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1. Additional results and discussion
(a) Full table of acetone trapping studies

s-BuLi, (S)-6, pentane

QBOtC conditions NBotc
R then Me,CO
conditions HO

5R=H (R)-8
(+)-10 R = SnMe,
Entry“ 5or 10° Metallation Trapping temp Yield er Recovered 5
temp (time) (R)-8
(time)

1 5 -78°C(1h) -78°C(1h) 61%  89:11 21%
2 10 -78°C(1h) -78°C(1h) 57%  90:10 30%
3 10 -78 °C (5 min) -78°C(1h) 64%  85:15 25%
4 10 -78 °C (30min) -78°C(1h) 45%  86:14 32%

5 5 -78°C(1h) -98°C(1h) 55%  88:12 35%

-98 °C (10 min)
6 5 -78 °C (1 min) -78°C(5min) 28%  58:42 70%
7 5 -78°C(1h) -78°C(1h) 29%  61:39 56%
(0.5 equiv
acetone)
8 5 -78°C(1h) -78°C(1h) 2% 60:40 49%
(0.1 equiv
acetone)

9 5 -98°C(1h) -98°C(1h) 38%  65:35 42%
10¢ 5 -98°C (3 h) -98°C(1h) 51% 86:14 45%
11 5 (with -98°C(1h) -98°C(1h) 38%  65:35 37%

SnMeas)

12 10 -98°C(1h) -98°C(1h) 41%  84:16 25%

13 10 -78°C(1h) -78°C(1h) 19% 66:34 41%
(0.5 equiv
acetone)

14 10 -78°C (1 h) -78°C (1 h) 7%  58:42 52%
(0.1 equiv
acetone)

15¢ (R)-10 -98 °C (1 min) -98°C(1h) 39%  51:49 17%
(67:33 er)

16 10 Experimental procedure C 1% 52:48 87% (10)

(5 equiv)

a Unless noted, all reactions 0.25 mmol scale and trapped with 3 equiv of acetone. ® All reactions with stannane (+)-10 gave
0-7% recovered stannane 10 (determined to be racemic by HPLC) and 0-7% 2,4-substituted stannane SI-1. < Performed on a
0.35 mmol scale. ? Performed on a 0.1 mmol scale with (+)-6 DIANANE and gave 15 % recovered stannane 10
{enantioenriched}.

Table S1. Full table of acetone trapping studies.
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(b) Partial configurational stability of a-Li 5 at —98 °C when trapping with aromatic
aldehydes

Reduced enantioselectivities were observed for lithiation—electrophile trapping of N-Botc
azetidine 5 with aromatic aldehydes after 1 h at -98 °C compared to at -78 °C (Table S2). If
DKR was occurring an improvement in enantioselectivity would be expected at lower
temperatures. Aromatic aldehydes are fast trapping electrophiles and therefore would be
expected to trap the lithiated complexes at a rate faster than epimerisation. Reduced
enantioselectivities at —98 °C suggest that the lithiated complexes have not fully equilibrated

after 1 h (the same conclusion drawn with acetone in the main manuscript), again supporting

partial configurational stability of the lithiated complexes at -98 °C.

s-Buli, (S)-6
ETBOtC pentane, temp, 1 h NBoHtC
then ArCHO |:g/Ar
temp, 1 h
HO
5 SI-2 or SI-3
Entry“ Product Lithiation E* trapping Yield er® % SM
(major diastereomer temp temp (dr)
shown)
11 -78°C -78°C 88% 85:15 7
NBotc (60:40)
2 EK;Ph —98°C —98°C 51% 65:35 49
(71:29)
HO
SI-2
3 -78°C -78°C 64% 80:20 25
NBotc (69:31)
4 E%ECeHL‘p—CI ~98°C -98°C 14% 6931 86
(64:36)
HO
SI-3

a General procedure A was followed, on a 0.35 (entries 1 & 3) or 0.92 (entries 2 & 4) mmol scale. b Er of major diastereomer
(er of minor diastereomer identical for entries 1 & 3; 60:40 and 65:35 for entries 2 & 4, respectively).

Table S2. Partial configurational stability of a-Li 5 at -98 °C when trapping with aromatic
aldehydes.

1p.m. Hodgson, C. L. Mortimer and J. M. McKenna, Org. Lett., 2015, 17, 330.
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Further evidence for DTR with benzaldehyde was found when attempting to use it as a
sacrificial electrophile in sub-stoichiometric amounts (0.2 equiv, Scheme S1). The reduction
in er seen for both diastereomers of the benzaldehyde-trapped adduct SI-2, suggests that the
reaction proceeds via DTR with the minor diastereomeric complex being the faster reacting

intermediate.

s-BuLi, (S)-6
ETBOtC pentane, —78 °C, 1 h NBotc NBotc NBotc
WH + -H

then PhCHO (0.2 equiv), 5 min Ek [S/Ph E\/Ph

then Me,CO J

—78°C. 1 h HO HO HO
5 (R)-8 (R,R)-SI-2 (R,S)-SI-2
63% (91:9 er) (68:32 er) (67:33 er)

5% (3:2 dr)

Scheme S1. Benzaldehyde as a sacrificial electrophile.

(c) On the origin of lower configurational stability from anion generation via
transmetallation compared to lithiation

A ‘poor man’s Hoffmann test’ was undertaken on racemic stannane (+)-10 in the presence of
DIANANE (S)-6, to examine any potential differences between the intermediate
organolithium complexes formed by transmetallation compared to deprotonation. Sn—Li
exchange on stannane (+)-10, followed by trapping with substoichiometric amounts of
acetone (0.5 equiv and 0.1 equiv) gave alcohol (R)-8 in 19% (66:34 er) and 7% (58:42 er)
respectively (Scheme S2). These results show the enantiodetermining step for reaction of the
anion generated by Sn—Li exchange occurs by DTR and the ‘minor’ organolithium complex is

the faster reacting species, i.e., like the direct deprotonation.
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s-BulLli, (S)-6
QBOtC pentane, =78 °C, 1 h NBotc
then Me,CO (x equiv
SnMes i pra Ek
’ HO
(x)-10 (R

-8
=0.5, 19% (66:34 er)
=0.1

X
X , 7% (58:42 er)

Scheme S2. ‘Poor man's Hoffmann test’ with stannane (+)-10.

To test if the tetraalkyltin generated during Sn—Li exchange could be influencing
configurational stability of the anion, deprotonation was carried out in the presence of MesSn
(1 equiv) at =98 °C.2 Following trapping with acetone, alcohol (R)-8 was formed in 38% yield
and 65:35 er (Scheme S3); this is the same level of enantioselectivity obtained from
deprotonation in the absence of MesSn at -98 °C and indicates the presence of a tetraalkyltin

is not the origin of decreased configurational stability.

s-Buli, (S)-6, Me,Sn, pentane
IZTBOtC ( —)98 OC’41 h P NBotc
then Me,CO
-98°C,1h HO

5 (R)-8
38% (65:35 er)

Scheme S3. Lithiation—electrophile trapping in the presence of MesSn.

One speculative rationalisation for the difference in enantioselectivity through Sn—Li
exchange could be the formation of oxygen-coordinated lithiated complexes from stannane
10 (Scheme S4). The rotamer ratio of stannane 10 is 2:1 (at rt) and rotamer interconversion

does not occur on the reaction timescale at the low reaction temperatures used;3

25, Thayumanavan, A. Basu and P. Beak, J. Am. Chem. Soc., 1997, 119, 8209.

3K.E. Jackson, C. L. Mortimer, B. Odell, J. M. McKenna, T. D. W. Claridge, R. S. Paton and D. M. Hodgson, J.
Org. Chem., 2015, 80, 9838.
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transmetallation could therefore lead to the formation of a sulfur-coordinated anion as well
as an oxygen-coordinated anion. In contrast, as lithiation is directed by the thiocarbonyl
group,®> only the sulfur-coordinated lithiated complex would be expected from
deprotonation. The possible oxygen-coordinated anion from Sn—Li exchange could possess
less configurational stability and altered reactivity, due to the different nature of coordination
at Li.

s-BuLi, 6 Ot-Bu S

pentane, —78 °C /& J\

NBotc N S and/or N /Ot—BU

’ ’

SnMejy Li-L* Li-L*
10

Scheme S4. Possible complexes from Sn—Li exchange.

Variations in configurational stability depending on the method of carbanion formation have
been observed for 2-lithio-N-Boc piperidine, which may arise due to different Li
ligation/aggregation states formed by deprotonation or transmetallation. The authors did not
investigate the origins further; however, rotamers in the starting 2-tributylstannyl-N-Boc
piperidine may facilitate formation of different carbanionic species. The demonstration of a
configurationally stable carbanion by Sn—Li exchange of N-Boc azetidine stannane 13
(Scheme 6 main paper), suggests that in this case both rotameric carbanionic species, if

formed, are configurationally stable.

4 (a) D. Stead, G. Carbone, P. O’'Brien, K. R. Campos, |. Coldham and A. Sanderson, J. Am. Chem. Soc., 2010, 132,
7260. (b) T. K. Beng, W. S. Tyree, T. Parker, C. Su, P. G. Williard and R. E. Gawley, J. Am. Chem. Soc., 2012, 134,
16845.
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(d) Differing stereoselectivity in the syntheses of 2,4-dimethylazetidines via lithiation
compared to transmetallation

Synthesis of 2,4-dimethylazetidine SI-4 was achieved from o'-lithiation—electrophile
trapping of 2-methylazetidine (+)-7 (Scheme S5). Lithiation at =78 °C for 1 h in pentane with
racemic DIANANE (+)-6 then trapping with Mel gave 2,4-dimethylazetidine SI-4 in 15% yield
(43:57 dr cis:trans), with a slight preference for the trans-2,4-dimethylazetidine. Low
diastereoselectivity is similarly observed when 2,4-dimethylazetidine SI-4 was prepared in
THF with TMEDA as the diamine ligand (1:1 dr).3 These results indicate the steric and
stereoelectronic influence of the pre-existing methyl group is minimal during a'-lithiation—
electrophile trapping. However, when 2,4-dimethylazetidine SI-4 was prepared by
transmetallation from 4-methyl-2-stannylazetidine SI-5, different diastereoselectivity was
observed (Scheme S5). 4-Methyl-2-stannylazetidine SI-5 was prepared by a'-lithiation of
racemic 2-methylazetidine 7 in THF with TMEDA, followed by trapping with MesSnCl; this gave
an ~ 1:1 dr (inseparable) of stannane SI-5 in 59% yield. Transmetallation of stannane SI-5 in
pentane in the presence of racemic DIANANE (+)-6 at —-78 °C for 1 h followed by trapping with
Mel gave 2,4-dimethylazetidine SI-4 in 63% yield (25:75 dr cis:trans). The major diastereomer
is again the trans-2,4-dimethylazetidine SI-4, but interestingly the diastereoselectivity of the
reaction via transmetallation was higher compared to lithiation. Although, the yield via o’'-
lithiation is low, if we assume that (like a-methylation) the reaction is proceeding via DKR,
then the selectivity should not be influenced by the conversion. These results provide further
evidence that the anion formed by transmetallation possesses slightly different

characteristics compared to the anion formed by lithiation.
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A
I:l\totc s-BuLi, (+)-6, ﬁ:l\ﬁotc T
— o pa L ol- %
pentane, =78 °C, 1 h (43:57 dr cis:trans)
- then Mel, =78 °C, 1 h Sl-4 [also recovered 7 40%]
s-BuLi, TMEDA MesSn s-BuLi, (+)-6 path B: SI-4 63%
THF, =78 °C, 0.5 h NBotc pentane,-78°C,1h | B  (25:75dr cis:trans)
then Me3SnCl then Mel, =78 °C, 1 h [also recovered 7 11%)]

SI-5 59% (~1:1 dr)
[also recovered 7 41%)]

Scheme S5. Syntheses of 2,4-dimethylazetidine SI-4.

Further differences were observed between lithiation and transmetallation in the asymmetric
synthesis of 2,4-dimethylazetidine (R,R)-SI-4 (Scheme S6). Deprotonation of (R)-7 (80:20 er)
at -78 °C for 1 h before trapping with Mel, gave 2,4-dimethylazetidine (R,R)-SI-4 in 46% vyield
(18:82 dr cis:trans, 91:9 er). Interestingly, starting material (R)-7 45% was recovered with
reduced enantioenrichment (70:30 er). Restricted rotation of the thiocarbonyl group (1:2.5
cis:trans rotamers)? prevents complete o'-lithiation of (R)-7 at the unsubstituted a-methylene
site (from the cis rotamer) and prevents synthetically useful yields. An attempt to improve
the yield of the overall transformation was examined via stannane SI-5 as an intermediate
(Scheme S6). Lithiation—stannylation of (R)-7 (80:20 er) with TMEDA in THF, gave stannane
SI-5in 63% vyield (~1:1 dr). Transmetallation of stannane SI-5 in the presence of DIANANE (S)-
6 gave 2,4-dimethylazetidine (R,R)-SI-4 in 45% yield (26:74 dr cis:trans, 82:18 er). The reduced
diastereo- and enantioselectivity from this approach again highlights differences in behaviour

of the anionic complexes formed from deprotonation and transmetallation.
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A

ETBOtC s-BulLi, (S)-6, ﬂBotc

pentane, =78 °C, 1 h L
then Mel, =78 °C, 1 h

(R)-7 (80:20 er) (R,R)-SI-4

s-BuLi, TMEDA o o, s-BuLi, (5)-6
THF, —78 °C, 0.5 h NBotc pentane, =78 °C,1h | B
then Me3SnCl then Mel, =78 °C, 1 h

path A: (R,R)-SI-4 46%
(18:82 dr cis:trans, 91:9 er)

[also recovered
(R)-7 45% (70:30 er)]

path B: (R,R)-SI-4 45%
(26:74 dr cis:trans, 82:18 er)
[also recovered

(R)-7 13% (74:26 er)]
SI-5 63% (~1:1 dr)

[also recovered
(R)-7 31% (76:24 er)]

Scheme S6. Asymmetric syntheses of 2,4-dimethylazetidine (R,R)-SI-4.

(e) Synthesis of N-Boc stannane 13

Attempts to generate N-Boc stannane 13, by deprotection of N-Botc stannane 10 under
previously described acidic conditions! followed by Boc protection, resulted in significant
proto-destannylation with only trace product formed. Gawley and co-workers previously
described N-Boc deprotection of 2-stannyl pyrrolidines using TMSI.> Application of this
procedure to N-Botc stannane 10 allowed clean removal of the directing group; subsequent
trapping with Boc,O gave N-Boc stannane 13 in moderate yield 66% (Scheme S7). Similarly,
enantioenriched stannane (5)-10 (63:37 er) gave enantioenriched N-Boc stannane (S)-13 in
66:34 er (63% yield). This demonstrates a new ‘milder’ method for N-Botc deprotection and

serves as a viable alternative when acid labile substituents are present.

TMSI, CH,Cl,
NBotc rt, 30 min NBoc
SnMe; then DMAP, NEts, SnMes
Boc,0, rt, overnight
(£)-10 (£)-13 (66 %)
(5)-10 (63:37 er) (S)-13 (63 %, 66:34 er)

Scheme S7. Synthesis of N-Boc stannane 13 via deprotection of stannane 10 using TMSI.

> R. E. Gawley, S. Narayan and D. A. Vicic, J. Org. Chem., 2005, 70, 328.
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(f) Determination of absolute configurations by conversion to Mosher amides

The absolute configuration of silane (—)-12 was determined by conversion to the Mosher
amide and analysis of the 'H NMR spectra. Transformation of silane (+)-12 to the
diastereomeric chromatographically separable Mosher amides (R,S)-SI-6 and (R,R)-SI-6 was
achieved by acidic deprotection of the N-Botc group,! followed by amide formation with (S)-

MPTA-CI (52%, 55:45 dr, Scheme S8).

MeQ MeO
HCl in Et,0 e~y CFs 9 CF3
NBotc rt, 1 h Ph Ph
N~ 0 N~ 0
SiMe; then solvent switch D
to CH2C|2 SiM ,SM
DIPEA, (S)-MTPA-CI, iMes iMes
rt, overnight
(R,S)-SI-6 : (RR)-SI-6
(£)-12 55 : 45
(R)-12 (69:31 er) 26 : 74

Scheme S$8. Conversion of silane 12 to Mosher amides (R,R)-SI-6 and (R,S)-SI-6.
For all the Mosher amides analysed, only single rotamers were observed. The rotamers for
the two silyl amides (R,S)-SI-6 and (R,R)-SI-6 were assigned cis from 2D-NOSEY cross-peaks
both between methoxy and a deshielded H of NCH,, and between the shielded H of NCH, and
the phenyl group (Fig. S1-S4); this is consistent with the previously established rotamer
preference for an analogous 2-trimethylsilyl N-thiopivaloyl azetidine.® These cross-peaks
allow assignment of the NCH, protons in both diastereomers. With the rotameric form
established, the relative stereochemistry of the silyl group could then be assigned from NOE
cross-peaks between either the methoxy or Ph group of the Mosher amide, depending on the
diastereomer. Additional cross-peaks between the SiMes group and the ring protons were

used to establish relative configuration of the remaining ring protons (Fig. S1-S4). These
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assignments were supported by vicinal proton-proton coupling constants around the ring:
azetidines typically show larger values for mutually cis protons (~9-11 Hz) compared to trans

protons (~5-7 Hz).®

QMe
Ha ‘
\
L ™ I W
. ~ 0.0
e — - O O
i 0.5
—
J 1.0
<
— 1.5
J = = 2.0
= = =
25 E
3.0 -
- = = = 3.5
Mg —— C) ™~
Ha = - @ = = 40
- = . = =
4.5
5.0

.....................................................
43 42 41 40 39 38 37 36 35 34 33 32 31 3.0 29 28 27 26 25 24 23 22 21 20 15 18
f2 (ppm)

Figure S1. NOESY spectrum of minor diastereomer silane (R,S)-SI-6.

6D.C.G.A. Pinto, C. M. M. Santos and A. M. S. Silva, Advanced NMR techniques for structural characterization
of heterocyclic structures, in Recent Research Developments in Heterocyclic Chemistry, ed. T. M. V. D. Pinho e
Melo and A. M. R. Gonsalves, Research Signpost, Kerala, India, 2007, ch. 8, pp. 397-475.
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Figure S2. NOESY spectrum of minor diastereomer (aromatic region) silane (R,S)-SI-6.
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Figure $3. NOESY spectrum of major diastereomer silane (R,R)-SI-6.

1 (ppm)
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SiMe3

NE—' VY

[ }I“J

Ha‘

0,

1 (ppm)

M

_— — /ﬁ‘ _Jmi;mfzgﬂ_ —

T T T T T T T T T T T T
3.00 7.85 7.50 7.85 7.80 7.75 7.70 7.65 7.60 7.55 7.50 7.45 7.40 7.35 7.30 7.25 7.20 7.15 7.10
f2 (ppm)

Figure S4. NOESY spectrum of major diastereomer (aromatic region) silane (R,R)-SI-6.
The silane diastereomers possessed distinctive chemical shift patterns, with the NCH, and
NCHCH, protons showing significant A6 ppm values (Fig. S5, Table S3). The lack of any
significant AS ppm for the NCH proton (entry 5) further supports the previously cis rotamer
assignment, with the C=0 group pointing towards the substituted side of the azetidine ring.’
The chemical shift patterns for the silanes indicate the phenyl group has a shielding effect on
the NCH2 and NCHCH- protons which occupy the same space below the ring (Hs & Hy, as
drawn). Additionally, the trimethylsilyl group influences chemical shift values; mutually cis
protons being shielded relative to those that are anti. The latter is particularly apparent for
Hp, which for (R,S)-SI-6 is more shielded than the (R,R)-SI-6 Hy, proton (entry 3), despite being

on the opposite side of the ring to the phenyl group. Importantly, these chemical shift

7T.R. Hoye and M. K. Renner, J. Org. Chem., 1996, 61, 2056; corrigendum, J. Org. Chem., 2006, 71, 1754.
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patterns are observable with other substituted azetidines (see below) and therefore allow for
assignment of relative/absolute configurations of other similarly substituted azetidines

following conversion to Mosher amides.

MeQ, CF3

Ph--‘I

N0
SiMe;,

minor (

| |
ok Y AL
MeO CF,

Ph“‘I
ET o}

“SiMe;

major ‘

M, ,‘l I V. AN Q.‘-‘\L,u._,.w, L ST

T " T v T - T v T " T . T v T v T - T - T
4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5
f1 (ppm)

Figure S5. Overlapped *H NMR spectra of Mosher silanes (R,S)-SI-6 and (R,R)-SI-6.

MeO MeO

Ph.,\ CF3 Ph..\_CF3
Har Har

HaI- NS0  Ham~—N"o

Hb S SiMe3 HbL“'SiM%

Hb’Hc |;|b‘Hc

(R,S)-SI-6 (R,R)-SI-6
Entry Proton (R,S)-SI-6 (R,R)-SI-6 Db (ss- 5R)
1 Ha 3.98 4.10 -0.12

2 Ha 3.44 3.25 0.19



S15

3 Hob 1.97 2.25 -0.28
4 Hy 2.14 1.85 0.29
5 Hec 4.18 4.17 0.01
6 SiMes 0.16 0.11 0.05

Table $3. Chemical shifts differences between (R,S)-SI-6 and (R,R)-SI-6 silanes.

Having determined the relative and absolute configuration of the two diastereomeric Mosher
silanes (R,S)-SI-6 and (R,R)-SI-6, enantioenriched silane (—)-12 (69:31 er) was converted to the
Mosher silanes following the same deprotection/amide formation sequence (41%, 88:12 dr
(isolated), Scheme S8). °F NMR analysis of the crude reaction mixture indicated a 74:26 dr,
by integration of the corresponding CFs peaks, with (R,R)-SI-6 being the major diastereomer;

this result enables assignment of the absolute configuration of silane (—)-12 as R.

Stannane 10 was converted to the corresponding stannyl Mosher amides (R,R)-SI-7 and (R,S)-
SI-7 following a modified deprotection/amide formation protocol with (S)-MPTA-Cl (28%,
52:48 dr (isolated), Scheme S9). Deprotection was achieved using TMSI (p. $8-59). The two
diastereomers were formed in a 1:1 ratio, by *°F NMR analysis of the crude. Following
separation by column chromatography, the diastereomers were analysed by 'H NMR and
their absolute and relative configurations assigned by analogy to the corresponding silyl
Mosher amides (R,R)-SI-6 and (R,S)-SI-6, due to the observation of similar chemical shift

patterns (Fig. S6 and Table S4, c¢f Fig. S5 and Table S3).2

8 A single crystal suitable for X-ray crystallographic analysis of (R,S)-SI-7 was grown by slow evaporation of an
Et,0 solution. 2027137 CCDC contains the supplementary crystallographic data for (R,S)-SI-7, which confirms
the configuration assigned by NMR. These data can be obtained free of charge from the Cambridge
Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. We thank Owen Smith (Oxford) for
obtaining and processing this X-ray crystallography data.
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MeO MeO
1) TMSI, CH,Cl, Co\CFs eo\CFs
NBotc rt, 30 min Ph Ph
N0 N0
SnMe;  2) DIPEA, (S)-MTPA-CI, [
CH,Cl, rt, overnight SnMe; "SnMe3
(RS)-SF7 : (RR)-SI7
(¥)-10 50 : 50

(S)-10 (62:38 er) 59 . 41

Scheme S9. Conversion of stannane 10 to Mosher amides (R,R)-SI-7 and (R,S)-SI-7.
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SnMe3
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Figure S6. Overlapped *H NMR spectra of Mosher stannanes (R,S)-SI-7 and (R,R)-SI-7.

MeO MeO

e
Ph..}-CF3 Ph..}-CF3
Ha’ a’
Ha:I:N o Ha—N"o
Hp=-—-=SnMe; Hb:I" -SnMe;

|;|b’ Hc Hb’ Hc

- I

(R,S)-SI-7 (R,R)-SI-7
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Entry Proton (R,S)-SI-7 (R,R)-SI-7 Db (5s-5r)
1 Ha 4.12 4.21 -0.09
2 Ha 3.64¢ 3.43¢ 0.21
3 Hp 2.20 2.41 -0.21
4 Hy 2.31 2.04 0.27
5 Hc 4.44° 441 0.03
6 SnMes 0.21 0.17 0.04

-

a For multiplets, peak position was determined as the mean of the multiplet range.

Table S4. Chemical shifts differences between (R,S)-SI-7 and (R,R)-SI-7 stannanes.

Enantioenriched stannane (+)-10 (62:38 er) was converted to the corresponding Mosher
amides following the previously developed route (51%, 54:46 dr (isolated), Scheme S9).
Analysis of the crude by °F NMR gave a 59:41 dr, in good agreement with the
enantioenrichment of the starting material. The major °F NMR peak corresponded to
stannane (R,S)-SI-7, which was used to assign the absolute configuration of stannane (+)-10

as S.

Further supporting evidence for absolute configuration of stannane (+)-10 was obtained
following conversion to N-Boc stannane (+)-13 (Scheme S7) and subsequent lithiation—
electrophile trapping with acetone to give enantioenriched alcohol (R)-14 (main paper
Scheme 6). The absolute configuration of alcohol (R)-14 has been previously established.®
Assuming Sn—Li exchange and trapping with acetone occur with retention of configuration,
then the absolute configuration of the starting stannane (+)-10 can be inferred as S. This

matches the absolute configuration determined by conversion to the Mosher amide.

Additional evidence for the assignment of absolute configuration was achieved by converting

alcohol (*)-8 into the corresponding hydroxy Mosher amides (R,S)-SI-8 and (R, R)-SI-8 (Scheme

°P.K. Delany and D. M. Hodgson, Org. Lett., 2019, 21, 9981.
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$10). With racemic alcohol (+)-8 a 1:1 mixture of diastereomers was formed (confirmed by *°F
NMR analysis of the crude). Separation of the diastereomers and *H NMR analysis revealed
chemical similar shift patterns (Fig. S7, Table S5), similar to those previously observed for the
silyl and stannyl Mosher amides. Enantioenriched alcohol (R)-8 (80:20 er) of known absolute
configuration was subsequently converted into hydroxy Mosher amides (R,S)-SI-8 and (R,R)-
SI-8 (*°F NMR analysis of crude gave 82:18 dr). Purification of the resulting hydroxy Mosher
amides (R,S)-SI-8 and (R,R)-SI-8 showed the major diastereomer to have similar *H NMR shift

patterns to the major stannyl Mosher amide (R,R)-SI-7.

MeO, MeQ,
HCl in Et,0 °“\CF3 *“\CF3
N (0] N (0]
/< then solvent switch |:|
HO to CH,Cl, “.
DIPEA, (S)-MTPA-CI, N
rt, overnight HO HO
(RR)-S8 : (RS)-SI-8
(£)-8 49 : 51
(R)-8 (80:20 er) 82 : 18

Scheme $10. Conversion of hydroxy 8 to Mosher amides (R,R)-SI-8 and (R,S)-SI-8.
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MeO CF;

PHH;
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MeO CF,

Phﬂ;

minor
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Figure S7. Overlapped *H NMR of Mosher alcohols (R,S)-SI-8 and (R,R)-SI-8.

MeO MeO

e
Ph..\_CF3 Ph..\_CF3
Ha Ha
Hasse NS0 Hamse— N0
Hb—Il‘ﬁ< HbL....K
Hy He OH

Hy H OH

(R,R)-SI-8 (R,S)-SI-8

Entry Proton (R,R)-SI-8 (R,S)-SI1-8 Db (5r-55)°
1 Ha 3.88 4.01 -0.13
2 Ha 3.33 3.15 0.18
3 Hp 1.87 2.22 -0.35
4 Hy 2.08 1.71 0.37
5 Hc 4.45 455 -0.10
6 Me 1.31 1.16 0.15
7 Me’ 1.09 1.05 0.04

98R-8S due to change in CIP priority assignment compared to amides in Tables S3-54.

Table S5. Chemical shifts differences between (R,S)-SI-8 and (R,R)-SI-8 alcohols.
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2. Experimental Conditions
(a) General Information

Commercially available chemicals/reagents were purchased from major suppliers and unless
stated otherwise were used without further purification. TMEDA, TMSCI and EtsN were
distilled from CaH,; TMSI was distilled from Cu powder; DIANANE (6)° was distilled under
reduced pressure before use. All reactions were stirred using Teflon-coated magnetic stirrer
bars. Where reactions are stated as under nitrogen atmosphere, glassware was flame-dried
and solvents were degassed and dried using a Pure Solv-MD solvent purification system and
transferred under nitrogen. The following cooling baths were used: —78 °C (dry ice/acetone)
and—98 °C (liquid N2/MeOH). Reactions were monitored by TLC using Merck silica gel 60 F254
(aluminium support) TLC plates, which were developed using standard visualising agents: UV
fluorescence (254 nm), potassium permanganate /A or vanillin /A. Column chromatography
was carried out on silica gel (43-63 um) in the solvent system indicated. Petroleum ether
refers to the fraction boiling between 40 °C to 60 °C. Melting points were measured in open
capillaries using Stuart Scientific melting point apparatus and are uncorrected. Infra-red
spectra were recorded neat and the intensity of the peaks are reported as s, m, w, br,
denoting strong, medium, weak, and broad, respectively. NMR spectra were recorded on
Briiker DPX200 (*H = 200 MHz), Britker AVF400 (*H = 400 MHz, 3C = 100 MHz), AVC 500 (*H =
500 MHz, *3C 125 MHz) machines in commercial, deuterated, TMS free solvents at 25 °C.
Chemical shifts (8) are given in ppm relative to TMS, calibrated using residual solvent peaks.
Where rotamers/diastereomers are discernible, signals due to the minor
rotamer/diastereomer are given in parentheses. 13C NMR spectra were recorded using the
UDEFT or PENDANT pulse sequences from the Briiker standard pulse program library. 13C
DEPT spectra and 2D COSY, HSQC and HMBC spectra were recorded so as to assist with
assighment when required. Multiplicity is denoted in 'H NMR by: s (singlet), d (doublet), t
(triplet), g (quartet), quin (quintet), sext (sextet), hept (heptet), m (multiplet). Proton coupling
constants J are reported to the nearest 0.1 Hz. NMR spectra were processed using
MestReNova software. High resolution mass spectra were obtained by Fl (Micromass GCT),
or by ESI (LCT Premier reflectron TOF and Briker MicroTOF) using tetraoctylammonium
bromide or sodium dodecyl sulfate as lock mass; values are quoted as ratio of mass to charge
in Daltons, and relative intensities of assignable peaks observed are quoted as a percentage
value of the base peak. Chiral HPLC was performed on a Dionex UltiMate 3000 system
comprising a Dionex LPG-3400A pump, WPS-3000SL autosampler, TCC-3000SD column
compartment and DAD-3000 diode-array detector, fitted with the appropriate Daicel
Chiralpak column (dimensions: 0.46 cm ¢ x 25 cm) and corresponding guard column (0.4 cm
@ x 1 cm). Wavelengths (A) are reported in nm, retention times (tg) are reported in mins and
solvent flow rates are reported in mL min™.

10 Praz, L. Guenée, S. Aziz, A. Berkessel and A. Alexakis, Adv. Synth. Catal., 2012, 354, 1780.
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(b) General Procedures
Procedure A: Deprotonation—electrophile trapping (external trapping)

A solution of (15,25,4S,55)-N?,N?,N°>,N°>-tetramethylbicyclo[2.2.1]heptane-2,5-diamine (S)-6°
(1.3 equiv) and N-Botc azetidine (5) (1 equiv) in pentane (8 mL/mmol 5) was cooled to (-78
°C or -98 °C) and s-Buli (1.3 M in cyclohexane/hexane, 1.3 equiv) was added dropwise (~1
min). The reaction mixture was stirred for the time stated at (-78 °C or -98 °C) before addition
of electrophile (X equiv) dropwise. The reaction mixture was stirred for the time stated at
(=78 °C or -98 °C), then quenched with sat. ag NH4Cl (20 mL /mmol 5), and extracted with
Et,0 (3 x 20 mL /mmol 5). The combined organic extracts were washed with water (20 mL
/mmol 5), then brine (20 mL /mmol 5), dried (MgS04) and concentrated under reduced

pressure.

Procedure B: Sn—Li exchange—electrophile trapping (external trapping)

A solution of (1S,25,4S,55)-N?,N?,N°>,N°>-tetramethylbicyclo[2.2.1]heptane-2,5-diamine (S)-6°
(1.3 equiv) and stannane 10 or 13 (1 equiv) in pentane (8 mL/mmol 5) was cooled to (-78 °C
or -98 °C) and s-Buli (1.3 M in cyclohexane/hexane, 1.3 equiv) was added dropwise (~1 min).
The reaction mixture was stirred for the time stated at (-78 °C or -98 °C) before addition of
electrophile (X equiv) dropwise. The reaction mixture was stirred for the time stated at (-78
°C or -98 °C), then quenched with sat. ag NH4Cl (20 mL /mmol 5), and extracted with Et,0 (3
x 20 mL /mmol 5). The combined organic extracts were washed with water (20 mL /mmol 5),

then brine (20 mL /mmol 5), dried (MgS04) and concentrated under reduced pressure.
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Procedure C: Sn—Li exchange—electrophile trapping (internal trapping)

A solution of (15,25,4S,5S5)-N?,N?,N°>,N°>-tetramethylbicyclo[2.2.1]heptane-2,5-diamine (S)-6°
(1.3 equiv), stannane 10 (1 equiv) and electrophile (5 or 10 equiv) in pentane (8 mL/mmol 10)
was cooled to (-78 °C) and s-BulLi (1.3 M in cyclohexane/hexane, 1.3 equiv) was added
dropwise (~1 min). The reaction mixture was stirred for 1 h at (-78 °C), then quenched with
sat. aq NH4Cl (20 mL /mmol 10), and extracted with Et20 (3 x 20 mL /mmol 10). The combined
organic extracts were washed with water (20 mL /mmol 5), then brine (20 mL /mmol 10),

dried (MgS0Q4) and concentrated under reduced pressure.

Procedure D: Formation of Mosher amides

To the 2-substituted N-Botc azetidine (1 equiv) was added HCI (2 M in Et,0, 8 equiv) and the
mixture was stirred for 1 h at rt. The reaction was concentrated under a stream of nitrogen
and the crude dissolved in CH,Cl; (0.1 M). DIPEA (2.2 equiv) and (S)-MTPA-CI (1.2 equiv) was
added and the reaction was stirred at rt overnight. The reaction mixture was concentrated
under reduced pressure and to the crude was added sat. ag NH4Cl (20 mL /mmol 8/12), and
extracted with CH,Cl; (3 x 20 mL /mmol 8/12). The combined organic extracts were washed

with brine (20 mL /mmol 8/12), dried (MgS04) and concentrated under reduced pressure.

(c) Specific experimental procedures and characterisation data

O-(t-Butyl) 2-(trimethylstannyl)azetidine-1-carbothioate 10
AR
N (0]

SnMej
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A solution of N-Botc azetidine 5 (490 mg, 2.85 mmol) and TMEDA (1.00 mL, 6.7 mmol) in THF
(14 mL) was cooled to =78 °C. s-Buli (2.80 mL, 1.3 M in cyclohexane/hexane, 3.60 mmol) was
added dropwise (~5 min). The reaction mixture was stirred for 1 h at -78 °C before addition
of MesSnCl (5.3 mL, 1.0 M in pentane, 5.3 mmol) dropwise. The reaction mixture was stirred
for a further 1 h at -78 °C, then quenched with sat. ag NH4Cl (20 mL), and extracted with Et,0
(3 x 20 mL). The combined organic extracts were washed with water (20 mL), then brine (20
mL), dried (MgS04) and concentrated under reduced pressure to give a pale-yellow oil. The
crude material was purified by column chromatography (1% Et,O/petroleum ether) to first
give a colourless oil, stannane 10 (782 mg, 82%). Second eluted a colourless oil, N-Botc

azetidine 5 (22 mg, 4%).

R0.55 (20% TBME/n-hexane); IR (neat/cm™) 2924 m, 2855 w, 1490 m, 1455 s, 1365 m, 1266
m, 1229 w, 1137 m; &4 (400 MHz, CDCl3) (2:1 rotamer mixture by analysis of C(CHs)s signals
at 1.66 and 1.61) 4.4 6— 4.40 (1H, m, NCH), 4.17 — 4.09 (1H, m, NCHH’), 4.00 (4.25) (1H, dddd,
J=10.6, 8.9, 6.4, 1.8 Hz (ddd, J = 10.9, 9.5, 5.2 Hz), NCHH’), 2.56 — 2.39 (1H, m, NCH,CHH’),
2.13-2.05 (1H, m, NCH,CHH’), 1.61 (1.66) (9H, s, C(CHs)3), 0.20 (9H, s, 2J1195n 1 = 54 Hz, 2J117n-
n=52 Hz, SnMes); 6¢ (100 MHz, CDCls) (rotamer mixture) 182.1 (C=S), 83.9 (84.8) (C(CHs)s),
55.3(54.9) (NCH), 50.9 (52.6) (NCH>), 28.6 (28.9) (C(CH3)3), 17.9 (18.5) (CH2), =8.2 (=9.5) (J1195n-
¢ = 334 Hz, Ji17snc = 319 Hz, SnMes); HRMS (FI*) calcd for [M+H] C11H23NOS'?2°Sn 337.0522,

found 337.0525.
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O-(t-Butyl) (R)-2-(trimethylstannyl)azetidine-1-carbothioate (R)-10

s
L

/"SnMe3
The stannane was prepared following general procedure A, using N-Botc azetidine 5 (430 mg,
2.50 mmol) and DIANANE (R)-6 (600 mg, 3.30 mmol), with a =78 °C lithiation temp (1 h).
MesSnCl (4.5 mL, 1.0 M in pentane, 4.5 mmol) was then added dropwise at —=78 °C (1 h). The
crude material was purified by column chromatography (1% Et,O/petroleum ether) to first
give a colourless oil, stannane (R)-10 (764 mg, 91%, 67:33 er by HPLC: ODH column; eluent:
n-hexane/i-PrOH (99.9:0.01); flow rate = 1 mL min’%; tr ((S) minor) = 6.09 min, T ((R) major) =
7.44 min); [a]3°-97.9 (c 1.03, CHCIs); all other data as described for racemic stannane 10 (see

above). Second eluted a colourless oil, recovered N-Botc azetidine 5* (23 mg, 5%).

Disubstituted azetidine from transmetallation (Table S1)

O-(t-Butyl) (R)-2-(2-hydroxypropan-2-yl)-4-(trimethylstannyl)azetidine-1-carbothioate SI-1

S %
Me3Sn N»\O

HO

Rs0.28 (20% EtOAc/petroleum ether); IR (neat/cm™) 3323 br, 2974 m, 2916 m, 1472 s, 1446
s, 1367 s, 1270 s, 1148 s; 64 (400 MHz, CDCl3) (mixture of diastereomers and rotamers) 6.09
(3.59) (1H, s, OH), 4.37 (4.58) (1H, ddd, J = 8.5, 6.2, 1.9 Hz (J = 8.8, 7.3, 1.9 Hz) NCH), 4.25 —
4.15 (1H, m, MesSnCH), 2.25 — 2.00 (2H, m, NCHCH), 1.68 (1.64) (9H, s, C(CHs)3), 1.25 (1.31)
(3H, s, C(CHs)2), 1.12 (1.08) (3H, s, C(CHs)2), 0.18 (0.20) (9H, s, /11950 1 = 54 Hz, 2J1178n-4= 52 Hz,

SnMes)); 6¢ (125 MHz, CDCls) (mixture of diastereomers and rotamers) 182.5 (183.3) (C=S),
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86.8 (86.1) (C(CHs)s), 74.5 (74.9) (NCH), 72.6 (72.3) (C(CHs)a), 53.2 (52.8) (MesSnCH), 28.6
(29.0) (C(CHs)s), 24.7 (25.0) (C(CHs)2), 23.2 (22.8) (C(CHs)2), 22.0 (NCHCH,), 7.6 (-8.7)

(SnMes); HRMS (FTMS) calcd for [M+H]* C14H3002NS*%°Sn 396.1011, found 396.1014.

Methyl lodide as a sacrificial electrophile®!

s-Buli, (S)-6,
I:II\IBOtC —78°C, 1 h, pentane NBotc mlBotc
then Mel (0.2 eq), 5 min
then, Me,CO,—78 °C, 1 h HO

(R)-8, (R)-7
58%, (80:20 er) 1%, (73:27 er)

The alcohol was prepared following general procedure A, using N-Botc azetidine 5 (43 mg,
0.25 mmol), with a =78 °C lithiation temp (1 h). Mel (3 pL, 0.05 mmol) was then added, and
the reaction was stirred for 5 min at —-78 °C before acetone (55 uL, 0.75 mmol) was added
with a =78 °C trapping temp (1 h). The crude material was purified by column chromatography
(1%-20% Et,0/petroleum ether) to first give a colourless oil, 2-methylazetidine (R)-7 (0.5 mg,
1%, 73:27 er by HPLC: IC column; eluent: n-hexane/i-PrOH (99:1); flow rate = 1 mL min; T
((S) minor) = 17.03 min, T ((R) major) = 19.34 min); all other data described in Lit.> Second
eluted a colourless oil, recovered N-Botc azetidine 5 (9 mg, 21% RSM). Third eluted a
colourless oil, alcohol (R)-8 (33 mg, 58%, 80:20 er by HPLC: column; eluent: n-hexane/i-PrOH
(95:5); flow rate = 1 mL min; tr ((R) major) = 12.20 min, tr ((S) minor) = 14.34 min); all other

data as described in Lit.!

11 A comparative sample of (R)-7 was prepared following general procedure A (0.25 mmol
scale), using Mel as the electrophile (lithiation =78 °C (1 h), trapping —=78 °C (1 h)). This gave
(R)-7 in 77:23 er (36 % yield); all other data as described in Lit.!
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Asymmetric stannylation

s-BulLi, (S)-6, pentane

NBotc conditions NBotc
D then Me;SnCl SnMe3
conditions
5 10
Entry? Lithiation temp Stannylation Yield er [a]%fb Recovered 5
(time) temp 10 (R:S)
(time)
1 -78°C(1h) -78°C (30 min)  90% 33:67 +166.3 0%
then rt (30 min)
2 -78°C(1h) -78°C (30 min)  80% 39:61 +120.9 0%
3 -78 °C (5 min) -78°C (30 min)  62% 54:46 -42.3 38%
then rt (30 min)
4 -98°C(3 h) -98 °C (30 min)  77% 36:64 +145.1 21%
5 -98°C(1h) -98 °C (30 min)  70% 54:46 -32.2 24%

a Reactions were performed following general procedure A, on a 0.46-0.92 mmol scale and trapping with 2 equiv of

MesSnCl. b All at ¢ = 0.92-1.19 in CHCls.

Table S6. Asymmetric stannylation of N-Botc azetidine 5.
Asymmetric silylation

s-BuLi, (S)-6

NBotc pentane, -78 °C, 1 h NBotc
TMSCI or TMSOTf TMS
5R= conditions 12
10 R = SnMe;,
Entry? Substrate Exp Electrophile Incubation Yield er
50r10 Procedure (equiv) time 12 (R:S)
1 5 A TMSCI 1h 52% 68:32
(3)
2 5 See below TMSCI In situ 29% 70:30
(10)
3 10 C TMSCI In situ 39% 70:30
(10)
4 5 A TMSCI 1h 34% 69:31
(0.5)
4 5 A TMSOTf 1h 28% 42:58

(3)

2 All reactions 0.25 mmol scale.

Table S7. Asymmetric silylation of N-Botc azetidine 5
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Internal trapping with TMSCI

O-(t-Butyl) 2-(trimethylsilyl)azetidine-1-carbothioate (R)-12

A solution of (1S,2S5,4S,55)-N?,N?,N°,N>-tetramethylbicyclo[2.2.1]heptane-2,5-diamine (S)-6
(60 mg, 0.33 mmol), N-Botc azetidine 5 (43 mg, 0.25 mmol) and TMSCI (0.32 mL, 2.5 mmol)
in pentane (2 mL) was cooled to —78 °C. s-BulLi (0.25 mL, 1.3 M in cyclohexane/hexane, 0.33
mmol) was added dropwise (~1 min). The reaction mixture was stirred for 1 h at -78 °C, then
guenched with sat. ag NH4Cl (5 mL), and extracted with Et,0 (3 x 5 mL). The combined organic
extracts were washed with water (5 mL), then brine (5 mL), dried (MgS04) and concentrated
under reduced pressure to give a yellow oil. The crude material was purified by column
chromatography (1% Et,0/petroleum ether) to first give a colourless oil, disilane SI-9 (24 mg,
30%). Second eluted a colourless oil, silane (R)-12 (18 mg, 29%, 70:30 er by HPLC: OD-H
column; eluent: n-hexane/i-PrOH (99.9:0.01); flow rate = 1 mL min; tr ((S) minor) = 5.97 min,
R ((R) major) = 6.51 min); [a]%®> —60.0 (c 1.01, CHCl3); all other data as described in Lit.! Third

eluted a colourless oil, recovered N-Botc azetidine 5 (16 mg, 37%).

O-(t-Butyl) 2,2-bis(trimethylsilyl)azetidine-1-carbothioate SI-9

o

TMS
TMS

All data as described in Lit.3
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External trapping with TMSOTf
O-(t-butyl) 2-(trimethylsilyl)azetidine-1-carbothioate (5)-12

e

N»\O

SiMej
Prepared following general procedure A, using N-Botc azetidine 5 (43 mg, 0.25 mmol), with a
-78 °C lithiation temp (1 h). TMSOTf (0.14 mL, 0.75 mmol) was then added with a -78 °C
trapping temp (1 h). The crude material was purified by column chromatography (1%
Et,0/petroleum ether) to give eluted a colourless oil, silane (5)-12 (17 mg, 28 %, 58:42 er by
HPLC: ODH column; eluent: n-hexane/i-PrOH (99.9:0.01); flow rate = 1 mL min*; tr ((S) major)

= 5.44 min, t: ((R) minor) = 5.82 min); [a]3°+25.5 (c 0.86, CHCI3); all other data as described

in Lit.1

t-Butyl 2-(trimethylstannyl)azetidine-1-carboxylate (+)-13

1<

N>\\O

SnMes
To a solution of stannane (+)-10 (173 mg, 0.51 mmol) in CH,Cl; (3 mL) was added TMSI (0.10
mL, 0.66 mmol) at rt. The reaction was stirred for 30 min and then concentrated under a
stream of nitrogen. The residue was dissolved in CH,Cl; (5 mL), then NEt3 (0.1 mL, 0.77 mmol),
DMAP (5 mg, 0.05 mmol) and Boc,0 (120 mg, 0.56 mmol) was added and the mixture was
stirred overnight. The reaction mixture was then concentrated under reduced pressure and
to the residue was added sat. ag NH4Cl (10 mL), and the mixture extracted with CH,Cl; (10 x

2 mL). The combined organic extracts were washed with brine (10 mL), dried (MgS0.) and

concentrated under reduced pressure to give a pale yellow oil. This crude material was



S29

purified by column chromatography (5% Et,O/petroleum ether) to give a colourless oil,
stannane (+)-13 (108 mg, 66%).

Rs 0.44 (20% Et,O/petroleum ether); IR (neat/cm™) 2976 (w), 1687 (s), 1399 (s), 1365 (m),
1152 (m); &4 (500 MHz, CDCl3) 4.33 (1H, br, NCH), 4.14 — 4.02 (1H, m, NCHH’), 3.96 (1H, td, J
=9.0, 6.3 Hz, NCHH’), 2.47 (1H, qd, J = 10.0, 6.3 Hz, NCHCHH’), 2.18 — 2.08 (1H, m, NCHCHH’),
1.42 (9H, s, C(CHs)3), 0.14 (9H, s, Y119sn-1= 53 Hz, Y1175n-1= 51 Hz, SnMe3); 8¢ (125 MHz, CDCl3)
(rotamers) 156.5 (155.9) (C=0), 79.3 (78.8) (C(CHs)s), 52.8 (51.2) (NCH), 50.8 (49.6) (NCH>),
28.7 (C(CH3)3), 19.7 (NCHCH,), —10.1 (J119sn-c = 325 Hz, J117sn.c = 312 Hz, SnMes); HRMS (FTMS)

calcd for [M+Na] C11H23 02NNa'?°Sn 344.0644, found 344.0644.

t-Butyl (S)-2-(trimethylstannyl)azetidine-1-carboxylate (S)-13

1<
N»\O
SnMes
Prepared following the same procedure for racemic 13 (see above), but using stannane (S)-10
(173 mg, 0.51 mmol, 63:37 er) to give stannane (S)-13 (104 mg, 63%, 66:34 er by HPLC: ODH
column; eluent: n-hexane/i-PrOH (99:1); flow rate = 1 mL min'%; t ((S) major) = 4.16 min, tr

((R) minor) = 4.53 min); [a]3° +57.9 (c 0.38, CHCls); all other data as described above.

t-Butyl 2-(2-hydroxypropan-2-yl)azetidine-1-carboxylate (1)-14

b

HO
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N-Boc alcohol (+)-14 was prepared following general procedure B, using stannane (+)-13 (80
mg, 0.25 mmol) and DIANANE (S)-6, with a =78 °C lithiation temp (1 h). Acetone (60 pL, 0.75
mmol) was then added with a =78 °C trapping temp (1 h). The crude material was purified by
column chromatography (1%-10% Et,0/petroleum ether) to first give a colourless oil, N-Boc
azetidine (6 mg, 16%). Second eluted a colourless oil, N-Boc alcohol 14 (25 mg, 47%, 50:50 er
by HPLC: ADH column; eluent: n-hexane/i-PrOH (95:5); flow rate = 1 mL min%; tw (R) = 9.42

min, tr (S) = 15.10 min); all other data as described in Lit.*?

t-Butyl (R)-2-(2-hydroxypropan-2-yl)azetidine-1-carboxylate (R)-14

%o

N

HO

N-Boc alcohol (R)-14 was prepared following general procedure B, using stannane (S)-13 (80
mg, 0.25 mmol, 66:34 er) and racemic DIANANE (+)-6, with a =78 °C lithiation temp (1 h).
Acetone (60 pL, 0.75 mmol) was then added with a -78 °C trapping temp (1 h). The crude
material was purified by column chromatography (1%-10% Et,O/petroleum ether) to first give
a colourless oil, N-Boc azetidine (6 mg, 16%). Second eluted a colourless oil, N-Boc alcohol
(R)-14 (22 mg, 40%, 67:33 er by HPLC: ADH column; eluent: n-hexane/i-PrOH (95:5); flow rate
=1 mL min’%; w (R) major = 9.38 min, tx, (S) minor = 15.09 min); [a]3°+14.6 (c 0.13, CHCl5)

(lit.,” []3°+45.8 (c 0.62 in CHCIs for (R)-14 of 89:11 er)); all other data as described in Lit.*

12D, M. Hodgson, C. Pearson and M. Kazmi, Org. Lett., 2014, 16, 856.
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O-(t-Butyl) (2R)-2-((4-chlorophenyl)(hydroxy)methyl)azetidine-1-carbothioate (R,R)-SI-3

and (R,S)-SI-3
S
S

N
o H
CgH4p-C|

HO

The alcohol was prepared following general procedure A, using N-Botc azetidine 5 (60 mg,
0.35 mmol), with a =78 °C lithiation temp (1 h). 4-Chlorobenzaldehyde (146 uL, 1.04 mmol)
was then added with a —=78 °C trapping temp (1 h). The crude material was purified by column
chromatography (5%-20% Et,0/petroleum ether) to first give a colourless oil, recovered
N-Botc azetidine 5 (15 mg, 25% RSM). Second eluted a colourless oil, alcohol minor
diastereomer (R,S)-SI-3 (22 mg, 20%, 80:20 er by HPLC: AD-H column; eluent:
n-hexane/i-PrOH (95:5); flow rate = 1 mL min’%; tr ((S,R) minor) = 11.74 min, T ((R,S) minor)
= 13.05 min). Third eluted a white solid, alcohol major diastereomer (R,R)-SI-3 (48 mg, 44%,
80:20 er by HPLC: AD-H column; eluent: n-hexane/i-PrOH (96:4); flow rate = 1 mL min'%; tr
((S,S) minor) = 8.34 min, tr((R,R) major) = 19.70 min).

Absolute configurations were assigned by analogy to (R,S)-SI-2 and (R,R)-SI-2.°

O-(t-butyl) (R)-2-((S)-(4-chlorophenyl)(hydroxy)methyl)azetidine-1-carbothioate (R,S)-SI-3

minor
S
N (e}
\ CgH4p-C|

HO

[a]%® +79.0 (c 0.90, CHCl3); all other data described in Lit.!
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O-(t-butyl) (R)-2-((R)-(4-chlorophenyl)(hydroxy)methyl)azetidine-1-carbothioate (R,R)-SI-3

major
) ><
»\o

N
o H
CgH4p-C|

HO

[a]%® +23.2 (c 0.98, CHCl3); all other data described in Lit.!

Benzaldehyde as sacrificial electrophile

s-Buli, (S)-6,
l:l‘\lBotc —78 °C, 1 h, pentane NBotc NBotc NBotc
\"H + EKE
then PhCHO (0.2 equiv), 5 min Ek ES/Ph —Ph
then Me,CO, {
~78°C. 1 h HO HO HO
5 (R)-8 (R,R)-SI-2 (R,S)-SI-2
63% (91:9 er) (68:32 er) (67:33 er)

5% (3:2 dr)
The alcohol was prepared following general procedure A, using N-Botc azetidine 5 (43 mg,
0.25 mmol), with a =78 °C lithiation temp (1 h). Benzaldehyde (5 uL, 0.05 mmol) was then
added, the reaction was then stirred for 5 min at -78 °C before acetone (55 pL, 0.75 mmol)
was added with a -78 °C trapping temp (1 h). The crude material was purified by column
chromatography (1%-20% Et,0/petroleum ether) to first give a colourless oil, recovered
azetidine 5 (12 mg, 29% RSM). Second eluted a colourless oil, a mixture of diastereomeric
alcohols minor (R,S)-SI-2 (2 mg, 2%, 67:33 er by HPLC: AD-H column; eluent: n-hexane/i-PrOH
(96:4); flow rate = 1 mL min'%; & ((S,R) minor) = 10.54 min, T ((R,S) major) = 11.31 min) and
major (R,R)-SI-2 (3 mg, 3%, 68:32 er by HPLC: AD-H column; eluent: n-hexane/i-PrOH (96:4);
flow rate = 1 mL min’; tr ((S,S) minor) = 23.41 min, T ((R,R) major) = 33.10 min). Third eluted

a colourless oil, alcohol (R)-8 (36 mg, 63%, 91:9 er by HPLC: AD-H column; eluent:
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n-hexane/i-PrOH (95:5); flow rate = 1 mL min; tr ((R) major) = 12.18 min, T ((S) minor) =
14.17 min); all other data as described in Lit.?

O-(t-Butyl) 2,4-dimethylazetidine-1-carbothioate SI-4

g
ped

2,4-Dimethylazetidine SI-4 was prepared following general procedure A, using
2-methylazetidine (+)-7 (47 mg, 0.25 mmol) and DIANANE (+)-6, with a —=78 °C lithiation temp
(1 h). Mel (50 pL, 0.75 mmol) was then added with a -78 °C trapping temp (1 h). The crude
material was purified by column chromatography (1%-5% Et,0/petroleum ether) to first give
a colourless oil, a mixture of diastereomers 2,4-dimethylazetidine SI-4 (7 mg, 15%, 43:57 dr

cis:trans). Second eluted a colourless oil, recovered methylazetidine 7 (19 mg, 40% RSM).

Analytically pure sample of diastereomers cis-SI-4 and trans-SI-4 was obtained following

prep-TLC (5% Et,0/petroleum ether).

cis-O-(t-Butyl) (R*,5*)-2,4-dimethylazetidine-1-carbothioate cis-SI-4

Mo
hud

Rf0.37 (5% Et20/petroleum ether); IR (neat/cm™) 1469 s, 1434 s, 1390 m, 1269 s, 1224 m,
1142 s; 64 (400 MHz, CDCls) (single rotamer) 4.37 (4.24) (2H, dquin, /= 8.6, 6.3 Hz (/= 8.6, 6.3
Hz), NCH), 2.54 (1H, dt, J = 11.2, 8.6 Hz, NCHCHcisHzrans), 1.64 (9H, s, C(CHs)s), 1.56 (1.42) (6H,

d, J=6.3, NCHCH3), 1.39—1.30 (1 H, m, NCHCH_isHtrans); 6¢c (100 MHz, CDCls) (single rotamer)
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186.6 (C=S), 84.6 (C(CHs)s), 58.74 and 58.72 (2x NCH), 31.3 (NCHCH-), 28.7 (C(CHs)s), 22.2 and

21.5 (2x CHCH3); HRMS (FI*) calcd for [M+H] C10H20NOS: 202.1260, found 202.1262.

O-(t-Butyl) (R*,R*)-2,4-dimethylazetidine-1-carbothioate trans-Si-4

Vi

Rs0.35 (5% Et20/petroleum ether); IR (neat/cm™) 1427 m, 1390's, 1365 m, 1270's, 1226 m,
1139 s; &4 (400 MHz, CDCl3) (single rotamer) 4.56 — 4.45 (4.45 — 4.35) (2H, m, NCH), 1.99 —
1.87 (2H, m, NCHCH,), 1.64 (9H, s, C(CHs)s), 1.55 (1.40) (6H, d, J = 6.3 Hz, NCHCHs); 8¢ (100
MHz, CDCIs) (single rotamer) 184.4 (C=S), 84.7 (C(CHs)3) , 58.3 and 57.8 (2x NCH), 31.4
(NCHCH3), 28.8 (C(CHs)3), 19.2 and 20.5 (2x CHCH3); HRMS (FI*) calcd for [M+H] CioH20NOS:

202.1260, found 202.1262.

O-(t-Butyl) 4-methyl-2-(trimethylstannyl)azetidine-1-carbothioate SI-5

Me3Sn ix\c}<
=
A solution of 2-methylazetidine 7 (240 mg, 1.30 mmol) and TMEDA (0.46 mL, 3.1 mmol) in
THF (6.5 mL) was cooled to =78 °C. s-BuLi (1.30 mL, 1.3 M in cyclohexane/hexane, 1.70 mmol)
was added dropwise. The reaction mixture was stirred for 30 min at -78 °C before addition of
MesSnCl (2.40 mL, 1 M in pentane, 2.4 mmol) dropwise. The reaction mixture was stirred for
a further 30 min at -78 °C, then quenched with sat. ag NH4Cl (10 mL), and extracted with Et,0

(3 x 10 mL). The combined organic extracts were washed with water (10 mL), then brine (10
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mL), dried (MgS04) and concentrated under reduced pressure to give a pale-yellow oil. The
crude material was purified by column chromatography (1% Et,O/petroleum ether) to first
give a colourless oil, stannane SI-5 (270 mg, 59%, (~1:1 dr). Second eluted a colourless oil,

recovered 2-methylazetidine 7 (84 mg, 41% RSM).

Rs 0.86 (5% Et,0/petroleum ether); IR (neat/cm™) 2975 w, 1793 m, 1490 m, 1228 s, 1144 s;
61 (400 MHz, CDCIs) (mixture of diastereomers and rotamers) 4.70 — 4.24 (4H, m, NCH), 2.56
(2.70) (1H, ddd, J = 11.1, 10.1, 8.4 Hz, (td, J = 10.8, 8.6 Hz), NCHCHH’ (cis)), 2.26 (1H, ddd, J =
11.0, 8.0, 6.3 Hz, NCHCHH’ (trans)), 2.01 (1H, ddd, J = 11.1, 10.1, 5.9 Hz, NCHCHH’ (trans)),
1.78-1.68 (1H, m, NCHCHH’ (cis)), 1.61 (1.61) (1.65) (1.64) (18H, s, C(CHs)3), 1.26 (6H, pseudo
t,J =6.7 Hz, CHCHs), 0.02 (0.00) (18H, s, 2J119sn 1 = 27 Hz, 2J117sn-n = 26 Hz, Sn(CH3)s); 8¢ (100
MHz, CDCls) (mixture of diastereomers and rotamers)) 181.8 (C=S), 83.92 (83.86) (C(CHs)3),
60.14 (60.11) (NCHCHs), 52.3 (51.8) (NCHSnMes), 28.74 (28.72) (28.9) (C(CHs)3), 26.5 (26.4)

(NCHCH,), 20.7 (20.4) (NCHCH3), —7.9 (-8.3) (SnMes); HRMS not found.

O-(t-Butyl) 2,4-dimethylazetidine-1-carbothioate SI-4

Ao
ped

2,4-Dimethylazetidine SI-4 was prepared following general procedure B, using stannane ()-
SI-5 (88 mg, 0.25 mmol) and racemic DIANANE (+)-6, with a —=78 °C lithiation temp (1 h). Mel
(50 pL, 0.75 mmol) was then added with a —=78 °C trapping temp (1 h). The crude material was
purified by column chromatography (1%-5% Et,0/petroleum ether) to first give a colourless

oil, a mixture of diastereomers 2,4-dimethylazetidine SI-4 (32 mg, 63%, 25:75 dr cis:trans); all
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other data as described above. Second eluted a colourless oil, methylazetidine 7 (5 mg, 11%);

all other data described in Lit.!

O-(t-Butyl) (2R,4R)-2,4-dimethylazetidine-1-carbothioate SI-4

o
hu;

,/

2,4-Dimethylazetidine (R,R)-SI-4 was prepared following general procedure A, using
2-methylazetidine (R)-7 (37 mg, 0.20 mmol, 80:20 er) with a =78 °C lithiation temp (1 h). Mel
(40 pL, 0.60 mmol) was then added with a —=78 °C trapping temp (1 h). The crude material was
purified by column chromatography (1%-5% Et,0/petroleum ether) to first give a colourless
oil, (2R,4R)-2,4-dimethylazetidine (R,R)-SI-4 (18 mg, 46%, 18:82 dr cis:trans, 91:9 er by HPLC:
Chiralcel I-C column, eluent: n-hexane/i-PrOH (99:1), flow rate = 1 mL/min; t& ((R,R) major) =
11.8 min, tr (cis) = 13.0 min, Tt ((S,S) minor) = 21.3 min); as an inseparable mixture of
diastereomers; all other data as described above. Second eluted a colourless oil, recovered
(R)-methylazetidine (R)-7 (17 mg, 45% RSM, 70:30 er by HPLC: IC column; eluent:
n-hexane/i-PrOH (99:1); flow rate = 1 mL min’; tr ((S) minor) = 17.38 min, t ((R) major) =

21.20 min); all other data as described in Lit.!

O-(t-Butyl) (4R)-4-methyl-2-(trimethylstannyl)azetidine-1-carbothioate SI-5

Me3SnW:"\§X\O><

/l
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A solution of 2-methylazetidine (R)-7 (290 mg, 1.50 mmol, 80:20 er) and TMEDA (0.55 mL, 3.7
mmol) in THF (7.7 mL) was cooled to -78 °C. s-Buli (1.50 mL, 1.3 M in cyclohexane/hexane,
2.0 mmol) was added dropwise. The reaction mixture was stirred for 30 min at -78 °C before
addition of Me3SnCl (2.9 mL, 1.0 M in pentane, 2.9 mmol) dropwise. The reaction mixture was
stirred for a further 30 min at -78 °C, then quenched with sat. ag NH4Cl (10 mL), and extracted
with Et,0 (3 x 10 mL). The combined organic extracts were washed with water (10 mL), then
brine (10 mL), dried (MgS0a) and concentrated under reduced pressure to give a pale-yellow
oil. The crude material was purified by column chromatography (1% Et,O/petroleum ether)
to first give a colourless oil, stannane (4R)-SI-5 (340 mg, 63%, 1:1 dr) as an inseparable mixture
of diastereomers. Second eluted a colourless oil, recovered 2-methylazetidine (R)-7 (90 mg,
31% RSM, 76:24 er by HPLC: IC column; eluent: n-hexane/i-PrOH (99:1); flow rate = 1 mL min

L tr ((S) minor) = 17.06 min, T ((R) major) = 20.23 min); all other data as described in Lit.?

O-(t-Butyl) (2R,4R)-2,4-dimethylazetidine-1-carbothioate (R,R)-SI-4

o
hui

,/

2,4-Dimethylazetidine (R,R)-SI-4 was prepared following general procedure B, using
enantioenriched stannanes (4R)-SI-5 (70 mg, 0.20 mmol) and DIANANE (S)-6 (48 mg, 0.26
mmol), with a =78 °C lithiation temp (1 h). Mel (40 uL, 0.60 mmol) was then added with a -78
°C trapping temp (1 h). The crude material was purified by column chromatography (1%-5%
Et.O/petroleum ether) to first give a colourless oil, a mixture of diastereomers
2,4-dimethylazetidine (R,R)-SI-4 and cis-SI-4 (18 mg, 45%, 26:74 dr cis:trans, 82:18 er by HPLC:

Chiralcel I-C column, eluent: n-hexane/i-PrOH (99:1), flow rate = 1 mL/min; tr ((S,S) minor) =



S38

10.72 min, tr((R,R) minor) = 18.30 min). Second eluted a colourless oil 2-methylazetidine (R)-7
(5 mg, 13%, 74:26 er by HPLC: IC column; eluent: n-hexane/i-PrOH (99:1); flow rate = 1 mL

min%; tr ((S) minor) = 17.09 min, tr ((R) major) = 20.75 min); all other data as described in Lit.*

(2R)-3,3,3-Trifluoro-2-methoxy-2-phenyl-1-(2-(trimethylsilyl)azetidin-1-yl)propan-1-one

(R,S)-SI-6 and (R,R)-SI-6

SiMej
Silyl Mosher amides (R,S)-SI-6 and (R,R)-SI-6 were prepared following general procedure D,
using silane 12 (10 mg, 0.04 mmol). The crude material was purified by column
chromatography (10%-20% Et,O/petroleum ether) to first give a colourless oil, silyl Mosher
amide (R,S)-SI-6 (3 mg, 22%). Second eluted a colourless oil, silyl Mosher amide (R,R)-SI-6 (4

mg, 30%).

(R)-3,3,3-Trifluoro-2-methoxy-2-phenyl-1-((S)-2-(trimethylsilyl)azetidin-1-yl)propan-1-one
(R,S)-SI-6
MeQ, CF,

Ph"‘I

N™ O

SiMes
Rf0.57 (50% Et,0/petroleum ether); [a]3° +46.0 (c 0.05, CHCI3); IR (neat/cm™) 2955 (w), 1656
(s), 1266 (m), 1251 (m), 1180 (s), 1165 (s), 841 (m); &u (500 MHz, CDCl3) 7.60 — 7.53 (2H, m,
m-Ph), 7.42 — 7.33 (3H, m, 0-Ph & p-Ph), 4.18 (1H, ddd, J = 9.6, 7.4, 1.3 Hz, NCH), 3.98 (1H,

dddd, J=10.1,9.2, 6.2, 1.3 Hz, NCHH’), 3.67 (3H, q, / = 1.9 Hz, OMe), 3.44 (1H, td, J = 10.1, 6.3
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Hz, NCHH’), 2.14 (1H, dddd, J = 11.0, 10.1, 9.6, 6.2 Hz, NCHCHH’), 1.97 (1H, dddd, J = 11.0, 9.2,
7.4, 6.3, NCHCHH’), 0.16 (9H, s, SiMes); 8¢ (125 MHz, CDCls) 164.5 (C=0), 133.6 (i-Ph), 129.3
(p-Ph), 128.4 (0-Ph), 127.1 (m-Ph), 123.5 (Q, J = 290 Hz, CFs), 84.1 (q, J = 26 Hz CCF3), 55.2
(NCH), 55.1 (g, J = 2 Hz, OMe), 52.6 (NCH,), 18.2 (NCHCH;), —3.1 (SiMes); &¢ (377 MHz, CDCls)

—69.9 (s); HRMS (ESI*) calcd for [M+H] C16H2302NF328Si 346.1445, found 346.1445.

(R)-3,3,3-Trifluoro-2-methoxy-2-phenyl-1-((R)-2-(trimethylsilyl)azetidin-1-yl)propan-1-one

(R,R)-SI-6

Ph"‘I
D\l O

“SiMes,
Rf0.46 (50% Et,0/petroleum ether); [a]4°-13.8 (c 0.09, CHCI3) IR (neat/cm™) 2981 (w), 1655
(s), 1268 (m), 1250 (m), 1178 (s), 1166 (s), 841 (m); &u (500 MHz, CDCls) 7.60 — 7.53 (2H, m,
m-Ph), 7.40 — 7.35 (3H, m, 0-Ph & p-Ph), 4.17 (1H, ddd, J = 11.0, 7.4, 1.6 Hz, NCH), 4.10 (1H,
ddd, J = 10.3, 9.5, 6.3 Hz, NCHH’), 3.67 (3H, g, J = 1.7 Hz, OMe), 3.25 (1H, dddd, J = 10.3, 9.3,
6.1, 1.6 Hz, NCHH’), 2.25 (1H, tdd, J = 11.0, 9.5, 6.1 Hz, NCHCHH’), 1.85 (1H, dddd, J = 11.0,
9.3, 7.4, 6.3 Hz, NCHCHH’), 0.11 (9H, s, SiMes); 8¢ (125 MHz, CDCl3) 164.2 (C=0), 133.7 (i-Ph),
129.3 (p-Ph), 128.1 (0-Ph), 127.2 (m-Ph), 123.8 (Q, J = 289 Hz, CFs), 83.9 (q, J = 26 Hz CCFs),
55.2 (g, J = 3 Hz, OMe), 54.8 (NCH), 52.1 (NCH), 18.2 (NCHCH;), =3.0 (SiMes); & (377 MHz,

CDCl3) =70.6 (s); HRMS (ESI*) calcd for [M+H] C16H2302NF3%8Si 346.1445, found 346.1445.
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(2R)-3,3,3-Trifluoro-2-methoxy-2-phenyl-1-(2-(trimethylstannyl)azetidin-1-yl)propan-1-

one (R,S)-SI-7 and (R,R)-SI-7

SnMe;
To a solution of stannane 10 (34 mg, 0.1 mmol) in CH2Cl; (0.6 mL) was added TMSI (20 uL,
0.13 mmol) dropwise at rt. The reaction was stirred for 30 min and then concentrated under
a stream of nitrogen. The crude was dissolved in CH,Cl; (1.0 mL), then DIPEA (38 uL, 0.22
mmol) and (S)-MTPA-CI (22 pL, 0.12 mmol) was added and the reaction was stirred overnight.
The reaction mixture was then concentrated under reduced pressure and to the residue was
added sat. ag NH4Cl (2 mL), and extracted with CH,Cl> (3 x 2 mL). The combined organic
extracts were washed with brine (2 mL), dried (MgS04) and concentrated under reduced
pressure to give a pale yellow oil. This was purified by column chromatography (5%-10%
Et.O/petroleum ether) to first give crystalline solid, stannyl Mosher amide (R,S)-SI-7 (6 mg,

14%).2 Second eluted a colourless oil stannyl Mosher amide (R,R)-SI-7 (6 mg, 14%).

(R)-3,3,3-Trifluoro-2-methoxy-2-phenyl-1-((S)-2-(trimethylstannyl)azetidin-1-yl)propan-1-
one (R,S)-SI-7
MeQ, CF,4

Ph"‘I

N™ O

SnMe;
R 0.33 (5% Et,0/petroleum ether); [a]3® +192.2 (c 0.25, CHCl3); mp 115-116 °C; IR
(neat/cm™) 2954 (w), 1813 (m), 1643 (m), 1165 (s); 6x (400 MHz, CDCl3) 7.58 — 7.52 (2H, m,

m-Ph), 7.45 — 7.36 (3H, m, 0-Ph & p-Ph), 4.50 — 4.37 (1H, m, NCH), 4.12 (1H, dddd, J = 10.5,
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9.1, 5.8, 1.6 Hz, NCHH’), 3.67 — 3.60 (1H, m, NCHH’), 3.63 (3H, g, J = 1.9, OMe), 2.31 (1H, dddd,
J=11.2,10.0,9.3,5.8 Hz, NCHCHH’), 2.20 (1H, dddd, /= 11.2,9.1, 7.7, 6.5 Hz, NCHCHH’), 0.21
(9H, s, Y119sn-+ = 54 Hz, 2J1175n-1 = 52 Hz, SnMes); ¢ (100 MHz, CDCl3) 163.7 (C=0), 133.6 (i-Ph),
129.3 (p-Ph), 128.3 (0-Ph), 127.2 (m-Ph), 123.7 (Q, J = 290 Hz, CFs), 84.2 (q, J = 26 Hz, CCF3),
55.1 (q,J =3 Hz, OMe), 53.3 (NCHy), 52.5 (NCH), 20.6 (NCHCH3), =9.76 (J119sn-c = 331 Hz, J1175n-
¢ = 317 Hz, SnMes); &6 (377 MHz, CDCl3) —-69.8 (s); HRMS (ESI*) calcd for [M+H]

C16H2302NF32%Sn 438.0699, found 438.0691.

(R)-3,3,3-Trifluoro-2-methoxy-2-phenyl-1-((R)-2-(trimethylstannyl)azetidin-1-yl)propan-1-
one (R,R)-SI-7

MeQ, CF,4

Ph“I
E'T O

“SnMe,
Rf0.26 (5% Et,0/petroleum ether); [a]3> —44.0 (c 0.13, CHCl3); IR (neat/cm™) 2954 (w), 1814
(m), 1643 (m), 1230 (m), 1166 (s); &4 (400 MHz, CDCls) 7.67 — 7.48 (2H, m, m-Ph), 7.46 — 7.28
(3H, m, 0-Ph & p-Ph), 4.41 (1H, dddd, J = 10.1, 7.4, 1.5, 0.9 Hz, NCH), 4.21 (1H, dddd, J = 10.2,
9.3, 6.4, 0.9 Hz, NCHH'), 3.65 (3H, g, J = 1.8 Hz, OMe), 3.50 — 3.36 (1H, m, NCHH’), 2.41 (1H,
dddd,/=11.2,10.1,9.3,5.9 Hz, NCHCHH'), 2.04 (1H, dddd, J=11.2,9.2, 7.4, 6.4 Hz, NCHCHH’),
0.17 (9H, s, Z1osnst = 54 Hz, Z1zsnn = 52 Hz, SnMes); 8¢ (100 MHz, CDCls) 163.9 (C=0), 133.6
(i-Ph), 129.3 (p-Ph), 128.2 (0-Ph), 127.2 (m-Ph), 124.0 (Q, J = 290 Hz, CFs), 83.7 (q, J = 28 Hz,
CCF3), 55.1 (g, J = 2 Hz, OMe), 53.2 (NCH;), 51.8 (NCH), 20.6 (NCHCH,), =9.5 (J119sn.c = 332 Hz,
J117snc = 318 Hz, SnMes); 6¢ (377 MHz, CDCl3) —70.2 (s); HRMS (ESI*) calcd for [M+H]

C16H2302NF32%Sn 438.0699, found 438.0694.
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(2R)-3,3,3-Trifluoro-1-(2-(2-hydroxypropan-2-yl)azetidin-1-yl)-2-methoxy-2-phenylpropan-

1-one (R,R)-SI-8 and (R,S)-SI-8

HO

Alcohol Mosher amides (R,R)-SI-8 and (R,S)-SI-8 were prepared following general procedure
D, using alcohol 8 (10 mg, 0.04 mmol). The crude material was purified by column
chromatography (40%-80% Et,0/petroleum ether) to first give a crystalline solid, alcohol
Mosher amide (R,R)-SI-8 (1 mg, 8%). Second eluted a crystalline solid alcohol Mosher amide

(R,S)-SI-8 (1 mg, 8%).

(R)-3,3,3-Trifluoro-1-((R)-2-(2-hydroxypropan-2-yl)azetidin-1-yl)-2-methoxy-2-

phenylpropan-1-one (R,R)-SI-8

HO
Rf0.59 (100% Et,0); [ar]3® +136.5 (c 0.13, CHCI3); mp 94 °C; IR (neat/cm™) 3363 (br), 2924 (m),
1639 (m), 1167 (m); 81 (400 MHz, CDCls) 7.60 — 7.52 (2H, m, m-Ph), 7.45 — 7.39 (3H, m, 0-Ph
& p-Ph), 4.45 (1H, pseudo t, J = 8.2 Hz, NCH), 3.88 (1H, tdd, J = 9.9, 5.2, 1.3 Hz, NCHH’), 3.71
(3H, g, J = 1.9 Hz, OMe), 3.33 (1H, dddd, J = 9.9, 9.1, 7.2, 0.8, NCHH’), 2.08 (1H, dtd, J = 11.7,
9.1, 5.2 Hz, NCHCHH’), 1.87 (1 H, ddt, J = 11.7, 9.9, 7.2 Hz, NCHCHH’), 1.58 (1H, br's, OH), 1.31

(3H, s, CHs), 1.09 (3H, s, CHs); 8¢ (100 MHz, CDCls) 167.8 (C=0), 132.9 (i-Ph), 129.7 (p-Ph),
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128.6 (0-Ph), 127.0 (m-Ph), 123.4 (Q, J = 289 Hz, CFs), 84.2 (q, J = 26 Hz, CCFs), 73.8 (NCH),
71.3 (COH), 55.4 (g, J = 3 Hz, OMe), 49.8 (NCH,), 24.2 (CHs), 23.4 (CHs), 20.4 (NCHCH>); 6¢ (377
MHz, CDCl3) —69.9 (s); HRMS (ESI*) calcd for [M+Na] CigH200sNFsNa 354.1287, found

354.1287.

(R)-3,3,3-Trifluoro-1-((S)-2-(2-hydroxypropan-2-yl)azetidin-1-yl)-2-methoxy-2-
phenylpropan-1-one (R,S)-SI-8

MeQ,

CF4
Ph
DNIO
HOK
Rf0.32 (100% Et,0); [a]3® +32.6 (c 0.06, CHCls); mp 118-119 °C; IR (neat/cm™) 3362 (br),
2925 (m), 1635 (s), 1432 (m), 1168 (s); 61 (500 MHz, CDCl3 7.61 — 7.57 (2H, m, m-Ph), 7.43 —
7.37 (3H, m, 0-Ph & p-Ph), 4.55 (1H, pseudo t, J = 7.9 Hz, NCH), 4.01 (1H, dddd, J=10.1, 9.2,
6.9, 0.8 Hz, NCHH’), 3.69 (3H, q, / = 1.7 Hz, OMe), 3.15 (1H, dddd, J = 10.1, 9.8, 5.6, 1.4 Hz,
NCHH’), 2.22 (1H, dtd, J = 11.9, 9.2, 5.6 Hz, NCHCHH’), 1.71 (1H, ddt, J = 11.9, 9.8, 6.9 Hz,
NCHCHH’), 1.16 (3H, s, CHs), 1.05 (3H, s, CH3); 8¢ (125 MHz, CDCl3) 167.2 (C=0), 132.7 (i-Ph),
129.7 (p-Ph), 128.4 (0-Ph), 127.1 (m-Ph), 123.5 (Q, J = 290 Hz, CF3), 84.1 (q, J = 26 Hz, CCF3),
73.7 (NCH), 71.4 (COH), 55.4 (q, J = 3 Hz, OMe), 49.6 (NCH,), 24.2 (CHs), 22.8 (CHs), 20.3

(NCHCH3); 6¢ (377 MHz, CDCl3) —70.5 (s); HRMS (ESI*) calcd for [M+Na] CigH2003NFsNa

354.1287, found 354.1287.
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1H NMR (400 MHz)
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1H NMR (400 MHz)
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1H NMR (400 MHz)
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'H NMR (500 MHz)
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'H NMR (400 MHz)
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1H NMR (400 MHz)
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1H NMR (400 MHz)
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1H NMR (400 MHz)
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1H NMR (500 MHz)
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19F NMR (377 MHz, CDCl3)
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13C NMR (125 MHz)
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1H NMR (400 MHz)
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19F NMR (377 MHz, CDCl3)
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13C NMR (100 MHz)
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19F NMR (377 MHz, CDCl3)
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13C NMR (125 MHz)
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4, Chiral HPLC traces

Chiral HPLC for stannane 10: (Chiralpak ODH, 0.1% 'PrOH, 99.9% hexane, 1.0 mL min, A =
254 nm, 10 pl injection) tr = 5.1 min, tr = 6.4 min.

Racemic

(+)-10

Ni\ O><

SnMe3
No. Peak Retention Time Area Height Relative
Name Area
min mAU*min mAU %
1 5.143 25.902 36.336 48.79
2 6.397 27.187 42.529 51.21
Total: 53.089 78.865 100.00
450
\2-6.37
40.0
(1-5.143
35.0
30.0
F 250
E
& 200
£
£ 150
10.0
5.0 J
[1)1] M
50
0.00 1.25 250 3.75 5.00 6.25 750 8.75 10.00 11.25 12.00

Time [min]
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Enantioenriched

(R)-10

/"SnMe3
No. Peak Retention Time Area Height Relative
Name Area
min mAU*min mAU %
1 6.087 10.974 12.699 33.07
2 7.437 22.210 23.386 66.93
Total: 33.184 36.085 100.00
25.0 -
| \2-74F
20,0
15.0
§ 1-6037
E
g 10.0
£
3
50
0.0 T
50
0.00 125 250 3% 500 0 6325 0 7sD 0 875 1000 1125 1200

Time [min]



Fbsorbance [mAL]
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Enantioenriched

(5)-10

No. Peak Retention Time Area Height Relative
Name Area
min mAU*min mAU %
1 5.660 100.736 125.963 67.42
2 7.117 48.683 68.077 32.58
Total: 149.420 194.040 100.00
140 -
\1-5650
120 4
100 4
30 4
\2-7.1017
60 4
40 4
20
0.00 125 250 375 5.00 6.25 750 875 10.00 125 12.00

Time [min]
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Chiral HPLC for alcohol 8: (Chiralpak ADH, 5% 'PrOH, 95% hexane, 1.0 mL min'i, A = 254 nm,
25 plinjection) tr = 12.5 min, tr = 14.3 min.

Racemic
1)-8

o

N
HO
No. Peak Retention Time Area Height Relative
Name Area
min mAU*min mAU %
1 12.460 1290.733 | 2003.531 48.87
2 14.293 1350.631 | 1890.896 51.13
Total: 2641.363 | 3894.427 100.00
2500 -
2000_: | 1-12.480 2o tezms
1500
s
E
2 1000
g J
£ ]
500
D: 1 Y T
-500:' - - - - - - - -
5.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 200

Time [min]



Fbsorbance [mAL]
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Enantioenriched

R)-8

HO

No. Peak Retention Time Area Height Relative
Name Area
min mAU*min mAU %
1 12.843 304.447 | 1109.391 90.29
2 15.000 32.749 99.916 9.71
Total: 337.196 | 1209.308 | 100.00
1200 -
11-12383
1000 4
800
600
400
200 4
J 1 2-150m
04 1 : 1 ,
-200-—' - - - - - - - '
5.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20,0

Time [min]
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Chiral HPLC for 2-methylazetidine 7: (Chiralpak IC, 1% 'PrOH, 99% hexane, 1.0 mL min, A =
258 nm, 50 pl injection) tr = 18.9 min, tr = 21.4 min.

Racemic
1)-7

No. Peak Retention Area Height Relative
Name Time Area
min mAU*min mAU %
1 18.900 1498.102 | 2030.911 49.13
2 21.357 1551.000 | 1945.040 50.87
Total: 3049.101 | 3975.951 100.00
2500 -
1 11- 182
2000 4 \2-21357
1500
5
E
& 1000 4
£
£ ]
500
3 e S .
-500:' : - - - - _
0.0 5.0 10.0 15.0 200 250 30.0

Time [min]



Fbsorbance [mAU)]
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Enantioenriched

R)-7
s
i
No. Peak Retention Area Height Relative
Name Time Area
min mAU*min mAU %
1 18.903 181.113 236.890 21.67
p 22.787 654.624 810.985 78.33
Total: 835.738 | 1047.875 100.00
1 \2-2275
] 1-1350
| . 1 — IJ
0o X 100 150 200 25.0 300

Time [min]
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Chiral HPLC for silane 12: (Chiralpak ODH, 0.1% 'PrOH, 99.9% hexane, 1.0 mL min?, A = 254
nm, 10 ulL injection) tr = 5.9 min, 1tz = 6.4 min.

Racemic

(+)-12

Ni\ O><

SiMe3

No. Peak

Retention Time Area Height Relative
Name Area
min mAU*min mAU %
1 5.893 207.092 753.880 49.85
2 6.433 208.340 838.482 50.15
Total: 415.433 | 1592.362 100.00
a0 -
| 1 2-643
300 4
11-5
700 n
600 4
gsnoi
é«mol
3
300:
ZI'JIZIE
100 4
20 A ] ' AN
0.00 1.25 250 3.75 5.00 6.25 7.50 3.75 10.00 1125 12,00

Time [min]



250 -
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Enantioenriched

(R)-12

200 4

[2d
o

100 4

Fbsorbance [mAL]

50 4

“SiMe,

No. Peak Retention Time Area Height Relative
Name Area

min mAU*min mAU %

1 6.353 25.771 85.502 29.80
2 6.947 60.721 230.218 70.20
Total: 86.492 315.721 100.00

\2-6347
|1-6253
\ A
1.25 250 3.75 5.00 6.25 7.50 8.75 125 12.00

Time [min]
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Enantioenriched

(5)-12

s

SiMe,

No. Peak Retention Time Area Height Relative
Name Area
min mAU*min mAU %
1 5.443 78.373 371.110 57.94
2 5.823 56.903 299.682 42.06
Total: 135.276 670.792 100.00
400 -
[1-5483
350 4
300 4 HZ-SBZJ
_ 250 ]
Y
E
@ 200
2
g 150
100 4
J U
04 T
.20
0.00 1.25 2.50 3.5 5.00 6.25 7.50 3.75 10.00 1125 12.00

Time [min]
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Chiral HPLC for stannane 13: (Chiralpak ODH, 1% 'PrOH, 99% hexane, 1.0 mL min, A = 254
nm, 10 ulL injection) tr = 5.1 min, tr = 5.9 min.

Racemic

(+)-13

SnMe3
No. Peak Retention Area Height Relative
Name Time Area
min mAU*min mAU %
1 5.067 3.356 27.726 49.80
2 5.890 3.383 22.475 50.20
Total: 6.739 50.200 100.00
30.0 4
1 ,1-5D57
25.0 ]
] \2-520
20.05
315.0
g 10.0
2
50]
0.05 J ; .J . AN
50
250 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00

Time [min]
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Enantioenriched

(5)-13

S

SnMej
No. Peak Retention Area Height Relative
Name Time Area
min mAU*min mAU %
1 4,227 7.107 69.434 66.49
2 4.640 3.582 31.038 33.51
Total: 10.689 100.472 100.00
20.0
70.0 (1-4237
60.0
_5o.ol
=
E
340'0
§3DD 12-4540
g
200
10.0
0.0 'J . T
240 abo 350 400 450 500 550 600 650 700 75

Time [min]
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Chiral HPLC for alcohol 14: (Chiralpak ADH, 5% 'PrOH, 95% hexane, 1.0 mL min?, A = 205nm,

25 plLinjection) tr = 9.4 min, tr = 15.1 min.

Racemic

(£)-14

%o

N

HO
No. Peak Retention Time Area Height Relative
Name Area
min mAU*min mAU %
1 9.417 49.182 240.919 49.71
2 15.097 49.746 159.326 50.29
Total: 98.928 400.244 100.00
250
] 1-9417
200
12- 15097
150
EN
E 4
& 100 ]
2 ]
£ ]
504
S )
0 T
'50:. T T T T T T T T 4 T 4 T T T T T T T T T T T T 1
5.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 200

Time [min]



Fbsorbance [mAL]
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Enantioenriched

(R)-14

N
HO
No. Peak Retention Area Height Relative
Name Time Area
min mAU*min mAU %
1 9.383 10.175 50.313 66.69
2 15.087 5.082 16.304 33.31
Total: 15.257 66.617 100.00
60.0
1-933
50.04
40.0
30.0
200
1 2- 15057
10.0]
o.o:m————/—\——/\i . v
5.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20,0

Time [min]
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Chiral HPLC for alcohol (R*,5*)-SI-2: (Chiralpak ADH, 4% 'PrOH, 96% hexane, 1.0 mL min?,
A =272 nm, 25 pL injection) tr = 11.6 min, tr = 12.7 min.

Racemic

(R*,5*)-SI-2

80.0-Sm253¢ - 30 % - ADH #18 [modified by MDSAdmin] UV VIS 1
~ JmAU WVL-272 nm)
70.0: 1-11.583
J f
80.0- (l 2-12663
] |
] .
50.0+ |
- | ||
. T
40.04 l | i
] I |
] | | |
30.04 | | |
] I
20.0+ ' | |
4 | '
] [ |
10.0 i‘. . |.
] ' |
J | { |
1 |'I | \ : \
0.0+ A — R
1Y | S e A A A A A A i A A A A Al .
0.0 20 40 6.0 8.0 100 12.0 143
No. | Ret.Time Peak Name Height Area Rel.Area Amount Type
min mAU mAU*min %
1 11.58 n.a. 67.093 17.305 50.06 n.a. BM
2 12.66 n.a. 58.827 17.265 49.94 n.a. MB
Total: 125.920 34569 100.00 0.000
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Enantioenriched

(R,S)-SI-2

No.

Peak Name

Retention Time Area Height Relative
Area
min mAU*min mAU %
1 10.543 21.255 94.087 32.91
2 11.310 43.322 175.171 67.09
Total: 64.577 269.258 100.00
200
175 4 12-11310
150 4
125
2
E'DD' 11- 10548
X
50 4
25 4
0 AN VAN 1 !
5.0 6.0 8.0 10.0 12.0 14.0 18.0 200

Time [min]
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Chiral HPLC for alcohol (R*,R*)-SI-2: (Chiralpak ADH, 4% 'PrOH, 96% hexane, 1.0 mL min,
A =272 nm, 25 pL injection) tr = 25.9 min, tr = 36.0 min.

Racemic

(R*,R*)-SI-2

N
wH
Ph
HO
50.0 cdm253c¢ - 30 % - ADH #22 [modified by MDSAdmin] UV VIS 1
“mau WVL-272 nj
J 1-25.800
| |
- l|
1 |
20.0- ’ i (:2 -36.023
4 I
7 |
J | | |
|
B | [
_ 1
10.0- ' | |
] | | |
J ; |
N | | | ||
'u | \ [\
00—~ r—— A - — l 1
-5 G- . miry
00 50 100 150 200 250 30.0 350 400
No. | Ret.Time Peak Name Height Area Rel.Area Amount Type
min mAU mAU*min %
1 25.89 n.a. 44 569 26.750 50.08 n.a. BMB
2 36.02 n.a. 29.998 26.667 4992 n.a. BMB
Total: 74 567 53.417 100.00 0.000




Fbsorbance [mAL)
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Enantioenriched

R,R)-S1-2

Time [min]

HO
No. Peak Retention Area Height Relative
Name Time Area
min mAU*min mAU %
1 23.410 31.697 57.996 32.12
2 33.097 66.984 82.217 67.88
Total: 98.681 140.213 100.00
90:
80-- 1 2-3307
0.
BIJ:
] | 1-23.410
50
o
30%
20%
.10:l T T U T T ] T T L T T ] 1
15.0 17.5 20.0 225 25.0 275 30.0 325 35.0 375 40.0



S80
Chiral HPLC for alcohol (R*,5*)-SI-3: (Chiralpak ADH, 4% 'PrOH, 96% hexane, 1.0 mL min?,

A =272 nm, 25 pL injection) tr = 11.8 min, tr = 13.1 min.

Racemic

(R*,5%)-SI-3

o
N o}
CGH4P-C|

O,

H
cIm253¢ - 30 % - ADH #20 [medified by MDSAdmin) UV_VIS_1
1OG-MU WVL-272 nn
. 1-11.807
887
] 2-13.120
75 ".
831 .
5] .
38 '
2] ’ ‘
o g iml
: (1 ]|
J H \ |
o N S — S — -1)
] mi
"] —— ——T
00 20 40 6.0 8.0 100 12.0 140 167
No. | Ret.Time Peak Name Height Area Rel.Area Amount Type
min mAU mAU*min %
1 11.81 n.a. 90.787 24676 50.02 n.a. BMB
2 1312 na 77.713 24660 4998 na  BMB*
Total: 168.500 49.336 100.00 0.000
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Enantioenriched

(R,S)-SI-3

o
N O
\ C6H4p-C|

HO
clm253c¢ - 30 % - ADH #18 [modified by MDSAdmin] UV_VIS_1
400TmAU WVL272 nf
] 2-13.047
3507 ’
o |
2505
200]
150]
] 1-11.§40
1007 A
] 1
50_: ||| I |
] ! I
G. M l) k%/ \'_
10 40 6.0 80 10.0 120 140 16.0 18.0 210
No. Ret.Time Peak Name Height Area Rel.Area Amount Type
min mAU mAU*min %
1 11.74 n.a. 105.172 32985 2049 n.a. BMB
2 1305 na 360125 127982 7951 na BMB*
Total: 465.297 160.966 100.00 0.000
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Chiral HPLC for alcohol (R*,R*)-SI-3: (Chiralpak ADH, 4% 'PrOH, 96% hexane, 1.0 mL min,

A =272 nm, 25 pL injection) tr = 8.3 min, tr = 19.7 min.

Racemic

(R*,R*)-SI-3

cIm253c - 20 % - ADH #27 [modified by MDSAdmin] UV_\IS_1
100 A WVL272
] 1-8242
8]
5]
3]
50}
36]
] -19.717
4 n
25 I/
] I
] J |
137 I' {
] | [\
S S — Jo\ N
: ]
-10 i T — I . I 1 T
00 50 100 15.0 200 250 300
No. | Ret.Time Peak Name Height Area Rel.Area Amount Type
min mAU  mAU*min %
1 834 n.a. 92.532 21306 4999 n.a. BMB
2 1972 na 29092 21310 50,01 na BMB
Total: 121.624 42616 100.00 0.000




Enantioenriched

~ cm253c - 30 % - ADH #20 [modified by MDSAdmin]

UV_VIS_1

BD'U.mAU

70.0

60.0

40.07

30.07

WVL272 nf

O.D'.—J

-10.0

0.0

No.

Rel.Area Amount

Type

BMB
BMB

Total:
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Chiral HPLC for 2,4-dimethylazetidine SI-4: (Chiralpak IC, 1% 'PrOH, 99% hexane, 1.0 mL
min, A =260 nm, 20 uL injection) tr = 12.9 min, 1tz = 20.5 min.

Racemic

(R*,R*)-SI-4

S

L4
o

No. Peak Retention Time Area Height Relative
Name Area
min mAU*min mAU %
1 12.917 513.135 | 1808.372 49.62
2 20.543 521.055 | 950.119 50.38
Total: 1034.190 | 2758.491 | 100.00
2000
1-12917
1750
1500
1250
]
‘%'000 12-20563
g 750
4
500
250 k
0 L I 1 T
5.0 7.5 10.0 12.5 15.0 17.5 200 225 250 275 30.0

Time [min]



Fosorbance [mAL)]
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Enantioenriched

(R,R)-SI-4

e

No. Peak Retention Time Area Height Relative
Name Area
min mAU*min mAU %
1 12.777 25.689 183.715 8.00
2 18.200 295.403 | 822.491 92.00
Total: 321.092 | 1006.206 | 100.00
00
12-1320
800
700
600
500
400
300
200 11-12777
100 M
0 Ly 1 .
5.0 75 10.0 125 15.0 17.5 200 225 250 275 30.0

Time [min]



