SUPPORTING INFORMATION

Strong CPL of Achiral Liquid Crystal Fluorescent Polymer via
 Regulation of AIE-active Chiral Dopant

Kerui Liu, ${ }^{\text {a,b }}$ Yihao Shen, ${ }^{\text {b }}$ Xiaojing Li, ${ }^{\text {a }}$ Yu Zhang, ${ }^{\text {b }}$ Yiwu Quan*b ${ }^{* b}$ and Yixiang Cheng*a
${ }^{\text {a }}$ Key Lab of Mesoscopic Chemistry of MOE and Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China. *E-mail: yxcheng@nju.edu.cn
${ }^{\text {b }}$ Key Laboratory of High-Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China. *E-mail: quanyiwu@nju.edu.cn

Table of Contents

1. Instrumentation and Materials
2. Synthesis of LC-PPE and R / S-AD
3. Fluorescence spectra and UV-vis spectra of LC-PPE and R / S-AD
4. TGA and DSC Curves of LC-PPE
5. POM images of LC-PPE, CLCs and PD-CLCs
6. CD and CPL spectra of $R / S-A D$
7. CD spectra of CLCs
8. Fluorescence spectra of CLCs and PD-CLCs
9. CD spectra of PD-CLCs
10. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compounds

1. Instrumentation and Materials

NMR spectra were measured in CDCl_{3} using Bruker AVANCE III-400 spectrometer with 400 MHz for ${ }^{1} \mathrm{H}$ NMR and 100 MHz for ${ }^{13} \mathrm{C}$ NMR. Chemical shifts are reported as parts per million (ppm) relative to tetramethylsilane $(\mathrm{TMS} ; \delta=0)$ as the internal reference. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were carried out by using a PerkinElmer Pyris-1 instrument under N_{2} atmosphere. UV-visible (UV-vis) absorption spectra were obtained by using a Hitachi U-3900 spectrophotometer. Fluorescence (FL) spectra were recorded on a HORIBA Scientific Fluoromax-4 Spectrofluorometer. Circular dichroism (CD) spectra were measured by a JASCO $J-810$ Spectropolarimeter, and the length of the sample cell was 1 cm . Circularly polarized luminescence (CPL) spectra were measured by a JASCO CPL-300 Spectrofluoropolarimeter. The liquid crystalline textures were investigated and photographed using liquid crystal cells with a polarized optical microscope (POM) equipped with a Leitz-350 heating stage and an associated Nikon (D3100) digital camera. All starting materials were purchased from Energy, Acros, Bidepharm and used directly.

2. Synthesis of LC-PPE and R / S-AD

Scheme S1. The synthesis procedures of LC-PPE and R / S-AD.

Synthesis of M1

Into a 100 mL round-bottomed flask were added $1.50 \mathrm{~g}(7.68 \mathrm{mmol})$ of $4-(4-$ hydroxyphenyl)benzonitrile, $4.78 \mathrm{~g}(34.58 \mathrm{mmol})$ of $\mathrm{K}_{2} \mathrm{CO}_{3}$ and 30 mL acetonitrile. After all the reagents were dissolved, a solution of 6-bromo-1-hexanol $(1.58 \mathrm{~g}, 8.45 \mathrm{mmol})$ was added to the flask. Then the solution was heated to $80^{\circ} \mathrm{C}$ and refluxed under constant stirring. After the completion of the reaction, the solution was quenched by water and filtered. The white residue was dried under vacuum. Then, the white residue ($2.20 \mathrm{~g}, 7.46 \mathrm{mmol}$), 2,5-dibromobenzoic acid $(1.74 \mathrm{~g}, 6.22 \mathrm{mmol})$, DCC $(5.77 \mathrm{~g}, 27.97 \mathrm{mmol})$ and DMAP $(75.9 \mathrm{mg}, 0.62 \mathrm{mmol})$ were added into a 100 mL round-bottomed flask, dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ and then stirred for 6 h . The
solution was evaporated and purified by open column chromatography (silica gel, $\mathrm{PE} / \mathrm{EA}=40: 1$ as eluent). The collected liquid was evaporated and dried under vacuum to give M1 ($2.49 \mathrm{~g}, 6.22$ $\mathrm{mmol})$ as a white powder. Yield $=70 \% .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.89(\mathrm{t}, \mathrm{J}=4.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.73-7.60(\mathrm{~m}, 4 \mathrm{H}), 7.57-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.44(\mathrm{dd}, \mathrm{J}=8.5,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.04-6.93(\mathrm{~m}, 2 \mathrm{H}), 4.36$ $(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.03(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.90-1.75(\mathrm{~m}, 4 \mathrm{H}), 1.62-1.50(\mathrm{~m}, 4 \mathrm{H})$.

Synthesis of M2

M1 ($1.50 \mathrm{~g}, 2.69 \mathrm{mmol}), \mathrm{Pd}(\mathrm{PPh})_{2} \mathrm{Cl}_{2}(94.5 \mathrm{mg}, 0.13 \mathrm{mmol})$ and $\mathrm{CuI}(51.3 \mathrm{mg}, 0.27 \mathrm{mmol})$ were added in $10 \mathrm{~mL} \mathrm{Et}{ }_{3} \mathrm{~N}$ and 10 mL THF under Ar atmosphere. After continuous stirring, trimethylsilylacetylene $(0.78 \mathrm{~g}, 8.07 \mathrm{mmol})$ and 5 mL THF was added to the solution. Then the solution was heated to $65^{\circ} \mathrm{C}$ and left overnight. TLC indicated completion of the reaction. The solution was evaporated and purified by open column chromatography (silica gel, $\mathrm{PE} / \mathrm{EA}=40: 1$ as eluent). After removing the solvent, the white residue was added to a 100 mL round-bottom flask along with glacial acetic acid $(0.21 \mathrm{~g}, 3.58 \mathrm{mmol})$, and 20 mL THF. After dissolving the reagents under constant stirring, the flask was placed in an ice bath, and TBAF ($1.40 \mathrm{~g}, 5.37 \mathrm{mmol}$) was added dropwise to the above solution in the flask. After continuous stirring for 1 h , the solution was evaporated, and the residue was thoroughly washed with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ for three times. The organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solution was evaporated and dried under vacuum to give M2 $(0.78 \mathrm{~g}, 1.74 \mathrm{mmol})$ as a yellow powder. Yield $=65 \% .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.08-8.02(\mathrm{~m}, 1 \mathrm{H}), 7.73-7.61(\mathrm{~m}, 4 \mathrm{H})$, $7.54(\mathrm{dd}, \mathrm{J}=17.5,5.1 \mathrm{~Hz}, 4 \mathrm{H}), 7.04-6.92(\mathrm{~m}, 2 \mathrm{H}), 4.37(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.02(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}$, $2 \mathrm{H}), 3.48(\mathrm{~s}, 1 \mathrm{H}), 3.21(\mathrm{~s}, 1 \mathrm{H}), 1.90-1.78,1.50-1.62(\mathrm{~m}, 8 \mathrm{H})$.

Synthesis of LC-PPE

Into a Schlenk flask were added M1 $(0.20 \mathrm{~g}, 0.36 \mathrm{mmol}), \mathrm{CuI}(6.83 \mathrm{mg}, 35.89 \mu \mathrm{~mol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ ($20.74 \mathrm{mg}, 17.94 \mu \mathrm{~mol}$), and 3.0 mL THF under Ar atmosphere. After continuous stirring for 10 $\min , \mathbf{M} 2(0.16 \mathrm{~g}, 0.36 \mathrm{mmol})$ and 3.0 mL THF was added to the reaction solution. Then 2.0 mL $\mathrm{Et}_{3} \mathrm{~N}$ was added dropwise into the above solution. And the solution was heated to $70{ }^{\circ} \mathrm{C}$ and stirred for 24 h . The mixture was cooled to room temperature and was then filtered through a short silica gel column. After the solvent was removed, the mixture was dissolved in $2 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$ and then added dropwise to 200 mL MeOH to precipitate the polymer. The polymer was filtered and washed with methanol several times and finally dried in vacuum to give 100.8 mg as a yellow solid with 64% yield. Mw: 21,420, Mw/Mn (PDI): 1.3 (GPC, PS calibration). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.29-8.03(\mathrm{br}, 1 \mathrm{H}), 7.73-7.35(\mathrm{br}, 8 \mathrm{H}), 7.06-6.77(\mathrm{br}, 2 \mathrm{H}), 4.48-4.28(\mathrm{br}, 2 \mathrm{H})$, $4.07-3.81(\mathrm{br}, 2 \mathrm{H}), 1.89-1.39(\mathrm{br}, 8 \mathrm{H})$.

Synthesis of $\boldsymbol{R} / \boldsymbol{S}$-AD

The chiral binaphthyl intermediate ($300 \mathrm{mg}, 0.46 \mathrm{mmol}$), 9,9-dimethyl-9,10-dihydroacridine $(387.4 \mathrm{mg}, 1.85 \mathrm{mmol})$, t-BuONa ($266.8 \mathrm{mg}, 2.77 \mathrm{mmol}$), $\mathrm{Pd}(\mathrm{dba})_{2}(26.6 \mathrm{mg}, 0.04 \mathrm{mmol})$ and $(t-$ $\mathrm{Bu})_{3} \mathrm{P}(0.21 \mathrm{~mL}, 10 \mathrm{w} \%$ in toluene, 0.09 mmol$)$ were dissolved in 15 mL anhydrous toluene, and the mixture was stirred at $110^{\circ} \mathrm{C}$ under Ar atmosphere for 16 h . Then the mixture was added to 50 mL water and extracted with ethyl acetate. The combined organic layers were washed with saturated brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and then concentrated under reduced pressure. The residue was purified by silica gel column chromatography (petroleum ether/DCM/ethyl acetate $=$ 40: 10: 1) following with recrystallization in methanol to give $R / S-\mathrm{AD}(370 \mathrm{mg}, 88 \%)$ as yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.21(\mathrm{~s}, 2 \mathrm{H}), 8.57(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.23(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}$, $2 \mathrm{H}), 7.53(\mathrm{dd}, \mathrm{J}=11.1,4.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{ddd}, \mathrm{J}=16.0,7.8,1.4 \mathrm{~Hz}, 6 \mathrm{H}), 7.32-7.22(\mathrm{~m}, 4 \mathrm{H})$, $6.99-6.83(\mathrm{~m}, 10 \mathrm{H}), 6.26(\mathrm{dd}, \mathrm{J}=7.7,1.6 \mathrm{~Hz}, 4 \mathrm{H}), 1.58(\mathrm{~s}, 12 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta=177.39,158.57,150.23,148.16,139.98,136.35,131.57,130.47,129.84,129.81,129.49,129.36$, $126.30,125.91,125.38,125.26,121.57,121.45,120.17,118.65,118.41,115.05,36.14,30.93$.

3. Fluorescence spectra and UV-vis spectra of LC-PPE and R / S-AD

Fig. S1 The UV-vis absorption and fluorescence emission spectra of LC-PPE in the THF solution $\left(1.0 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}, \lambda_{\mathrm{ex}}=300 \mathrm{~nm}\right)$.

Fig. S2 The UV-vis absorption and fluorescence emission spectra of $R-\mathrm{AD}$ in the THF solution $\left(1.0 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}, \lambda_{\mathrm{ex}}=373 \mathrm{~nm}\right)$ and neat film $\left(\lambda_{\mathrm{ex}}=385 \mathrm{~nm}\right)$.

4. TGA and DSC Curves of LC-PPE

Fig. S3 a) TGA and b) DSC curves of LC-PPE.

5. POM images of LC-PPE, CLCs and PD-CLCs

Fig. S4 POM images of LC-PPE upon cooling down from the isotropic melting at a rate of 20 ${ }^{\circ} \mathrm{C} / \mathrm{min}$, with temperatures respectively at a) $160^{\circ} \mathrm{C}$, b) $155^{\circ} \mathrm{C}$, c) $150{ }^{\circ} \mathrm{C}$, and d) $145^{\circ} \mathrm{C}$.

Fig. S5 POM images of CLCs doped with a) 0.5, b) 2.0 , c) $3.0 \mathrm{wt} \% R$-AD in flat cells at $25^{\circ} \mathrm{C}$.

Fig. S6 POM images of PD-CLCs doped with $1.0 \mathrm{wt} \% R-\mathrm{AD}$ and LC-PPE of a) $2.0, \mathrm{~b}) 4.0, \mathrm{c}) 6.0$ molar ratio in flat cells at $25^{\circ} \mathrm{C}$.

6. CD and CPL spectra of $R / S-A D$

Fig. S7 a) CPL spectra of $R / S-\mathrm{AD}$ in THF ($\lambda_{\text {ex }}=373 \mathrm{~nm}, 1.0 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}$); b) CPL spectra of $R / S-$ AD in toluene ($\lambda_{\text {ex }}=373 \mathrm{~nm}, 1.0 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}$) and neat films ($\lambda_{\mathrm{ex}}=385 \mathrm{~nm}$); c) CD spectra of $R / S-\mathrm{AD}$ in toluene and neat films.

7. CD spectra of CLCs

Fig. S8 CD spectra of CLCs (5CB doped with 1.0 and $2.0 \mathrm{wt} \% R / S-\mathrm{AD}$).

8. Fluorescence spectra of CLCs and PD-CLCs

Fig. S9 Fluorescence emission spectra of CLCs ($\lambda_{\text {ex }}=380 \mathrm{~nm}$) and PD-CLCs ($\lambda_{\text {ex }}=370 \mathrm{~nm}$). CLCs of 5CB doped with $1.0 \mathrm{wt} \% R-\mathrm{AD}$; PD-CLCs of 5 CB doped with $1.0 \mathrm{wt} \% R-\mathrm{AD}$ and 2.0 molar ratio of LC-PPE in flat LC cells at $25^{\circ} \mathrm{C}$; ${ }^{\text {a }}$ absolute quantum yields.

9. CD spectra of PD-CLCs

Fig. S10 CD spectra of PD-CLCs of 5 CB doped with $1.0 \mathrm{wt} \% R / S-\mathrm{AD}$ and $1.0,2.0,4.0,6.0$ molar ratio of LC-PPE in flat LC cells at $25^{\circ} \mathrm{C}$.
10. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compounds

Fig. S11 ${ }^{1} \mathrm{H}$ NMR of $\mathrm{M} 1\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Fig. S12 ${ }^{1} \mathrm{H}$ NMR of $\mathrm{M} 2\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Fig. S13 ${ }^{1} \mathrm{H}$ NMR of LC-PPE ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$).

Fig. S14 ${ }^{1} \mathrm{H}$ NMR of R / S - $\mathrm{AD}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Fig. S15 ${ }^{13} \mathrm{C}$ NMR of R / S - $\mathrm{AD}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

