Supporting Information

Organocatalytic asymmetric synthesis of arylindolyl indolin-3-ones

with both axial and central chirality

Xi Yuan,^{a,b} Xudong Wu,^a Fei Peng,^a Haijun Yang,^a Changjin Zhu,^b and Hua Fu^{*a}

^{*a*} Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China

^b School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China

*To whom correspondence should be addressed. E-mail: fuhua@mail.tsinghua.edu.cn

Table of Contents

1. General procedures	S 2
2. General procedure for the synthesis of compounds 1a-1t , 2 and 5	S 3
3. Characterization of compounds 1a-1t and 5	S 4
4. Optimization of reaction conditions	S 11
5. General procedures for preparation of the racemic products	S14
6. General procedures for the synthesis of products 3a-3z and 3aa-3ak	S15
7 .Characterization data of products 3a-3z and 3aa-3ak	S 16
8. Scale up synthesis of 3a , 3j and 3ag	S35
9. Control experiments	S36
10. Investigation on stability of products 3a and 3ag	S37
11. Derivatization of the chiral products	S38
12. X-Ray crystallographic data for 3a	S40
13. References	S45
14. HPLC analysis of products 3a-3z 3aa-3ak, 6, 9, 10, 11	S46
15. NMR spectra of 1a-1t, 5, 3a-3z, 3aa-3ak, 6, 9, 10, 11	S 87

1. General procedures

All reactions were carried out in dry solvents under an argon atmosphere. The reagents were purchased and used without further purification. The reactions were monitored by thin layer chromatography (TLC), and the products were isolated by silica gel column chromatography or preparative silica gel thin layer chromatography (*p*-TLC). Melting points were recorded on a Beijing Tech X-4 melting point apparatus. High-resolution mass spectra (HRMS) were recorded on LCMS-IT/TOF (SHIMADZU, Japan) with an electrospray ionization source. ¹H NMR, ¹³C NMR spectra were recorded on JNM-ECS 400 using tetramethylsilane (TMS) as the internal standard. Chiral HPLC analysis was achieved using an Agilent 1100 Infinity series normal phase HPLC unit and Agilent Chemstation software. Daicel Chiralpak columns (250 \times 4.6 mm) were used as specified in the text. Solvents were used of HPLC grade (Sigma Aldrich); all eluent systems were isocratic. Single crystal X-ray data were collected on a Bruker APEXII X-ray diffractometer equipped with a CMOS PHOTON 100 detector with a Cu K_{α} X-ray source (K_{α} = 1.54178 Å). Data were indexed, integrated and scaled using DENZO and SCALEPACK from the HKL program suite (Otwinowski & Minor, 1997). Structure of (Sa,R)-3a was solved through direct method (SHELXS-97) and refined by full-matrix least-squares (SHELXL-2014) on F^2 . Anisotropic thermal parameters were used for the non-hydrogen atoms and isotropic parameters for the hydrogen atoms. The data obtained were deposited at the Cambridge Crystallographic Data Centre.

2. General procedure for the synthesis of compounds 1a-1t, 2, and 5

To solution of indole or indole derivative (1.5 mmol) and (PhO)₂POOH (10 mmol%, 0.1 mmol) in CH₂Cl₂ (10 mL) was added quinone derivative (1 mmol) at 0 °C, then the solution was stirred at room temperature for 12-36 h, and the reaction was monitored by TLC until completion. The resulting solution was concentrated, and the residue was purified by flash chromatography on silica gel eluted with petroleum ether (PE)/ethyl acetate (EA) to afford pure product (**1a-1t** and **5**).^{1,2}

Substrates **2** were synthesized according to the previous method.³

General procedure:

A solution of I₂ (4.38 g, 17.2 mmol) in DMF (30 mL) was dropped into 2-aryl indoles(17.1 mmol) and KOH (2.39 g, 42.7 mmol) in DMF (30 mL) at room temperature (rt), and the resulting solution was stirred for 2 h. The mixture was then purged with air, silica (7.1 g) was added, and the mixture heated to 120 °C for 4 h. After cooling, water (200 mL) was added, and the mixture extracted with ethyl acetate (3 × 100 mL). The organic extracts were combined, dried (Na₂SO₄), filtered and concentrated in vacuo. Purification by flash chromatography on silica with petroleum ether/ethyl acetate the eluent gave **2** as the red solids.

3. Characterization data of compounds 1a-1t and 5

Methyl-3,6-dihydroxy-2-(1*H***-indol-3-yl)benzoate (1a):** pale yellow solid, mp = 149-150 °C. 220.8 mg, 78% yield. ¹H NMR (400 MHz, chloroform-*d*) δ 10.34 (s, 1H), 8.40 (s, 1H), 7.45 (d, *J* = 8.2 Hz, 1H), 7.31 (d, *J* = 7.9 Hz, 1H), 7.28 – 7.25 (m, 1H), 7.22 – 7.15 (m, 2H), 7.12 (t, *J* = 7.3 Hz, 1H), 7.00 (d, *J* = 9.0 Hz, 1H), 5.18 (s, 1H), 3.24 (s, 3H). ¹³C NMR (100 MHz, chloroform-*d*) δ 171.2, 155.6, 147.4, 136.3, 127.5, 123.2, 123.0, 122.2, 120.7, 119.5, 119.3, 118.3, 113.4, 111.4, 110.6, 51.9. HRMS (ESI): calcd for [C₁₆H₁₂NO₄]⁻ [M-H]⁻ *m/z* 282.0772; found: 282.0771.

Propyl-3,6-dihydroxy-2-(1*H***-indol-3-yl)benzoate (1b):** pale yellow solid, mp = 152-153 °C. 227.1 mg, 73% yield, ¹H NMR (400 MHz, chloroform-*d*) δ 10.64 (s, 1H), 8.42 (s, 1H), 7.43 (d, *J* = 8.1 Hz, 1H), 7.31 (d, *J* = 7.9 Hz, 1H), 7.24 (d, *J* = 9.3 Hz, 1H), 7.21 – 7.14 (m, 2H), 7.10 (t, *J* = 7.5 Hz, 1H), 7.00 (d, *J* = 9.0 Hz, 1H), 5.18 (s, 1H), 3.69 (ddt, *J* = 47.9, 10.8, 6.6 Hz, 2H), 0.72 (dtt, *J* = 21.0, 13.9, 6.8 Hz, 2H), 0.32 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (100 MHz, chloroform-*d*) δ 171.1, 155.9, 147.4, 136.4, 127.8, 123.1, 122.9, 122.1, 120.7, 119.5, 119.4, 118.4, 113.4, 111.3, 111.0, 67.0, 20.8, 9.9. HRMS (ESI): calcd for [C₁₈H₁₆NO₄]⁻ [M-H]⁻ *m/z* 310.1085; found: 310.1081.

Isopropyl-3,6-dihydroxy-2-(1*H***-indol-3-yl)benzoate (1c):** pale yellow solid, mp = 188-189 °C. 199.1 mg, 64% yield, ¹H NMR (400 MHz, chloroform-*d*) δ 10.71 (s, 1H), 8.43 (s, 1H), 7.43 (d, *J* = 8.1 Hz, 1H), 7.30 (d, *J* = 7.9 Hz, 1H), 7.25 – 7.23 (m, 1H), 7.19 – 7.14 (m, 2H), 7.10 (t, *J* = 7.4 Hz, 1H), 7.00 (d, *J* = 9.0 Hz, 1H), 5.20 (s, 1H),

4.77 (p, J = 6.2 Hz, 1H), 0.66 (d, J = 6.2 Hz, 3H), 0.33 (d, J = 6.2 Hz, 3H). ¹³C NMR (100 MHz, chloroform-*d*) δ 170.3, 155.9, 147.5, 136.4, 128.3, 123.1, 122.8, 121.9, 120.6, 119.7, 119.4, 118.4, 113.8, 111.2, 111.0, 68.7, 21.1, 20.2. HRMS (ESI): calcd for [C₁₈H₁₆NO₄]⁻ [M-H]⁻ *m*/*z* 310.1085; found: 310.1078.

tert-Butyl-3,6-dihydroxy-2-(1*H*-indol-3-yl)benzoate (1d): white solid, mp = 175-176 °C. 247.1 mg, 76% yield, ¹H NMR (400 MHz, chloroform-*d*) δ 10.71 (s, 1H), 8.44 (s, 1H), 7.43 (d, *J* = 8.1 Hz, 1H), 7.33 (d, *J* = 7.8 Hz, 1H), 7.25 (t, *J* = 7.3 Hz, 1H), 7.20 – 7.04 (m, 3H), 7.02 – 6.91 (m, 1H), 5.19 (s, 1H), 0.85 (s, 9H). ¹³C NMR (100 MHz, chloroform-*d*) δ 170.2, 155.7, 147.2, 136.5, 128.2, 123.2, 122.4, 121.5, 120.6, 119.7, 119.3, 118.3, 114.7, 111.5, 111.3, 82.4, 27.2. HRMS (ESI): calcd for [C₁₉H₁₈NO₄]⁻ [M-H]⁻ *m/z* 324.1241; found: 324.1241.

Benzyl-3,6-dihydroxy-2-(1*H***-indol-3-yl)benzoate (1e):** brown solid, mp = 99-100 °C. 247.8 mg 69% yield, ¹H NMR (400 MHz, chloroform-*d*) δ 10.51 (s, 1H), 8.12 (s, 1H), 7.32 (t, *J* = 7.5 Hz, 2H), 7.25 (d, *J* = 7.4 Hz, 1H), 7.21-7.15 (m, 2H), 7.10 (dt, *J* = 22.6, 7.5 Hz, 3H), 7.03 – 6.99 (m, 2H), 6.50 (d, *J* = 7.5 Hz, 2H), 5.14 (s, 1H), 4.90 (d, *J* = 12.1 Hz, 1H), 4.62 (d, *J* = 12.1 Hz, 1H). ¹³C NMR (100 MHz, chloroform-*d*) δ 170.8, 155.9, 147.5, 136.3, 134.3, 128.2, 128.2, 128.0, 127.5, 123.2, 123.0, 122.3, 120.7, 119.5, 119.3, 118.4, 113.3, 111.6, 110.4, 67.3. HRMS (ESI): calcd for [C₂₂H₁₆NO₄]⁻ [M-H]⁻ *m/z* 358.1085; found: 358.1075.

2-Bromobenzyl-3,6-dihydroxy-2-(1*H***-indol-3-yl)benzoate (1f):** brown solid, mp = 82-83 °C. 222.9 mg 51% yield, 1H NMR (400 MHz, chloroform-*d*) δ 10.49 (s, 1H), 8.11 (s, 1H), 7.36 (d, J = 7.8 Hz, 1H), 7.29 (d, J = 7.7 Hz, 1H), 7.22 – 7.14 (m, 3H), 7.10 – 7.00 (m, 4H), 6.89 (t, J = 7.5 Hz, 1H), 6.27 (d, J = 7.6 Hz, 1H), 5.11 (s, 1H), 5.06 (d, J = 12.8 Hz, 1H), 4.74 (d, J = 12.8 Hz, 1H). ¹³C NMR (100 MHz, chloroform-*d*) δ 170.6, 156.1, 147.6, 136.2, 133.9, 132.4, 131.1, 129.8, 129.5, 128.9, 127.3, 127.2, 123.4, 122.9, 122.5, 120.7, 119.5, 119.3, 118.5, 113.0, 111.5, 110.3, 66.6. HRMS (ESI): calcd for [C₂₂H₁₅BrNO₄]⁻ [M-H]⁻ *m/z* 436.0190, 438.0172; found: 436.0170, 438.0179.

4-Bromobenzyl-3,6-dihydroxy-2-(1*H***-indol-3-yl)benzoate (1g):** brown solid, mp = 191-192 °C. 249.1 mg 57% yield, ¹H NMR (400 MHz, chloroform-*d*) δ 10.45 (s, 1H), 8.11 (s, 1H), 7.33 (d, *J* = 8.0 Hz, 1H), 7.27 (dd, *J* = 7.6, 1.9 Hz, 2H), 7.21 – 7.13 (m, 3H), 7.12 – 7.07 (m, 1H), 7.06 – 6.96 (m, 2H), 6.32 (d, *J* = 8.3 Hz, 2H), 5.08 (s, 1H), 4.77 (d, *J* = 12.2 Hz, 1H), 4.62 (d, *J* = 12.2 Hz, 1H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 168.1, 148.5, 147.1, 136.4, 135.8, 131.4, 129.8, 127.6, 124.7, 124.2, 121.5, 121.2, 121.0, 120.7, 119.0, 117.6, 115.3, 111.8, 111.0, 65.2. HRMS (ESI): calcd for [C₂₂H₁₅BrNO₄]⁻ [M-H]⁻ *m*/*z* 436.0190, 438.0172; found: 436.0177, 438.0179.

Naphthalene-1-ylmethyl-3,6-dihydroxy-2-(1*H*-indol-3-yl)benzoate (1h): white solid, mp = 190-191°C. 331.4 mg, 81% yield, ¹H NMR (400 MHz, chloroform-*d*) δ 10.60 (s, 1H), 7.82 (d, J = 8.1 Hz, 1H), 7.74 (d, J = 8.3 Hz, 1H), 7.49 – 7.40 (m, 2H), 7.39 – 7.29 (m, 2H), 7.21 – 7.12 (m, 3H), 7.09 – 6.90 (m, 4H), 6.72 (d, J = 6.9 Hz, 1H), 6.68 (d, J = 2.4 Hz, 1H), 5.50 (d, J = 12.2 Hz, 1H), 5.01 (s, 1H), 4.95 (d, J = 12.2Hz, 1H). ¹³C NMR (100 MHz, chloroform-*d*) δ 170.8, 156.1, 147.5, 135.9, 133.4, 131.5, 130.0, 129.1, 128.4, 127.8, 127.0, 126.3, 125.8, 125.4, 123.6, 123.3, 122.7, 122.3, 120.4, 119.6, 118.9, 118.4, 113.1, 111.2, 110.0, 65.1. HRMS (ESI): calcd for [C₂₆H₁₈NO₄]⁻ [M-H]⁻ *m*/*z* 408.1241; found: 408.1242.

Methyl-3,6-dihydroxy-2-(7-methyl-1*H***-indol-3-yl)benzoate (1i):** white solid, mp = 165-166 °C. 202.0 mg, 68% yield, ¹H NMR (400 MHz, chloroform-*d*) δ 10.31 (s, 1H), 8.41 (s, 1H), 7.21 – 7.12 (m, 3H), 7.05 (q, *J* = 7.7, 7.1 Hz, 2H), 7.00 (d, *J* = 9.0 Hz, 1H), 5.23 (s, 1H), 3.27 (s, 3H), 2.54 (s, 3H). ¹³C NMR (100 MHz, chloroform-*d*) δ 171.3, 155.5, 147.4, 136.0, 127.0, 123.5, 122.9, 122.2, 120.9, 120.6, 119.8, 118.2, 117.0, 113.4, 111.0, 52.0, 16.7. HRMS (ESI): calcd for [C₁₇H₁₄NO₄]⁻ [M-H]⁻ *m/z* 296.0928; found: 296.0927.

Methyl-3,6-dihydroxy-2-(5-methyl-1*H***-indol-3-yl)benzoate (1j):** light brown solid, mp = 172-173 °C. 213.9 mg, 72% yield, ¹H NMR (400 MHz, chloroform-*d*) δ 10.30 (s, 1H), 8.28 (s, 1H), 7.33 (d, *J* = 8.8 Hz, 1H), 7.17 (d, *J* = 8.7 Hz, 1H), 7.14 (d, *J* = 2.3 Hz, 1H), 7.08 (d, *J* = 7.3 Hz, 2H), 7.02 – 6.97 (m, 1H), 5.16 (s, 1H), 3.28 (s, 3H), 2.39 (s, 3H). ¹³C NMR (100 MHz, chloroform-*d*) δ 171.3, 155.6, 147.4, 134.6, 130.1, 127.6, 124.7, 123.2, 122.1, 119.6, 118.8, 118.3, 113.4, 111.0, 110.1, 51.9, 21.5. HRMS (ESI): calcd for [C₁₇H₁₄NO₄]⁻ [M-H]⁻ *m/z* 296.0928; found: 296.0927.

Methyl-3,6-dihydroxy-2-(5-methoxy-1*H***-indol-3-yl)benzoate (1k):** white solid, mp = 169-170 °C. 234.8 mg, 75% yield, ¹H NMR (400 MHz, chloroform-*d*) δ 10.28 (s, 1H), 8.38 (s, 1H), 7.31 (d, *J* = 8.8 Hz, 1H), 7.21 – 7.10 (m, 2H), 7.00 (d, *J* = 8.9 Hz, 1H), 7.00 (d, J = 8.9 Hz, 1H), 7.00 (d, J = 8.9 Hz, 1H), 7.00 (d, J = 8.9 Hz, 1

1H), 6.90 (d, J = 8.8 Hz, 1H), 6.70 (s, 1H), 5.23 (s, 1H), 3.75 (s, 3H), 3.28 (s, 3H). ¹³C NMR (100 MHz, chloroform-*d*) δ 171.3, 155.5, 155.0, 147.4, 131.3, 127.9, 123.8, 122.2, 119.6, 118.3, 113.7, 113.4, 112.3, 110.3, 100.3, 55.9, 52.0. HRMS (ESI): calcd for [C₁₇H₁₄NO₅]⁻ [M-H]⁻ *m*/*z* 312.0877; found: 312.0878.

Methyl-2-(5-fluoro-1*H*-indol-3-yl)-3,6-dihydroxybenzoate (11): white solid, mp = 160-161 °C. 195.7 mg, 65% yield, ¹H NMR (400 MHz, chloroform-*d*) δ 10.38 (s, 1H), 8.44 (s, 1H), 7.36 (dd, J = 8.8, 4.2 Hz, 1H), 7.22 (d, J = 2.4 Hz, 1H), 7.17 (d, J = 9.0 Hz, 1H), 7.05 – 6.89 (m, 3H), 5.08 (s, 1H), 3.29 (s, 3H). ¹³C NMR (100 MHz, chloroform-*d*) δ 171.0, 158.5 (d, ¹ $J_{C-F} = 236.4$ Hz), 155.8, 147.4, 132.7, 128.1 (d, ³ $J_{C-F} = 9.8$ Hz), 124.9, 122.4, 118.8, 118.7, 113.1, 112.2 (d, ³ $J_{C-F} = 9.5$ Hz), 111.6 (d, ² $J_{C-F} = 26.4$ Hz), 110.8, 104.3 (d, ² $J_{C-F} = 23.8$ Hz), 52.0. ¹⁹F NMR (376 MHz, chloroform-*d*) δ –122.9. HRMS (ESI): calcd for [C₁₆H₁₁FNO₄]⁻ [M-H]⁻ *m*/*z* 300.0678; found: 300.0678.

Methyl-2-(6-chloro-1*H***-indol-3-yl)-3,6-dihydroxybenzoate (1m):** pale yellow solid, mp = 215-216 °C. 164.9 mg, 52% yield, ¹H NMR (400 MHz, chloroform-*d*) δ 10.36 (s, 1H), 8.37 (s, 1H), 7.45 (s, 1H), 7.23 – 7.14 (m, 3H), 7.12 – 7.05 (m, 1H), 7.00 (d, *J* = 9.0 Hz, 1H), 5.04 (s, 1H), 3.27 (s, 3H). ¹³C NMR (100 MHz, chloroform-*d*) δ 171.0, 155.8, 147.4, 136.6, 129.1, 126.2, 123.7, 122.4, 121.6, 120.4, 118.7, 113.1, 111.4, 111.0, 52.0. HRMS (ESI): calcd for [C₁₆H₁₁ClNO₄]⁻ [M-H]⁻ *m*/*z* 316.0382; found: 316.0379.

-S8 -

Methyl-2-(4-bromo-1*H*-indol-3-yl)-3,6-dihydroxybenzoate (1n): brown solid, mp = 198-199 °C. 231.0 mg, 64% yield, ¹H NMR (400 MHz, chloroform-*d*) δ 10.75 (s, 1H), 8.52 (s, 1H), 7.40 (d, J = 8.3 Hz, 1H), 7.30 – 7.25 (m, 1H), 7.18 – 7.12 (m, 2H), 7.08 (t, J = 7.9 Hz, 1H), 7.01 (d, J = 9.0 Hz, 1H), 4.91 (s, 1H), 3.28 (s, 3H). ¹³C NMR (100 MHz, chloroform-*d*) δ 171.3, 156.0, 148.1, 137.2, 125.9, 124.7, 123.8, 122.0, 119.8, 118.9, 114.5, 114.1, 111.0, 110.8, 51.9. HRMS (ESI): calcd for [C₁₆H₁₁BrNO4]⁻ [M-H]⁻ *m*/*z* 359.9877, 361.9858; found: 359.9879, 361.9853.

Methyl-2-(5-bromo-1*H***-indol-3-yl)-3,6-dihydroxybenzoate (10):** white solid, mp = 194-195 °C. 249.1 mg, 69% yield, ¹H NMR (400 MHz, chloroform-*d*) δ 10.42 (s, 1H), 8.51 (s, 1H), 7.42 (s, 1H), 7.35 – 7.28 (m, 2H), 7.17 (dd, J = 5.7, 3.3 Hz, 2H), 7.00 (d, J = 9.0 Hz, 1H), 5.02 (s, 1H), 3.29 (s, 3H). ¹³C NMR (100 MHz, chloroform-*d*) δ 171.0, 155.8, 147.5, 134.9, 129.2, 126.0, 124.5, 122.5, 121.9, 118.8, 118.6, 114.0, 113.1, 112.9, 110.3, 52.0. HRMS (ESI): calcd for [C₁₆H₁₁BrNO4]⁻ [M-H]⁻ m/z 359.9877, 361.9858; found: 359.9880, 361.9840.

Methyl-3,6-dihydroxy-2-(5-iodo-1*H***-indol-3-yl)benzoate (1p):** yellow solid, mp = 217-218 °C. 290.4 mg, 71% yield, ¹H NMR (400 MHz, DMSO- d_6) δ 11.33 – 11.14 (m, 1H), 9.27 (s, 1H), 8.85 (s, 1H), 7.54 (d, J = 1.2 Hz, 1H), 7.29 (dd, J = 8.5, 1.6 Hz, 1H), 7.21 (d, J = 8.5 Hz, 1H), 7.07 (d, J = 2.4 Hz, 1H), 6.78 (d, J = 8.7 Hz, 1H), 6.67 (d, J = 8.7 Hz, 1H), 3.41 (s, 3H). ¹³C NMR (100 MHz, DMSO- d_6) δ 168.8, 148.2, 146.9, 135.4, 130.0, 129.4, 129.3, 125.6, 124.4, 119.7, 117.5, 115.5, 114.5, 110.3, 82.8, 52.0. HRMS (ESI): calcd for [C₁₆H₁₁INO₄]⁻ [M-H]⁻ m/z 407.9738; found: 407.9738.

Methyl-3,6-dihydroxy-2-(5-methoxy-1*H***-indol-3-yl)benzoate (1q):** white solid, mp = 219-220 °C. 194.4 mg, 57% yield, ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.45 (s, 1H), 9.30 (s, 1H), 8.87 (s, 1H), 7.97 (s, 1H), 7.68 (dd, *J* = 8.5, 1.3 Hz, 1H), 7.43 (d, *J* = 8.6 Hz, 1H), 7.19 (d, *J* = 2.0 Hz, 1H), 6.81 (d, *J* = 8.7 Hz, 1H), 6.70 (d, *J* = 8.7 Hz, 1H), 3.76 (s, 3H), 3.38 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 168.8, 168.0, 148.3, 146.9, 139.0, 127.0, 126.2, 124.5, 123.7, 122.5, 120.5, 119.5, 117.5, 115.7, 112.4, 112.0, 52.2, 52.0. HRMS (ESI): calcd for [C₁₈H₁₄NO₆]⁻ [M-H]⁻ *m/z* 340.0827; found: 340.0827.

3-(1*H***-Indol-3-yl)-2,5-Diiodobenzene-1,4-diol (1r):** White solid, mp = 209-210 °C. 381.4 mg, 80% yield, ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.15 – 10.99 (m, 1H), 9.70 (s, 1H), 7.69 (s, 1H), 7.24 (d, *J* = 8.1 Hz, 1H), 7.13 – 7.06 (m, 2H), 6.95 – 6.86 (m, 2H), 6.82 – 6.75 (m, 1H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 151.4, 148.0, 136.4, 128.7, 126.8, 125.8, 122.9, 121.4, 119.7, 119.1, 114.5, 112.0, 95.1, 86.4. HRMS (ESI): calcd for [C₁₄H₈I₂NO₂]⁻ [M-H]⁻ *m/z* 475.8650; found: 475.8649.

2,5-Diiodo-3-(5-methyl-1*H***-indol-3-yl)benzene-1,4-diol (1s):** White solid, mp = 190-191 °C. 407.4 mg, 83% yield, ¹H NMR (400 MHz, chloroform-*d*) δ 8.39 (s, 1H), 7.48 (s, 1H), 7.36 (d, *J* = 9.0 Hz, 1H), 7.22 (d, *J* = 2.6 Hz, 1H), 7.11 (d, *J* = 8.1 Hz, 2H), 5.34 (s, 1H), 5.08 (s, 1H), 2.41 (s, 3H). ¹³C NMR (100 MHz, chloroform-*d*) δ 149.6, 147.9, 134.5, 130.5, 125.8, 125.2, 125.0, 124.6, 124.0, 119.3, 113.4, 111.4,

95.0, 82.8, 21.6. HRMS (ESI): calcd for [C₁₅H₁₀I₂NO₂]⁻ [M-H]⁻ *m/z* 489.8806; found: 489.8806.

3-(5-Bromo-1*H***-indol-3-yl)-2,5-diiodobenzene-1,4-diol (1t):** White solid, mp = 216-217 °C. 338.4 mg, 61% yield, ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.29 (s, 1H), 9.76 (s, 1H), 7.84 (s, 1H), 7.23 (d, *J* = 8.6 Hz, 1H), 7.18 (d, *J* = 2.5 Hz, 1H), 7.11 (s, 1H), 7.04 (dd, *J* = 8.5, 1.9 Hz, 1H), 6.98 (d, *J* = 1.7 Hz, 1H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 151.5, 148.0, 135.2, 128.7, 128.1, 127.6, 123.8, 123.2, 121.7, 114.5, 114.0, 111.8, 95.0, 87.0. HRMS (ESI): calcd for [C₁₄H₇BrI₂NO₂]⁻ [M-H]⁻ *m/z* 553.7755, 555.7735; found: 553.7755, 555.7734.

Methyl-3,6-dihydroxy-2-(1-methyl-1*H***-indol-3-yl)benzoate (5):** light yellow oil, 124.8 mg, 42% yield, ¹H NMR (400 MHz, chloroform-*d*) δ 10.24 (s, 1H), 7.38 (d, *J* = 8.2 Hz, 1H), 7.31 – 7.25 (m, 2H), 7.16 (d, *J* = 9.0 Hz, 1H), 7.13 – 7.08 (m, 1H), 7.05 (s, 1H), 6.97 (d, *J* = 9.0 Hz, 1H), 5.23 (s, 1H), 3.87 (s, 3H), 3.23 (s, 3H). ¹³C NMR (100 MHz, chloroform-*d*) δ 171.2, 155.5, 147.4, 137.3, 128.0, 127.7, 122.5, 122.1, 120.3, 119.6, 119.5, 118.1, 113.4, 109.5, 108.9, 51.8, 33.1. HRMS (ESI): calcd for [C₁₇H₁₄NO₄]⁻ [M-H]⁻ *m/z* 296.0928; found: 296.0926.

4. Optimization of reaction conditions

Table S1. Optimization of reaction conditions for synthesis of arylindolylindolin-3-ones with both axial and central chirality **3a-3z** and **3aa-3af**.

Entry	CDA Salward	Time of (h)	Yield of 3a	ee of 3a	
	CPA	CPA Solvent	Time (n)	$(\%)^{b}$	$(\%)^{c}$
1	4 a	toluene	24	86	90
2	4b	toluene	48	80	90
3	4 c	toluene	48	93	60
4	4d	toluene	48	11	75
5	4 e	toluene	48	81	44
6	4f	toluene	48	91	38
7	4g	toluene	48	5	58
8	4h	toluene	48	4	89
9	4i	toluene	48	11	59
10	4 k	toluene	48	39	88
11	41	toluene	48	39	88
12	4 m	toluene	48	87	75
13	4 a	CH_2Cl_2	48	86	87
14	4 a	CHCl ₃	24	90	91
15	4 a	DCE	24	89	89
16^d	4 a	CHCl ₃	24	92	92
$17^{d,e}$	4 a	CHCl ₃	24	85	92
18 ^{<i>d,f</i>}	4 a	CHCl ₃	24	90	92
$19^{d,g}$	4a	CHCl ₃	24	98 (95 ^{<i>h</i>})	94
$20^{d,g,i}$	4 a	CHCl ₃	24	94	93

^{*a*}Reaction conditions: under argon atmosphere, **1a** (0.1 mmol, 1.0 equiv), **2a** (0.12 mmol, 1.2 equiv), catalyst (**4a-4l**) (0.01 mmol, 10 mol%), solvent (1.0 mL), temperature (rt, ~25 °C), time (24 or 48 h) in a sealed Schlenk tube. ^{*b*}Conversion yield determined by ¹H NMR using 1,3,5-trimethoxybenzene as the internal standard. ^{*c*}The ee values were determined by HPLC analysis on a chiral stationary phase using a Daicel Chiralpak ID column. ^{*d*}Solvent (2.0 mL). ^{*e*}Temperature (0 °C). ^{*f*}Temperature (35 °C). ^{*g*} (**1a**) (0.12 mmol, 1.2 equiv), **2a** (0.1 mmol, 1.0 equiv). ^{*h*}Isolated yield. ^{*i*}**4a** (5 µmol, 5 mol%). The dr values were determined by ¹H NMR analysis of the crude reaction mixture after removal of solvent, and the results showed dr > 20:1. DCE = 1,2-dichloroethane.

Table S2. Optimization of reaction conditions for synthesis of arylindolylindolin-3-ones with both axial and central chirality **3ag-3ak**.

	OH N H 1u	O N 2a	CPA, solvent rt, Ar, 48 h	OH OH OH NH Ph 3ag	ZI.
	G (R)-CPA	4a, G = 9-P 4b, G = 9-A 4c, G = 2,4 4d, G = SiP 4e, G = 2,4 4f, G = 2,3	Phenanthrenyl 4g, G Anthracenyl 4h, G $,6-(i-Pr)_3C_6H_2$ 4i, G Ph ₃ 4j, G $,6-(Cy)_3C_6H_2$ 4k, G $,6-(Cy)_3C_6H_2$ 4k, G $,4,5,6-F_5C_6$ 4l, G	$G = 3,5-(CF_3)_2C_6H_3$ G = 1-Napthyl G = 2-Napthyl G = 2-Napthyl $G = 2,4,6-(Me)_3C_6H_2$ $G = 2,4,6-(Me)_2C_6H_3$	
Entry	СРА	Solvent	Yield of	ee of 3ag	dr of 3a
	CITI	Solvent	3a $(\%)^b$	$(\%)^c$	$(\%)^d$
1	4 a	toluene	71	84	>20:1
2	4b	toluene	58	76	>20:1
3	4c	toluene	70	26	>20:1
4	4d	toluene	29	43	10:1
5	4 e	toluene	69	15	>20:1
6	4f	toluene	54	16	3:1
7	4 g	toluene	24	50	7:1
8	4h	toluene	trace	-	-
9	4i	toluene	42	62	7:1
10	4j	toluene	trace	-	-
11	4 k	toluene	83	90	>20:1
12	41	toluene	59	83	>20:1
13	4 k	DCM	74	86	>20:1
14	4 k	CHCl ₃	78	76	>20:1
15	4 k	DCE	76	88	>20:1
16	4 k	THF	trace	-	-
17^{f}	4 k	toluene	91(88) ^e	90	>20:1
18^{g}	4 k	toluene	68	89	>20:1
19 ^{<i>f</i>,<i>h</i>}	4 k	toluene	90	89	>20:1
$20^{f,i}$	4 k	toluene	86	90	>20:1

^{*a*}Reaction conditions: under argon atmosphere, **1a** (0.1 mmol, 1.0 equiv), **2a** (0.1 mmol, 1 equiv), catalyst (**4a-4l**) (0.01 mmol, 10 mol%), solvent (1.0 mL), temperature (rt, ~25 °C), time (24 or 48 h) in a sealed Schlenk tube. ^{*b*}Yields were determined from the ¹H NMR spectra using 1,3,5-trimethoxybenzene as the internal standard. ^{*c*}Determined by HPLC analysis on a chiral stationary phase using Daicel Chiralpak AY column. ^{*d*}The dr. value was determined by ¹H NMR ^{*e*}Isolated yield. ^{*f*}Sovent: 0.5 mL toluene. ^{*s*}Sovent: 2 mL toluene. ^{*h*}**1a** (0.12 mmol, 1.2 equiv), **2a** (0.1 mmol, 1.0 equiv). ^{*i*}**1a** (0.1 mmol, 1 equiv). **2a** (0.12 mmol, 1.2 equiv).

5. General procedures for preparation of racemic products

In an oven dried Schlenk tube, diphenyl phosphate (10 mol%), **1** (0.1 mmol) and **2** (0.1 mmol) were dissolved in anhydrous CHCl₃ (2 mL). After stirred under argon atmosphere at room temperature for 24 h (monitored by TLC), the solution was concentrated and purified by preparative silica gel thin layer chromatography (*p*-TLC) to afford pure product (*rac*-3a-3z).

In an oven dried Schlenk tube, diphenyl phosphate (10 mol%), **1** (0.1 mmol) and **2** (0.1 mmol) were dissolved in anhydrous CHCl₃ (2 mL). After stirred under argon atmosphere at room temperature for 24 h (monitored by TLC), the solution was concentrated and purified by preparative silica gel thin layer chromatography (*p*-TLC) to afford pure product (*rac*-3aa-3af).

In an oven dried Schlenk tube, chiral phophoric acid **4k** (10 mol%), **1** (0.1 mmol) and **2** (0.1 mmol) were dissolved in anhydrous toluene (0.5 mL). After stirred under argon atmosphere at room temperature for 24 h (monitored by TLC), the solution was concentrated and purified by preparative silica gel thin layer chromatography (*p*-TLC) to afford pure product (*rac*-**3ag**-**3ak**).

6. General procedures for the synthesis of products 3a-3z, 3aa-3ak

In an oven dried Schlenk tube, chiral phophoric acid (*R*)-4a (10 mol%), 1 (0.12 mmol) and 2 (0.1mmol) were dissolved in anhydrous CHCl₃ (2 mL). After stirred under argon atmosphere at room temperature for 24-48 h (monitored by TLC), the solution was concentrated and purified by preparative silica gel thin layer chromatography (*p*-TLC) to afford pure product (3a-3z).

In an oven dried Schlenk tube, chiral phophoric acid (*R*)-**4a** (10 mol%), **1** (0.1 mmol) and **2** (0.1mmol) were dissolved in anhydrous CHCl₃ (2 mL). After stirred under argon atmosphere at room temperature for 48 h (monitored by TLC), the solution was concentrated and purified by preparative silica gel thin layer chromatography (*p*-TLC) to afford pure product (**3aa-3af**).

In an oven dried Schlenk tube, chiral phophoric acid 4k (10 mol%), 1 (0.1 mmol) and 2 (0.1 mmol) were dissolved in anhydrous toluene (0.5 mL). After stirred under argon atmosphere at room temperature for 48 h (monitored by TLC), the solution was concentrated and purified by preparative silica gel thin layer chromatography (*p*-TLC) to afford pure product(**3ag-3ak**).

7. Characterization data of products 3a-3z, 3aa-3ak

(*S_a*,*R*)-Methyl-3,6-dihydroxy-2-(2-(3-oxo-2-phenylindolin-2-yl)-1*H*-indol-3-yl)-be nzoate (3a): Reaction time 24 h, yellow solid, mp = 184-185 °C. 46.6 mg, 95% yield, 94% ee [Daicel Chiralpak ID, hexane/2-propanol = 80/20, v = 1.0 mL/min, λ = 214 nm, t (minor) = 14.608 min, t (major) = 25.193 min]. ¹H NMR (400 MHz, chloroform-*d*) δ 10.82 (s, 1H), 8.93 (s, 1H), 7.56 (d, J = 7.8 Hz, 1H), 7.40 (ddd, J = 8.3, 7.0, 1.3 Hz, 1H), 7.30 (s, 6H), 7.20 (ddd, J = 8.2, 6.8, 1.4 Hz, 1H), 7.15 (d, J = 9.0 Hz, 1H), 7.10 – 7.01 (m, 2H), 6.97 (d, J = 9.0 Hz, 1H), 6.86 – 6.76 (m, 1H), 6.45 (d, J = 8.3 Hz, 1H), 5.10 (s, 1H), 4.98 (s, 1H), 2.87 (s, 3H). ¹³C NMR (100 MHz, chloroform-*d*) δ 199.8, 170.6, 160.4, 156.7, 146.9, 139.4, 138.5, 136.0, 132.1, 129.3, 128.9, 128.0, 126.8, 124.9, 123.3, 122.7, 120.6, 119.8, 119.0, 118.8, 112.6, 112.3, 111.3, 107.9, 71.8, 51.9. HRMS (ESI): calcd for [C₃₀H₂₂N₂O₅+H]⁺ [M+H]⁺ *m*/z 491.1601, found 491.1605.

(*S_a*,*R*)-Isopropyl-3,6-dihydroxy-2-(2-(3-oxo-2-phenylindolin-2-yl)-1*H*-indol-3-yl)benzoate (3b): Reaction time 24 h, yellow solid, mp = 200-201 °C. 50.1 mg, 96% yield, 90% ee [Daicel Chiralpak IF, hexane/2-propanol = 95/5, v = 1.0 mL/min, λ = 254 nm, t (minor = 18.569 min, t (major) = 20.533 min]. ¹H NMR (400 MHz, chloroform-*d*) δ 10.93 (s, 1H), 9.23 (s, 1H), 7.55 (d, J = 7.7 Hz, 1H), 7.42 (t, J = 7.6 Hz, 1H), 7.36 (d, J = 8.2 Hz, 1H), 7.35 – 7.28 (m, 5H), 7.22 (t, J = 7.6 Hz, 1H), 7.11 (dd, J = 15.3, 8.5 Hz, 2H), 7.05 (t, J = 7.5 Hz, 1H), 6.98 (d, J = 9.0 Hz, 1H), 6.81 (t, J = 7.4 Hz, 1H), 6.53 (d, J = 8.3 Hz, 1H), 5.16 (s, 1H), 4.88 (s, 1H), 4.42 (hept, J = 6.2 Hz, 1H), 0.26 (d, J = 6.2 Hz, 3H), 0.15 (d, J = 6.2 Hz, 3H). ¹³C NMR (100 MHz, chloroform-*d*) δ 199.8, 169.7, 160.8, 156.6, 147.0, 139.2, 138.6, 135.7, 131.6, 129.3, 129.1, 128.8, 126.3, 125.4, 123.4, 122.5, 120.6, 119.9, 119.4, 119.4, 119.1, 118.3, 113.4, 112.3, 111.2, 108.4, 71.5, 68.9, 20.4, 20.2. HRMS (ESI): calcd for $[C_{32}H_{26}N_2O_5+H]^+$ [M+H]⁺ *m*/*z* 519.1914, found 519.1908.

(*S_a*,*R*)-*tert*-Butyl-3,6-dihydroxy-2-(2-(3-oxo-2-phenylindolin-2-yl)-1*H*-indol-3-yl)benzoate (3c): Reaction time 24 h, yellow solid, mp = 116-117 °C. 41.5 mg, 78% yield, 94% ee [Daicel Chiralpak ID, hexane/2-propanol = 80/20, v = 1.0 mL/min, λ = 254 nm, t (minor) = 8.334 min, t (major) = 10.364 min]. ¹H NMR (400 MHz, chloroform-*d*) δ 11.09 (s, 1H), 9.32 (s, 1H), 7.57 (d, J = 7.8 Hz, 1H), 7.43 (t, J = 7.6 Hz, 1H), 7.38 (d, J = 8.2 Hz, 1H), 7.36 – 7.26 (m, 5H), 7.23 (t, J = 7.6 Hz, 1H), 7.15 (d, J = 7.9 Hz, 1H), 7.10 – 7.03 (m, 2H), 6.99 (d, J = 9.0 Hz, 1H), 6.81 (t, J = 7.5 Hz, 1H), 6.57 (d, J = 8.3 Hz, 1H), 5.21(s, 1H), 4.74 (s, 1H), 0.54 (s, 9H). ¹³C NMR (100 MHz, chloroform-*d*) δ 199.9, 169.8, 161.0, 156.7, 146.9, 139.2, 138.6, 135.8, 131.4, 129.2, 128.9, 128.8, 126.2, 125.5, 123.5, 122.2, 120.7, 119.8, 119.3, 119.2, 119.2, 118.2, 114.2, 112.3, 111.3, 108.7, 82.6, 71.4, 26.8. HRMS (ESI): calcd for [C₃₃H₂₇N₂O₅]⁻ [M-H]⁻ m/z 531.1925; found: 531.1923.

(*S_a*,*R*)-Benzyl-3,6-dihydroxy-2-(2-(3-oxo-2-phenylindolin-2-yl)-1*H*-indol-3-yl)-ben zoate (3d): Reaction time 48 h, yellow solid, mp = 115-116 °C. 55.5 mg, 98% yield, 91% ee [Daicel Chiralpak ID, hexane/2-propanol = 85/15, v = 1.0 mL/min, λ = 254 nm, t (major) = 17.777 min, t (minor) = 23.450 min]. ¹H NMR (400 MHz, chloroform-*d*) δ 10.94 (s, 1H), 8.82 (s, 1H), 7.58 (d, J = 7.7 Hz, 1H), 7.47 (t, J = 7.6 Hz, 1H), 7.27 – 7.19 (m, 7H), 7.14 – 7.06 (m, 3H), 7.03 (m, 1H), 7.00 – 6.93 (m, 3H), 6.88 (t, J = 7.4 Hz, 1H), 6.57 (d, J = 8.3 Hz, 1H), 6.21 (d, J = 7.5 Hz, 2H), 5.07 (s, 1H), 4.91 (s, 1H), 4.62 (d, J = 11.9 Hz, 1H), 4.15 (d, J = 12.0 Hz, 1H). ¹³C NMR (100 MHz, chloroform-*d*) δ 199.6, 170.3, 160.5, 156.9, 147.2, 139.1, 138.5, 135.7, 133.7, 132.0, 129.1, 128.8, 128.2, 128.1, 128.1, 127.9, 126.4, 125.3, 123.2, 122.9, 120.6, 119.9, 119.5, 119.2, 119.1, 118.6, 112.7, 112.4, 111.6, 108.0, 71.4, 67.2. HRMS (ESI): calcd for [C₃₆H₂₅N₂O₅]⁻ [M-H]⁻ *m*/*z* 565.1769; found: 565.1764.

(*S_a*,*R*)-2-Bromobenzyl-3,6-dihydroxy-2-(2-(3-oxo-2-phenylindolin-2-yl)-1*H*-indol-3-yl)-benzoate (3e): Reaction time 48 h, yellow solid, mp = 145-146 °C. 53.5 mg, 83% yield, 90% ee [Daicel Chiralpak IF, hexane/2-propanol = 90/10, v = 1.0 mL/min, $\lambda = 254$ nm, t (major) = 13.352 min, t (minor) = 16.166 min]. ¹H NMR (400 MHz, chloroform-*d*) δ 10.91 (s, 1H), 8.90 (s, 1H), 7.59 (d, J = 7.8 Hz, 1H), 7.49 (t, J = 7.6 Hz, 1H), 7.28-7.22 (m, 5H), 7.20 – 7.09 (m, 5H), 7.05 – 6.99 (m, 2H), 6.95 (td, J = 7.7, 1.2 Hz, 1H), 6.89 (t, J = 7.4 Hz, 1H), 6.84 (t, J = 7.5 Hz, 1H), 6.60 (d, J = 8.3 Hz, 1H), 6.02 (d, J = 7.6 Hz, 1H), 5.05 (s, 1H), 4.89 (s, 1H), 4.85 (d, J = 12.9 Hz, 1H), 4.17 (d, J = 12.8 Hz, 1H). ¹³C NMR (100 MHz, chloroform-*d*) δ 199.9, 170.1, 160.5, 157.0, 147.2, 139.2, 138.6, 135.5, 133.4, 132.3, 131.9, 129.5, 129.4, 129.2, 128.8, 128.0, 127.1, 126.4, 125.2, 123.4, 123.1, 122.9, 120.8, 120.1, 119.4, 119.3, 119.2, 118.6, 112.7, 112.5, 111.3, 108.1, 71.5, 66.5. HRMS (ESI): calcd for [C₃₆H₂₄BrN₂O₅]⁻ [M-H]⁻*m*/*z* 643.0874, 645.0861; found: 643.0878, 645.0866.

(*S_a*,*R*)-4-Bromobenzyl-3,6-dihydroxy-2-(2-(3-oxo-2-phenylindolin-2-yl)-1*H*-indol-3-yl)-benzoate (3f): Reaction time 48 h, yellow solid, mp = 185-186 °C. 55.4 mg, 86% yield, 92% ee [Daicel Chiralpak ID, hexane/2-propanol = 80/20, v = 1.0 mL/min, $\lambda = 254$ nm, t (major) = 9.755 min, t (minor) = 15.167 min]. ¹H NMR (400 MHz, Chloroform-*d*) δ 10.83 (s, 1H), 8.76 (s, 1H), 7.59 (d, J = 7.7 Hz, 1H), 7.46 (t, J = 7.4 Hz, 1H), 7.31 – 7.25 (m, 3H), 7.24 – 7.16 (m, 4H), 7.11 (d, J = 9.1 Hz, 1H), 7.08 – 6.94 (m, 5H), 6.87 (t, J = 7.4 Hz, 1H), 6.53 (d, J = 8.3 Hz, 1H), 6.11 (d, J = 8.3 Hz, 2H), 5.03 (s, 1H), 4.87 (s, 1H), 4.59 (d, J = 11.9 Hz, 1H), 4.01 (d, J = 11.9 Hz, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 199.5, 170.0, 160.4, 156.9, 147.1, 139.1, 138.6, 135.6, 132.6, 131.8, 131.2, 129.8, 129.2, 128.9, 128.1, 126.5, 125.1, 123.3, 123.0, 122.2, 120.7, 119.9, 119.5, 119.2, 119.0, 118.6, 112.5, 112.4, 111.6, 107.9, 71.4, 66.4. HRMS (ESI): calcd for [C₃₆H₂₄BrN₂O₅]⁻ *m*/*z* [M-H]⁻ 643.0874, 645.0861; found: 643.0876, 645.0865.

(*S_a*,*R*)-Naphthalen-1-ylmethyl-3,6-dihydroxy-2-(2-(3-oxo-2-phenylindolin-2-yl)-1 *H*-indol-3-yl)-benzoate (3g): Reaction time 24 h, yellow solid, mp = 105-106 °C. 46.6 mg, 76% yield, 91% ee [Daicel Chiralpak IF, hexane/2-propanol = 90/10, v = 1.0 mL/min, λ = 254 nm, t (minor) = 17.235 min, t (major) = 19.534 min]. ¹H NMR (400 MHz, chloroform-*d*) δ 10.88 (s, 1H), 8.56 (s, 1H), 7.73 (d, J = 8.1 Hz, 1H), 7.67 (d, J = 8.2 Hz, 1H), 7.58 (d, J = 7.7 Hz, 1H), 7.49 (t, J = 7.5 Hz, 1H), 7.38 (t, J = 7.4 Hz, 1H), 7.24-7.08 (m, 8H), 7.05 (d, J = 9.0 Hz, 1H), 6.99 – 6.83 (m, 5H), 6.82-6.72 (m, 1H), 6.62 (dd, J = 11.4, 7.6 Hz, 2H), 5.14 – 5.03 (m, 2H), 4.79 (s, 1H), 4.71 (d, J = 12.1 Hz, 1H). ¹³C NMR (100 MHz, chloroform-*d*) δ 199.8, 170.5, 160.4, 156.7, 147.3, 138.6, 138.5, 135.2, 133.3, 131.7, 131.2, 129.6, 129.2, 128.9, 128.7, 128.5, 128.1, 128.1, 126.4, 126.4, 125.7, 125.3, 125.0, 123.1, 123.0, 123.0, 120.5, 120.0, 119.5, 119.0, 118.7, 118.6, 112.9, 112.5, 110.9, 108.4, 71.5, 64.8. HRMS (ESI): calcd for [C₄₀H₂₈N₂O₅+H]⁺ [M+H]⁺ m/z 617.2071, found 617.2079.

(*S_a*,*R*)-Methyl-3,6-dihydroxy-2-(7-methyl-2-(3-oxo-2-phenylindolin-2-yl)-1*H*-indo l-3-yl)benzoate (3h): Reaction time 24 h, yellow solid, mp = 104-105 °C. 56.1 mg, 96% yield, 95% ee [Daicel Chiralpak IF, hexane/2-propanol = 90/10, v = 1.0 mL/min, $\lambda = 254$ nm, t (major) = 7.340 min, t (minor) = 8.889 min]. ¹H NMR (400 MHz, chloroform-*d*) δ 10.82 (s, 1H), 8.94 (s, 1H), 7.60 (d, J = 7.7 Hz, 1H), 7.43 (t, J = 7.6 Hz, 1H), 7.36-7.27 (m, 5H), 7.14 (d, J = 9.0 Hz, 1H), 7.07 – 7.01 (m, 1H), 7.01 – 6.94 (m, 3H), 6.83 (t, J = 7.4 Hz, 1H), 6.49 (d, J = 8.3 Hz, 1H), 5.09 (s, 1H), 4.95 (s, 1H), 2.88 (s, 3H), 2.52 (s, 3H). ¹³C NMR (100 MHz, chloroform-*d*) δ 200.2, 170.7, 160.5, 156.7, 146.9, 139.6, 138.6, 135.6, 131.6, 129.3, 128.9, 127.5, 126.7, 125.0, 124.0, 122.7, 120.9, 120.6, 120.0, 119.8, 119.0, 118.8, 116.7, 112.7, 112.4, 108.6, 71.9, 51.9, 16.8. HRMS (ESI): calcd for [C₃₁H₂₄N₂O₅+Na]⁺ [M+Na]⁺ *m*/*z* 527.1577, found 527.1555.

(*S_a*,*R*)-Methyl-3,6-dihydroxy-2-(5-methyl-2-(3-oxo-2-phenylindolin-2-yl)-1*H*-indo l-3-yl)benzoate (3i): Reaction time 24 h, yellow solid, mp = 122-123 °C. 46.7 mg, 93% yield, 94% ee [Daicel Chiralpak IB, hexane/2-propanol = 90/10, v = 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 8.212 min, t (major) = 9.580 min]. ¹H NMR (400 MHz, chloroform-*d*) δ 10.85 (s, 1H), 8.88 (s, 1H), 7.56 (d, J = 7.7 Hz, 1H), 7.44 – 7.36 (m, 1H), 7.29 (s, 5H), 7.21 (d, J = 8.3 Hz, 1H), 7.14 (d, J = 9.0 Hz, 1H), 7.03 (dd, J = 8.3, 1.2 Hz, 1H), 6.96 (d, J = 9.0 Hz, 1H), 6.87 (s, 1H), 6.81 (t, J = 7.4 Hz, 1H), 6.45 (d, J = 8.3 Hz, 1H), 5.11 (s, 1H), 5.00 (s, 1H), 2.89 (s, 3H), 2.33 (s, 3H). ¹³C NMR (100 MHz, chloroform-*d*) δ 199.9, 170.7, 160.4, 156.7, 146.9, 139.5, 138.5, 134.3, 132.0, 130.0, 129.2, 128.9, 128.1, 126.7, 125.0, 124.9, 122.6, 120.1, 119.8, 119.0, 118.8, 118.5, 112.6, 112.3, 111.0, 107.4, 71.8, 51.9, 21.5. HRMS (ESI): calcd for [C₃₁H₂₄N₂O₅+Na]⁺ [M+Na]⁺ *m*/*z* 527.1577, found 527.1581.

(*S_a*,*R*)-Methyl-3,6-dihydroxy-2-(5-methoxy-2-(3-oxo-2-phenylindolin-2-yl)-1*H*-in dol-3-yl)benzoate (3j): Reaction time 24 h, yellow solid, mp = 169-170 °C. 51.0 mg, 98% yield, 94% ee [Daicel Chiralpak ID, hexane/2-propanol = 80/20, v = 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 19.476 min, t (major) = 36.388 min]. ¹H NMR (400 MHz, chloroform-*d*) δ 10.82 (s, 1H), 8.83 (s, 1H), 7.56 (d, J = 7.7 Hz, 1H), 7.40 (t, J = 7.7 Hz)

Hz, 1H), 7.30 (s, 5H), 7.20 (d, J = 8.9 Hz, 1H), 7.15 (d, J = 9.0 Hz, 1H), 6.97 (d, J = 9.0 Hz, 1H), 6.86 (dd, J = 8.9, 2.4 Hz, 1H), 6.81 (t, J = 7.4 Hz, 1H), 6.48 (d, J = 2.3 Hz, 1H), 6.45 (d, J = 8.3 Hz, 1H), 5.09 (s, 1H), 5.04 (s, 1H), 3.69 (s, 3H), 2.92 (s, 3H). ¹³C NMR (100 MHz, chloroform-*d*) δ 199.8, 170.7, 160.4, 156.7, 154.9, 146.9, 139.4, 138.5, 132.6, 131.0, 129.2, 128.9, 128.5, 126.7, 124.9, 122.6, 119.9, 119.8, 119.0, 118.8, 113.8, 112.7, 112.3, 112.2, 107.6, 100.1, 71.8, 55.8, 51.9. HRMS (ESI): calcd for [C₃₁H₂₄N₂O₆+Na]⁺ [M+Na]⁺ *m*/*z* 543.1527, found 543.1525.

(*S_a*,*R*)-Methyl-2-(5-fluoro-2-(3-oxo-2-phenylindolin-2-yl)-1*H*-indol-3-yl)-3,6-dihy droxybenzoate (3k): Reaction time 24 h, yellow solid, mp = 187-188 °C. 50.3 mg, 99% yield, 94% ee [Daicel Chiralpak IB, hexane/2-propanol = 90/10, v = 1.0 mL/min, λ = 254 nm, t (minor) = 9.604 min, t (major) = 12.406 min]. ¹H NMR (400 MHz, chloroform-*d*) δ 10.79 (s, 1H), 8.93 (s, 1H), 7.55 (d, J = 7.7 Hz, 1H), 7.43-7.37 (m, 1H), 7.29 (s, 5H), 7.24 – 7.19 (m, 1H), 7.13 (d, J = 9.1 Hz, 1H), 6.98 – 6.90 (m, 2H), 6.81 (t, J = 7.3 Hz, 1H), 6.73 (dd, J = 9.1, 2.4 Hz, 1H), 6.45 (d, J = 8.3 Hz, 1H), 5.12 (s, 1H), 5.01 (s, 1H), 2.91 (s, 3H). ¹³C NMR (100 MHz, chloroform-*d*) δ 199.6, 170.5, 160.4, 158.3 (d, ¹J_{C-F} = 236.7 Hz), 156.8, 146.8, 139.1, 138.6, 134.0, 132.4, 129.3, 129.0, 128.6 (d, ³J_{C-F} = 9.4 Hz), 111.8 (d, ²J_{C-F} = 26.4 Hz), 108.2 (d, ⁴J_{C-F} = 4.7 Hz), 103.9 (d, ²J_{C-F} = 23.9 Hz), 71.7, 51.9. ¹⁹F NMR (376 MHz, chloroform-*d*) δ –122.7. HRMS (ESI): calcd for [C₃₀H₂₀FN₂O₅]⁻ *m*/z [M-H]⁻ 507.1362; found: 507.1350.

(*S_a*,*R*)-Methyl-2-(6-chloro-2-(3-oxo-2-phenylindolin-2-yl)-1*H*-indol-3-yl)-3,6-dihy droxybenzoate (3l): Reaction time 24 h, yellow solid, mp = 150-151 °C. 41.0 mg, 78% yield, 90% ee [Daicel Chiralpak IB, hexane/2-propanol = 90/10, v = 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 10.516 min, t (major) = 11.741 min]. ¹H NMR (400 MHz, chloroform-*d*) δ 10.79 (s, 1H), 8.92 (s, 1H), 7.56 (d, J = 7.7 Hz, 1H), 7.44-7.38 (m, 1H), 7.34-7.26 (m, 6H), 7.13 (d, J = 9.1 Hz, 1H), 7.03 – 6.93 (m, 3H), 6.82 (t, J = 7.3 Hz, 1H), 6.45 (d, J = 8.3 Hz, 1H), 5.07 (s, 1H), 4.99 (s, 1H), 2.91 (s, 3H). ¹³C NMR (100 MHz, chloroform-*d*) δ 199.6, 170.5, 160.4, 156.8, 146.8, 139.1, 138.7, 136.2, 132.9, 129.3, 129.2, 129.0, 126.7, 126.6, 124.9, 122.8, 121.4, 120.0, 120.0, 119.3, 119.2, 118.7, 112.5, 112.4, 111.3, 108.3, 71.7, 52.0. HRMS (ESI): calcd for [C₃₀H₂₁ClN₂O₅+H]⁺ [M+H]⁺ *m*/*z* 525.1212, found 525.1211.

(*S_a*,*R*)-Methyl-2-(4-bromo-2-(3-oxo-2-phenylindolin-2-yl)-1*H*-indol-3-yl)-3,6-dihy droxybenzoate (3m): Reaction time 48 h, yellow solid, mp = 108-109 °C. 53.0 mg, 93% yield, 90% ee [Daicel Chiralpak ID, hexane/2-propanol = 80/20, v = 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 10.976 min, t (major) = 18.611 min]. ¹H NMR (400 MHz, chloroform-*d*) δ 10.85 (s, 1H), 9.02 (s, 1H), 7.54 (d, J = 7.7 Hz, 1H), 7.43 – 7.38 (m, 1H), 7.32 (s, 5H), 7.29 (d, J = 8.2 Hz, 1H), 7.20 (d, J = 7.6 Hz, 1H), 7.08 (d, J = 9.0 Hz, 1H), 7.02 (t, J = 7.9 Hz, 1H), 6.96 (d, J = 9.0 Hz, 1H), 6.81 (t, J = 7.5 Hz, 1H), 6.43 (d, J = 8.3 Hz, 1H), 5.07 (s, 1H), 4.82 (s, 1H), 2.94 (s, 3H). ¹³C NMR (100 MHz, chloroform-*d*) δ 199.5, 170.7, 160.3, 156.8, 147.6, 139.0, 138.6, 136.8, 133.3, 129.3, 129.0, 126.8, 125.7, 124.9, 123.9, 122.4, 120.4, 119.9, 119.3, 118.5, 113.9, 113.3, 112.3, 110.7, 108.2, 71.6, 51.9. HRMS (ESI): calcd for [C₃₀H₂₁BrN₂O₅+H]⁺ [M+H]⁺ *m*/z 569.0707, 571.0691, found 569.0699, 571.0696.

(*S_a*,*R*)-Methyl-2-(5-bromo-2-(3-oxo-2-phenylindolin-2-yl)-1*H*-indol-3-yl)-3,6-dihy droxybenzoate (3n): Reaction time 24 h, yellow solid, mp = 143-144 °C. 47.3 mg, 83% yield, 96% ee [Daicel Chiralpak IB, hexane/2-propanol = 90/10, v = 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 10.486 min, t (major) = 12.949 min]. ¹H NMR (400 MHz,

chloroform-*d*) δ 10.83 (s, 1H), 8.99 (s, 1H), 7.55 (d, J = 7.7 Hz, 1H), 7.44 – 7.37 (m, 1H), 7.33 – 7.26 (m, 6H), 7.23 – 7.16 (m, 2H), 7.13 (d, J = 9.1 Hz, 1H), 6.96 (d, J = 9.0 Hz, 1H), 6.82 (t, J = 7.5 Hz, 1H), 6.45 (d, J = 8.3 Hz, 1H), 5.10 (s, 1H), 4.96 (s, 1H), 2.91 (s, 3H). ¹³C NMR (100 MHz, chloroform-*d*) δ 199.6, 170.5, 160.4, 156.9, 146.8, 139.1, 138.7, 134.5, 133.5, 129.7, 129.4, 129.0, 126.7, 126.2, 124.9, 122.9, 121.5, 120.0, 119.4, 119.1, 118.7, 113.9, 112.9, 112.4, 112.4, 107.7, 71.7, 52.0. HRMS (ESI): calcd for [C₃₀H₂₁BrN₂O₅+H]⁺ [M+H]⁺ *m/z m/z* 569.0707, 571.0691, found *m/z* 569.0672, 571.0691.

(*S_a*,*R*)-Methyl-3,6-dihydroxy-2-(5-iodo-2-(3-oxo-2-phenylindolin-2-yl)-1*H*-indol-3 -yl)benzoate (3o): Reaction time 24 h, yellow solid, mp = 127-128 °C. 60.0 mg, 97% yield, 94% ee [Daicel Chiralpak IB, hexane/2-propanol = 90/10, v = 1.0 mL/min, λ = 254 nm, t (minor) = 10.616 min, t (major) = 12.412 min]. ¹H NMR (400 MHz, chloroform-*d*) δ 10.83 (s, 1H), 9.00 (s, 1H), 7.55 (d, J = 7.7 Hz, 1H), 7.47 – 7.37 (m, 3H), 7.33-7.26 (m, 5H), 7.11 (dd, J = 12.2, 8.8 Hz, 2H), 6.95 (d, J = 9.0 Hz, 1H), 6.82 (t, J = 7.4 Hz, 1H), 6.45 (d, J = 8.3 Hz, 1H), 5.10 (s, 1H), 4.97 (s, 1H), 2.91 (s, 3H). ¹³C NMR (100 MHz, chloroform-*d*) δ 199.6, 170.5, 160.4, 156.9, 146.8, 139.1, 138.7, 135.0, 133.1, 131.7, 130.5, 129.3, 129.0, 127.7, 126.7, 124.9, 122.9, 120.0, 119.4, 119.1, 118.7, 113.4, 112.5, 112.4, 107.4, 84.1, 71.6, 52.0. HRMS (ESI): calcd for $[C_{30}H_{21}IN_2O_5+H]^+ [M+H]^+ m/z$ 617.0568, found 617.0567.

(*S_a*,*R*)-Methyl-3-(3,6-dihydroxy-2-(methoxycarbonyl)phenyl)-2-(3-oxo-2-phenylin dolin-2-yl)-1*H*-indole-5-carboxylate (3p): Reaction time 48 h, yellow solid, mp = 217-218 °C. 44.8 mg, 82% yield, 98% ee [Daicel Chiralpak AD, hexane/2-propanol = 85/15, v = 1.0 mL/min, λ = 254 nm, t (major) = 22.867 min, t (minor) = 27.862 min].

¹H NMR (400 MHz, chloroform-*d*) δ 10.84 (s, 1H), 9.10 (s, 1H), 7.87 – 7.78 (m, 2H), 7.54 (d, J = 7.8 Hz, 1H), 7.43 – 7.37 (m, 1H), 7.35 – 7.26 (m, 6H), 7.10 (d, J = 9.0 Hz, 1H), 6.96 (d, J = 9.0 Hz, 1H), 6.81 (t, J = 7.4 Hz, 1H), 6.43 (d, J = 8.3 Hz, 1H), 5.29 (s, 1H), 5.17 (s, 1H), 3.77 (s, 3H), 2.86 (s, 3H). ¹³C NMR (100 MHz, chloroform-*d*) δ 199.7, 170.4, 167.9, 160.4, 156.9, 147.0, 139.0, 138.7, 138.5, 133.5, 129.3, 129.0, 127.9, 126.9, 124.9, 124.6, 123.2, 122.5, 122.0, 119.9, 119.3, 119.2, 118.7, 112.4, 110.9, 109.9, 71.8, 52.0, 51.9. HRMS (ESI): calcd for [C₃₂H₂₄N₂O₇+H]⁺ [M+H]⁺ *m/z* 549.1656, found 549.1653.

(*S_a*,*R*)-Methyl-3,6-dihydroxy-2-(2-(3-oxo-2-(p-tolyl)indolin-2-yl)-1*H*-indol-3-yl)be nzoate (3q): Reaction time 24 h, yellow solid, mp = 133-134 °C. 50.0 mg, 99% yield, 92% ee [Daicel Chiralpak IF, hexane/2-propanol = 90/10, v = 1.0 mL/min, λ = 254 nm, t (major) = 14.835 min, t (minor) = 22.364 min]. ¹H NMR (400 MHz, chloroform-*d*) δ 10.82 (s, 1H), 8.92 (s, 1H), 7.55 (d, J = 7.7 Hz, 1H), 7.39 (td, J = 7.7, 7.2, 1.2 Hz, 1H), 7.30 (d, J = 8.2 Hz, 1H), 7.22 – 7.01 (m, 8H), 6.96 (d, J = 9.0 Hz, 1H), 6.80 (t, J = 7.3 Hz, 1H), 6.43 (d, J = 8.3 Hz, 1H), 5.08 (s, 1H), 5.01 (s, 1H), 2.87 (s, 3H), 2.30 (s, 3H). ¹³C NMR (100 MHz, chloroform-*d*) δ 199.9, 170.7, 160.4, 156.7, 146.9, 138.9, 138.5, 136.4, 136.0, 132.3, 129.9, 128.0, 126.7, 124.9, 123.5, 122.6, 120.6, 120.0, 119.7, 119.0, 118.9, 118.8, 112.6, 112.3, 111.3, 107.8, 71.7, 51.9, 21.2. HRMS (ESI): calcd for [C₃₁H₂₄N₂O₅+H]⁺ [M+H]⁺ *m*/z 505.1758, found 505.1761.

(*S_a*,*R*)-Methyl-3,6-dihydroxy-2-(2-(2-(4-methoxyphenyl)-3-oxoindolin-2-yl)-1*H*-in dol-3-yl)benzoate (3r): Reaction time 24 h, yellow solid, mp = 135-136 °C. 50.8 mg, 98% yield, 91% ee [Daicel Chiralpak IF, hexane/2-propanol = 85/15, v = 1.0 mL/min,

 $\lambda = 254$ nm, t (major) = 14.572 min, t (minor) = 23.695 min]. ¹H NMR (400 MHz, chloroform-*d*) δ 10.80 (s, 1H), 8.90 (s, 1H), 7.55 (d, J = 7.7 Hz, 1H), 7.42 – 7.37 (m, 1H), 7.30 (d, J = 8.2 Hz, 1H), 7.24 – 7.17 (m, 3H), 7.15 (d, J = 9.0 Hz, 1H), 7.05 (dt, J = 14.6, 7.4 Hz, 2H), 6.96 (d, J = 9.0 Hz, 1H), 6.84 – 6.76 (m, 3H), 6.43 (d, J = 8.3 Hz, 1H), 5.05 (s, 1H), 4.99 (s, 1H), 3.75 (s, 3H), 2.87 (s, 3H). ¹³C NMR (100 MHz, chloroform-*d*) δ 200.0, 170.6, 160.3, 159.9, 156.7, 146.9, 138.5, 135.9, 132.4, 131.4, 128.1, 128.0, 124.9, 123.3, 122.6, 120.6, 120.0, 119.7, 119.0, 119.0, 118.8, 114.6, 112.6, 112.3, 111.3, 107.8, 71.5, 55.4, 51.9. HRMS (ESI): calcd for [C₃₁H₂₄N₂O₆+Na]⁺ [M+Na]⁺ *m*/*z* 543.1527, found 543.1524.

(*S_a*,*R*)-Methyl-2-(2-(2-(4-fluorophenyl)-3-oxoindolin-2-yl)-1*H*-indol-3-yl)-3,6-dihy droxybenzoate (3s): Reaction time 24 h, yellow solid, mp = 169-170 °C. 44.5 mg, 88% yield, 90% ee [Daicel Chiralpak ID, hexane/2-propanol = 80/20, v = 1.0 mL/min, λ = 254 nm, t (minor) = 10.382 min, t (major) = 13.018 min]. ¹H NMR (400 MHz, chloroform-*d*) δ 10.78 (s, 1H), 8.93 (s, 1H), 7.56 (d, J = 7.7 Hz, 1H), 7.45 – 7.39 (m, 1H), 7.36 – 7.28 (m, 3H), 7.21 (ddd, J = 8.2, 6.8, 1.3 Hz, 1H), 7.15 (d, J = 9.0 Hz, 1H), 7.11 – 6.96 (m, 5H), 6.82 (t, J = 7.4 Hz, 1H), 6.46 (d, J = 8.3 Hz, 1H), 5.10 (s, 1H), 4.89 (s, 1H), 2.87 (s, 3H). ¹³C NMR (100 MHz, chloroform-*d*) δ 199.7, 170.5, 162.8 (d, ¹*J*_{C-F} = 248.6 Hz), 160.4, 156.8, 146.84, 138.7, 135.9, 135.2, 131.8, 128.7 (d, ³*J*_{C-F} = 8.4 Hz), 128.0, 125.0, 123.5, 122.7, 120.8, 120.0, 119.6, 119.1 (d, ²*J*_{C-F} = 18.0 Hz), 118.6, 116.2 (d, ²*J*_{C-F} = 21.5 Hz), 112.6, 112.3, 111.3, 108.0, 71.2, 51.9. ¹⁹F NMR (376 MHz, chloroform-*d*) δ –112.3. HRMS (ESI): calcd for [C₃₀H₂₀FN₂O₅]⁻ [M-H]⁻ *m/z* 507.1362; found: 507.1360.

(*S_a*,*R*)-Methyl-2-(2-(2-(3-chlorophenyl)-3-oxoindolin-2-yl)-1*H*-indol-3-yl)-3,6-dihy droxybenzoate (3t): Reaction time 24 h, yellow solid, mp = 142-143 °C. 46.2 mg, 88% yield, 87% ee [Daicel Chiralpak IF, hexane/2-propanol = 90/10, v = 1.0 mL/min, λ = 254 nm, t (minor) = 11.154 min, t (major) = 12.607 min]. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.65 (s, 1H), 9.29 (s, 1H), 8.33 (s, 1H), 7.48 (s, 1H), 7.41 – 7.21 (m, 7H), 7.00 (t, J = 7.3 Hz, 1H), 6.90 – 6.79 (m, 2H), 6.74 – 6.59 (m, 4H), 3.01 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 199.3, 169.1, 161.5, 149.0, 148.3, 141.8, 138.3, 136.4, 133.3, 132.4, 130.2, 128.9, 128.2, 128.1, 126.2, 124.9, 121.9, 121.3, 120.8, 119.5, 119.0, 118.8, 118.8, 118.4, 116.4, 113.0, 111.8, 109.6, 71.6, 51.6. HRMS (ESI): calcd for [C₃₀H₂₁ClN₂O₅+H]⁺ [M+H]⁺ *m*/*z* 525.1212; found: 525.1029.

(*S_a*,*R*)-Methyl-2-(2-(2-(4-chlorophenyl)-3-oxoindolin-2-yl)-1*H*-indol-3-yl)-3,6-dihy droxybenzoate (3u): Reaction time 24 h, yellow solid, mp = 130-131 °C. 52.0 mg, 99% yield, 90% ee [Daicel Chiralpak IF, hexane/2-propanol = 90/10, v = 1.0 mL/min, λ = 254 nm, t (major) = 11.312 min, t (minor) = 16.036 min]. ¹H NMR (400 MHz, chloroform-*d*) δ 10.78 (s, 1H), 8.93 (s, 1H), 7.55 (d, J = 7.8 Hz, 1H), 7.42 (t, J = 7.7 Hz, 1H), 7.34 (d, J = 8.2 Hz, 1H), 7.27 (s, 4H), 7.21 (t, J = 7.4 Hz, 1H), 7.14 (d, J = 9.1 Hz, 1H), 7.10 – 7.02 (m, 2H), 6.98 (d, J = 8.9 Hz, 1H), 6.82 (t, J = 7.4 Hz, 1H), 6.47 (d, J = 8.3 Hz, 1H), 5.12 (s, 1H), 4.88 (s, 1H), 2.87 (s, 3H). ¹³C NMR (100 MHz, chloroform-*d*) δ 199.4, 170.5, 160.4, 156.8, 146.9, 138.7, 137.8, 135.9, 134.9, 131.5, 129.4, 128.2, 128.0, 125.0, 123.5, 122.8, 120.8, 120.1, 119.5, 119.3, 119.0, 118.5, 112.6, 112.3, 111.4, 108.1, 71.2, 51.9. HRMS (ESI): calcd for [C₃₀H₂₁ClN₂O₅+H]⁺ [M+H]⁺ *m*/z 525.1212, found 525.1208.

(*S_a*,*R*)-Methyl-3,6-dihydroxy-2-(2-(2-(naphthalen-1-yl)-3-oxoindolin-2-yl)-1*H*-ind ol-3-yl)benzoate (3v): Reaction time 48 h, yellow solid, mp = 204-205 °C. 52.3 mg, 92% yield, 95% ee [Daicel Chiralpak IF, hexane/2-propanol = 90/10, v = 1.0 mL/min, $\lambda = 254$ nm, t (major) = 11.796 min, t (minor) = 18.540 min]. ¹H NMR (400 MHz, chloroform-*d*) δ 10.78 (s, 1H), 8.48 (s, 1H), 7.90 – 7.78 (m, 3H), 7.62 (d, J = 7.7 Hz, 1H), 7.54 (d, J = 7.2 Hz, 1H), 7.46 – 7.32 (m, 4H), 7.23 (s, 1H), 7.19 – 7.10 (m, 3H), 7.06 – 6.99 (m, 1H), 6.86 (dd, J = 8.3, 5.1 Hz, 2H), 6.42 (d, J = 8.3 Hz, 1H), 5.60-5.35 (m, 2H), 2.95 (s, 3H). ¹³C NMR (100 MHz, chloroform-*d*) δ 199.1, 170.5, 160.2, 156.8, 146.9, 138.4, 136.0, 134.9, 133.2, 132.4, 131.7, 130.3, 129.8, 128.6, 127.1, 126.8, 126.1, 125.2, 125.0, 124.0, 123.1, 123.0, 120.5, 120.4, 120.3, 119.2, 119.1, 118.7, 112.9, 112.3, 111.2, 108.3, 73.0, 51.8. HRMS (ESI): calcd for [C₃₄H₂₄N₂O₅+Na]⁺ [M+Na]⁺ *m*/*z* 563.1577, found 563.1567.

(*S_a*,*R*)-Methyl-3,6-dihydroxy-2-(2-(2-(naphthalen-2-yl)-3-oxoindolin-2-yl)-1*H*-ind ol-3-yl)-benzoate (3w): Reaction time 24 h, yellow solid, mp = 117-118 °C. 50.0 mg, 93% yield, 90% ee [Daicel Chiralpak ID, hexane/2-propanol = 80/20, v = 1.0 mL/min, λ = 254 nm, t (major) = 13.420 min, t (minor) = 21.308 min]. ¹H NMR (400 MHz, chloroform-*d*) δ 10.81 (s, 1H), 8.93 (s, 1H), 7.86 (d, J = 1.5 Hz, 1H), 7.81 – 7.72 (m, 3H), 7.60 (d, J = 7.7 Hz, 1H), 7.50 – 7.45 (m, 2H), 7.41 (ddd, J = 8.4, 7.3, 1.2 Hz, 1H), 7.35 – 7.29 (m, 2H), 7.21 (ddd, J = 8.2, 7.0, 1.2 Hz, 1H), 7.13 (t, J = 9.1 Hz, 2H), 7.08 – 7.01 (m, 1H), 6.95 (d, J = 9.0 Hz, 1H), 6.83 (t, J = 7.5 Hz, 1H), 6.46 (d, J = 8.3 Hz, 1H), 5.21 (s, 1H), 5.07 (s, 1H), 2.91 (s, 3H). ¹³C NMR (100 MHz, chloroform-*d*) δ 199.6, 170.6, 160.4, 156.8, 146.9, 138.6, 136.3, 136.1, 133.2, 132.1, 129.4, 128.4, 128.1, 127.7, 127.0, 126.8, 125.9, 124.9, 124.3, 123.4, 122.6, 120.7, 119.9, 119.0, 118.9, 112.6, 112.4, 111.4, 108.0, 71.9, 51.9. HRMS (ESI): calcd for [C₃₄H₂₄N₂O₅+H]⁺ [M+H]⁺ *m*/z 541.1758, found 541.1764.

(*S_a*,*R*)-Propyl-3,6-dihydroxy-2-(2-(2-(naphthalen-1-yl)-3-oxoindolin-2-yl)-1*H*-ind ol-3-yl)benzoate (3x): Reaction time 48 h, yellow solid, mp = 150-151 °C, 52.2 mg, 92% yield, 93% ee [Daicel Chiralpak IB, hexane/2-propanol = 93/7, v = 1.0 mL/min, λ = 254 nm, t (minor) = 9.900 min, t (major) = 33.868 min]. ¹H NMR (400 MHz, chloroform-*d*) δ 10.99 (s, 1H), 8.55 (s, 1H), 7.85 (dd, *J* = 16.6, 8.0 Hz, 2H), 7.77 (d, *J* = 8.5 Hz, 1H), 7.63 (d, *J* = 7.7 Hz, 1H), 7.51 – 7.39 (m, 3H), 7.38 – 7.31 (m, 2H), 7.24 (d, *J* = 4.2 Hz, 1H), 7.19 – 7.11 (m, 3H), 7.07 – 6.99 (m, 1H), 6.93 – 6.82 (m, 2H), 6.43 (d, *J* = 8.3 Hz, 1H), 5.44 (d, *J* = 33.6 Hz, 2H), 3.58 (dt, *J* = 10.6, 7.2 Hz, 1H), 3.13 (ddd, *J* = 10.6, 7.0, 5.8 Hz, 1H), 0.67 (tq, *J* = 14.1, 7.3 Hz, 1H), 0.40 (dh, *J* = 14.5, 7.3 Hz, 1H), 0.13 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (100 MHz, chloroform-*d*) δ 199.1, 170.3, 160.1, 157.0, 146.9, 138.5, 136.1, 134.8, 133.3, 131.9, 131.6, 130.3, 129.7, 128.9, 127.1, 127.0, 126.1, 125.2, 125.1, 124.0, 123.3, 122.9, 120.6, 120.3, 120.2, 119.4, 119.2, 118.8, 112.9, 112.4, 111.2, 108.7, 73.1, 67.1, 20.4, 9.7. HRMS (ESI): calcd for [C₃₆H₂₈N₂O₅+Na]⁺ [M+Na]⁺ *m*/z 591.1890, found 591.1887.

(*S_a*,*R*)-Methyl-2-(5-fluoro-2-(3-oxo-2-phenylindolin-2-yl)-1*H*-indol-3-yl)-3,6-dihy droxybenzoate (3y): Reaction time 24 h, yellow solid, mp = 125-126 °C, 50.4 mg, 99% yield, 90% ee [Daicel Chiralpak AD, hexane/2-propanol = 80/20, v = 1.0 mL/min, λ = 254 nm, t (major) = 10.936 min, t (minor) = 14.554 min]. ¹H NMR (400 MHz, chloroform-*d*) δ 10.73 (s, 1H), 8.80 (s, 1H), 7.34-7.28 (m, 6H), 7.23 – 7.12 (m, 4H), 7.10 – 7.02 (m, 2H), 6.96 (d, J = 9.1 Hz, 1H), 6.42 (dd, J = 8.7, 3.6 Hz, 1H), 5.02 (s, 1H), 4.94 (s, 1H), 2.94 (s, 3H). ¹³C NMR (100 MHz, chloroform-*d*) δ 199.4, 170.6, 157.0, 156.9 (d, ¹J_{C-F} = 241.4 Hz) 156.6, 146.9, 139.0, 136.0, 131.8, 129.3, 129.0, 128.0, 126.7, 126.5, 123.5, 122.6, 120.7, 119.8, 119.2 (d, ³J_{C-F} = 7.4 Hz), 119.1, 113.6 (d, ${}^{3}J_{C-F} = 7.4 \text{ Hz}$), 112.7, 111.3, 109.4 (d, ${}^{2}J_{C-F} = 22.7 \text{ Hz}$), 108.0, 72.9, 51.9. ${}^{19}\text{F}$ NMR (376 MHz, chloroform-*d*) δ –123.2. HRMS (ESI): calcd for [C₃₀H₂₀FN₂O₅]⁻ [M-H]⁻ *m*/*z* 507.1362; found: 507.1356.

(*S_a*,*R*)-Methyl-2-(5-chloro-3-oxo-2-phenylindolin-2-yl)-3-(3,6-dihydroxy-2-(metho xycarbonyl)phenyl)-1*H*-indole-5-carboxylate (3z): Reaction time 48 h, yellow solid, mp = 162-163 °C solid, mp = 162-163 °C, 50.6 mg, 87% yield, 99% ee [Daicel Chiralpak AD, hexane/2-propanol = 80/20, v = 1.0 mL/min, λ = 254 nm, t (major) = 9.783 min, t (minor) = 14.098 min]. ¹H NMR (400 MHz, chloroform-*d*) δ 10.78 (s, 1H), 8.99 (s, 1H), 7.89 – 7.76 (m, 2H), 7.49 (d, *J* = 2.0 Hz, 1H), 7.36 – 7.27 (m, 7H), 7.10 (d, *J* = 9.0 Hz, 1H), 6.97 (d, *J* = 9.0 Hz, 1H), 6.40 (d, *J* = 8.7 Hz, 1H), 5.21 (s, 2H), 3.78 (s, 3H), 2.93 (s, 3H). ¹³C NMR (100 MHz, chloroform-*d*) δ 198.4, 170.4, 167.9, 158.6, 156.8, 146.9, 138.5, 133.0, 129.4, 129.2, 127.8, 126.8, 125.2, 124.8, 124.0, 123.1, 122.6, 122.0, 119.7, 119.4, 119.0, 113.5, 112.4, 111.0, 110.0, 72.6, 52.0, 52.0. HRMS (ESI): calcd for $[C_{32}H_{23}CIN_2O_7+H]^+$ $[M+H]^+$ *m/z* 583.1267, found 583.1267.

(*S_a*,**R**)-2-(3-(2,5-Dihydroxy-3,6-diiodophenyl)-1*H*-indol-2-yl)-2-phenylindolin-3-o ne. Reaction time 48 h, yellow solid, mp = 190-191 °C. 63.6 mg, 93% yield, 93% ee [Daicel Chiralpak AD, hexane/2-propanol = 80/20, v = 1.0 mL/min, λ = 254 nm, t (major) = 13.388 min, t (minor) = 24.929 min]. ¹H NMR (400 MHz, chloroform-*d*) δ 8.96 (s, 1H), 7.58 (d, *J* = 7.7 Hz, 1H), 7.44 – 7.34 (m, 5H), 7.27 (m, 3H), 7.24 – 7.19 (m, 1H), 7.12 – 7.03 (m, 2H), 6.83 (t, *J* = 7.3 Hz, 1H), 6.60 (d, *J* = 8.3 Hz, 1H), 5.24 (m, 3H). ¹³C NMR (100 MHz, chloroform-*d*) δ 199.5, 160.9, 149.6, 147.7, 138.6, 138.2, 135.7, 132.6, 129.1, 129.0, 127.3, 126.8, 125.7, 125.4, 123.7, 123.6, 120.8, 120.2, 119.5, 119.1, 113.0, 112.6, 111.6, 96.0, 84.0, 71.7. HRMS (ESI): calcd for [C₂₈H₁₈I₂N₂O₃+H]⁺ [M+H]⁺ *m/z* 684.9480, found 684.9478.

(*S_a*,*R*)-2-(3-(2,5-Dihydroxy-3,6-diiodophenyl)-5-methyl-1*H*-indol-2-yl)-2-phenylin dolin-3-one. Reaction time 48 h, yellow solid, mp = 252-253 °C. 66.3 mg, 95% yield, 96% ee [Daicel Chiralpak ID, hexane/2-propanol = 85/15, v = 1.0 mL/min, λ = 254 nm, t (major) = 13.811 min, t (minor) = 18.805 min]. ¹H NMR (400 MHz, chloroform-*d*) δ 8.89 (s, 1H), 7.57 (d, *J* = 7.7 Hz, 1H), 7.44 – 7.34 (m, 4H), 7.31 – 7.24 (m, 4H), 7.09 – 6.99 (m, 1H), 6.84 (dd, *J* = 14.0, 6.5 Hz, 2H), 6.60 (d, *J* = 8.3 Hz, 1H), 5.22 (m, 3H), 2.33 (s, 3H). ¹³C NMR (100 MHz, chloroform-*d*) δ 199.5, 160.9, 149.6, 147.7, 138.6, 138.4, 134.0, 132.6, 130.3, 129.1, 128.9, 127.5, 126.8, 125.7, 125.6, 125.3, 123.7, 120.2, 119.1, 118.9, 112.6, 112.4, 111.2, 96.1, 83.8, 71.7, 21.6. HRMS (ESI): calcd for [C₂₉H₂₀J₂N₂O₃+H]⁺ [M+H]⁺ *m/z* 698.9636, found 698.9634.

(*S_a*,*R*)-2-(5-Bromo-3-(2,5-dihydroxy-3,6-diiodophenyl)-1*H*-indol-2-yl)-2-phenylin dolin-3-one. Reaction time 48 h, yellow solid, mp = 207-208 °C. 66.3 mg, 87% yield, 93% ee [Daicel Chiralpak AD, hexane/2-propanol = 80/20, v = 1.0 mL/min, λ = 254 nm, t (major) = 10.437 min, t (minor) = 16.190 min]. ¹H NMR (400 MHz, chloroform-*d*) δ 9.01 (s, 1H), 7.58 (d, *J* = 7.7 Hz, 1H), 7.45 – 7.41 (m, 1H), 7.37 – 7.33 (m, 3H), 7.28 (m, 4H), 7.24 – 7.19 (m, 2H), 6.85 (t, *J* = 7.5 Hz, 1H), 6.60 (d, *J* = 8.3 Hz, 1H), 5.20 (m, 3H). ¹³C NMR (100 MHz, chloroform-*d*) δ 199.4, 160.9, 149.7, 147.6, 138.7, 138.0, 134.2, 133.9, 129.2, 129.1, 126.8, 126.5, 125.7, 124.8, 123.9, 121.9, 120.4, 119.1, 114.1, 113.1, 113.0, 112.7, 96.0, 84.6, 71.7. HRMS (ESI): calcd for $[C_{28}H_{17}BrI_2N_2O_3+H]^+$ $[M+H]^+$ *m/z* 762.8585, 764.8564, found 762.8581, 764.8561.

(*S_a*,*R*)-2-(3-(2,5-Dihydroxy-3,6-diiodophenyl)-1*H*-indol-2-yl)-2-(*p*-tolyl)indolin-3one. Reaction time 48 h, yellow solid, mp = 182-183 °C. 60.7 mg, 87% yield, 91% ee [Daicel Chiralpak AD, hexane/2-propanol = 80/20, v = 1.0 mL/min, λ = 254 nm, t (major) = 14.370 min, t (minor) = 30.594 min]. ¹H NMR (400 MHz, chloroform-*d*) δ 8.93 (s, 1H), 7.57 (d, *J* = 7.7 Hz, 1H), 7.40 (t, *J* = 7.7 Hz, 1H), 7.34 (m, 2H), 7.26 (m, 2H), 7.23 – 7.17 (m, 1H), 7.07 (m, 4H), 6.82 (t, *J* = 7.4 Hz, 1H), 6.59 (d, *J* = 8.3 Hz, 1H), 5.24 (m, 3H), 2.27 (s, 3H). ¹³C NMR (100 MHz, chloroform-*d*) δ 199.7, 160.9, 149.6, 147.7, 138.9, 138.6, 135.7, 135.1, 132.9, 129.7, 127.3, 126.8, 125.7, 125.5, 123.6, 123.5, 120.8, 120.2, 119.5, 119.2, 113.0, 112.6, 111.6, 96.1, 84.0, 71.6, 21.2. HRMS (ESI): calcd for [C₂₉H₂₀I₂N₂O₃+H]⁺ [M+H]⁺ *m*/*z* 698.9636, found 698.9634.

(*S_a*,*R*)-2-(4-Chlorophenyl)-2-(3-(2,5-dihydroxy-3,6-diiodophenyl)-1*H*-indol-2-yl)i ndolin-3-one. Reaction time 48 h, yellow solid, mp = 185-186 °C. 64.6 mg, 90% yield, 92% ee [Daicel Chiralpak AD, hexane/2-propanol = 80/20, v = 1.0 mL/min, λ = 254 nm, t (major) = 10.678 min, t (minor) = 33.291 min]. ¹H NMR (400 MHz, chloroform-*d*) δ 8.93 (s, 1H), 7.56 (d, *J* = 7.7 Hz, 1H), 7.44 (ddd, *J* = 8.3, 7.3, 1.3 Hz, 1H), 7.39 – 7.32 (m, 4H), 7.23 (m, 3H), 7.11 – 7.05 (m, 2H), 6.85 (t, *J* = 7.3 Hz, 1H), 6.63 (d, *J* = 8.3 Hz, 1H), 5.57 (s, 1H), 5.23 (s, 1H), 5.10 (s, 1H). ¹³C NMR (100 MHz, chloroform-*d*) δ 199.1, 160.8, 149.7, 147.6, 138.8, 136.7, 135.6, 135.0, 132.1, 129.1, 128.3, 127.2, 125.7, 125.1, 123.8, 121.0, 120.4, 119.5, 118.9, 113.2, 112.7, 111.6, 95.9, 84.3, 71.0. HRMS (ESI): calcd for [C₂₈H₁₇ClI₂N₂O₃+H]⁺ [M+H]⁺ *m*/*z* 718.9090, found 718.9088.

(*S_a*,*R*)-2-(3-(2,5-Dihydroxy-3,6-diiodophenyl)-5-methyl-1*H*-indol-2-yl)-2-(naphtha len-1-yl)indolin-3-one. Reaction time 48 h, yellow solid, mp = 234-235 °C. 51.6 mg, 69% yield, 90% ee [Daicel Chiralpak ID, hexane/2-propanol = 75/25, v = 1.0 mL/min, λ = 254 nm, t (major) = 6.349 min, t (minor) = 15.267 min]. ¹H NMR (400 MHz, chloroform-*d*) δ 8.51 (s, 1H), 7.88 (dd, *J* = 19.9, 8.2 Hz, 2H), 7.79 (d, *J* = 8.3 Hz, 1H), 7.60 (dd, *J* = 25.9, 7.3 Hz, 2H), 7.43 (t, *J* = 7.2 Hz, 1H), 7.40 – 7.32 (m, 3H), 7.21 (s, 1H), 7.15 (d, *J* = 8.3 Hz, 1H), 7.05 – 6.96 (m, 1H), 6.87 (m, 2H), 6.49 (m, 2H), 5.67 (s, 1H), 4.96 (s, 1H), 2.34 (s, 3H). ¹³C NMR (100 MHz, chloroform-*d*) δ 198.9, 160.5, 149.4, 147.5, 138.5, 134.8, 134.1, 132.5, 132.4, 131.6, 130.3, 130.0, 129.7, 128.0, 127.7, 127.1, 126.0, 125.9, 125.8, 125.1, 125.1, 124.7, 123.0, 120.5, 119.6, 119.4, 112.9, 112.5, 111.2, 95.9, 84.5, 73.1, 21.6. HRMS (ESI): calcd for [C₃₃H₂₂I₂N₂O₃+H]⁺ [M+H]⁺ *m*/z 748.9793, found 748.9789.

(*S_a*,*R*)-2-(3-(2-Hydroxynaphthalen-1-yl)-1*H*-indol-2-yl)-2-phenylindolin-3-one. Reaction time 48 h, yellow solid, mp = 236-237 °C. 41.0 mg, 88% yield, 90% ee [Daicel Chiralpak AY, hexane/2-propanol = 80/20, v = 1.0 mL/min, λ = 254 nm, t (major) = 7.284 min, t (minor) = 14.354 min]. ¹H NMR (400 MHz, Chloroform-d) δ 9.60 (s, 1H), 7.86 – 7.77 (m, 2H), 7.54 (d, J = 7.7 Hz, 1H), 7.47 (d, J = 8.1 Hz, 1H), 7.28 (m, 4H), 7.24 – 7.16 (m, 5H), 7.08 – 6.99 (m, 4H), 6.72 (t, J = 7.5 Hz, 1H), 5.98 (d, J = 8.3 Hz, 1H), 5.10 (s, 2H). ¹³C NMR (100 MHz, chloroform-*d*) δ 200.3, 161.1, 152.5, 139.4, 138.2, 135.6, 134.7, 134.4, 130.3, 129.0, 128.6, 128.0, 126.7, 126.0, 125.4, 125.1, 123.5, 120.8, 119.7, 119.6, 118.1, 117.5, 112.2, 112.0, 111.6, 105.6, 71.3. HRMS (ESI): calcd for $[C_{32}H_{22}N_2O_2+H]^+$ $[M+H]^+$ m/z 467.1754, found 467.1756.

(*S_a*,*R*)-2-(3-(2-Hydroxynaphthalen-1-yl)-5-methyl-1*H*-indol-2-yl)-2-phenylindolin -3-one. Reaction time 48 h, yellow solid, mp = 154-155 °C. 43.7 mg, 91% yield, 85% ee [Daicel Chiralpak IF, hexane/2-propanol = 85/15, v = 1.0 mL/min, λ = 254 nm, t (major) = 9.351 min, t (minor) = 23.563 min]. ¹H NMR (400 MHz, chloroform-*d*) δ 9.53 (s, 1H), 7.82 (m, 2H), 7.54 (d, *J* = 7.7 Hz, 1H), 7.36 (d, *J* = 8.3 Hz, 1H), 7.27 (m, 3H), 7.24 – 7.15 (m, 5H), 7.12 – 7.02 (m, 3H), 6.85 – 6.78 (m, 1H), 6.72 (t, *J* = 7.6 Hz, 1H), 5.97 (d, *J* = 8.3 Hz, 1H), 5.17 (s, 1H), 5.08 (s, 1H), 2.27 (s, 3H). ¹³C NMR (100 MHz, chloroform-*d*) δ 200.3, 161.1, 152.5, 139.5, 138.2, 134.7, 134.4, 133.9, 130.3, 129.3, 129.0, 128.5, 128.1, 126.7, 125.9, 125.4, 125.2, 125.1, 123.5, 119.5, 119.1, 118.1, 117.5, 112.2, 111.2, 104.9, 71.3, 21.4. HRMS (ESI): calcd for [C₃₃H₂₄N₂O₂+H]⁺ [M+H]⁺ *m*/z 481.1911, found 481.1912.

(*S_a*,*R*)-2-(5-Chloro-3-(2-hydroxynaphthalen-1-yl)-1*H*-indol-2-yl)-2-phenylindolin-3-one. Reaction time 48 h, yellow solid, mp = 160-161 °C. 38.0 mg, 76% yield, 90% ee [Daicel Chiralpak ID, hexane/2-propanol = 70/30, v = 1.0 mL/min, λ = 254 nm, t (major) = 6.640 min, t (minor) = 15.896 min]. ¹H NMR (400 MHz, chloroform-*d*) δ 9.64 (s, 1H), 7.81 (m, 2H), 7.54 (d, *J* = 7.7 Hz, 1H), 7.37 (d, *J* = 8.6 Hz, 1H), 7.27 (m, 3H), 7.24 – 7.13 (m, 6H), 7.09 (td, *J* = 7.5, 6.8, 1.1 Hz, 1H), 7.03 – 6.93 (m, 2H), 6.73 (t, *J* = 7.3 Hz, 1H), 6.01 (d, *J* = 8.3 Hz, 1H), 5.19 (s, 1H), 5.08 (s, 1H). ¹³C NMR (100 MHz, chloroform-*d*) δ 200.1, 161.1, 152.5, 139.7, 139.0, 138.4, 136.2, 134.2, 133.9, 130.6, 130.2, 129.1, 129.0, 128.7, 128.1, 126.9, 126.7, 125.9, 125.4, 124.8, 123.9, 123.6, 119.8, 119.0, 118.0, 117.6, 112.7, 112.2, 111.4, 105.5, 71.2. HRMS (ESI): calcd for $[C_{32}H_{21}CIN_2O_2+H]^+$ [M+H]⁺ m/z 501.1364, found 501.1366.

(*S_a*,*R*)-2-(4-Fluorophenyl)-2-(3-(2-hydroxynaphthalen-1-yl)-1*H*-indol-2-yl)indolin -3-one. Reaction time 48 h, yellow solid, mp = 151-152 °C. 40.2 mg, 83% yield, 85% ee [Daicel Chiralpak ID, hexane/2-propanol = 75/25, v = 1.0 mL/min, λ = 254 nm, t (major) = 7.760 min, t (minor) = 35.935 min]. ¹H NMR (400 MHz, chloroform-*d*) δ 9.56 (s, 1H), 7.83 (m, 2H), 7.55 (d, *J* = 7.7 Hz, 1H), 7.46 (d, *J* = 8.2 Hz, 1H), 7.32 – 7.25 (m, 4H), 7.24 – 7.16 (m, 2H), 7.11 – 7.01 (m, 4H), 6.91 – 6.84 (m, 2H), 6.78 – 6.71 (m, 1H), 6.01 (d, *J* = 8.3 Hz, 1H), 5.21 (s, 1H), 5.12 (s, 1H). ¹³C NMR (100 MHz, chloroform-*d*) δ 200.2, 162.6 (d, ¹*J*_{C-F} = 248.1 Hz), 161.1, 152.5, 138.4, 135.6, 135.1, 135.1, 134.4, 134.3, 130.4, 129.0 (d, ³*J*_{C-F} = 6.5 Hz), 128.1, 127.9 (d, ³*J*_{C-F} = 8.3 Hz), 126.8, 125.4, 124.9, 123.7, 123.6, 120.9, 119.8, 119.7, 118.0, 117.5, 115.8 (d, ²*J*_{C-F} = 21.8 Hz), 112.3, 111.9, 111.6, 105.8, 77.5, 70.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -113.2. HRMS (ESI): calcd for [C₃₂H₂₁FN₂O₂+H]⁺ [M+H]⁺ *m*/*z* 485.1660, found 485.1662.

(*S_a*,*R*)-2-(4-Chlorophenyl)-2-(3-(2-hydroxynaphthalen-1-yl)-1*H*-indol-2-yl)indolin -3-one. Reaction time 48 h, yellow solid, mp = 164-165 °C. 44.5 mg, 89% yield, 86% ee [Daicel Chiralpak ID, hexane/2-propanol = 80/20, v = 1.0 mL/min, λ = 254 nm, t (major) = 6.479 min, t (minor) = 12.058 min]. ¹H NMR (400 MHz, chloroform-*d*) δ 9.57 (s, 1H), 7.83 (m, 2H), 7.54 (d, *J* = 7.8 Hz, 1H), 7.46 (d, *J* = 8.2 Hz, 1H), 7.32 – 7.24 (m, 3H), 7.23 (m, 2H), 7.19 – 7.13 (m, 3H), 7.11 – 7.01 (m, 4H), 6.75 (t, *J* = 7.5 Hz, 1H), 6.00 (d, *J* = 8.4 Hz, 1H), 5.18 (s, 1H), 5.13 (s, 1H). ¹³C NMR (100 MHz, chloroform-*d*) δ 199.9, 161.1, 152.5, 138.4, 137.8, 135.6, 134.5, 134.3, 134.2, 130.5, 129.1, 128.2, 127.5, 126.8, 125.5, 124.9, 123.7, 123.6, 120.9, 119.9, 119.7, 117.9, 117.6, 112.3, 111.8, 111.6, 105.8, 70.8. HRMS (ESI): calcd for [C₃₂H₂₁ClN₂O₂+H]⁺ [M+H]⁺ *m/z* 501.1364, found 501.1366.

8. Scale up synthesis of 3a, 3j and 3ag

In an oven dried round-bottom flask, chiral phophoric acid (R)-4a (10 mol%), 1a or 1j (1.2 mmol) and 2a (1 mmol) were dissolved in anhydrous CHCl₃ (20 mL). After stirred under argon atmosphere at room temperature for 24 h (monitored by TLC), the solution was concentrated and purified by silica gel column chromatography to afford pure product 3a or 3j.

In an oven dried round-bottom flask, chiral phophoric acid (R)-4a (10 mol%), 1u (1 mmol) and 2a (1 mmol) were dissolved in anhydrous toluene (5 mL). After stirred under argon atmosphere at room temperature for 48 h (monitored by TLC), the solution was concentrated and purified by silica gel column chromatography to afford pure product 3ag.

9. Control experiments

To gain some insights into the activation mode of catalyst CPA on the substrates, we experiments. We attempted performed the control treatment methyl of 3,6-dihydroxy-2-(1-methyl-1*H*-indol-3-yl)benzoate (5) with 2-phenyl-3*H*-indol-3-ones (2a) under the standard conditions, the reaction afforded product 6 in 53% yield almost without enantioselectivity, and a long time (96 h) was needed. Further, reaction of 7 with 2a did not work under the standard conditions Finally, we attempted reaction of 8 with 2a under the standard conditions, and product 9 was obtained in 70% yield with 78% ee. These result indicated that the N-H group of indole ring was necessary for the reactivity and enantioselectivity, which showed that a hydrogen-bond between NH in the indole (1) and (R)-CPA was important.

In an oven dried Schlenk tube, chiral phophoric acid (R)-4a (10 mol%), 5 (0.12 mmol) and 2a (0.1 mmol) were dissolved in anhydrous CHCl₃ (2 mL). After stirred under argon atmosphere at room temperature for 96 h (monitored by TLC), the solution was concentrated and purified by preparative silica gel thin layer chromatography (p-TLC) to afford 6.

Methyl-3,6-dihydroxy-2-(1-methyl-2-(3-oxo-2-phenylindolin-2-yl)-1*H*-indol-3-yl) benzoate (6): Yellow solid, mp = 137-138 °C, 26.7 mg, 53% yield, 1% ee [Daicel Chiralpak IF, hexane/2-propanol = 90/10, v = 1.0 mL/min, λ = 254 nm, t (major) =
8.481 min, t (minor) = 11.906 min]. ¹H NMR (400 MHz, Chloroform-*d*) δ 10.73 (s, 1H), 7.53 (d, J = 7.7 Hz, 1H), 7.38 – 7.25 (m, 8H), 7.16 (d, J = 9.0 Hz, 1H), 7.09 – 7.01 (m, 2H), 6.91 (d, J = 9.0 Hz, 1H), 6.78 (t, J = 7.5 Hz, 1H), 6.14 (d, J = 8.2 Hz, 1H), 5.05 (s, 1H), 4.77 (s, 1H), 3.56 (s, 3H), 3.00 (s, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 199.2, 170.5, 158.6, 156.8, 146.0, 140.3, 138.9, 138.2, 133.7, 129.6, 128.7, 126.6, 124.3, 123.0, 122.5, 122.0, 120.4, 119.6, 119.0, 118.0, 112.3, 112.0, 109.5, 108.7, 72.8, 51.8, 33.5. HRMS (ESI): calcd for [C₃₁H₂₄N₂O₅+Na]⁺ [M+Na]⁺ *m*/*z* 527.1577, found 527.1577.

In an oven dried Schlenk tube, chiral phophoric acid (*R*)-4k (10 mol%), 7 or 8 (0.1mmol) and 2a (0.1mmol) were dissolved in anhydrous toluene (0.5 mL). After stirred under argon atmosphere at room temperature for 48 h (monitored by TLC), the solution was concentrated and purified by preparative silica gel thin layer chromatography (*p*-TLC) to afford 9.

(*S_a*,*R*)-2-(3-(2-Methoxynaphthalen-1-yl)-1*H*-indol-2-yl)-2-phenylindolin-3-one (9): Yellow solid, mp = 146-147 °C. 33.6 mg, 70% yield, 78% ee [Daicel Chiralpak AY, hexane/2-propanol = 75/25, v = 1.0 mL/min, λ = 254 nm, t (major) = 8.034 min, t (minor) = 16.140 min]. ¹H NMR (400 MHz, Chloroform-*d*) δ 9.02 (s, 1H), 7.86 (d, *J* = 9.0 Hz, 1H), 7.77 (d, *J* = 8.1 Hz, 1H), 7.62 (d, *J* = 7.7 Hz, 1H), 7.44 – 7.25 (m, 6H), 7.24 – 7.11 (m, 3H), 7.06 (m, 3H), 6.97 (d, *J* = 4.0 Hz, 2H), 6.78 (t, *J* = 7.5 Hz, 1H), 6.42 (d, *J* = 8.3 Hz, 1H), 5.48 (s, 1H), 3.45 (s, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 200.8, 165.6, 161.1, 155.5, 139.7, 137.9, 135.6, 134.2, 132.7, 129.6, 129.4, 129.0, 128.4, 127.9, 127.8, 126.6, 126.4, 125.8, 125.5, 123.7, 122.7, 120.0, 119.7, 119.1, 117.2, 113.4, 112.1, 111.4, 109.5, 71.6, 56.3. HRMS (ESI): calcd for $[C_{33}H_24N_2O_2+H]^+$ [M+H]⁺ *m*/z 481.1911, found 481.1912.

10. Investigation on conformational stability of product 3a and 3ag

We investigated the stability for products 3a and 3ag (0.1 mmol scale), and the treatment was carried out in *o*-xylene (2 mL) at various temperatures under Ar

atmosphere for 12 h. The experiment results showed that the axially chiral products were of good conformational stability, especially, compound **3ag**.

11. Derivatization of chiral products

In an oven dried Schlenk tube containing **3aa** (0.1mmol) in anhydrous CH_2Cl_2 (DCM) (3 mL), 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ) (22.7 mg, 0.1 mmol) was added in one portion at -40 °C. After the reaction completed (about 1 hour), the solvent was removed and the residue was purified by preparative silica gel thin layer chromatography (*p*-TLC) (EA/DCM = 1/30) to afford **10.**⁴

(*S_a*,*R*)-2,5-Diiodo-3-(2-(3-oxo-2-phenylindolin-2-yl)-1*H*-indol-3-yl)cyclohexa-2,5-d iene-1,4-dione (10): Brown solid, mp = 262-263 °C. 51.8 mg, 76% yield, 91% ee [Daicel Chiralpak IF, hexane/2-propanol = 80/20, v = 1.0 mL/min, λ = 254 nm, t (major) = 18.189 min, t (minor) = 23.887 min]. ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.05 (s, 1H), 8.00 (s, 1H), 7.85 (s, 1H), 7.40 – 7.31 (m, 7H), 7.15 (d, *J* = 7.9 Hz, 1H),

7.05 (t, J = 7.5 Hz, 1H), 6.91 (t, J = 7.5 Hz, 1H), 6.79 (t, J = 7.4 Hz, 1H), 6.62 (d, J = 8.5 Hz, 1H), 5.71 (s, 1H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 199.2, 179.4, 177.6, 161.3, 149.5, 144.2, 139.3, 138.3, 137.5, 137.3, 133.7, 133.5, 129.3, 129.0, 128.4, 125.3, 122.3, 121.0, 120.6, 120.3, 119.9, 119.7, 119.5, 113.6, 112.9, 112.5, 72.4, 55.5. HRMS (ESI): calcd for [C₂₈H₁₆I₂N₂O₃+H]⁺ [M+H]⁺ *m/z* 682.9323, found 682.9322.

3ag (46.6 mg, 0.1 mmol) was dissolved to THF/Et₂O (1/1, 1.5 mL) and LiAlH₄ (19.0 mg, 0.5 mmol) was added to the solution at 0 °C. After being stirred for 1 h, AlCl₃ (80.0 mg, 0.6 mmol) was added at 0 °C under Ar atmosphere. After being stirred for 12 h, the reaction was quenched by adding H₂O. The mixture was extracted with CH₂Cl₂ three times, then combined organic phase was dried over Na₂SO₄. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by preparative silica gel thin layer chromatography (*p*-TLC) (PE/EA = 2/1) to afford the product **11**.⁵

 (S_a, R) -1-(2-(2-Phenylindolin-2-yl)-1*H*-indol-3-yl)naphthalen-2-ol (11): White solid, mp = 264-265 °C. 38.4 mg, 85% yield, 90% ee [Daicel Chiralpak ID, hexane/2-propanol = 85/15, v = 1.0 mL/min, λ = 254 nm, t (major) = 15.190 min, t (minor) = 22.073 min]. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.93 (s, 1H), 8.96 (s, 1H), 7.77 (m, 2H), 7.42 (m, 2H), 7.36 (d, *J* = 8.1 Hz, 1H), 7.21 (d, *J* = 8.9 Hz, 1H), 7.18 – 7.14 (m, 1H), 7.10 – 7.05 (m, 3H), 7.01 – 6.93 (m, 3H), 6.75 – 6.65 (m, 3H), 6.50 – 6.39 (m, 2H), 5.94 (d, *J* = 7.8 Hz, 1H), 5.80 (s, 1H), 5.58 (d, *J* = 6.4 Hz, 1H), 4.73 (d, *J* = 7.0 Hz, 1H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 153.7, 150.0, 141.5, 140.6, 135.9, 135.3, 131.3, 129.8, 129.2, 128.9, 128.7, 128.5, 128.1, 127.3, 126.6, 125.8, 125.7, 125.3, 122.7, 121.6, 119.2, 119.1, 118.7, 118.2, 114.9, 111.5, 109.7, 107.2, 77.1, 74.8. HRMS (ESI): calcd for [C₃₂H₂₄N₂O+H]⁺ [M+H]⁺ *m*/z 453.1961, found 453.1960. 12. X-Ray crystallographic data for 3a with 50% probability displacement ellipsoids (CCDC 1955097).

Table S3 Crystal data and structure	refinement for 3a (CCDC 1955097).
-------------------------------------	---------------------	----------------

Identification code	CCDC 1955097
Empirical formula	$C_{30}H_{22}N_2O_5$
Formula weight	490.49
Temperature/K	173.00(10)
Crystal system	monoclinic
Space group	P21
a/Å	8.8477(2)
b/Å	14.2309(2)
c/Å	9.63710(10)
$\alpha/^{\circ}$	90
β/°	95.549(2)
$\gamma/^{\circ}$	90
Volume/Å ³	1207.73(3)
Z	2
$\rho_{calc}g/cm^3$	1.349
μ/mm^{-1}	0.758
F(000)	512.0
Crystal size/mm ³	0.35 imes 0.3 imes 0.1
Radiation	$CuK\alpha (\lambda = 1.54184)$
2Θ range for data collection/°	9.22 to 142.818
Index ranges	$-10 \le h \le 10, -17 \le k \le 10, -11 \le l \le 11$

Reflections collected	7961
Independent reflections	3401 [$R_{int} = 0.0298$, $R_{sigma} = 0.0346$]
Data/restraints/parameters	3401/1/337
Goodness-of-fit on F ²	1.034
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0350, wR_2 = 0.0922$
Final R indexes [all data]	$R_1 = 0.0360, wR_2 = 0.0937$
Largest diff. peak/hole / e Å $^{-3}$	0.22/-0.31
Flack parameter	0.02(16)

Table S4 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for 3a (CCDC 1955097) U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	У	Z.	U(eq)
O001	4283.5(18)	3595.7(12)	4131.9(16)	24.5(4)
O002	727(2)	4391.0(14)	3844.5(19)	34.8(4)
O003	4287(2)	7229.5(13)	4179.0(17)	32.9(4)
O004	1283(2)	3691.8(15)	5888.6(19)	41.2(5)
O005	2487(3)	4642.5(14)	7938.7(17)	43.0(5)
N006	2700(2)	5348.5(15)	830.7(18)	23.6(4)
N007	6050(2)	5593.0(16)	2774.4(19)	28.0(5)
C008	5061(3)	4282.8(17)	3908(2)	21.3(5)
C009	3361(2)	5275.1(17)	2186(2)	21.1(4)
C00A	2545(3)	5782.3(16)	3050(2)	22.0(5)
C00B	1336(3)	6225.9(18)	2197(2)	23.7(5)
C00C	1435(3)	4359.1(19)	5117(2)	26.8(5)
C00D	1448(3)	5917.9(17)	821(2)	24.4(5)
C00E	2384(3)	5188.6(17)	5538(2)	24.3(5)
C00F	2873(3)	5863.4(17)	4589(2)	22.9(5)
C00G	5337(3)	4160.4(19)	1372(2)	25.4(5)
C00H	4914(3)	4839.3(17)	2504(2)	22.2(5)
C00I	6716(3)	5527(2)	4132(2)	28.3(5)
C00J	6259(3)	4727.9(19)	4809(2)	28.0(5)
C00K	4353(3)	3423.9(19)	952(3)	29.4(6)
C00L	3773(3)	6609.3(18)	5112(2)	27.6(5)
C00M	6705(3)	4241(2)	784(3)	35.2(6)
COON	2852(3)	5273.5(19)	6966(2)	31.9(6)
C000	230(3)	6891(2)	2451(3)	31.2(6)
C00P	4732(3)	2776(2)	-35(3)	38.1(7)
C00Q	433(3)	6214(2)	-289(3)	33.0(6)
C00R	-759(3)	7196(2)	1351(3)	41.8(7)

COOS	6826(4)	4522(2)	6180(3)	42.5(7)
C00T	-670(3)	6852(2)	-2(3)	40.8(7)
C00U	3730(4)	6040(2)	7452(3)	41.5(7)
C00V	7070(4)	3579(3)	-208(3)	46.0(8)
C00W	6094(4)	2857(2)	-622(3)	44.1(8)
C00X	7721(3)	6166(2)	4828(3)	39.6(7)
C00Y	4180(4)	6695(2)	6542(3)	38.7(7)
C00Z	-154(4)	3566(2)	3410(4)	51.8(8)
C010	8279(4)	5941(3)	6167(3)	52.6(9)
C011	7860(4)	5127(3)	6844(3)	55.8(9)

Table S5 Anisotropic Displacement Parameters $(Å^2 \times 10^3)$ for 3a (CCDC 1955097). The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

-						
Atom	U 11	U22	U 33	U23	U 13	U 12
O001	30.7(8)	20.3(8)	22.7(8)	1.1(6)	4.0(6)	1.3(7)
O002	41.9(10)	27.3(10)	33.6(9)	0.0(8)	-4.2(7)	-7.5(8)
O003	56.6(11)	22.9(9)	19.2(8)	0.7(7)	3.7(7)	-12.9(8)
O004	61.6(12)	32.2(11)	30.4(9)	4.0(8)	7.1(8)	-16.3(10)
O005	81.3(15)	30.3(11)	18.6(8)	2.2(7)	11.1(9)	-15.5(11)
N006	29.5(9)	26.0(10)	15.5(8)	-1.9(8)	2.4(7)	3.6(9)
N007	32.8(10)	30.6(12)	20.4(9)	4.9(8)	2.1(8)	-9.5(9)
C008	26.7(11)	20.4(12)	16.9(9)	0.8(9)	3.2(8)	4.1(9)
C009	28.3(11)	19.3(11)	15.6(9)	1.9(9)	2.1(8)	0.4(9)
C00A	29.9(11)	18.7(11)	17.5(10)	2.2(9)	2.9(8)	-0.3(9)
C00B	28.4(11)	23.6(12)	19.5(10)	-1.2(9)	4.1(9)	1.0(10)
C00C	33.8(12)	24.8(13)	23.1(10)	-1.4(10)	9.9(9)	-0.3(10)
C00D	28.9(11)	23.3(12)	21.1(10)	-1.7(9)	3.3(9)	1.3(10)
C00E	33.3(12)	21.3(12)	19.4(10)	-2.0(9)	8.7(8)	0.2(10)
C00F	30.7(11)	21.3(12)	17.2(10)	-1.8(9)	4.9(8)	3.0(10)
C00G	29.3(11)	30.4(13)	16.3(9)	1.3(9)	1.6(8)	7.5(11)
C00H	26.3(11)	21.9(12)	18.5(10)	2.0(9)	2.4(8)	-0.6(9)
C00I	31.0(12)	31.3(14)	22.1(11)	2.3(10)	1.1(9)	-3.1(11)
C00J	33.1(12)	26.5(13)	23.8(11)	1.6(10)	-0.8(9)	-1.9(10)
C00K	34.7(13)	29.6(14)	23.6(11)	-2.5(10)	0.4(9)	8.3(11)
C00L	43.0(14)	22.1(12)	18.6(11)	0.6(10)	7.0(10)	-3.7(11)
C00M	35.5(13)	42.8(16)	28.0(12)	5.9(12)	7.3(10)	8.2(13)
C00N	53.3(15)	23.2(13)	20.6(11)	0.5(10)	11.0(10)	-3.0(12)

C000	34.2(13)	33.0(14)	26.7(12)	-6.2(11)	5.1(10)	6.1(11)
C00P	51.3(17)	36.1(15)	25.5(12)	-5.2(11)	-3.7(11)	15.5(13)
C00Q	35.2(13)	39.5(15)	23.2(11)	-3.9(11)	-2.7(9)	8.6(12)
C00R	40.9(15)	42.7(17)	41.0(15)	-7.8(13)	-0.4(12)	16.8(13)
COOS	56.1(17)	40.3(17)	27.4(13)	8.5(12)	-13.8(12)	-12.9(14)
C00T	39.3(14)	48.0(18)	32.7(13)	-2.5(13)	-8.9(11)	16.2(14)
C00U	77(2)	32.0(15)	15.2(10)	-2.2(11)	4.8(12)	-11.6(15)
C00V	47.8(16)	60(2)	33.1(14)	7.8(14)	19.7(12)	23.4(17)
C00W	61.5(19)	46.8(19)	24.2(12)	-4.7(12)	5.9(12)	26.1(16)
C00X	42.5(15)	39.6(16)	35.2(14)	4.4(13)	-4.3(11)	-14.6(13)
C00Y	65.4(19)	28.2(14)	22.7(12)	-2.9(11)	5.0(12)	-15.3(14)
C00Z	59.9(19)	38.8(18)	52.6(18)	-1.6(15)	-16.0(15)	-16.9(16)
C010	61(2)	52(2)	40.0(15)	1.8(14)	-16.9(14)	-24.9(17)
C011	72(2)	57(2)	32.8(14)	9.7(14)	-22.0(14)	-21.5(19)

Table S6 Bond Lengths for 3a (CCDC 1955097).

Atom Atom	Length/Å	Atom	Atom	Length/Å
O001 C008	1.227(3)	C00E	COON	1.403(3)
O002 C00C	1.322(3)	C00F	COOL	1.392(3)
O002 C00Z	1.448(4)	C00G	C00H	1.531(3)
0003 C00L	1.369(3)	C00G	C00K	1.397(4)
O004 C00C	1.222(3)	C00G	C00M	1.390(3)
O005 C00N	1.359(3)	C00I	C00J	1.391(4)
N006 C009	1.383(3)	C00I	C00X	1.397(4)
N006 C00D	1.371(3)	C00J	COOS	1.398(3)
N007 C00H	1.476(3)	C00K	C00P	1.388(4)
N007 C00I	1.385(3)	C00L	C00Y	1.396(3)
C008 C00H	1.562(3)	C00M	C00V	1.402(4)
C008 C00J	1.449(3)	COON	C00U	1.394(4)
C009 C00A	1.360(3)	C000	COOR	1.378(4)
C009 C00H	1.511(3)	C00P	C00W	1.385(4)
C00A C00B	1.432(3)	C00Q	C00T	1.380(4)
COOA COOF	1.488(3)	C00R	C00T	1.402(4)
C00B C00D	1.409(3)	COOS	C011	1.369(4)
C00B C00O	1.400(4)	C00U	C00Y	1.366(4)
C00C C00E	1.483(3)	C00V	C00W	1.376(5)
C00D C00Q	1.394(3)	C00X	C010	1.375(4)
COOE COOF	1.422(3)	C010	C011	1.397(5)

Table S7 Bond Angles for 3a (CCDC 1955097).

Atom Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
	C007	115.7(2)	N007	COOH	COOG	112.02(18)
C00D N006	C002	113.7(2) 109 5 9(19)	C000			112.02(10) 112.45(10)
COOL NOO7	C009	108.38(18) 100.76(10)	C009		C008	112.43(10) 112.22(10)
C001 N007	COOH	109.76(19)	C009	COOH	C00G	115.22(18)
O001 C008	COOH	123.7(2)	COOG	COOH	C008	106.97(18)
O001 C008	COOJ	129.3(2)	N007	C001	COOJ	112.4(2)
C00J C008	C00H	107.0(2)	N007	C00I	C00X	127.1(2)
N006 C009	C00H	121.05(18)	C00J	C00I	C00X	120.5(2)
C00A C009	N006	109.71(19)	C00I	C00J	C008	107.8(2)
C00A C009	C00H	128.2(2)	C00I	C00J	COOS	121.4(2)
C009 C00A	C00B	107.07(19)	COOS	C00J	C008	130.5(2)
C009 C00A	C00F	126.0(2)	C00P	C00K	C00G	120.7(2)
C00B C00A	C00F	127.0(2)	O003	C00L	C00F	117.9(2)
C00D C00B	C00A	106.7(2)	O003	C00L	C00Y	121.4(2)
C000 C00B	C00A	133.9(2)	C00F	C00L	C00Y	120.6(2)
C000 C00B	C00D	119.3(2)	C00G	C00M	C00V	119.3(3)
O002 C00C	C00E	115.6(2)	O005	COON	C00E	123.5(2)
O004 C00C	O002	121.4(2)	O005	C00N	C00U	116.6(2)
O004 C00C	C00E	123.0(2)	C00U	COON	C00E	119.9(2)
N006 C00D	C00B	107.92(19)	C00R	C000	C00B	118.8(2)
N006 C00D	C00Q	130.1(2)	C00W	C00P	C00K	120.1(3)
C00Q C00D	C00B	121.9(2)	C00T	C00Q	C00D	117.4(2)
COOF COOE	C00C	124.1(2)	C000	C00R	C00T	121.1(3)
COON COOE	C00C	116.3(2)	C011	COOS	C00J	118.1(3)
COON COOE	C00F	119.6(2)	C00Q	C00T	C00R	121.4(2)
C00E C00F	C00A	123.1(2)	C00Y	C00U	C00N	120.4(2)
COOL COOF	C00A	118.0(2)	C00W	C00V	C00M	121.3(3)
COOL COOF	C00E	118.8(2)	C00V	C00W	C00P	119.4(3)
C00K C00G	C00H	119.4(2)	C010	C00X	C00I	117.0(3)
C00M C00G	C00H	121.4(2)	C00U	C00Y	C00L	120.7(3)
C00M C00G	C00K	119.1(2)	C00X	C010	C011	123.0(3)
N007 C00H	C008	102.55(17)	COOS	C011	C010	120.0(3)
N007 C00H	C009	109.1(2)				、 /

Table S8 Hydrogen Atom Coordinates ($Å \times 10^4$) and Isotropic Displacement Parameters ($Å^2 \times 10^3$) for 3a (CCDC 1955097).

Atom	x	у	Z.	U(eq)
H003	4782	7644	4602	49
H005	2030	4199	7551	64
H006	3020	5082	114	28
H007	6266	6010	2179	34
H00K	3434	3367	1338	35
H00M	7372	4728	1047	42
H00O	165	7123	3345	37
HOOP	4070	2287	-302	46
H00Q	496	5990	-1188	40
H00R	-1497	7638	1508	50
H00S	6509	3989	6629	51
H00T	-1369	7057	-720	49
H00U	4011	6106	8402	50
H00V	7990	3629	-595	55
H00W	6347	2428	-1289	53
H00X	8000	6718	4404	48
H00Y	4765	7204	6879	46
H00A	-598	3649	2469	78
H00B	-943	3478	4014	78
H00C	496	3025	3459	78
H010	8967	6349	6644	63
H011	8282	4997	7744	67

13. References

- Y.-H. Chen, D.-J. Cheng, J. Zhang, Y. Wang, X.-Y. Liu and B. Tan, J. Am. Chem. Soc., 2015, 137, 15062.
- 2 D.-L. Lu, Y.-H. Chen, S.-H. Xiang, P.-Y. Yu, B. Tan and S.-Y. Li, Org. Lett., 2019, 21, 6000.
- 3 J.-S. Li, Y.-J. Liu, G.-W. Zhang and J.-A. Ma, Org. Lett., 2017, 19, 6364.
- 4 Y.-H. Chen, H.-H. Li, X. Zhang, S.-H. Xiang, S.-Y. Li and B. Tan, *Angew. Chem., Int. Ed.*, 2020, **59**, 11347.
- 5 Li, Y.-J. Liu, S. Li and J.-A. Ma, Chem. Commun., 2018, 54, 9151.

Peak	RetTime	Туре	Width	A	rea	Hei	ght	Area
ŧ	[min]		[min]	mAU	*s	[mAU	1	8
1	13.352	BB	0.4447	388	.10516	13.3	20930	4.8679
2	16.166	BB	0.4706	7584	.63574	243.	84946	95.1321

15. NMR Spectra of 1a-1t, 5, 3a-3z, 3aa-3ak, 6, 9, 10, 11

