($136.0 \mathrm{mg}, 83 \%$ yield).
M. p. $>\mathbf{2 0 0}{ }^{\circ} \mathrm{C}$;
$\boldsymbol{R} \boldsymbol{f}=0.30$ (Petroleum ether $/ \mathrm{EtOAc}=1: 1$);
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 11.68(\mathrm{~s}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-$ $7.29(\mathrm{~m}, 2 \mathrm{H}), 4.28(\mathrm{~s}, 2 \mathrm{H}), 3.49(\mathrm{t}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{~s}, 2 \mathrm{H}), 2.03-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.89-1.76(\mathrm{~m}$, 2H), 1.49 ($\mathrm{s}, 9 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 162.8,155.9,154.9,132.9,130.7,129.9,129.1,124.2,115.5,79.5$, 38.5, 29.4, 28.6, 28.5.

HRMS (ESI): calc'd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 352.1637$, found 352.1630.

11. X-ray Crystallography

CCDC 2009783
Table 1 Crystal data and structure refinement for $\mathbf{r} 20200612 \mathrm{~d}$.
Identification code
r20200612d

Empirical formula	$\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}$
Formula weight	242.31
Temperature/K	113.15
Crystal system	triclinic
Space group	P-1
a / \AA	10.3988(9)
b/ \AA	11.9760(9)
c/Å	12.1316(8)
$\alpha /{ }^{\circ}$	86.151(6)
$\beta /{ }^{\circ}$	70.363(7)
$\gamma /{ }^{\circ}$	65.045(8)
Volume/ \AA^{3}	1285.17(19)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.252
μ / mm^{-1}	0.080
$\mathrm{F}(000)$	520.0
Crystal size/mm ${ }^{3}$	$0.2 \times 0.18 \times 0.16$
Radiation	$\operatorname{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ}$	3.578 to 52.734
Index ranges	$-12 \leq \mathrm{h} \leq 12,-14 \leq \mathrm{k} \leq 14,-15 \leq 1 \leq 15$
Reflections collected	13407
Independent reflections	$5209\left[\mathrm{R}_{\text {int }}=0.0265, \mathrm{R}_{\text {sigma }}=0.0300\right]$
Data/restraints/parameters	5209/0/327
Goodness-of-fit on F^{2}	1.027
Final R indexes $[\mathrm{I}>=2 \sigma$ (I$)$]	$\mathrm{R}_{1}=0.0433, \mathrm{wR}_{2}=0.1099$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0521, \mathrm{wR}_{2}=0.1162$
Largest diff. peak/hole / e \AA^{-3}	0.63/-0.23

Table 2 Fractional Atomic Coordinates $\left(\times 10^{4}\right)$ and Equivalent Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for $\mathbf{r 2 0 2 0 0 6 1 2 d} . U_{e q}$ is defined as $1 / 3$ of of the trace of the orthogonalised $U_{I J}$ tensor.

Atom	\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	$\boldsymbol{U}(\mathrm{eq})$
O1	$8948.8(10)$	$1484.4(9)$	$5996.9(8)$	$29.3(2)$
N1	$6988.4(12)$	$3406.3(10)$	$6499.7(9)$	$23.1(2)$
N2	$5896.1(12)$	$2620.5(10)$	$8704.5(9)$	$22.2(2)$
C1	$5732.8(14)$	$4255.7(12)$	$7366.8(12)$	$22.6(3)$
C2	$4985.0(16)$	$5490.4(13)$	$7174.2(13)$	$29.5(3)$
C3	$3768.0(16)$	$6292.2(13)$	$8077.1(15)$	$34.2(3)$
C4	$3271.6(16)$	$5897.3(13)$	$9179.3(14)$	$32.3(3)$
C5	$3994.0(15)$	$4678.1(13)$	$9370.1(12)$	$27.7(3)$
C6	$5223.3(14)$	$3845.3(12)$	$8472.9(11)$	$21.7(3)$

C7	$7067.9(14)$	$1851.3(12)$	$7891.1(11)$	$20.2(3)$
C8	$7762.9(14)$	$2213.1(12)$	$6721.2(11)$	$21.6(3)$
C9	$7555.1(17)$	$3803.5(14)$	$5335.3(12)$	$33.0(3)$
C10	$7850.9(14)$	$529.5(12)$	$8126.9(11)$	$21.9(3)$
C11	$6794.7(15)$	$87.4(13)$	$9062.1(13)$	$28.1(3)$
C12	$7651.2(17)$	$-1245.2(13)$	$9303.1(14)$	$33.8(3)$
C13	$8984.2(16)$	$-1393.1(13)$	$9653.6(12)$	$30.5(3)$
C14	$10032.0(15)$	$-951.0(13)$	$8726.4(12)$	$29.1(3)$
C15	$9186.1(14)$	$382.8(12)$	$8495.0(12)$	$24.2(3)$
O2	$4849.5(11)$	$3002.3(9)$	$5089.2(8)$	$30.8(2)$
N3	$6153.9(12)$	$967.6(10)$	$5294.8(9)$	$22.3(2)$
N4	$3511.1(12)$	$1067.2(10)$	$7034.9(9)$	$21.7(2)$
C16	$6198.0(14)$	$-67.8(12)$	$5908.6(11)$	$22.1(3)$
C17	$7527.3(15)$	$-1156.2(13)$	$5686.6(12)$	$27.0(3)$
C18	$7501.5(17)$	$-2152.3(13)$	$6325.4(13)$	$31.9(3)$
C19	$6180.7(17)$	$-2092.0(13)$	$7186.7(13)$	$31.9(3)$
C20	$4875.1(16)$	$-1021.9(13)$	$7405.1(12)$	$27.2(3)$
C21	$4859.9(14)$	$5.2(12)$	$6775.5(11)$	$21.9(3)$
C22	$3508.3(14)$	$2030.9(12)$	$6486.9(11)$	$20.4(3)$
C23	$4874.0(14)$	$2062.5(12)$	$5573.3(11)$	$22.1(3)$
C24	$7483.7(15)$	$885.7(14)$	$4294.7(12)$	$28.3(3)$
C25	$2092.1(14)$	$3215.7(12)$	$6762.1(11)$	$21.2(3)$
C26	$651.0(14)$	$3030.4(12)$	$7337.9(11)$	$23.8(3)$
C27	$-745.7(15)$	$4266.6(13)$	$7609.2(12)$	$28.0(3)$
C28	$-669.2(15)$	$5180.3(13)$	$8377.5(13)$	$29.3(3)$
C29	$769.0(15)$	$5358.5(13)$	$7816.1(14)$	$31.7(3)$
C30	$2164.1(15)$	$4125.7(12)$	$7550.6(12)$	$27.5(3)$

Table 3 Anisotropic Displacement Parameters ($\AA^{2} \times 10^{3}$) for r20200612d. The Anisotropic displacement factor exponent takes the form: $-\mathbf{- 2} \pi^{2}\left[h^{2} \mathbf{a}^{* 2} \mathbf{U}_{11}+2 \mathbf{h k a} \mathbf{b}^{*} \mathbf{U}_{12}+\ldots\right]$.

Atom	$\mathbf{U}_{\mathbf{1 1}}$	$\mathbf{U}_{\mathbf{2 2}}$	$\mathbf{U}_{\mathbf{3 3}}$	$\mathbf{U}_{\mathbf{2 3}}$	$\mathbf{U}_{\mathbf{1 3}}$	$\mathbf{U}_{\mathbf{1 2}}$
O1	$23.8(5)$		$34.6(6)$	$23.1(5)$	$-0.8(4)$	$-5.5(4)$
N1	$22.5(5)$	$28.3(6)$	$22.4(5)$	$8.2(5)$	$-9.0(4)$	$-8.1(4)$
N2	$19.9(5)$	$22.9(6)$	$24.0(5)$	$3.7(4)$	$-8.8(4)$	$-8.3(4)$
C1	$18.7(6)$	$24.4(7)$	$29.9(7)$	$5.9(5)$	$-11.6(5)$	$-11.8(5)$
C2	$27.4(7)$	$27.6(7)$	$41.1(8)$	$14.3(6)$	$-16.9(6)$	$-16.1(6)$
C3	$27.6(7)$	$21.1(7) 57.5(10)$	$9.8(7)$	$-20.8(7)$	$-9.7(6)$	
C4	$22.5(7)$	$24.8(7)$	$45.8(9)$	$-1.8(6)$	$-11.8(6)$	$-5.8(6)$
C5	$20.3(6)$	$27.8(7)$	$32.0(7)$	$2.3(6)$	$-8.3(6)$	$-8.0(6)$
C6	$18.4(6)$	$21.7(6)$	$27.2(7)$	$4.8(5)$	$-10.7(5)$	$-8.7(5)$

C7	19.5(6)	22.6(6)	22.0(6)	3.0(5)	-10.1(5)	-9.9(5)
C8	19.8(6)	27.2(7)	21.8(6)	2.4(5)	-9.8(5)	-11.7(5)
C9	36.7(8)	40.4(8)	25.9(7)	13.9(6)	-10.1(6)	-22.0(7)
C10	22.9(6)	20.6(6)	21.5(6)	$1.5(5)$	-10.2(5)	-6.7(5)
C11	26.1(7)	25.2(7)	36.0(7)	9.0(6)	-13.7(6)	-12.1(6)
C12	38.0(8)	24.9(7)	$39.8(8)$	9.7(6)	-15.3(7)	-14.0(6)
C13	34.0(7)	23.3(7)	25.9(7)	4.0(5)	-12.1(6)	-3.4(6)
C14	25.0(7)	28.1(7)	27.8(7)	0.4(6)	-12.0(6)	-2.8(6)
C15	21.6(6)	24.9(7)	24.8(6)	1.5(5)	-9.5(5)	-7.2(5)
O2	28.8(5)	30.9(5)	30.4(5)	11.0(4)	-6.1(4)	-14.6(4)
N3	20.6(5)	27.7(6)	18.1(5)	0.2(4)	-3.7(4)	-11.7(5)
N4	22.7(5)	23.5(6)	20.3(5)	0.9(4)	-6.9(4)	-11.3(5)
C16	25.1(6)	24.5(7)	19.7(6)	-1.1(5)	-9.9(5)	-11.1(5)
C17	24.5(7)	29.6(7)	25.8(7)	-4.6(6)	-9.2(5)	-9.0(6)
C18	30.8(7)	24.7(7)	38.9(8)	-2.6(6)	-17.0(6)	-5.9(6)
C19	39.4(8)	24.4(7)	38.8(8)	7.2(6)	-20.9(7)	-14.6(6)
C20	30.8(7)	27.9(7)	27.6(7)	4.8(6)	-11.7(6)	-15.7(6)
C21	23.9(6)	23.4(7)	21.0(6)	-0.1(5)	-9.4(5)	-10.8(5)
C22	21.8(6)	24.5(7)	17.8(6)	0.2(5)	-7.1(5)	-11.9(5)
C23	22.3(6)	27.2(7)	18.7(6)	1.7(5)	-7.2(5)	-11.9(5)
C24	21.2(6)	38.3(8)	22.7(6)	-0.9(6)	-1.4(5)	-14.5(6)
C25	20.2(6)	23.1(6)	21.1(6)	2.4(5)	-6.7(5)	-10.2(5)
C26	22.6(6)	26.5(7)	24.2(6)	-0.8(5)	-6.5(5)	-12.8(6)
C27	20.2(6)	32.3(7)	$31.8(7)$	0.7(6)	-8.5(5)	-11.4(6)
C28	21.7(7)	26.1(7)	$34.5(7)$	-2.1(6)	-5.5(6)	-7.6(6)
C29	26.7(7)	24.3(7)	42.3(8)	-4.3(6)	-7.0(6)	-11.8(6)
C30	22.6(7)	27.5(7)	34.2(7)	-3.3(6)	-8.4(6)	-12.3(6)

Table 4 Bond Lengths for r20200612d.

Atom Atom	Length/ \AA	Atom Atom	Length/ \AA		
O1	C 8	$1.2333(16)$	O 2	C 23	$1.2286(16)$
N 1	C 1	$1.3949(17)$	N 3	C 16	$1.3947(17)$
N 1	C 8	$1.3732(17)$	N 3	C 23	$1.3746(17)$
N 1	C 9	$1.4683(16)$	N 3	C 24	$1.4724(16)$
N 2	C 6	$1.3896(16)$	N 4	C 21	$1.3913(16)$
N 2	C 7	$1.2938(16)$	N 4	C 22	$1.2922(16)$
C 1	C 2	$1.3968(19)$	C 16	C 17	$1.3996(19)$
C 1	C 6	$1.4058(18)$	C 16	C 21	$1.4057(18)$
					24

C 2	C 3	$1.381(2) \mathrm{C} 17$	C 18	$1.383(2)$	
C 3	C 4	$1.391(2) \mathrm{C} 18$	C 19	$1.395(2)$	
C 4	C 5	$1.377(2) \mathrm{C} 19$	C 20	$1.375(2)$	
C 5	C 6	$1.3958(18)$	C 20	C 21	$1.4008(18)$
C 7	C 8	$1.4888(17)$	C 22	C 23	$1.4928(17)$
C 7	C 10	$1.5030(17)$	C 22	C 25	$1.5045(17)$
C 10	C 11	$1.5317(18)$	C 25	C 26	$1.5294(17)$
C 10	C 15	$1.5357(18)$	C 25	C 30	$1.5380(18)$
C 11	C 12	$1.5293(19)$	C 26	C 27	$1.5295(18)$
C 12	C 13	$1.521(2)$	C 27	C 28	$1.5273(19)$
C 13	C 14	$1.522(2)$	C 28	C 29	$1.5202(19)$
C 14	C 15	$1.5246(18)$	C 29	C 30	$1.5266(19)$

Table 5 Bond Angles for r20200612d.

Atom	Atom	Atom	Angle ${ }^{\circ}$	Atom	Atom	Atom	Angle ${ }^{\circ}$
C1	N1	C9	119.72(11)	C16	N3	C24	119.79(11)
C8	N1	C1	121.66(11)	C 23	N3	C16	121.59(11)
C8	N1	C9	118.54(11)	C 23	N3	C24	118.58(11)
C7	N2	C6	118.70(11)	C 22	N4	C21	118.54(11)
N1	C1	C2	122.31(12)	N3	C16	C17	121.84(12)
N1	C1	C6	118.23(11)	N3	C16	C21	118.16(12)
C2	C1	C6	119.46(13)	C 17	C16	C21	120.00(12)
C3	C2	C1	119.51(13)	C 18	C17	C16	119.19(13)
C2	C3	C4	121.36(13)	C 17	C18	C19	121.36(13)
C5	C4	C3	119.37(14)	C 20	C19	C18	119.42(13)
C4	C5	C6	120.55(13)	C19	C20	C21	120.77(13)
N2	C6	C1	121.97(12)	N 4	C21	C16	122.27(12)
N2	C6	C5	118.29(12)	N 4	C21	C20	118.47(12)
C5	C6	C1	119.74(12)	C 20	C21	C16	119.26(12)
N2	C7	C8	123.47(11)	N 4	C22	C23	123.48(12)
N2	C7	C10	120.00(11)	N 4	C22	C25	120.69(11)
C8	C7	C10	116.46(11)	C 23	C22	C25	115.82(11)
O1	C8	N1	122.35(12)	O 2	C23	N3	122.16(11)
O1	C8	C7	122.10(12)	O 2	C23	C22	122.12(12)
N1	C8	C7	$115.55(11)$	N3	C23	C22	115.71(11)
C7	C10	C11	112.85(11)	C 22	C25	C26	113.40(10)
C7	C10	C15	109.05(10)	C 22	C25	C30	109.53(10)
C11	C10	C15	110.37(11)	C 26	C25	C30	110.12(10)

C 12	C 11	C 10	$110.98(11)$	C 25	C 26	C 27	$110.93(11)$
C 13	C 12	C 11	$111.60(12)$	C 28	C 27	C 26	$111.63(11)$
C 12	C 13	C 14	$110.93(12)$	C 29	C 28	C 27	$110.92(11)$
C 13	C 14	C 15	$111.23(11)$	C 28	C 29	C 30	$111.28(11)$
C 14	C 15	C 10	$110.97(11)$	C 29	C 30	C 25	$111.18(11)$

Table 6 Hydrogen Atom Coordinates $\left(\AA^{\times 104}\right)$ and Isotropic Displacement Parameters $\left(\AA^{\left.\mathbf{2} \times 10^{3}\right)}\right.$ for $\mathbf{r} 20200612 \mathrm{~d}$.

Atom		y	z	U(eq)
H2	5311.1	5776.46	6427.64	35
H3	3259.42	7130.75	7942.74	41
H4	2442.08	6463.38	9794.52	39
H5	3652.85	4401.43	10118.59	33
H9A	6765.18	4103.84	4978.39	50
H9B	8439.1	3102.66	4834.81	50
H9C	7839.13	4468.98	5415.6	50
H10	8258.03	-2.11	7378.86	26
H11A	6332.19	633.24	9798.02	34
H11B	5974.31	139.95	8791.24	34
H12A	6956.89	-1490.78	9941.28	41
H12B	8017.57	-1801.39	8589.4	41
H13A	9549.43	-2273.7	9753.61	37
H13B	8611.95	-910.29	10415.09	37
H14A	10486.29	-1490.4	7987.2	35
H14B	10858.65	-1013.79	8994.17	35
H15A	9884.01	633	7865.29	29
H15B	8811.24	932.71	9214.83	29
H17	8436.31	-1210.22	5104.18	32
H18	8401.91	-2892.69	6174.48	38
H19	6182.8	-2784.09	7618.66	38
H20	3973.08	-978.73	7989.79	33
H24A	8331.22	700.36	4570.12	42
H24B	7250.81	1675.21	3939.68	42
H24C	7754.33	227	3708.74	42
H25	2050.57	3590.83	6006.04	25
H26A	682.49	2629.25	8074.92	29
H26B	589.62	2478.07	6805.11	29
H27A	-832.35	4624.95	6863.73	34

H27B	-1657.27	4125.93	8017.1	34
H28A	-1554.5	5985.68	8490.99	35
H28B	-702.86	4868.39	9158.63	35
H29A	824.23	5910.77	8353.01	38
H29B	746.85	5759.5	7077.87	38
H30A	2239.57	3762.42	8296.37	33
H30B	3077.63	4266.89	7153.57	33

Experimental

Single crystals of $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}$ [r20200612d] were []. A suitable crystal was selected and [] on a 'Rigaku Saturn 70 CCD' diffractometer. The crystal was kept at 113.15 K during data collection. Using Olex2 [1], the structure was solved with the ShelXT [2] structure solution program using Intrinsic Phasing and refined with the ShelXL [3] refinement package using Least Squares minimisation.

1. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. \& Puschmann, H. (2009), J. Appl. Cryst. 42, 339-341.
2. Sheldrick, G.M. (2015). Acta Cryst. A71, 3-8
3. Sheldrick, G.M. (2015). Acta Cryst. C71, 3-8.

Crystal structure determination of [r20200612d]

Crystal Data for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}(M=242.31 \mathrm{~g} / \mathrm{mol})$: triclinic, space group P-1 (no. 2), $a=$ $10.3988(9) \AA, b=11.9760(9) \AA, c=12.1316(8) \AA, \alpha=86.151(6)^{\circ}, \beta=70.363(7)^{\circ}, \gamma=65.045(8)^{\circ}, V=$ $1285.17(19) \AA^{3}, Z=4, T=113.15 \mathrm{~K}, \mu(\mathrm{MoK} \alpha)=0.080 \mathrm{~mm}^{-1}$, Dcalc $=1.252 \mathrm{~g} / \mathrm{cm}^{3}, 13407$ reflections measured $\left(3.578^{\circ} \leq 2 \Theta \leq 52.734^{\circ}\right), 5209$ unique ($\left.R_{\text {int }}=0.0265, \mathrm{R}_{\text {sigma }}=0.0300\right)$ which were used in all calculations. The final R_{1} was 0.0433 ($\left.\mathrm{I}>2 \sigma(\mathrm{I})\right)$ and $w R_{2}$ was 0.1162 (all data).

Refinement model description

Number of restraints - 0 , number of constraints - unknown.
Details:

1. Fixed Uiso

At 1.2 times of:
All C(H) groups, All C(H,H) groups
At 1.5 times of:

> All C(H,H,H) groups
2.a Ternary CH refined with riding coordinates:

C10(H10), C25(H25)
2.b Secondary CH 2 refined with riding coordinates:

C11(H11A,H11B), C12(H12A,H12B), C13(H13A,H13B), C14(H14A,H14B), C15(H15A, H15B), C26(H26A,H26B), C27(H27A,H27B), C28(H28A,H28B), C29(H29A,H29B), C30(H30A,H30B)
2.c Aromatic/amide H refined with riding coordinates:

C2(H2), C3(H3), C4(H4), C5(H5), C17(H17), C18(H18), C19(H19), C20(H20)
2.d Idealised Me refined as rotating group:

C9(H9A,H9B,H9C), C24(H24A,H24B,H24C)

12. Spectra of prepared compounds

${ }^{1} \mathrm{H}$ NMR spectrum of compound 3aa

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 a b}$

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 a c}$

${ }^{13} \mathrm{C}$ NMR spectrum of compound 3ac

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 a d}$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 a d}$

${ }^{13} \mathrm{C}$ NMR spectrum of compound 3ae

${ }^{1} \mathrm{H}$ NMR spectrum of compound 3af

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 a g}$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 a g}$

${ }^{1} \mathrm{H}$ NMR spectrum of compound 3ah

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 a j}$

${ }^{19}$ F NMR spectrum of compound 3aj

${ }^{1} \mathrm{H}$ NMR spectrum of compound 3ak

${ }^{13} \mathrm{C}$ NMR spectrum of compound 3ak

${ }^{1} \mathrm{H}$ NMR spectrum of compound 3al

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 a m}$

${ }^{13} \mathrm{C}$ NMR spectrum of compound 3am

${ }^{1} \mathrm{H}$ NMR spectrum of compound 3an
 NNNNNNNNNNNNNNNNNN

${ }^{13} \mathrm{C}$ NMR spectrum of compound 3an

${ }^{1} \mathrm{H}$ NMR spectrum of compound 3ap

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 a q}$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 a q}$

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 b a}$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 b a}$

${ }^{1} \mathrm{H}$ NMR spectrum of compound 3ca

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 c a}$

${ }^{1} \mathrm{H}$ NMR spectrum of compound 3da

${ }^{13} \mathrm{C}$ NMR spectrum of compound 3da

${ }^{1} \mathrm{H}$ NMR spectrum of compound 3ea

${ }^{13} \mathrm{C}$ NMR spectrum of compound 3ea

${ }^{19} \mathrm{~F}$ NMR spectrum of compound $\mathbf{3 e a}$

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 f a}$

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 g a}$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 g a}$

${ }^{19} \mathrm{~F}$ NMR spectrum of compound 3ga

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3}$ ha

${ }^{13} \mathrm{C}$ NMR spectrum of compound 3ha

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 i a}$

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 j a}$

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 k a}$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 k a}$

${ }^{19} \mathrm{~F}$ NMR spectrum of compound 3ka

[^0]${ }^{1} \mathrm{H}$ NMR spectrum of compound 3la

${ }^{13} \mathrm{C}$ NMR spectrum of compound 31a

${ }^{1} \mathrm{H}$ NMR spectrum of compound 3ma

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 m a}$

${ }^{1} \mathrm{H}$ NMR spectrum of compound 3 na

${ }^{13} \mathrm{C}$ NMR spectrum of compound 3 na

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 p a}$

${ }^{13} \mathrm{C}$ NMR spectrum of compound 3pa

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 q a}$

12. Reference

1. J. Cornella, J. T. Edwards, T. Qin, S. Kawamura, J. Wang, C. M. Pan, R. Gianatassio, M. Schmidt, M. D. Eastgate, P. S. Baran, J. Am. Chem. Soc. 2016, 138, 2174-7.
2. M. Gao, Y. Li, L. Xie, R. Chauvin, X. Cui, Chem. Commun. 2016, 52, 2846-9.

[^0]: | -65 | -70 | -75 | -80 | -85 | -90 | -95 | -100 | -105 | -110 | -115 | -120 | -125 | -130 | -135 | -140 | -145 | -150 |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | 1 ppm$)$ | | | | | | | | | | | | | | | | | |

