Supporting Information

Secondary phosphine oxide-triggered selective oxygenation of a benzyl ligand on palladium

Sayaka Oka, Yuma Shigehiro, Yasutaka Kataoka, and Yasuyuki Ura*

Department of Chemistry, Biology, and Environmental Science, Faculty of Science, Nara Women's University, Kitauoyanishi-machi, Nara 630-8506, Japan

ura@cc.nara-wu.ac.jp

Materials and Methods	S 2
Physical and Analytical Measurements	S 2
General Procedure for the Oxygenation of a Benzyl Ligand in $[PdBnCl(cod)]$ with Secondary Phosphine Oxides under O_2	S 2
Isolation of Complexes 2a–2d and 3	S 2
Oxygenation of a Benzyl Ligand in the Presence of Ph ₂ PHO (Table S1)	S5
Effect of Solvents (Table S2)	S 6
Oxygenation in the Presence of either HCl or <i>n</i> -Bu ₄ NCl (Scheme S1)	S 7
Oxygenation of a Benzyl Ligand under O2 in 20 mL Flask (Table S3)	S 8
Oxygenation of a Benzyl Ligand under Air in 20 mL Flask (Table S4)	S 9
Oxygenation of a Benzyl Ligand with O_2 (0.50 eq) in 20 mL Flask (Table S5)	S10
Conversion of Benzyl Hydroperoxide into Benzyl Alcohol and Benzaldehyde (Table S6)	S 11
Observation of Complex 4a	S12
¹ H- ³¹ P HMQC Spectrum of the Reaction Mixture Containing 4a Prepared from 1 and 2.0 equiv of Diphenylphosphine Oxide (Figure S1)	S13
Synthesis of Complex 5	S 14
Oxygenation under Dark Conditions (Scheme S2)	S15
Crystallographic Study of 2a and 5	S 16
Molecular Structure of 2a (Figure S2)	S17
Molecular Structure of 5 (Figure S3)	S 18
Summary of Crystal Data, Collection Data, and Refinement of 2a and 5 (Table S7)	S19
NMR Spectra of 2a–2d, 3, 4a, and 5	S20

Materials and Methods. All manipulations were performed under an argon atmosphere using standard Schlenk techniques. Dry solvents were purchased from either Wako Chemical or Nacalai (the water contents of the deuterated solvents (CDCl₃, CD₃CN, acetone- d_6 , toluene- d_8 , and CD₃OD) are <0.5% (chemical purities are 99.5%)). Hyflo Super-Cel was obtained from Nacalai. [PdBnCl(cod)],¹ phenylmethylphosphine oxide,² phenyl(*t*-butyl)phosphine oxide,² dimethylphosphine oxide,³ di-*t*-butylphosphine oxide,⁴ and ethylene-1,2-bis(phenylphosphine oxide)⁵ were prepared as reported previously.

Physical and Analytical Measurements. NMR spectra were recorded on either a Bruker AV-300N (300 MHz (¹H), 75 MHz (¹³C), 121 MHz (³¹P)) or a JEOL JNM-AL400 (100 MHz (¹³C)) spectrometer. All ¹H and ¹³C chemical shift values (δ) were expressed relative to a residual solvent signal as a reference. ³¹P NMR chemical shift values (δ) were reported in relative to triphenylphosphine as an external reference. Elemental analysis was obtained using a J-SCIENCE LAB JM-10 analyzer. High-resolution mass spectra were recorded on a JEOL JMS-T100LC spectrometer (ESI-TOF MS) with positive ionization mode.

General Procedure for the Oxygenation of a Benzyl Ligand in [PdBnCl(cod)] with Secondary Phosphine Oxides under O₂. All the reactions were performed in sealed J. Young valve NMR tubes (528-LPV-8) unless otherwise indicated. Either 1,1,2,2-tetrachloroethane or trimethylphenylsilane was used as an internal standard for each reaction. [PdBnCl(cod)] (10.0 mg, 29 µmol) and a secondary phosphine oxide (58 µmol) were dissolved in CDCl₃ (0.50 mL) under argon, and O₂ (10 mL) was passed through the solution using a syringe over 30 sec. The reaction mixture was stirred by shaking at room temperature for 30 min under O₂. The reaction was monitored by ¹H and ³¹P NMR. Yields of the oxygenated compounds (BnOOH, BnOH and PhCHO) were determined based on the integrations of corresponding methylene or aldehyde proton signals in ¹H NMR spectra (δ 4.90, 4.57, and 9.94 ppm, respectively). The formation of complex 2 (or 3) was confirmed based on ¹H and ³¹P NMR analysis.

Isolation of Complex 2a. In a J. Young valve NMR tube, [PdBnCl(cod)] (10.1 mg, 29.6 μ mol) and diphenylphosphine oxide (12.1 mg, 59.8 μ mol) were dissolved in CD₃CN (0.50 mL) under argon. O₂ (10 mL) was passed through the solution using a syringe over 30 sec. The reaction mixture was stirred by shaking at room temperature for 30 min under O₂. Yellow crystals were precipitated. After removal of the supernatant solution, the crystals were washed with hexane (three times) and dried under vacuum to give **2a** (12.3 mg, 11.2 μ mol, 77%). The NMR data were consistent with those reported previously.⁶

Isolation of Complex 2b. In a J. Young valve NMR tube, [PdBnCl(cod)] (10.0 mg, 29 µmol) and phenylmethylphosphine oxide (8.7 mg, 62.0 µmol) were dissolved in CDCl₃ (0.50 mL) under argon. O₂

(10 mL) was passed through the solution using a syringe over 30 sec. The reaction mixture was stirred by shaking at room temperature for 30 min under O_2 , and was filtered by a Hyflo Super-Cel and washed with CHCl₃. The filtrate was evaporated to dry, and the residue was reprecipitated from CHCl₃/hexane. After removal of the supernatant solution, the yellow precipitate was washed with hexane (three times) and dried under vacuum to give **2b** as a mixture of diastereomers (7.2 mg, 8.5 µmol, 59%).

Selected data for complex **2b**: ¹H NMR (300 MHz, CDCl₃) δ 7.78–7.19 (m, 20H, Ph), 2.05–1.79 (m, 12H, CH₃). ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 137.8 (br d, ¹J_{PC} = 54.8 Hz), 131.2–130.8 (m), 130.4–130.3 (m), 129.9–129.7 (m), 128.6–128.3 (m), 21.0–20.5 (m). ³¹P{¹H} NMR (121 MHz, CDCl₃) δ 78.0. HRMS (ESI): *m*/*z* calcd for C₂₈H₃₅Cl₂O₄P₄Pd₂ [M+H]⁺ 842.8938, found 842.8969. Anal. Calcd for C₂₈H₃₄Cl₂O₄P₄Pd₂: C, 39.93; H, 4.07. Found: C, 39.87; H, 4.10.

Isolation of Complex 2c. In a J. Young valve NMR tube, [PdBnCl(cod)] (10.0 mg, 29 μ mol) and phenyl-*t*-butylphosphine oxide (12.0 mg, 65.9 μ mol) were dissolved in acetone-*d*₆ (0.50 mL) under argon. O₂ (10 mL) was passed through the solution using a syringe over 30 sec. The reaction mixture was stirred by shaking at room temperature for 30 min under O₂. A yellow solid was precipitated. After removal of the supernatant solution, the solid was washed with hexane (three times), and dried under vacuum to give **2c** (9.0 mg, 8.9 μ mol, 61%) as a mixture of two main diastereomers (ca. 2.1:1).

Major diastereomer of complex **2c**: ${}^{1}H{}^{31}P{}$ NMR (300 MHz, CDCl₃) δ 7.68 (d, J = 7.8 Hz, 8H, Ph), 7.24 (t, J = 6.8 Hz, 4H, Ph), 7.11 (t, J = 7.4 Hz, 8H, Ph), 1.28 (s, 36H, 'Bu). ${}^{13}C{}^{1}H{}$ NMR (100 MHz, CDCl₃) δ 135.0 (dd, ${}^{1}J_{PC} = 57.0$ Hz, ${}^{3}J_{PC} = 6.0$ Hz), 131.8 (t, $J_{PC} = 5.5$ Hz), 130.3, 127.7 (t, $J_{PC} = 5.3$ Hz), 40.3 (dd, ${}^{1}J_{PC} = 50.5$ Hz, ${}^{3}J_{PC} = 8.8$ Hz), 27.4. ${}^{31}P{}^{1}H{}$ NMR (121 MHz, CDCl₃) δ 96.3. Selected data for minor diastereomer of complex **2c**: ${}^{1}H{}^{31}P{}$ NMR (300 MHz, CDCl₃) δ 7.94 (d, J = 7.5 Hz, Ph), 7.61 (d, J = 7.2 Hz, Ph), 7.47–7.36 (m, Ph), 1.25 (s, 9H, 'Bu), 1.24 (s, 9H, 'Bu), 1.15 (s, 18H, 'Bu). ${}^{13}C{}^{1}H{}$ NMR (100 MHz, CDCl₃) δ 132.2 (t, $J_{PC} = 4.9$ Hz), 130.7, 127.9 (t, $J_{PC} = 5.5$ Hz), 27.3. ${}^{31}P{}^{1}H{}$ NMR (121 MHz, CDCl₃) δ 96.9 (${}^{2}J_{PP} = 21.8$ Hz), 96.0 (${}^{2}J_{PP} = 21.8$ Hz), 95.2. HRMS (ESI): m/z calcd

for C₄₀H₅₇ClNaO₄P₄Pd₂ [M-HCl+Na]⁺997.0867, found 997.0912. Anal. Calcd for C₄₀H₅₈Cl₂O₄P₄Pd₂: C, 47.54; H, 5.79. Found: C, 47.24; H, 5.72.

Isolation of Complex 2d. In a J. Young valve NMR tube, [PdBnCl(cod)] (10.0 mg, 29 µmol) and dimethylphosphine oxide (5.8 mg, 64 µmol) were dissolved in CDCl₃ (0.50 mL) under argon. O₂ (10 mL) was passed through the solution using a syringe over 30 sec. The reaction mixture was stirred by shaking at room temperature for 30 min under O₂, and was filtered by a Hyflo Super-Cel and washed with CHCl₃. The filtrate was evaporated to dry, and the residue was reprecipitated from CHCl₃/hexane. After removal of the supernatant solution, the precipitate was washed with hexane (three times) and dried under vacuum to give **2d** as a pale yellow solid (5.4 mg, 9.1 µmol, 62%). The NMR data for **2d** were consistent with those reported previously.⁷

Isolation of Complex 3. In a J. Young valve NMR tube, [PdBnCl(cod)] (10.1 mg, 29 µmol) and ethylene-1,2-bis(phenylphosphine oxide) (8.4 mg, 59 µmol) were dissolved in CDCl₃ (0.50 mL) under argon. O₂ (10 mL) was passed through the solution using a syringe over 30 sec. The reaction mixture was stirred by shaking at room temperature for 30 min under O₂. Hexane was added to the reaction mixture to precipitate a pale yellow solid. After removal of the supernatant solution, the solid was washed with hexane (three times), and dried under vacuum to give **3** (10.2 mg, 15.4 µmol, 53%).

Complex 3: ¹H NMR (300 MHz, CDCl₃) δ 7.71–7.06 (m, 20H, Ph), 2.45 (br d, ²*J*_{PH} = 21.7 Hz, 4H), 1.80 (br d, ²*J*_{PH} = 24.6 Hz, 4H). ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 140.0 (d, ¹*J*_{PC} = 55.5 Hz), 130.8 (d, ²*J*_{PC} = 39.0 Hz), 130.3, 127.7 (d, ³*J*_{PC} = 6.6 Hz), 34.9 (d, ¹*J*_{PC} = 61.5 Hz). ³¹P{¹H} NMR (121 MHz, CDCl₃) δ 129.8. HRMS (ESI): *m*/*z* calcd for C₂₈H₃₁O₄P₄Pd [M+H]⁺ 661.0218, found 661.0161. Anal. Calcd for C₂₈H₃₀O₄P₄Pd·CHCl₃: C, 44.64; H, 4.00. Found: C, 45.06; H, 3.94.

Table S1. Oxygenation of a benzyl ligand in the presence of Ph₂PHO^a

	O II Ph ₂ PH (2.0 eq)							
Pd	CDCl ₃ , r.t., 30 min	Bn <mark>OOH</mark>	+	Bn <mark>OH</mark>	+	PhCH <mark>O</mark>	+	2a
1	O ₂ (1 atm)							

Entry	Yield (%) ^b					
Enuy	BnOOH	BnOH	PhCHO	2a		
1	94	3	2	62		
2	87	2	3	77		
3	92	2	2	71		
4	93	2	1	75		
5	88	3	0	72		
6	94	3	3	71		
Avg	91	3	2	71		
SD	2.8	0.5	1.1	4.7		

^a Reaction conditions: complex **1** (29 µmol), diphenylphosphine oxide (58 µmol), CDCl₃ (0.50 mL), under O₂, r.t., 30 min, in a NMR tube. ^b NMR yield. In the ³¹P{¹H} NMR spectra, several small signals were observed at 75–84 ppm in addition to the signal for complex **2a** (78.3 ppm).

Effect of Solvents. In a J. Young valve NMR tube, [PdBnCl(cod)] (10.0 mg, 29 μ mol) and diphenylphosphine oxide (11.8 mg, 58 μ mol) were dissolved in a solvent (0.50 mL) under argon. O₂ (10 mL) was passed through the solution using a syringe over 30 sec. The reaction mixture was stirred by shaking at room temperature for 30 min under O₂. The reaction was monitored by ¹H and ³¹P NMR. The results were summarized in Table S1.

Table S2. Effect of solvents^a

Enter	Colvert	Yield (%) ^b				
Епиу	Solvent	BnOOH	BnOH	PhCHO	2a	
1	CDCl ₃	93	2	1	75	
2^{c}	CDCl ₃ /H ₂ O	95	0	0	54	
3	CD ₃ CN	84	2	1	77 ^d	
4	acetone- d_6	61	0	2	74 ^d	
5	toluene-d ₈	88	3	0	80^{d}	
6	CD ₃ OD	62	2	0	79 ^d	

^a Reaction conditions: complex **1** (29 μ mol), diphenylphosphine oxide (58 μ mol), solvent (0.50 mL), under O₂, r.t., 30 min, in a NMR tube. ^b NMR yield. ^c CDCl₃/H₂O = 0.45 mL/0.05 mL. ^d Isolated yield.

Oxygenation in the Presence of either HCl or *n***-Bu**₄**NCl.** In a J. Young valve NMR tube, [PdBnCl(cod)] (10.0 mg, 29 µmol) and either HCl (44.0 µL, 35.2 µmol, 0.80 M dioxane solution) or *n*-Bu₄NCl (9.7 mg, 34.8 µmol) were dissolved in CDCl₃ (0.50 mL) under argon. Trimethylphenylsilane (15 µL, 87 µmol) was added as an internal standard. O₂ (10 mL) was passed through the solution using a syringe over 25 sec. The reaction mixture was stirred by shaking at room temperature for 30 min under O₂. The reaction mixture was immediately analyzed by ¹H NMR. The results were summarized in Scheme S1.

acid (* CDCl ₃ , r. <mark>O₂ (1</mark>	1.2 eq) ★ t., 30 min I atm)	Bn <mark>OO</mark> H	+	Bn <mark>O</mark> H	+	PhCH <mark>O</mark>
	conv. of 1					
HCI	37%	0%		0%		2%
<i>n</i> -Bu₄NCI	17%	0%		2%		5%

Scheme S1. Oxygenation in the presence of either HCl or *n*-Bu₄NCl.

Oxygenation of a Benzyl Ligand under O₂ in 20 mL Flask. In a 20 mL round-bottom flask equipped with a three-way cock and a magnetic stirring bar, [PdBnCl(cod)] (10.0 mg, 29 μ mol) and diphenylphosphine oxide (11.8 mg, 58 μ mol) were dissolved in CDCl₃ (0.50 mL) under argon. O₂ (10 mL) was passed through the solution using a syringe over 30 sec. The reaction mixture was stirred at room temperature for 30 min under O₂. The reaction was monitored by ¹H and ³¹P NMR. The results were summarized in Table S3.

Table S3. Oxygenation of a benzyl ligand under O₂

Entry	Yield (%) ^b					
Enuy	BnOOH	BnOH	PhCHO	2a		
1	82	6	1	72		
2	91	3	6	92		
3	87	3	б	74		
Avg	87	4	4	79		
SD	3.7	1.4	2.4	9		

^a Reaction conditions: complex **1** (29 μ mol), diphenylphosphine oxide (58 μ mol), CDCl₃ (0.50 mL), under O₂, r.t., 30 min, in a 20 mL flask. ^b NMR yield.

Oxygenation of a Benzyl Ligand under Air in 20 mL Flask. In a 20 mL round-bottom flask equipped with a three-way cock and a magnetic stirring bar, [PdBnCl(cod)] (10.0 mg, 29 μ mol) and diphenylphosphine oxide (11.8 mg, 58 μ mol) were dissolved in CDCl₃ (0.50 mL) under argon. Air (10 mL) was passed through the solution using a syringe over 30 sec. The reaction mixture was stirred at room temperature for 1 h under air. The reaction was monitored by ¹H and ³¹P NMR. The results were summarized in Table S4.

Table S4. Oxygenation of a benzyl ligand under air

Enter	Yield (%) ^b					
Enuy	BnOOH	BnOH	PhCHO	2a		
1	85	3	3	75		
2	86	4	5	78		
3	80	4	6	81		
Avg	84	4	5	78		
SD	2.6	0.5	1.2	2.4		

 a Reaction conditions: complex 1 (29 $\mu mol)$, diphenylphosphine oxide (58 $\mu mol)$, CDCl₃ (0.50 mL), under air, r.t., 1 h, in a 20 mL flask. b NMR yield.

Oxygenation of a Benzyl Ligand with O₂ (0.50 eq) in 20 mL Flask. In a 20 mL round-bottom flask equipped with a three-way cock and a magnetic stirring bar, [PdBnCl(cod)] (10.0 mg, 29 μ mol) and diphenylphosphine oxide (11.8 mg, 58 μ mol) were dissolved in CDCl₃ (0.50 mL) under argon. O₂ (355 μ L, 14.5 μ mol) was introduced in the gas phase in the flask using a syringe. The reaction mixture was stirred at room temperature for 2 h. The reaction was monitored by ¹H and ³¹P NMR. The results were summarized in Table S5.

Table S5. Oxygenation of a benzyl ligand with O₂ (0.50 eq)

Entry	Yield (%) ^b				
спи у	BnOOH	BnOH	PhCHO	2a	
1	0	75	6	53	
2	0	51	2	56	
3	9	44	6	39	
4	12	62	6	47	
5	0	54	5	48	
6	0	56	5	49	
7	0	51	7	48	
Avg	3	56	5	49	
SD	4.8	9.2	1.5	4.9	

 a Reaction conditions: complex 1 (29 $\mu mol)$, diphenylphosphine oxide (58 $\mu mol)$, CDCl₃ (0.50 mL), O₂ (14.5 $\mu mol)$, r.t., 2 h, in a 20 mL flask. b NMR yield.

Conversion of Benzyl Hydroperoxide into Benzyl Alcohol and Benzaldehyde. In a J. Young valve NMR tube, [PdBnCl(cod)] (10.0 mg, 29 μ mol), diphenylphosphine oxide (11.8 mg, 58 μ mol), and trimethylphenylsilane (15 μ L, 87 μ mol) as an internal standard were dissolved in CDCl₃ (0.50 mL) under argon. O₂ (10 mL) was passed through the solution using a syringe over 30 sec. The reaction mixture was stirred by shaking at room temperature for 30 min under O₂. The conversion of formed benzyl hydroperoxide into benzyl alcohol and benzaldehyde was monitored by ¹H NMR. The results were summarized in Table S2.

Table S6. Conversion of formed benzyl hydroperoxide into benzyl alcohol and benzaldehyde^a

$$Pd \xrightarrow{CI}_{Bn} \xrightarrow{O}_{Ph_2PH}^{II} (2.0 \text{ eq}) \xrightarrow{BnOOH}_{r.t., 30 \text{ min}} BnOOH \xrightarrow{r.t., time}_{r.t., time} BnOH + PhCHO$$

Time	Yield (%) ^b					
Time	BnOOH	BnOH	PhCHO	2a		
0 min	94	3	2	62		
3 h	91	4	4	61		
6 h	91	4	5	60		
48 h	33	18	28	59		

^a Reaction conditions: complex **1** (29 μ mol), diphenylphosphine oxide (58 μ mol), CDCl₃ (0.50 mL), under O₂, r.t., 30 min, in a NMR tube. ^b NMR yield.

Observation of Complex 4a. In a J. Young valve NMR tube, [PdBnCl(cod)] (10.0 mg, 29 µmol), diphenylphosphine oxide (11.8 mg, 58 µmol), and trimethylphenylsilane (15 µL, 87 µmol) as an internal standard were dissolved in CD₃CN (0.50 mL) under argon, and the reaction mixture was left at room temperature. After 1 h, a series of new signals corresponding to complex **4a** was observed. O₂ (10 mL) was passed through the reaction mixture using a syringe over 30 sec. The reaction mixture was stirred by shaking at room temperature for 30 min under O₂. The ¹H NMR signals for **4a** disappeared, and oxygenated organic compounds and **2a** were obtained. However, in the abovementioned reaction, unidentified compounds were observed in the ³¹P{¹H} NMR spectrum (δ 99.7 and 78.8 ppm) in addition to **4a** (δ 104.3 ppm) at the first step. The reaction of **1** with 1.0 equiv of diphenylphosphine oxide under Ar could suppress the byproduct formation. In a J. Young valve NMR tube, [PdBnCl(cod)] (10.0 mg, 29 µmol), diphenylphosphine oxide (5.9 mg, 29 µmol), and trimethylphenylsilane (15 µL, 87 µmol) as an internal standard were dissolved in CD₃CN (0.50 mL) under argon, and the reaction mixture was left at room temperature. After 1 h, **4a** was observed in 91% yield in the ¹H NMR spectrum.

Complex **4a**: ¹H NMR (300 MHz, CD₃CN) δ 7.76–6.91 (m, 10H, Ph), 2.98 (d, ³*J*_{PH} = 3.0 Hz, 4H, C*H*₂Ph). ¹³C{¹H} NMR (100 MHz, CD₃CN, at -40 °C) δ 145.1 (d, *J*_{PC} = 2.5 Hz), 135.7 (d, *J*_{PC} = 54.2 Hz), 132.3, 132.2, 131.8, 128.9, 128.4, 124.6, 30.9. ³¹P{¹H} NMR (121 MHz, CD₃CN) δ 104.3. ¹H-³¹P HMQC spectrum of the reaction mixture containing **4a** prepared from **1** and 2.0 equiv of diphenylphosphine oxide (in CD₃CN) was shown in Figure S1. Because **4a** is very air-sensitive, a clear IR spectrum was not obtained.

Figure S1. ${}^{1}\text{H}-{}^{31}\text{P}$ HMQC spectrum of the reaction mixture containing 4a prepared from 1 and 2.0 equiv of diphenylphosphine oxide (in CD₃CN).

Synthesis of Complex 5. In a J. Young valve NMR tube, [PdBnCl(cod)] (10.0 mg, 29 μ mol) and diphenylethoxyphosphine (6.3 μ L, 29 μ mol) were dissolved in CDCl₃ (0.50 mL) under argon. The reaction mixture was stirred by shaking at room temperature for 1 h, and was filtered by a Hyflo Super-Cel and washed with CHCl₃. The filtrate was evaporated to dry, and the residue was reprecipitated from CHCl₃/hexane. After removal of the supernatant solution, the precipitate was washed with hexane (three times) and dried under vacuum to give 5 as a yellow solid (7.6 mg, 8.2 μ mol, 56%).

Complex 5: ¹H NMR (300 MHz, CDCl₃) δ 7.75–6.94 (m, 30H, Ph), 3.93 (quintet, ³*J*_{HH} = 7.0 Hz, ³*J*_{PH} = 7.0 Hz, 4H), 3.10 (s, 4H), 1.26 (t, *J* = 6.9 Hz, 6H). ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 143.8, 134.6 (d, ¹*J*_{PC} = 52.5 Hz), 131.9 (d, ²*J*_{PC} = 13.5 Hz), 131.0 (d, ⁴*J*_{PC} = 2.4 Hz), 129.0 (br), 128.3 (d, ³*J*_{PC} = 11.3 Hz), 128.1 (br), 124.8 (br), 65.4, 31.0 (br), 16.5 (d, ³*J*_{PC} = 9.8 Hz). ³¹P{¹H} NMR (121 MHz, CDCl₃) δ 114.5. HRMS (ESI): *m*/*z* calcd for C₄₂H₄₄ClO₂P₂Pd₂ [M-Cl]⁺ 891.0579, found 891.0556. Anal. Calcd for C₄₂H₄₄Cl₂O₂P₂Pd₂: C, 54.45; H, 4.79. Found: C, 54.34; H, 4.82.

Oxygenation under Dark Conditions. In a J. Young valve NMR tube wrapped with an aluminum foil, [PdBnCl(cod)] (10.1 mg, 29 μ mol) and diphenylphosphine oxide (11.8 mg, 58 μ mol) were dissolved in CDCl₃ (0.50 mL) under argon. Trimethylphenylsilane (15 μ L, 87 μ mol) was added as an internal standard. O₂ (10 mL) was passed through the solution using a syringe over 25 sec. The reaction mixture was stirred by shaking at room temperature for 30 min under O₂. The aluminum foil was removed, and the reaction mixture was immediately analyzed by ¹H and ³¹P NMR. The results were summarized in Scheme S2.

Scheme S2. Oxygenation under dark conditions.

Crystallographic Study of 2a and 5. Single crystals suitable for X-ray diffraction measurements obtained from CHCl₃/hexane for both **2a** (colorless block, by vapor diffusion) and **5** (yellow block, by liquid-liquid diffusion) were mounted using a cryoloop. The diffraction data were collected with a Rigaku Saturn CCD detector ($Mo_{K\alpha}$, $\lambda = 0.71069$ Å). Molecular structures of **2a** and **5** are shown in Figures S2 and S3, respectively. Crystal data are listed in Table S3. The structures were solved by direct methods using SHELXS-97 and refined by least squares on F^2 , SHELXL-2013.⁸ Non-hydrogen atoms were anisotropically refined except for disordered ones, which were isotropically refined. All hydrogen atoms including OH moieties in **2a** were positioned geometrically and refined using a riding model. Refinements were continued until all shifts were smaller than one-tenth of the standard deviations of the parameters involved.

Figure S2. Molecular structure of **2a** with 50% probability ellipsoids. Hydrogen atoms are omitted for clarity except for those on oxygen atoms. Selected atomic distances (Å): Pd1–Cl1 = 2.4200(9), Pd1-Cl1* = 2.4286(9), Pd1-P1 = 2.2543(10), Pd1-P2 = 2.2490(9), P1-O1 = 1.542(3), P2-O2 = 1.539(2), O1…O2 = 2.418(4).

Figure S3. Molecular structure of **5** with 50% probability ellipsoids. Hydrogen atoms and a water molecule (a solvent molecule) are omitted for clarity. *Cis*-**5** (right) and *trans*-**5** (left) were observed in a 2:1 ratio in the unit cell. The ethoxy and phenyl groups in *trans*-**5** were treated as disordered. Selected atomic distances (Å): Pd1–Cl1 = 2.4227(18), Pd1-Cl2 = 2.4548(16), Pd2-Cl1 = 2.4300(17), Pd2-Cl2 = 2.4502(17), Pd3-Cl3 = 2.4480(18), Pd3-Cl3* = 2.4178(16), Pd1-P1 = 2.2218(18), Pd2-P2 = 2.2090(16), Pd3-P3 = 2.2036(16), Pd1-Cl = 2.071(5), Pd2-C2 = 2.082(6), Pd3-C3 = 2.064(7).

	2a	5
formula	$C_{48}H_{42}Cl_2O_4P_4Pd_2$	$C_{42}H_{44}Cl_2O_{2.67}P_2Pd_2$
Fw	1090.40	937.13
crystal size, mm	$0.20 \times 0.03 \times 0.02$	$0.09 \times 0.07 \times 0.04$
crystal system	triclinic	triclinic
space group	<i>P</i> -1	<i>P</i> -1
<i>a</i> , Å	11.8642(15)	10.050(4)
b, Å	13.1675(15)	13.715(5)
c, Å	17.343(2)	23.780(8)
α , deg	68.772(6)	78.415(7)
β , deg	78.937(8)	81.104(7)
γ, deg	63.277(5)	86.079(7)
$V, Å^3$	2254.4(5)	3170(2)
Ζ	2	3
D (calcd), g cm ⁻³	1.606	1.473
data collection temp, K	153(2)	163(2)
μ (Mo K α), mm ⁻¹	1.102	0.71075
$2\theta_{\rm max}$, deg	54.0	55.0
no. of measd reflns	17758	31106
no. of unique reflns	9460	14267
no. of obsd reflns $(I > 2\sigma(I))$	7335	9848
no. of variables	543	674
$R_1^a (I > 2\sigma(I))$	0.0398	0.0591
$wR_2^a (I > 2\sigma(I))$	0.0762	0.1521
R_1^a (all data)	0.0569	0.0894
wR_2^a (all data)	0.0861	0.1888
GOF	1.080	1.094

Table S7. Summary of crystal data, collection data, and refinement of 2a and 5

^a $R_1 = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|; \ wR_2 = [\Sigma w (|F_0| - |F_c|)^2 / \Sigma wF_0^2]^{1/2}.$

³¹P{¹H} NMR (121 MHz, CDCl₃)

S21

Complex 2b (continued)

³¹P{¹H} NMR (121 MHz, CDCl₃)

Complex 2c

Complex 2c (continued)

³¹P{¹H} NMR (121 MHz, CDCl₃)

Complex 2d

³¹P{¹H} NMR (121 MHz, CDCl₃)

Complex 3

Complex 3 (continued)

145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 ppm

³¹P{¹H} NMR (121 MHz, CDCl₃)

Complex 4a

 $^{13}C{^{1}H}$ NMR (100 MHz, CD₃CN, at -40 °C) (* = free cod)

Complex 4a (continued)

³¹P{¹H} NMR (161 MHz, CD₃CN)

¹³C{¹H} NMR (75 MHz, CDCl₃)

Complex 5 (continued)

References

- 1 R. A. Stockland Jr, G. K. Anderson, N. P. Rath, J. Braddock-Wilking and J. C. Ellegood, *Can. J. Chem.*, 1996, **74**, 1990-1997.
- 2 R. Beaud, R. J. Phipps and M. J. Gaunt, J. Am. Chem. Soc., 2016, 138, 13183-13186.
- 3 H. R. Hays, J. Org. Chem., 1968, 33, 3690-3694.
- 4 T. Achard, L. Giordano, A. Tenaglia, Y. Gimbert and G. Buono, Organometallics, 2010, 29, 3936-3950.
- 5 Y. Xu, H. Wei and J. Xia, *Liebigs Ann. Chem.*, 1988, 1139-1143.
- 6 M. S. Balakrishna, D. Suresh, P. Kumar and J. T. Mague, J. Organomet. Chem., 2011, 696, 3616-3622.
- 7 T. Ghaffar and A. W. Parkins, J. Mol. Cat. A: Chemical, 2000, 160, 249-261.
- 8 (a) G. M. Sheldrick, SHELXTL-PC Package, Bruker AXS, Inc., Madison, WI, 1998; (b) G. M. Sheldrick, Acta Cryst., 2008, A64, 112-122; (c) G. M. Sheldrick, SHELXL-2013, University of Göttingen, 2013.