Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Selective Polymerization of Epoxides from Hydroxycarboxylic Esters: Expediting Controlled Synthesis of α-Carboxyl-ω-Hydroxyl Polyethers

Shan Liu,^a Lijun Liu,^a Ye Chen,^a Junpeng Zhao,^{ab*}

^aFaculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China

^bKey Laboratory of Luminescence from Molecular Aggregates of Guangdong Province, South China University of Technology, Guangzhou 510640, China

Table of Contents

Experimental Section	2
Materials	2
Instrumentation	2
Polymer Synthesis	3
Figure S1	8
Figure S2	9
Figure S3	10
Figure S4	11
Figure S5	12
Figure S6	13
Figure S7	14
Figure S8	15
Figure S9	16
Figure S10	17

Experimental Section

Materials

Tetrahydrofuran (THF; Guangzhou Chemical Reagent, AR) was successively dried over molecular sieve (4 Å), calcium hydride (CaH₂), and *n*-butyllithium (*n*-BuLi) capped with 1,1diphenylethylene before vacuum-distilled. Dichloromethane (CH₂Cl₂; Guangzhou Chemical Reagent, AR) and *\varepsilon*-caprolactone (CL; Aladdin, 99%) were dried by CaH₂ and distilled. Ethylene oxide (EO; Aldrich, 99%) was first condensed from a metal cylinder into a Schlenk flask by cooling the flask at 0 °C under vacuum and dried by stirring with sodium hydride (NaH) at 0 °C for 4 h, then vacuum-transferred into a graduated flask pre-charged with *n*-BuLi and stirred at 0 °C for 1 h before finally cryo-distilled into the reaction flask. Propylene oxide (PO; Aldrich, 99%) was stirred with NaH overnight and cryo-distilled into a storage flask. Ethyl 6-hydroxyhexanoate (EH; TCI, 96%) and diethyl 3-hydroxyglutarate (DH; TCI, 99%) were dried by azeotropic distillation of THF prior to use. Magnesium sulfate anhydrous (MgSO₄, Aladdin, AR) and aluminum oxide (Al₂O₃, Aladdin, AR) were washed with CH₂Cl₂ and vacuum-dried prior to use. Hydrochloride (HCl; Aladdin, AR), potassium hydroxide (KOH; Aladdin, AR), 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD; TCI, 98%), tert-butyliminotris(dimethylamino)phosphorane 97%), 1-*tert*-butyl-2,2,4,4,4- $(t-BuP_1;$ Aldrich, pentakis(dimethylamino)- $2\lambda^5$, $4\lambda^5$ - catenadi(phosphazene) (*t*-BuP₂; Aldrich, 2.0 mol L⁻¹ in THF) and triethylborane (Et₃B; TCI, 1.0 mol L⁻¹ in THF) were used as received.

Instrumentation

NMR spectra were recorded at 25 °C on a Bruker AV400 NMR spectrometer using deuterated chloroform (CDCl₃) as the solvent and tetramethylsilane as the internal standard. ¹H NMR

spectra were used to calculate number-average molar mass $(M_{n,NMR})$ by comparing the integrals of signals from end groups and polymer main bodies.

For the relatively high-molar-mass poly(ethylene oxide) PEO samples, size exclusion chromatography (SEC) coupled with a refractive index (RI) detector was conducted in *N*,*N*dimethylformamide (DMF) with LiBr (0.05 mol L⁻¹) at 50 °C and a flow rate of 1.0 mL min⁻¹ using three successively connected Styragel columns (HR2, HR4, HR6). A series of narrowly dispersed PEO standards were used for calibration to obtain the number-average molar mass ($M_{n,SEC}$) and molar mass distribution (D_M). For polymers that are well-soluble in THF, SEC was conducted in THF at 35 °C using two identical PLgel MIXED-C columns at the same flow rate. Calibration was done with a series of narrowly dispersed PEO standards as well.

Matrix assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) measurement was performed on a Bruker Autoflex III Smartbeam MALDI-TOF mass spectrometer (Bruker, Germany). Samples were dissolved in THF (10 mg mL⁻¹) and mixed with a solution of sodium trifluoroacetate in THF (10 mg mL⁻¹) in a volume ratio of 5:1. This solution was then mixed with a solution of matrix, 2,5-dihdroxybenzoic acid in THF (20 mg mL⁻¹), in a volume ratio of 1:20. Then, 0.4 μ L of the final solution was spotted on the target plate (dried-droplet method). The reflective positive ion mode was used to acquire the mass spectra of the samples. Calibration was done externally with poly(methyl methacrylate) standards using the nearest neighbor positions.

Polymer Synthesis

(1) a-Carboxylic ester- ω -hydroxyl PEO, initiated by ethyl 6-hydroxyhexanoate (EH)

A typical procedure of entry 1 in Table 1 is as follows. A round-bottom reaction flask was dried with a heat gun on a vacuum line and transferred into a glovebox where purified EH (176.2 mg, 1.1 mmol), THF (2.2 mL), Et₃B (1.0 mol L⁻¹, 170 μ L, 0.17 mmol), and *t*-BuP₁ (13 μ L, 0.06

mmol) were successively loaded. The flask was then docked back on the vacuum line where purified EO (3.9 mL, 77.0 mmol) was slowly introduced by cryo-distillation at -20 °C. The reaction mixture was gradually warmed up to RT (ca. 25 °C). White solids (crystallized PEO) appeared in 25 min. The amount of precipitates increased so quickly that the stirrer stopped spinning in a few minutes, which was considered as the end point of the reaction. A small aliquot was withdrawn and diluted with 0.6 mL of CDCl₃ containing one drop of acetic acid for ¹H NMR analysis to determine the conversion of EO. The CDCl₃ solution was further diluted with THF for SEC measurement to obtain $M_{n,SEC}$ and D_M . Conv.(EO) = 100%, theoretical number-average molar mass $(M_{n,th}) = 3.2 \text{ kg mol}^{-1}$. $M_{n,SEC}(THF) = 3.2 \text{ kg mol}^{-1}$, \mathcal{D}_{M} = 1.07. One third of the crude product was dissolved in dichloromethane (DCM) containing a few drops of acetic acid and precipitated in *n*-hexane. The product (a white solid) was then collected and dried in vacuum. ¹H NMR (600 MHz, CDCl₃): 4.14-4.10 (CH₃CH₂OCOCH₂CH₂ CH₂CH₂CH₂O-PEO-), 3.73-3.71 (-PEO-CH₂CH₂OH), 3.70-3.59 (-OCH₂CH₂O-), 3.46-CH₂CH₂O-PEO-), 1.67-1.56 (CH₃CH₂OCOCH₂CH₂CH₂CH₂CH₂O-PEO-), 1.40-1.35 (CH₃ PEO-); $M_{n,NMR} = 3.4 \text{ kg mol}^{-1}$.

(2) *a-Carboxyl-\omega-hydroxyl PEO through hydrolysis of a-carboxylic ester-\omega-hydroxyl PEO To another one third of the crude product described in (1) was added THF (3.0 mL), KOH (0.10 g, 1.8 mmol), and water (0.10 mL, 5.6 mmol). The mixture was stirred at 45 °C for 12 h before a small aliquot was withdrawn for ¹H NMR analysis to determine the conversion of carboxylic ester end groups (100%). Then the reaction mixture was acidified by a HCl solution until pH becomes <i>ca.* 3. The crude product was mixed with DCM and filtered. The filtrate was stirred with neutral alumina, dried by anhydrous MgSO₄, and evaporated to dryness to afford α -carboxyl- ω -hydroxyl PEO as a white solid. $M_{n,SEC}$ (THF) = 2.9 kg mol⁻¹, $\mathcal{D}_{M} = 1.07$. ¹H NMR

(3) α-Amide-ω-hydroxyl PEO through aminolysis of α-carboxylic ester-ω-hydroxyl PEO

(4) α -Carboxylic ester- ω -hydroxyl PPO, initiated by EH

A typical procedure of entry 2 in Table 1 is as follows. To a pre-dried reaction flask was successively loaded EH (96.1 mg, 0.60 mmol), PO (2.5 mL, 36.0 mmol), Et₃B (1.0 mol L⁻¹, 90 μ L, 0.09 mmol), and *t*-BuP₂ (2.0 mol L⁻¹, 15 μ L, 0.03 mmol). The mixture was stirred at RT for 12 h, then a small aliquot was withdrawn for ¹H NMR and SEC measurements. Conv.(PO) = 100%, $M_{n,th} = 3.6$ kg mol⁻¹. $M_{n,SEC}$ (THF) = 3.8 kg mol⁻¹, $D_M = 1.07$. Half of the reaction mixture was quenched by a few drops of acetic acid. The crude product was diluted with DCM and stirred with neutral alumina to remove the catalyst residuals. After filtration and evaporation of the solvent, a viscous liquid product was obtained and dried in vacuum. ¹H NMR (600 MHz, CDCl₃): 4.14-4.10 (CH₃CH₂OCOCH₂CH₂CH₂CH₂CH₂CH₂O-PPO-), 3.95-3.90

(5) a-Carboxyl-w-hydroxyl PPO through hydrolysis of a-carboxylic ester-w-hydroxyl PPO

Entries 3~4 followed the same ROP and hydrolysis procedures as entry 1 and 2, respectively. Entries 7~8 followed the same ROP procedures as entry 1 and 2, respectively. Entry 7 used TBD instead of KOH to catalyze the hydrolysis of DH-PEO-OH. After the removal of organic solvent, the hydrolyzed crude product was dissolved in Millipore-Q water, stirred with cationexchange resin (Dowex50WX4) for 3 min, then freeze-dried for 2 days.

(6) α-Carboxyl-ω-hydroxyl PPO/PEO, initiated by oligoCL (CL₈)

To a pre-dried reaction flask was successively loaded CL (1.0 mL, 9.0 mmol), THF (1.2 mL), anhydrous ethanol (66 μ L, 1.1 mmol), and *t*-BuP₂ (2.0 mol L⁻¹, 28 μ L, 0.056 mmol). The

mixture was stirred at RT for 10 min, then a small aliquot was withdrawn for ¹H NMR measurements. Conv.(CL) = 100%, Conv.(ethanol) (initiation efficiency) = 100%. Then Et₃B (1.0 mol L⁻¹, 168 μ L, 0.168 mmol) was added to quench the oligomerization of CL.

Subsequently, *ca.* 1.2 mL of the mixture containing 0.55 mmol of oligoCL was withdrawn and transferred to another flask, followed by addition of PO (3.1 mL, 44 mmol). The new reaction mixture was stirred at RT and quenched after 12 h by addition of a few drops of acetic acid. Conv.(PO) = 100%, $M_{n,th} = 5.6$ kg mol⁻¹. $M_{n,SEC}$ (THF) = 5.9 kg mol⁻¹, $D_M = 1.10$. ¹H NMR (600 MHz, CDCl₃): 4.14-4.11 (CH₃CH₂O–CL₈–), 4.07-4.05 (–CH₂CH₂CH₂CH₂CH₂CH₂OCO–), 3.95-3.90 (–PPO–CH₂CH(CH₃)OH), 3.70-3.34 (–OCH₂CH(CH₃)O–), 3.33-3.30 (–OCOCH₂ CH₂CH₂CH₂CH₂O–PPO–), 2.38-2.26 (–OCOCH₂CH₂CH₂CH₂CH₂CH₂-), 1.70-1.55 (–OCOCH₂ CH₂CH₂CH₂CH₂-), 1.43-1.34 (–OCOCH₂CH₂CH₂CH₂CH₂-), 1.27-1.24 (CH₃CH₂O–CL₈–), 1.21-1.08 (–OCH₂CH(CH₃)O–); $M_{n,NMR} = 5.6$ kg mol⁻¹.

Purification and hydrolysis of the crude product of CL₈-PEO and CL₈-PPO followed the same procedure of entry 1 and 2, respectively.

Fig. S1. ¹H NMR spectra (isolated products) of EH-initiated α -carboxylic ester- ω -hydroxyl PEO (entry 1 in Table 1) (a), the corresponding α -carboxyl- ω -hydroxyl PEO obtained after hydrolysis (b), and the corresponding α -amide- ω -hydroxyl PEO obtained after aminolysis (c) with integral values noted.

Fig. S2. MALDI-TOF MS spectra (left), SEC traces (middle; RI signals, THF, 35 °C, PEO standards; with $M_{n,SEC}$ and D_M noted), and ¹H NMR spectra (right; CDCl₃; with $M_{n,NMR}$ noted) of EH-initiated α -carboxylic ester- ω -hydroxyl PPO corresponding to entry 2 in Table 1 (a) and the α -carboxyl- ω -hydroxyl PPO obtained after hydrolysis of the carboxylic ester end group (b). Mass signals in the MALDI-TOF MS spectra correspond to PPOs ionized by sodium cations. Calculated masses for [EH-PO₅₆]Na⁺ (a) and hydrolyzed [EH-PO₅₆]Na⁺ (b) are 3436.8 and 3408.8 Da, respectively.

Fig. S3. ¹H NMR spectra (isolated products) of EH-initiated α -carboxylic ester- ω -hydroxyl PPO (entry 2 in Table 1) (a) and the corresponding α -carboxyl- ω -hydroxyl PPO obtained after hydrolysis (b) with integral values noted.

Fig. S4. SEC traces (left; crude products; RI signals; DMF, 50 °C, PEO standards; with $M_{n,SEC}$ and D_M noted) and ¹H NMR spectra (right; isolated products; CDCl₃; with $M_{n,NMR}$ noted) of a relatively high-molar-mass α -carboxyl- ω -hydroxyl PEO (a) and the corresponding EH-initiated α -carboxylic ester- ω -hydroxyl PEO before hydrolysis (entry 3 in Table 1).

Fig. S5. SEC traces (left; crude products; RI signals; THF, 35 °C, PEO standards; with $M_{n,SEC}$ and D_M noted) and ¹H NMR spectra (right; isolated products; CDCl₃; with $M_{n,NMR}$ noted) of a relatively high-molar-mass α -carboxyl- ω -hydroxyl PPO (a) and the corresponding EH-initiated α -carboxylic ester- ω -hydroxyl PPO before hydrolysis (entry 4 in Table 1).

Fig. S6. ¹H NMR spectrum (crude product; CDCl₃) of the oligoCL (DP = 8) synthesized by ethanol-initiated oligomerization of CL with *t*-BuP₂ as the catalyst ([CL]₀/[ethanol]₀/[*t*-BuP₂] = 8/1/0.05) and used as an initiator for the ROP of EO and PO (entries 5 and 6 in Table 1).

Fig. S7. SEC traces (left; crude products; RI signals; THF, 35 °C, PEO standards; with $M_{n,SEC}$ and D_M noted) and ¹H NMR spectra (right; isolated products; CDCl₃; with $M_{n,NMR}$ noted) of α -carboxyl- ω -hydroxyl PEO (a) and the corresponding oligoCL-initiated PEO (CL₈-PEO) before hydrolysis (b) (entry 5 in Table 1).

Fig. S8. SEC traces (left; crude products; RI signals; THF, 35 °C, PEO standards; with $M_{n,SEC}$ and D_M noted) and ¹H NMR spectra (right; isolated products; CDCl₃; with $M_{n,NMR}$ noted) of α -carboxyl- ω -hydroxyl PPO (a) and the corresponding oligoCL-initiated PPO (CL₈-PPO) before hydrolysis (b) (entry 6 in Table 1).

Fig. S9. MALDI-TOF MS spectra (left; isolated products), SEC traces (middle; crude products; RI signals, DMF, 50 °C, PEO standards; with $M_{n,SEC}$ and D_M noted), and ¹H NMR spectra (right; isolated products; CDCl₃; with $M_{n,NMR}$ noted) of DH-initiated α -dicarboxylic ester- ω hydroxyl PEO corresponding to entry 7 in Table 1 (a) and the α -dicarboxyl- ω -hydroxyl PEO obtained after hydrolysis of the dicarboxylic ester end group (b). Mass signals in the MALDI-TOF MS spectra correspond to PEOs ionized by sodium cations. Calculated masses for [DH-EO₃₇]Na⁺ (a) and hydrolyzed [DH-EO₃₇]Na⁺ (b) are 1858.9 and 1802.9 Da, respectively.

Fig. S10. MALDI-TOF MS spectrum (left; isolated product), SEC traces (middle; crude product; RI signals, THF, 35 °C, PEO standards; with $M_{n,SEC}$ and D_M noted), and ¹H NMR spectra (right; isolated product; CDCl₃; with $M_{n,NMR}$ noted) of DH-initiated α -dicarboxylic ester- ω -hydroxyl PPO corresponding to entry 8 in Table 1. Mass signals in the MALDI-TOF MS spectrum correspond to PPOs ionized by sodium cations. Calculated masses for [DH-PO₄₀]Na⁺ is 2551.2 Da.