Supporting Information for Efficient Construction of Diverse 3cyanoindoles Under Novel Tandem Catalysis

Jun Wu,^a Jiabin Liu, Kerui Zhou, Zhenni He, Qian Wang, Fen Wu, Tingting Miao,^{*a} Jinjie Qian^{*a} and Qian Shi^{*a} ^aCollege of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China.

E-mail: *miaott@wzu.edu.cn*; *jinjieqian@wzu.edu.cn*; *shiq@wzu.edu.cn*

Contents

1.	General information	S2
2.	Optimization of reaction conditions in the tandem reaction	S3
3.	General procedure for the synthesis of substrates	S4
4.	General procedure for the synthesis of 3-cyanoindoles	S6
5.	Synthetic transformations of 3-cyanoindoles	S13
6.	Control experiments for the catalysis tandem reaction	S17
7.	References	S19
8.	Copy of NMR spectra	S20

1. General information

Unless otherwise noted, all experiments were carried out under an atmosphere of nitrogen using standard Schlenk techniques or in a nitrogen-filled glovebox. ¹H NMR and ¹³C NMR spectra were recorded on Bruker Model Avance DMX 300 Spectrometer (¹H 400 MHz and ¹³C 100 MHz, respectively), Bruker Model Avance DMX 400 Spectrometer (¹H 500 MHz and ¹³C 125 MHz, respectively). Chemical shifts (δ) were given in ppm and were referenced to residual solvent or TMS peaks. High resolution mass spectra (P-ESI HRMS) were obtained on P-SIMS-Gly of Bruker Daltonics Inc. All organic solvents were dried using standard, published methods and were distilled before use. All other chemicals were used as received from Aldrich or Acros without further purification.

2. Optimization of reaction conditions in the tandem reaction

Ú	Br NH ₂	$\begin{array}{c} \downarrow 0, \\ B \\ 0 \\ 1 \\ \hline \\ cat., base \end{array}$	CN H	NH ₂	Q ∕N +	NH2	2N 2
	2a		3a	4a		5a	
-	Enter [2]	Catalyst	Calvant	Conv	Yield (%) ^[c]		
	Entry	Calalyst	Solvent	. –	3a	4a	
				(%) ^[b]			
-	1	PdCl ₂ dppf	DMF	75	73	[d]	
	2	PdCl ₂ dppf	DMSO	92	91	[d]	
	3	PdCl ₂ dppf	DMAc	78	78	[d]	
	4	PdCl ₂ dppf	Toluene	25	25	[d]	
	5	PdCl ₂ dppf	Acetone	36	34	[d]	
	6	PdCl ₂ dppf	1,4dioxane	65	60	[d]	
	7	PdCl ₂ dppf	IPA	48	45	[d]	

Table S1: Optimization of Reaction Conditions in the Tandem Catalysis^[a]

[a] Reaction conditions: 2a (0.15 mmol, 1.0 equiv.), 1 (1.2 equiv.), KF (3 equiv., 1 M in water), Pd-cat. (10 mol %), 0.1 M solution in solvent, 130°C, 16 h. 5a was not detected for all reactions. [b] Determined by ¹H NMR analysis of the crude product with 1,3,5-trimethoxybenzene as an internal standard. [c] Isolated yields. [d] Compound 3a, 4a or 5a was not observed.

3. General procedure for the synthesis of substrates

Using **20** as an example.1-bromo-2-iodobenzene (1.12 g, 3.96 mmol) was added to a mixture of *m*-toluidine (518 mg, 4.83 mmol), palladium(II) acetate (44.9 mg, 200 µmol), 1,1'- bis (diphenylphosphino) ferrocene (222 mg, 400 µmol), and sodium tertbutoxide (538 mg, 5.60 mmol) in toluene (5.0 mL) at 25 °C under N₂. The reaction was stirred at 110 °C for 5 h before being cooled to 25 °C, and 1 N aqueous HCl (10 mL) was added to the reaction mixture at 25 °C. The organics were extracted from the aqueous layer with ethyl acetate and the combined organic extracts were concentrated under reduced pressure. The crude product was purified by column chromatography to afford the compound **20**.^[1]

20: (new compound). While oil; isolated yield 90%; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.51 (d, J = 8.0 Hz, 1H), 7.25-7.13 (m, 3H), 6.97-6.95 (m, 2H), 6.86 (d, J = 4.0 Hz, 1H), 6.72 (t, J = 8.0 Hz, 1H), 6.04 (s, 1H), 2.33 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 141.9, 139.5, 133.1, 129.4, 128.2, 123.7, 121.2, 120.9, 117.5, 116.1, 112.3, 21.6. HRMS (ESI) m/z calcd. for C₁₃H₁₃BrN⁺ (M+H)⁺ 262.0226, found 262.0219.

2p: (new compound). White oil; isolated yield 95%;. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.52(d, *J* = 8.0 Hz, 1H), 7.20-7.09 (m, 6H), 6.71 (t, *J* = 8.0 Hz, 1H), 6.05 (s, 1H), 2.61(t, *J* = 8.0 Hz, 2H), 1.66-1.57 (m, 2H), 1.44-1.34 (m, 2H), 0.96 (t, *J* = 8.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 142., 139.2, 138.0,

133.0, 129.5, 128.2, 121.4, 120.4, 115.3, 111.7, 35.2, 33.9, 22.5, 14.1. HRMS (ESI) m/z calcd. for $C_{16}H_{19}BrN^+$ (M+H)⁺ 304.0695, found 304.0683.

MHz, CDCl₃): δ (ppm) 7.60 (d, J = 8.0 Hz, 1H), 7.34 (d, J = 8.0 Hz, 1H), 7.28-7.24 (m, 2H), 7.18 (s, 1H), 7.05-7.02 (m, 2H), 6.86 (t, J = 8.0 Hz, 1H), 6.12(s, 1H); ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 143.4, 140.5, 135.2, 133.3, 130.5, 128.3, 122.3, 122.2, 119.2, 117.4, 117.3, 113.4. HRMS (ESI) m/z calcd. for C₁₂H₁₀BrNF⁺ (M+H)⁺ 265.9975, found 265.9980.

121.3, 119.1, 116.3, 112.6. HRMS (ESI) m/z calcd. for $C_{18}H_{15}BrN^+$ (M+H)⁺ 324.0382, found 324.0392.

4. General procedure for the synthesis of 3-cyanoindoles

Using 3a as an example. An oven dried schlenk tube was charged with a magnetic stir bar, 2a (26.1 mg, 0.15 mmol), 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) isoxazole (35.2 mg, 0.18 mmol), PdCl₂dppf (0.5 mol %, 0.05M solution in the solvent), KF (26.2 mg, 0.45 mmol, 1 M in water). The schlenk tube was capped, and then evacuated and backfilled with nitrogen. Under a positive pressure of nitrogen, DMSO (1.5 mL) was added via a syringe and the schlenk tube was sealed and allowed to stir at 130°C for 16 h. The organics were extracted from the aqueous layer with ethyl acetate and the combined organic extracts were concentrated under reduced pressure. The crude product was purified by column chromatography to afford the compound 3a.^[2]

3a: (known compound, see: B. Liu, J. Wang, B. Zhang, Y. Sun, L. Wang, J. Chen, J. Cheng, Chem. Commun. 2014, 50, 2315). Yellow solid; isolated yield 91%; mp 161-162°C. ¹H NMR (400 MHz, 3a CDCl₃): δ (ppm) 8.79 (s, 1H), 7.69 (d, J = 2.0 Hz, 1H), 7.56 (s, 1H), 7.36 (d, J = 12.0Hz, 1H), 7.16 (d, J = 12.0 Hz, 1H), 2.48 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 133.4, 132.3, 131.8, 127.5, 126.2, 119.4, 116.1, 111.8, 87.2, 21.5. HRMS (ESI) m/z calcd. for $C_{10}H_9N_2^+$ (M+H)⁺ 157.0760 , found 157.0764.

3b: (known compound, see: B. Liu, J. Wang, B. Zhang, Y. Sun, L. Wang, J. Chen, J. Cheng, Chem. Commun. 2014, 50, 2315). White oil; isolated yield 90%. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 12.06 (s, 1H), 8.16 (s, 1H), 7.44 (d, J = 10.0 Hz, 1H), 7.08 (s, 1H), 6.91 (d, J = 10.0 Hz, 1H), 3.81 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 155.3, 134.3, 130.0, 127.5, 116.5,

113.7, 99.8, 84.0, 55.4. HRMS (ESI) m/z calcd. for $C_{10}H_9N_2O^+$ (M+H)⁺ 173.0709,

found 173.0712.

3c: (known compound, see: S. Paget, D. Smith, W. Takasugi, T. James, A. Anthony, H. Ren, X. Zhang, J. Zhu, Indole Derivatives And Methods For Antiviral Treatment. WO2010/117932-A1, 2010). Yellow oil; isolated yield 80%; mp 147-148°C. ¹H NMR (400 MHz, DMSO): δ (ppm) 12.30 (s, 1H), 8.31 (d, *J* = 4.0 Hz, 1H), 7.57 (dd, *JI* = *J2* = 4.0 Hz, 1H), 7.41 (d, *J* = 8.0 Hz, 1H), 7.14(t, *J* = 8.0 Hz, 1H); ¹³C NMR (125 MHz, DMSO): δ (ppm) 159.3, 157.4, 136.2, 131.9, 127.3, 116.0, 114.3, 112.0, 111.8, 103.7, 103.5, 84.6. HRMS (ESI) m/z calcd. for C₉H₆FN₂⁺ (M+H)⁺ 161.0510, found 161.0515.

Br H 3d: (known compound, see: B. Liu, J. Wang, B. Zhang, Y. Sun, L. Wang, J. Chen, J. Cheng, *Chem. Commun.* 2014, 50, 2315). White solid; isolated yield 82%; mp 165-166°C. ¹H NMR (400 MHz, DMSO): δ (ppm) 12.13 (s, 1H), 8.29 (s, 1H), 7.78 (s, 1H), 7.51 (d, J = 8 Hz, 1H), 7.39 (d, J = 8 Hz, 1H); ¹³C NMR (125 MHz, DMSO): δ (ppm) 135.9, 134.1, 128.4, 126.1, 120.7, 115.7, 115.0, 114.4, 84.0. HRMS (ESI) m/z calcd. for C₁₀H₆N₃⁺ (M+H)⁺ 220.9709, found 220.9711.

3f: (known compound, see: S. Paget, D. Smith, W. Takasugi, T. James, A. Anthony, H. Ren, X. Zhang, J. Zhu, Indole Derivatives And Methods For Antiviral Treatment. WO2010/117932-A1, 2010). White solid; isolated yield 85%; mp 138-139°C. ¹H NMR (500 MHz, DMSO): δ (ppm) 12.62 (s, 1H), 8.49 (s, 1H), 7.90 (s, 1H), 7.86(d, J = 8.0 Hz, 2H), 7.52 (d, J = 8 Hz, 1H); ¹³C NMR (125 MHz, DMSO): δ (ppm) 137.6, 134.3, 129.4, 123.7, 119.5, 117.9, 115.5, 110.5, 84.9. HRMS (ESI) m/z calcd. for C₁₀H₆F₃N₂⁺ (M+H)⁺ 211.0478, found

211.0466.

3k

3g: (known compound, see: S. Paget, D. Smith, W. Takasugi, T. James, A. Anthony, H. Ren, X. Zhang, J. Zhu, Indole Derivatives And Methods For Antiviral Treatment. WO2010/117932-A1, 2010). White solid; isolated yield 89%; mp 185-186°C. ¹H NMR (400 MHz, DMSO): δ (ppm) 12.69 (s, 1H), 8.46 (d, J = 3.0 Hz, 1H), 8.18 (s, 1H), 7.67 (q, J = 13.2 Hz, 2H); ¹³C NMR (125 MHz, DMSO): δ (ppm) 137.2, 137.0, 126.2, 124.0, 119.5, 115.1, 114.3, 104.2, 85.5. HRMS (ESI) m/z calcd. for C₉H₆BrN₂⁺ (M+H)⁺ 220.9709, found 220.9700.

3h: (known compound, see: B. Liu, J. Wang, B. Zhang, Y. Sun, L. Wang, J. Chen, J. Cheng, *Chem. Commun.* 2014, 50, 2315). Yellow solid; isolated yield 80%; mp179-180°C. ¹H NMR (500 MHz, DMSO): δ (ppm) 12.21 (s, 1H), 8.23 (s, 1H), 7.60 (dd, *J1* = 10.0 Hz, *J2* = 30.0 Hz 2H), 7.37 (t, *J* = 7.5 Hz, 1H), 7.22 (t, *J* = 7.5 Hz, 1H); ¹³C NMR (125 MHz, DMSO): δ (ppm) 135.2, 134.3, 126.7, 123.3, 121.6, 118.4, 116.3, 112.9, 84.3. HRMS (ESI) m/z calcd. for C₉H₆BrN₂⁺ (M+H)⁺ 143.0604, found 143.0610.

3i: (known compound, see: B. Liu, J. Wang, B. Zhang, Y. Sun, L. Wang, J. Chen, J. Cheng, *Chem. Commun.* 2014, 50, 2315). White oil; isolated yield 90%. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.74 (d, J = 10.0 Hz, 1H), 7.53 (s, 1H), 7.40-7.27 (m, 3H), 3.83 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 136.1, 135.6, 127.8, 123.9, 122.2, 119.8, 116.0, 110.4, 85.4, 33.6. HRMS (ESI) m/z calcd. for C₁₀H₉N₂⁺ (M+H)⁺ 157.0760, found 157.0749.

3j: (known compound, see: J. Xiao, Q. Li, T. Chen, L. B. Han, *Tetrahedron Lett.* 2015, 56, 5937). White oil; isolated yield 94%. ¹H
3j
^{n-Bu} NMR (500 MHz, CDCl₃): δ (ppm) 7.77 (d, J = 5.0 Hz, 1H), 7.60 (s, 1H), 7.41 (d, J = 10.0 Hz, 1H), 7.34 (t, J = 7.5 Hz, 1H), 7.30 (d, J = 5.0 Hz, 1H), 4.16 (t, J = 7.5 Hz, 2H), 1.88-1.82 (m, 2H), 1.36-1.32 (m, 1H), 0.96 (t, J = 7.5 Hz, 3H);
¹³C NMR (125 MHz, CDCl₃): δ (ppm) 135.6, 134.7, 128.2, 123.9, 122.2, 120.2, 116.1, 110.6, 85.8, 47.1, 32.1, 20.2, 13.7. HRMS (ESI) m/z calcd. for C₁₃H₁₅N₂⁺ (M+H)⁺ 199.1230, found 199.1241.

CN 3k: (known compound, see: J. Xiao, Q. Li, T. Chen, L. B. Han,

Tetrahedron Lett. 2015, 56, 5937). White oil; isolated yield 89%. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.76 (d, J = 10.0 Hz, 1H), 7.72 (s, 1H), 7.46 (d, J = 10.0 Hz, 1H), 7.36-7.27 (m, 2H), 4.75-4.68 (m, 1H), 1.57(d, J = 10.0 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃): δ (ppm)135.1, 131.2, 128.2, 123.7, 122.2, 120.1, 116.3, 110.7, 85.8, 48.4, 22.8. HRMS (ESI) m/z calcd. for C₁₂H₁₃N₂⁺ (M+H)⁺ 185.1073, found 185.1061.

CN

31: (known compound, see: J. Xiao, Q. Li, T. Chen, L. B. Han, *Tetrahedron Lett.* 2015, 56, 5937). White oil; isolated yield 89%. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.81 (t, J = 5.0 Hz, 2H), 7.74 (d, J = 10.0 Hz, 1H), 7.31-7.29 (m, 2H), 1.80 (s, 9H); ¹³C NMR (125 MHz,

CDCl₃): δ (ppm) 134.6, 132.7, 129.6, 123.2, 121.8, 120.3, 116.3, 114.5, 84.9, 57.7, 29.7. HRMS (ESI) m/z calcd. for C₁₃H₁₄N₂⁺ (M+H)⁺ 199.1230, found 199.1234.

Using **3m** as an example. An oven dried Schlenk tube was charged with a magnetic stir bar, **2m** (37.1 mg, 0.15 mmol), **1** (35.2 mg, 0.18 mmol), PdCl₂dppf (0.5 mol %, 0.05M solution in the solvent), KF (26.2 mg, 0.45 mmol, 1 M in water). The Schlenk tube was capped, and then evacuated and backfilled with nitrogen. Under a positive pressure of nitrogen, DMSO (1.5 mL) was added via a syringe and the Schlenk tube was sealed and allowed to stir at 130°C for 16 h. The organics were extracted from the aqueous layer with ethyl acetate and the combined organic extracts were concentrated under reduced pressure. The crude product was purified by column chromatography to afford the compound **3m**.^[2]

3m: (known compound, see: J. Xiao, Q. Li, T. Chen, L. B. Han, *Tetrahedron Lett.* 2015, 56, 5937). White oil; isolated yield 93%. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.85-7.82 (m, 1H), 7.81 (s, 1H), 7.60-7.56 (m, 2H), 7.53-7.47 (m, 4H), 7.36-7.34 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 138.0, 135.8, 134.7, 130.2, 128.5, 128.1, 125.0,

124.7, 122.9, 120.2, 115.6, 111.7, 88.4. HRMS (ESI) m/z calcd. for C₁₅H₁₁N₂⁺ (M+Na)⁺ 241.0736, found 241.0759.

CN **3n**: (new compound). White oil; isolated yield 84%. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.84 (d, J = 8.0 Hz, 1H), 7.66 (s, 1H), 7.47-7.42 (m, 2H), 7.39-7.26 (m, 4H), 7.07 (d, J = 8.0 Hz, 1H), 2.05 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 136.6, 136.5, 135.8, 135.4, 131.7, 3n 129.7, 128.0, 127.4, 124.5, 122.7, 120.0, 115.8, 87.6, 17.5. HRMS (ESI) m/z calcd. for $C_{16}H_{13}N_2^+$ (M+H)⁺ 233.1073, found 233.1059.

30: (new compound). White oil; isolated yield 84%; ¹H NMR (400 CN MHz, CDCl₃): δ (ppm) 7.84-7.82 (m, 1H), 7.79 (s, 1H), 7.52-7.50 (m, 1H), 7.47-7.43 (m, 1H), 7.37-7.33 (m, 3H), 7.29(t, J = 4.0 Hz, 3H), 2.47 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 140.4, 138.0, 30 135.8, 134.8, 129.9, 129.3, 128.1, 125.7, 124.6, 122.9, 122.1, 120.2, 115.7, 111.8, 88.1, 21.5. HRMS (ESI) m/z calcd. for $C_{16}H_{13}N_2^+$ (M+H)⁺ 233.1073, found 233.1060.

3p: (new compound). White solid; isolated yield 94%; mp 170-171°C. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.83-7.81 (m, 1H), 7.78 (s, 1H), 7.51-7.49 (m, 1H), 7.37-7.33 (m, 6H), 2.71 (t, J = 6.0 Hz, 2H), 1.71-1.63(m, 2H), 1.46-1.37 (m, 2H), 0.97 (t, J = 8.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 143.7, 136.0, 135.6, 134.9, 130.0, 128.1, 124.9,

124.5, 122.8, 120.2, 115.7, 111.8, 88.0, 35.4, 33.6, 22.5, 14.1. HRMS (ESI) m/z calcd. for $C_{19}H_{19}N_2^+$ (M+H)⁺ 188.0455, found 188.0448.

CN

3r

3q: (new compound). White solid; isolated yield 85%; mp 152-153°C. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.84-7.82 (m, 1H), 7.77 (s, 2H), 7.49-7.46 (m, 1H), 7.36-7.32 (m, 6H), 2.47 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 139.4, 136.6, 136.1, 135.6, 131.4, 128.8, 125.5, 125.3, 123.6, 120.7, 116.5, 112.5, 88.6, 22.0. HRMS (ESI) m/z calcd. for $C_{16}H_{13}N_2^+$ (M+H)⁺ 233.1073, found 233.1066.

> 3r: (new compound). White solid; isolated yield 90%; mp 130-131°C. ¹H NMR (400 MHz, CDCl₃): δ (ppm)7.86-7.82 (m, 1H), 7.77

(s, 1H), 7.54-7.48 (m, 2H), 7.38-7.31 (m, 5H); ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 157.9, 155.9, 136.2, 135.5, 130.5, 128.1, 127.6, 125.3, 124.9, 123.1, 120.1, 117.5, 115.3, 111.6, 89.0. HRMS (ESI) m/z calcd. for C₁₅H₁₀FN₂⁺ (M+H)⁺ 237.0823, found 237.0838.

3s: (new compound). White solid; isolated yield 89%; mp 146-147°C. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.84 (d, J = 8.0 Hz, 1H), 7.74 (s, 2H), 7.65 (d, J = 8.0 Hz, 1H), 7.53-7.46 (m, 3H), 7.38-7.31 (m, 2H), 7.15 (d, J = 8.0 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 136.3, 135.5, 135.0, 131.9, 131.2, 130.6, 129.3, 128.1, 127.3, 124.6, 122.9, 120.0, 115.3, 111.6, 88.4. HRMS (ESI) m/z calcd. for C₁₅H₁₀ClN₂⁺ (M+H)⁺ 253.0527, found 253.0508.

3t: (new compound). White solid; isolated yield 79%; mp 128-129°C. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.92-7.85 (m, 2H), 7.66-7.54 (m, 2H), 7.46-7.44 (m, 2H), 7.39-7.37 (m, 1H), 7.34-7.26 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 164.3, 162.3, 137.6,

135.4, 134.4, 131.6, 128.1, 125.0, 123.2, 120.6, 120.3, 115.6, 112.6, 111.5, 89.0. HRMS (ESI) m/z calcd. for $C_{15}H_{10}FN_2^+$ (M+H)⁺ 237.0823, found 237.0826.

3u: (new compound). White solid; isolated yield 81%; mp 135-136°C. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.84-7.83 (m, 1H), 7.76 (s, 1H), 7.78-7.43 (m, 3H), 7.37-7.35 (m, 2H), 7.30-7.26 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 136.0, 134.8, 127.9, 127.1, 127.0, 124.8, 123.1, 120.3, 117.3, 117.1, 111.4, 88.4. HRMS (ESI) m/z calcd.

for $C_{15}H_{10}FN_2^+$ (M+H)⁺ 237.0823, found 237.0831.

3v: (known compound, see: L. Zhang, P. Lu, Y. Wang, *Org. Biomol. Chem.* 2015, 13, 8322). White solid; isolated yield 92%; mp 144-145°C. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.83-7.81 (m, 1H), 7.74 (s, 1H), 7.44-7.32 (m, 5H), 7.07 (d, *J* = 5.0 Hz, 2H),

3.90 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 159.7, 136.3, 135.1, 130.8, 127.9, 126.6, 124.5, 122.8, 120.1, 115.3, 111.6, 87.7, 55.8, 53.5. HRMS (ESI) m/z calcd. for C₁₆H₁₃N₂O⁺ (M+H)⁺ 249.1022, found 249.1048.

3w: (new compound). White solid; isolated yield 80%; mp 176-177°C. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.86-7.84 (m, 2H), 7.72-7.70 (m, 2H), 7.66-7.62 (m, 3H), 7.58-7.56 (m, 1H), 7.51-7.36 (m, 6H); ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 143.7, 139.7, 138.5, 135.9, 134.8, 130.6, 129.2, 128.4, 128.2, 127.3, 127.2, 124.8,

123.7, 123.0, 120.3, 115.6, 111.7, 88.5. HRMS (ESI) m/z calcd. for $C_{21}H_{15}N_2^+$ (M+H)⁺ 295.1230, found 295.1226.

3x: (new compound). White solid; isolated yield 91%; mp 180-182°C.¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.05 (d, *J* = 8.0 Hz, 1H), 7.98-7.86 (m, 5H), 7.63-7.58 (m, 4H), 7.38-7.36 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 136.0, 135.4, 135.0, 133.7, 132.8, 130.3, 128.2, 128.1, 128.1, 127.6, 127.2, 124.8, 123.4, 123.0, 123.0, 120.3,

115.6, 111.7, 88.5. HRMS (ESI) m/z calcd. for $C_{19}H_{13}N_2^+$ (M+H)⁺ 269.1073, found 269.1069.

5. Synthetic transformations of 3-cyanoindoles

3v (50 mg, 0.2 mmol) was dissolved in dry THF and cooled to -78℃, then *t*-BuLi (14.1 mg, 0.22 mmol) was added drop wise and mixture stirred for one hour. A solution of 1,2-dibromotetrachloroethane (84.7 mg, 0.26 mmol) was added and the mixture stirred for 4 hours while slowly wanning up to r.t. and quenched with the addition of H₂O. The reaction mixture was diluted with DCM, phases separated and the organic phase evaporated in vacuo. The crude product was purified on silica column using *n*-heptane:DCM=1:1 as mobile phase to give the product **6v**.^[3]

3v: (known compound, see: L. Zhang, P. Lu, Y. Wang, Org. Biomol. Chem. 2015, 13, 8322). White solid; isolated yield 92%; mp 144-145°C. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.83-7.81 (m, 1H), 7.74 (s, 1H), 7.44-7.32 (m, 5H), 7.07 (d, J = 5.0 Hz, 2H), 3.90 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 159.7, 136.3, 135.1, 130.8, 127.9, 126.6, 124.5, 122.8, 120.1, 115.3, 111.6, 87.7, 55.8, 53.5. HRMS (ESI)

m/z calcd. for $C_{16}H_{13}N_2O^+$ (M+H)⁺ 249.1022, found 249.1048.

6v: (known compound, see: L. Zhang, P. Lu, Y. Wang, Org. Biomol. Chem. 2015, 13, 8322). White solid; isolated yield 44%; mp 172-173°C. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.76 (d, J = 10.0Hz, 1H), 7.32-7.26 (m, 4H), 7.12 (d, J = 10.0 Hz, 3H), 3.95 (s, 3H);

¹³C NMR (125 MHz, CDCl₃): δ (ppm) 160.5, 137.9, 129.5, 128.3, 127.2, 124.5, 123.1, 122.7, 119.0, 115.1, 111.7, 90.8, 55.8. HRMS (ESI) m/z calcd. for C₁₆H₁₂BrN₂O⁺ (M+H)⁺ 327.0128, found 327.0125.

3h (2.0 g, 14.1 mmol) was treated with NaH (0.40 g, 16.8 mmol) in DMF (30 mL) at 0 °C for 10 min, and then iodomethane (2.4 g, 16.8 mmol) was added to the resulting mixture at r.t. After being stirred at rt for 1 h, the reaction was quenched with H₂O and extracted with ethyl acetate. Combined organic layers were washed with H₂O and brine, dried over anhydrous Na₂SO₄, and concentrated in vacuo. The residue was purified by flash chromatography on silica gel to give **3i** as a white oil. ^[4]

3i: (known compound, see: B. Liu, J. Wang, B. Zhang, Y. Sun, L. Wang, J. Chen, J. Cheng, *Chem. Commun.* 2014, 50, 2315). White oil; isolated yield 90%; ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.74 (d, *J* = 10.0 Hz, 1H), 7.53 (s, 1H), 7.40-7.27 (m, 3H), 3.83 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ (ppm). HRMS (ESI) m/z calcd. for C₁₀H₉N₂⁺ (M+H)⁺ 157.0760, found 157.0749.

3m

CuI (19.1 mg, 0.1 mmol), **3h** (142.1 mg, 1.0 mmol), K_3PO_4 (445.8 mg, 2.1 mmol) and a stir bar were added to a resealable Schlenk tube. The vessel was evacuated and back-filled with nitrogen. Bromobenzene (188.4 mg, 1.2 mmol), N,N'- dimethylethylenediamine (17.7 mg, 0.2 mmol) and toluene (2 mL) were then added successively under a stream of nitrogen. The reaction tube was sealed and the contents were stirred with heating at 110 °C for 24 h. The reaction mixture was cooled to ambient temperature, diluted with ethyl acetate, filtered through a plug of silica gel, eluting with additional ethyl acetate. The filtrate was concentrated and the resulting residue was purified by column chromatography to give **3m**.^[5]

3m: (known compound, see: J. Xiao, Q. Li, T. Chen, L. B. Han, S14

Tetrahedron Lett. 2015, 56, 5937). White oil; isolated yield 93%; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.85-7.82 (m, 1H), 7.81 (s, 1H), 7.60-7.56 (m, 2H), 7.53-7.47 (m, 4H), 7.36-7.34 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 138.0, 135.8, 134.7, 130.2, 128.5, 128.1, 125.0, 124.7, 122.9, 120.2, 115.6, 111.7, 88.4. HRMS (ESI) m/z calcd. for C₁₅H₁₁N₂⁺ (M+Na)⁺ 241.0736, found 241.0759.

3h (710 mg, 5 mmol) was treated with NaOH (400mg, 10 mmol) in H₂O (10 mL) at 100 °C for 20 h. Then the mixture was acidified with dilute HCl/H₂O to pH =5. The organic layer was washed with brine and dried by Na₂SO₄, and volatiles were evaporated to give **7h** (490 mg, 70%) as a white solid.

7h: (known compound, see: K. Nemoto, S. Tanaka, M. Konno, S. Onozawa, M. Chiba, Y. Tanaka, Y. Sasaki, R. Okubo, T. Hattori, *Tetrahedron*. 2016, 72, 734). White solid; isolated yield 90%; mp 204-205°C. ¹H NMR (400 MHz, DMSO): δ (ppm) 11.93 (s, 1H),

11.80 (s, 1H), 8.02 (d, J = 8.0 Hz, 2H), 7.46 (d, J = 8.0 Hz, 1H), 7.19-7.13 (m, 2H); ¹³C NMR (125 MHz, DMSO): δ (ppm) 166.0, 136.5, 132.3, 126.1, 121.2, 121.0, 120.6, 112.2, 107.4. HRMS (ESI) m/z calcd. for C₉H₈NO₂⁺ (M+H)⁺ 162.0550, found 162.0555.

DMF (17.6 mg, 0.24 mmol) was added to POCl₃ (60.8 mg, 0.4 mmol) at 0°C under an atmosphere of N₂. The resulting salt was treated with a solution of **3h** (24.5 mg, 0.2 mmol) in toluene (1mL). The resulting reaction mixture was heated at reflux for 42 hours under N₂ atmosphere. The reaction mixture was then cooled to r.t., quenched with water. The excess POCl₃ was neutralized with Na₂CO₃ solution. The crude

product was extracted with DCM, the combined organic extracts dried over Na_2SO_4 , and evaporated under reduced pressure. The crude material was purified by column chromatography to afford product **8h**.^[6]

116.4, 112.9, 84.2. HRMS (ESI) m/z calcd. for $C_{10}H_7N_2O^+$ (M+H)⁺ 171.0553, found 171.0550.

6. Control experiments for the catalysis tandem reaction

An oven dried Schlenk tube was charged with a magnetic stir bar, 2-Bromoaniline (25.8 mg, 0.15 mmol), 1 (35.2 mg, 0.18 mmol), PdCl₂dppf (0.5 mol %, 0.05M solution in the solvent), KF (26.2 mg, 0.45 mmol, 1 M in water). The Schlenk tube was capped, and then evacuated and backfilled with nitrogen. Under a positive pressure of nitrogen, DMSO (1.5 mL) was added via a syringe and the Schlenk tube was sealed and allowed to stir at 50°C for 3h. The crude product was purified by flash chromatography on silica gel to provide **4h**.

4h: (new compound). White oil; isolated yield 94%; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.66 (s, 1H), 8.52 (s, 1H), 7.20-7.17 (m, 2H), 6.85-6.79 (m, 2H), 3.73(s,2H); ¹³C NMR (125 MHz, CDCl₃): δ (ppm)154.9, 149.7, 144.3, 130.0, 129.6, 119.3, 118.0, 116.4, 114.4.

HRMS (ESI) m/z calcd. for C₉H₉N₂O⁺ (M+H)⁺ 161.0709, found 161.0701.

4h

An oven dried Schlenk tube was charged with a magnetic stir bar, 2-bromo-N,Ndimethyl (30.1mg, 0.15 mmol), **1** (35.2 mg, 0.18 mmol.), PdCl₂dppf (0.5 mol %, 0.05M solution in the solvent), KF (26.2 mg, 0.45 mmol, 1 M in water). The Schlenk tube was capped, and then evacuated and backfilled with nitrogen. Under a positive pressure of nitrogen, DMSO (1.5 mL) was added via a syringe and the Schlenk tube was sealed and allowed to stir at 50°C for 3 h. The crude product was purified by flash chromatography on silica gel to provide **4y**. 4y: (new compound). White oil; isolated yield 91%; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.87 (s, 1H), 8.75 (s, 1H), 7.37 (d, J = 8.0 Hz, 1H), 7.29-7.26 (m, 1H), 7.16 (d, J = 8.0 Hz, 1H), 7.07 (t, J = 8.0 Hz, 1H), 2.64 (s, 6H); ¹³C NMR (125 MHz, CDCl₃): δ (ppm)154.9, 152.1,

129.4, 128.9, 123.3, 119.7, 44.1. HRMS (ESI) m/z calcd. for $C_{11}H_{13}N_2O^+$ (M+H)⁺ 189.1022, found 189.1023.

4y

An oven dried Schlenk tube was charged with a magnetic stir bar, 2-Bromo-N,Ndimethyl (30.1mg, 0.15 mmol), **1** (35.2 mg, 0.18 mmol), PdCl₂dppf (0.5 mol %, 0.05M solution in the solvent), KF (26.2 mg, 0.45 mmol, 1 M in water). The Schlenk tube was capped, and then evacuated and backfilled with nitrogen. Under a positive pressure of nitrogen, DMSO (1.5 mL) was added via a syringe and the Schlenk tube was sealed and allowed to stir at 130°C for 16 h. The crude product was purified by flash chromatography on silica gel to provide **5**y.

5y: (known compound). White oil; isolated yield 91%; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.44 (d, J = 8.0 Hz, 1H) , 7.31 (t, J = 8.0 Hz, 1H), 7.18 (d, J = 8.0 Hz, 1H) , 7.11 (t, J = 8.0 Hz, 1H), 3.84 (s, 2H) , 2.66 (s, 6H); ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 152.6, 129.5, 129.1, 125.9, 124.3, 120.5, 119.0, 45.0, 19.6. HRMS (ESI) m/z calcd. for C₁₀H₁₃N₂⁺ (M+H)⁺ 161.1073, found 161.1077.

7. References

- [1] Y. Aoki, H. M. O'Brien, H. Kawasaki, H. Takaya, M. Nakamura, *Org. Lett.* 2019, 21, 461.
- [2] J. Velcicky, A. Soicke, R. Steiner, H. G. Schmalz, J. Am. Chem. Soc. 2011, 133, 6948.
- [3] L. Zhang, P. Lu, Y. Wang, Org. Biomol. Chem. 2015, 13, 8322.
- [4] N. Yoshiaki, S. K. Kyalo, O. Shinichi, H. Tamejiro, J. Am. Chem. Soc. 2006, 128, 8146.
- [5] C. A. Jon, K. Artis, L. B. Stephen, J. Am. Chem. Soc. 2002, 124, 11684.
- [6] H. Yuan, L. Guo, F. Liu, Z. Miao, L. Feng, H. Gao, ACS. Catalysis. 2019, 9, 3906.

8. Copy of NMR spectra

compound 20

compound 2p

compound 2r

compound 2w

compound 3a

compound **3b**

compound 3c

compound 3d

compound 3e

compound 3f

compound 3g

compound **3h**

compound 3i

compound 3j

3k

3m

compound 3n

compound 3p

compound 3q

compound 3r

compound 3s

3t

compound **3u**

compound 3v

compound 3w

compound 3x

compound 6v

compound 7h

compound 8h

S51

4h

 $\text{compound} \ 4y$

compound 5y

