Electronic Supplemental Information:

1. Experimental Section

1.1 Preparation of ZnFe₂O₄

Firstly, the F-SnO₂ conductive glass (FTO) was ultrasonically rinsed by CH₃COCH₃, (CH₃)₂CHOH, CH₃CH₂OH and deionized water, respectively. The rinsed FTO with the conductive side facing down was placed in a Teflon lined stainless steel autoclave (TLSSA). 0.15 M FeCl₃· $6H_2O$, 0.10 M Zn(NO₃)₂· $6H_2O$ and 0.15 M NaNO₃ were dissolved in 20 mL deionized water and stirred for 15 min to gain the yellow precursor solution, which was poured into the TLSSA for 6 h at 100 °C. Then, the substrate with samples was rinsed by deionized water and dried. Next, the FTO was annealed at 550 °C for 2 h. After that, the FTO was soaked in 1 M NaOH solution for 12 h to eliminate the undesirable outer-field ZnO. Finally, the pure ZnFe₂O₄ was fabricated successfully.

1.2 Preparation of pristine Ni-ZnFe₂O₄

The majority of the preparation parameters of the pristine $Ni-ZnFe_2O_4$ was resembled that of the $ZnFe_2O_4$. The discrepancy was that 0.04 M $Ni(NO_3)_2 \cdot 6H_2O$ was added into the precursor solution. Other processes were retained immutable.

1.3 Preparation of ZnFe₂O₄/Ni-ZnFe₂O₄ p-n homojunction

The FTO with $ZnFe_2O_4$ was placed in the TLSSA. 0.15 M FeCl₃·6H₂O, 0.10 M $Zn(NO_3)_2$ ·6H₂O, 0.15 M NaNO₃ and 0.04 M Ni(NO₃)₂·6H₂O were dissolved in 20 mL deionized water and agitated for 15 min to acquire the precursor solution, which was decanted into the TLSSA at 100 °C for 2 h. After that, the FTO was cleaned by deionized water and dried. And then, the FTO was heat-treated at 550 °C for 2 h. After the heat-treatment, the FTO was stepped in 1 M NaOH solution for 12 h aim at purification. Finally, the ZnFe₂O₄/Ni-ZnFe₂O₄ p-n homojunction was prepared.

1.4 Characterizations

The surface morphology of samples was observed by JEOL JSM-7800F scanning electron microscope (SEM). The microstructure of samples was carried out by JEOL JEM-2100 transmission electron microscopy (TEM). The crystallographic phase identification of samples was studied by X-ray diffractometer (XRD, Rigaku-D/max-2500; Cu K α radiation, λ =0.154059 nm, 40 kV). The element composition of samples was measured by energy dispersive X-ray spectroscopy (EDS, AZtec from Oxford). The chemical state of samples was determined by X-ray photoelectron spectroscopy (XPS, Thermo ESCALAB 250Xi). The optical absorption property of samples was characterized by DU-8B UV-vis double-beam spectrophotometer. The PEC performance of as-prepared samples was measured by electrochemical workstation (CHI760E), while 0.5 M Na₂SO₄ aqueous solution without sacrificial agent (pH=7) was used as electrolyte, a standard three-electrode configuration includes working electrode (as-prepared samples), counter electrode (platinum foil) and reference electrode (Ag/AgCl electrode) illuminated with a Xenon lamp (100 mW/cm²). The electrochemical impedance spectra (EIS) of samples was performed on a three-electrode configuration, tested under illumination at a potential of 0 V vs RHE and a frequency range of 10-100 kHz. The optical band gap of samples was calculated as follows:

$$(ahv)^n = A(hv - E_g) \tag{1}$$

Where α was the absorption coefficient, *h* was the Planck's constant, *v* was the photon frequency, the *n* was 2 since ZnFe₂O₄ was to a direct band gap semiconductor, *A* was a constant and E_g was the optical band gap.

The Mott-Schottky plot of samples was characterized in 0.5 M Na₂SO₄ electrolyte to assess the flat band potential of samples, and p-n characteristic, the calculation process was according to the following equations:

n-type semiconductor :
$$1/C^2 = (2/e_0 \varepsilon \varepsilon_0 N_d) [(V_a - V_{fd}) - kT/e_0]$$
 (2)

$$p-type \ semiconductor \ : \ 1/C^2 = (2/e_0 \varepsilon \varepsilon_0 N_A) [(-V_a + V_{fd}) - kT/e_0]$$
(3)

Where *C* was the specific capacitance, e_0 was fundamental electric charge, ε was the dielectric constant, ε_0 was the permittivity of vacuum, N_d was the donor density (n-type semiconductor), N_A was the acceptor density (p-type semiconductor), V_a was the applied potential, V_{fd} was the flat band potential, *k* was the Boltzmann constant and *T* was the temperature. In order to clarify the charge separate dynamics in bulk and surface, we determine the charge separation efficiency in the bulk (η_{bulk}) and on the surface ($\eta_{surface}$) through adding 0.1M Na₂SO₃ hole scavenger in 0.5M Na₂SO₄ electrolyte solution. η_{bulk} is calculated by the equation as following [1,2]:

$$J_{H2O} = J_{abs} \times \eta_{bulk} \times \eta_{surface} \tag{4}$$

Where J_{H2O} was the photocurrent density measured without Na₂SO₃ (just Na₂SO₄ aqueous solution, 0.5M) at 1.23 V vs. RHE, J_{abs} was the photocurrent density generated when all photons absorbed by samples were converted into electrons and holes, the J_{abs} values of ZnFe₂O₄, Ni-ZnFe₂O₄ and ZnFe₂O₄/Ni-ZnFe₂O₄ were calculated as 4.27 mA/cm², 4.37 mA/cm² and 4.31 mA/cm² according to the references of [3] and [4], respectively. With adding 0.1M Na₂SO₃ as the electrolyte,

the oxidation kinetics of the system is very rapid so that fundamentally suppresses the surface recombination of charge carriers without influencing the bulk charge separation, thus, $\eta_{surface}$ could be regarded as 100%. Therefore, the photocurrent density in the presence of Na₂SO₃ is calculated as following:

$$J_{H2O} = J_{abs} \times \eta_{bulk} \tag{5}$$

As a consequence, the charge separation efficiency of samples was obtained according to the following equations:

$$\eta_{bulk} = J_{Na2SO3} / J_{abs} \times 100\% \tag{6}$$

$$\eta_{surface} = J_{H2O} / J_{Na2SO3} \times 100\% \tag{7}$$

 J_{Na2SO3} was the photocurrent density measured with Na₂SO₃ photo-oxidation (Na₂SO₄/Na₂SO₃ aqueous solution, 0.5M/0.1M). The measured data for calculating the bulk and surface charge separation efficiency was shown in Fig.S8. The Ag/AgCl potential was transformed to the reversible hydrogen electrode (RHE) potential according to the following formula:

$$E_{RHE} = E_{Ag/AgCl} + 0.059pH + 0.1976 \tag{8}$$

References:

[1] K. H. Ye, Z. Wang, J. Gu, S. Xiao, Y. Yuan, Y. Zhu, Y. Zhang, W. Mai, S. Yang, *Energy Environ. Sci.*, 2017, 10, 772-779.

[2] H. Dotan, K. Sivula, M. Grätzel, A. Rothschild, S. C. Warren, *Energy Environ*. *Sci.*, 2011, 4, 958-964.

[3] J. H. Kim, J. H. Kim, J. W. Jang, J. Y. Kim, S. H. Choi, G. Magesh, J. Lee, J. S. Lee, *Adv. Energy Mater.*, 2015, 5, 1401933.

[4] H. W. Jeong, T. H. Jeon, J. S. Jang, W. Choi, H. Park, *J. Phys. Chem. C*, 2013, 117, 9104-9112.

List of Figures:

Fig.S1 Synthetic route schematic diagram of $ZnFe_2O_4/Ni$ - $ZnFe_2O_4$ p-n homojunction Fig.S2 Cross-view SEM images of $ZnFe_2O_4$ (a), Ni- $ZnFe_2O_4$ (b), $ZnFe_2O_4/Ni$ - $ZnFe_2O_4$

Fig.S3 Element distribution mapping of ZnFe₂O₄/Ni-ZnFe₂O₄ p-n homojunction

Fig.S4 XRD patterns of samples

Fig.S5 TEM image (a) and HRTEM image (b) of $ZnFe_2O_4/Ni$ - $ZnFe_2O_4$ core-shell p-n homojunction

Fig.S6 XPS valence band spectra (a) and Valence/Conduction Band sketch map (b) of samples

Fig.S7 Mott-Schottky plots of ZnFe₂O₄ (a) and Ni-ZnFe₂O₄ (b)

Fig.S8 The J-V curves of $ZnFe_2O_4$, Ni- $ZnFe_2O_4$ and $ZnFe_2O_4$ /Ni- $ZnFe_2O_4$ with/without Na₂SO₃

Fig.S9 Equivalent circuit model (a) and related parameters of electrochemical impedance spectra (b) of samples

Fig.S10 Charge transfer mechanism iagram of ZnFe₂O₄/Ni-ZnFe₂O₄ core-shell p-n homojunction

Fig.S11 Brief diagram of p-n junction: (a) single semiconductor, (b) forming p-n junction, (c) charge transfer of p-n junction under illumination

Tab.S1 Summary of XPS data about Zn 2p, Fe 2p, O 1s, Ni 2p and C 1s of $ZnFe_2O_4/Ni$ -ZnFe $_2O_4$

Fig.S1 Synthetic route schematic diagram of ZnFe₂O₄/Ni-ZnFe₂O₄ p-n homojunction

Fig.S2 Cross-view SEM images of $ZnFe_2O_4$ (a), Ni-ZnFe₂O₄ (b),

ZnFe₂O₄/Ni-ZnFe₂O₄

Fig.S3 Element distribution mapping of $ZnFe_2O_4/Ni$ - $ZnFe_2O_4$ p-n homojunction

Fig.S4 XRD patterns of samples

Fig.S5 TEM image (a) and HRTEM image (b) of ZnFe₂O₄/Ni-ZnFe₂O₄ core-shell p-n homojunction

Fig.S6 XPS valence band spectra (a) and Valence/Conduction Band sketch map (b) of samples

Fig.S7 Mott-Schottky plots of ZnFe₂O₄ (a) and Ni-ZnFe₂O₄ (b)

with/without Na₂SO₃

Fig.S9 Equivalent circuit model (a) and related parameters of electrochemical impedance spectra (b) of samples

Fig.S10 Charge transfer mechanism diagram of ZnFe₂O₄/Ni-ZnFe₂O₄ core-shell p-n homojunction

Fig.S11 Brief diagram of p-n junction: (a) single semiconductor, (b) forming p-n junction, (c) charge transfer of p-n junction under illumination

Name	Atomic %	Start BE	End BE	Peak BE	Peak Type
Zn 2p	11.63	1059.15	1008.62	1022.7	Standard
Fe 2p	23.26	747.01	697.29	710.8	Standard
O 1s	46.52	540.23	524.85	529.8	Standard
Ni 2p	1.97	891.81	840.75	855.6	Standard
C 1s	16.62	296.37	281.61	284.7	Standard

Tab.S1 Summary of XPS data about Zn 2p, Fe 2p, O 1s, Ni 2p and C 1s of $ZnFe_2O_4/Ni\text{-}ZnFe_2O_4$