A one-dimensional switchable dielectric material with Pd uptake function: $\left[\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NH}_{2} \mathrm{~S}_{2} \mathrm{BiCl}_{5}\right.$

Yu-Ting Liu, Lei He, Ping-Ping Shi, Qiong Ye* and Da-Wei Fu*

EXPERIMENTAL SECTION

Syntheses

All reagents in this article were analytical reagents and used without further purification.
1 was obtained through slowly evaporation of the hydrochloric acid solution (about 15 mL) containing thiazolidine $(0.8916 \mathrm{~g}, 10 \mathrm{mmol})$ and bismuth oxide $(2.3298 \mathrm{~g}, 5 \mathrm{mmol})$ at room temperature. Colorless transparent ribbon crystals were grown after about one week. The phase purity of $\mathbf{1}$ was confirmed by powder X-ray diffraction, which matches well with the simulation result of single crystal structure (Fig. S1). In the infrared (IR) spectra of 1 (Fig. S2), several vibration peaks at approximately 3000,1300 and $700 \mathrm{~cm}^{-1}$ are ascribed to stretching vibration absorption of the $\mathrm{C}-\mathrm{H}, \mathrm{C}-\mathrm{N}$ and $\mathrm{C}-\mathrm{S}$ bond, respectively, indicating the existence of thiazolidine cation in $\mathbf{1}$. Furthermore, $\mathbf{1}$ is non-hygroscopic and can exist stably in the air with a melting point of 459 K . Thermogravimetric analysis (TGA) indicates that $\mathbf{1}$ begins to decompose at 461 K.
$\mathbf{1}-\mathbf{P d}$ from treatment of $\mathbf{1}$ with $\mathrm{Pd}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{Cl}_{2}$. Crystal sample $\mathbf{1}(0.5665 \mathrm{~g}, 1 \mathrm{mmol})$ was placed into a saturated dichloromethane solution (about 20 mL) of $\operatorname{Pd}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{Cl}_{2}(0.5188 \mathrm{~g}$, 2 mmol). The crystal turned from light white into dark reddish brown within several hours. $\mathbf{1 -}$ Pd was obtained after left it to stand undisturbed for two days at room temperature. Inductively coupled plasma (ICP) elemental analysis revealed the S / Pd ratio of $2.7: 1$ for the $\mathbf{1}-\mathbf{P d}$. IR analysis confirmed the existence of thiazolidine cation in material $\mathbf{1 - P d} \mathbf{1 - P d}$ is also nonhygroscopic and stable in the air with a melting point of 460 K . Moreover, the stability of $\mathbf{1}-\mathbf{P d}$ was proved by its TGA curve when it is below 461 K .

Treatment of $\mathbf{1}$ by HgCl_{2}. Crystal sample $\mathbf{1}(0.5665 \mathrm{~g}, 1 \mathrm{mmol})$ were placed into a saturated ethanol solution (about 20 mL) of $\mathrm{HgCl}_{2}(0.5430 \mathrm{~g}, 2 \mathrm{mmol}) . \mathbf{1}-\mathbf{H g}$ was obtained after left it to
stand undisturbed for two days at room temperature. Inductively coupled plasma (ICP) elemental analysis revealed the S / Hg ratio of 11.3:1 for the $\mathbf{1 - H g}$.

X-ray Crystallography

Variable-temperature X-ray single crystal diffraction data of compound $\mathbf{1}$ were collected on a Rigaku Saturn 924 diffractometer with $\mathrm{Mo}-\mathrm{K} \alpha$ radiation $(\lambda=0.71073 \AA)$. The structural data of 1 were collected at 213 K and 363 K . Data were processed by the Crystalclear software package (Rigaku). Variable-temperature crystal structures of $\mathbf{1}$ were solved by utilizing direct methods and refined by utilizing full-matrix methods based on F^{2} through the SHELXLTL software package. All non-H atoms were refined anisotropically and the position of all H atoms were generated geometrically. Crystallographic data and structure refinement details are summarized in Table S 1 .

CCDC 2009547 and 2009550 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Ceter via www.ccdc.cam.ac.uk/data.request/cif.

Powder X-ray Diffraction

The powder X-ray diffraction (PXRD) analysis of $\mathbf{1}$ and $\mathbf{1}-\mathbf{P d}$ were performed on PANalytical X'Pert PRO X-Ray Diffractometer at 293 K. The diffraction patterns were obtained within 2θ range of $5-50^{\circ}$ with a step size of 0.02°.

DSC and TGA Measurements

Differential scanning calorimetry (DSC) analysis of $\mathbf{1}(18.3 \mathrm{mg})$ and $\mathbf{1 - P d}(18.5 \mathrm{mg})$ were performed on Perkin-Elmer Diamond DSC instrument with a heating rate of $10 \mathrm{~K} / \mathrm{min}$ under nitrogen atmosphere. Thermogravimetric analysis (TGA) of compounds $\mathbf{1}$ and $\mathbf{1 - P d}$ were performed on a Netzsch Model TG 209F1 instrument. The measurements were collected in nitrogen flow from 307 K to 1050 K at a rate of $20 \mathrm{~K} / \mathrm{min}$, and the result shows that compounds 1 and 1-Pd begin to decompose at about 461 K (Fig. S3).

Dielectric Measurements

Dielectric constants ε^{\prime} and $\varepsilon^{\prime \prime}\left(\varepsilon=\varepsilon^{\prime}-\mathrm{i} \varepsilon^{\prime \prime}\right.$, where ε^{\prime} and $\varepsilon^{\prime \prime}$ are the real and imaginary parts, respectively) of $\mathbf{1}$ and $\mathbf{1 - P d}$ were tested on a Tonghui TH2828A instrument within the frequency range of 5 kHz to 1 MHz . The powder-pressed pellets with silver painted on both sides were used to measure dielectric constants as the electrodes.

Ultraviolet-visible (UV-vis) Absorption Spectrum

At room temperature, the UV-vis diffuse reflectance spectrum of $\mathbf{1}$ and $\mathbf{1}-\mathbf{P d}$ (polycrystalline samples) were measured on Shimadzu (Tokyo, Japan) UV-2600 spectrophotometer. BaSO_{4} was selected as the standard (100\%) reflectivity reference.

Conductivity Measurements

At room temperature, the electrical conductivity values of materials $\mathbf{1}, \mathbf{1}-\mathbf{P d}$ and $\mathbf{1 - H g}$ were measured on ST2722-SD four-terminal powder resistivity tester.

Fig. S1. Powder X-ray diffraction patterns at 293 K : a) calculated diffraction pattern from the single-crystal structure of $\mathbf{1}$; b) $\mathbf{1}$; c) $\mathbf{1}-\mathbf{P d}$.

Fig. S2 IR spectrums of $\mathbf{1}$ and $\mathbf{1 - P d}$.

Fig. S3 Thermogravimetric analysis (TGA) plots of $\mathbf{1}$ and $\mathbf{1 - P d}$.

Fig. S4 The minimum asymmetric unit of $\mathbf{1}$ at (1) LTP and (2) HTP.

Fig. S5 The Hirshfeld $d_{\text {norm }}$ surfaces and the 2D fingerprint plots of the thiazolidine cations in (a) LTP and (b) HTP.

Fig. S6 Photo images of the crystals: a) 1; b) 1-Pd.

Fig. S7 Dielectric constants $\left(\varepsilon^{\prime}\right)$ of $\mathbf{1}$ at $5 \mathrm{kHz}, 10 \mathrm{kHz}, 100 \mathrm{kHz}$, and 1000 kHz upon heating.

Fig. S8 Dielectric constants (ε^{\prime}) of 1-Pd at $5 \mathrm{kHz}, 10 \mathrm{kHz}, 100 \mathrm{kHz}$, and 1000 kHz upon heating.

Fig. S9 The electrical conductivity of $\mathbf{1}$ and $\mathbf{1 - H g}$.

Table S1. Crystal Data and Structure Refinement Details of sample 1.

Chemical Formula	$\left[\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NH}_{2} \mathrm{~S}_{2} \mathrm{BiCl}_{5}\right.$	
$T(\mathrm{~K})$	213 K	363 K
Formula weight	566.56	566.56
Crystal system	monoclinic	monoclinic
Space group	$P 2_{1} / c$	$P 2_{1} / c$
a / \AA	$12.1998(5)$	$12.2320(4)$
b / \AA	$7.4008(3)$	$7.5245(2)$
c / \AA	$21.8754(10)$	$22.0936(8)$
$\alpha($ deg $)$	90	90
$\beta($ deg $)$	$123.518(3)$	$123.339(2)$
$\gamma($ deg $)$	90	90
V / \AA^{3}	$1646.66(13)$	$1698.84(10)$
Z	4	4
$F(000)$	1064	1064
Collected reflections	7508	8011
Independent reflections	2501	2644

Parameters refined	145	145
GOF	1.022	1.067
R_{1}	0.0349	0.0401
$w R_{2}$	0.0854	0.1075

Table S2. Selected bond lengths $[\AA]$ for $\mathbf{1}$ at 213 K and 363 K .

Bond lengths	213 K	363 K
$\mathrm{BI} 1-\mathrm{Cl1}$	2.6758(28)	2.6471(49)
$\mathrm{BI} 1-\mathrm{Cl} 2$	2.6167(17)	2.6217(22)
$\mathrm{BI} 1-\mathrm{Cl} 3$	$2.5167(20)$	2.5241(21)
BI1-Cl4	2.7256(29)	2.7221 (50)
$\mathrm{BI} 1-\mathrm{Cl} 5$	$2.8058(17)$	2.8045(26)
Bil- $\mathrm{Cl}^{\text {i }}$	3.0086(18)	2.9812(28)
$\mathrm{Cl} 5-\mathrm{Bi1}{ }^{\text {ii }}$	3.0086(18)	2.9812(28)
$\mathrm{N} 1-\mathrm{C} 1$	$1.4574(103)$	1.3963(132)
C1-S1	$1.7963(137)$	1.7743(184)
S1-C2	1.8167(95)	1.7549(109)
C2-C3	$1.5070(138)$	1.5037(222)
C3-N1	$1.5059(161)$	$1.4220(249)$
N2-C4	$1.5026(112)$	1.4397(165)
$\mathrm{C} 4-\mathrm{S} 2$	$1.7786(138)$	1.7708(257)
S2-C5	$1.7934(122)$	1.8450(151)
C5-C6	$1.4917(185)$	$1.4090(276)$
C6-N2	$1.4715(217)$	1.4632(278)

213 K: Symmetry codes: (i) $-\mathrm{x}+2, \mathrm{y}+1 / 2,-\mathrm{z}+1 / 2$; (ii) $-\mathrm{x}+2, \mathrm{y}-1 / 2,-\mathrm{z}+1 / 2$.
363 K: Symmetry codes: (i) $-\mathrm{x}+1, \mathrm{y}+1 / 2,-\mathrm{z}+3 / 2$; (ii) $-\mathrm{x}+1, \mathrm{y}-1 / 2,-\mathrm{z}+3 / 2$.

Table S3. Selected bond angles [${ }^{\circ}$] for $\mathbf{1}$ at 213 K and 363 K .

Bond angles	213 K	363 K

$\mathrm{Cl} 1-\mathrm{BI} 1-\mathrm{Cl} 2$	87.247(66)	89.810(91)
$\mathrm{Cl} 1-\mathrm{BI} 1-\mathrm{Cl} 3$	92.239(74)	89.782(100)
Cl1-BI1-CI4	176.013(69)	176.447(115)
Cl1-BI1-CI5	92.522(66)	89.971(96)
$\mathrm{Cl} 1-\mathrm{Bi} 1-\mathrm{Cl} 5^{\mathrm{i}}$	90.057(66)	90.197(102)
Cl2-BI1-CI3	93.910(66)	95.552(76)
Cl2-BI1-CI4	88.785(58)	88.991(29)
Cl2-BI1-CI5	179.741(50)	177.561(74)
$\mathrm{Cl} 2-\mathrm{Bi1}-\mathrm{Cl} 5^{\text {i }}$	95.872(57)	93.024(75)
$\mathrm{Cl} 3-\mathrm{BI} 1-\mathrm{CI} 4$	87.704(69)	87.005(90)
Cl3-BI1-CI5	86.205(66)	86.876(79)
$\mathrm{Cl} 3-\mathrm{Bi1}-\mathrm{Cl} 5^{\text {i }}$	170.049(68)	171.424(82)
C14-BI1-CI5	91.452(58)	91.368(85)
Cl4-Bi1-Cl5 ${ }^{\text {i }}$	90.676(62)	93.205(95)
$\mathrm{Cl} 5-\mathrm{Bi1}-\mathrm{Cl} 5^{\text {i }}$	84.020(55)	84.548(81)
Bil-Cl5- $\mathrm{Bi}^{\text {ii }}$	149.142(70)	154.225(106)
N1-C1-S1	106.622(608)	109.450(919)
$\mathrm{C} 1-\mathrm{S} 1-\mathrm{C} 2$	93.849(527)	95.735(683)
$\mathrm{S} 1-\mathrm{C} 2-\mathrm{C} 3$	106.159(622)	106.088(898)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 1$	104.756(760)	113.988(1308)
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 1$	109.934(880)	114.629(1337)
$\mathrm{N} 2-\mathrm{C} 4-\mathrm{S} 2$	105.554(593)	106.844(1100)
C4-S2-C5	89.953(604)	91.078(936)
S2-C5-C6	107.375(937)	107.560(1291)
C5-C6-N2	109.398(1086)	113.065(1555)
C6-N2-C4	111.766(1031)	112.580(1489)

213 K: Symmetry codes: (i) $-\mathrm{x}+2, \mathrm{y}+1 / 2,-\mathrm{z}+1 / 2$; (ii) $-\mathrm{x}+2, \mathrm{y}-1 / 2,-\mathrm{z}+1 / 2$.
363 K: Symmetry codes: (i) $-\mathrm{x}+1, y+1 / 2,-z+3 / 2$; (ii) $-x+1, y-1 / 2,-z+3 / 2$.

Table S4. Selected torsion angles [${ }^{\circ}$] for $\mathbf{1}$ at 213 K and 363 K .

Bond angles	213 K	363 K
$\mathrm{~S} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 1$	$-37.0(7)$	$-2.1(13)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 2$	$46.9(8)$	$-0.2(17)$
$\mathrm{C} 1-\mathrm{S} 1-\mathrm{C} 2-\mathrm{C} 3$	$16.6(6)$	$2.9(9)$
$\mathrm{C} 2-\mathrm{S} 1-\mathrm{C} 1-\mathrm{N} 1$	$9.5(6)$	$-3.1(10)$
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 1-\mathrm{S} 1$	$-33.9(8)$	$2.3(15)$
$\mathrm{S} 2-\mathrm{C} 5-\mathrm{C} 6-\mathrm{N} 2$	$24.3(10)$	$11.3(17)$
$\mathrm{C} 4-\mathrm{N} 2-\mathrm{C} 6-\mathrm{C} 5$	$2.2(11)$	$-21.9(12)$
$\mathrm{C} 4-\mathrm{S} 2-\mathrm{C} 5-\mathrm{C} 6$	$-35.3(8)$	$27.8(10)$
$\mathrm{C} 5-\mathrm{S} 2-\mathrm{C} 4-\mathrm{N} 2$	$35.7(6)$	$-27.5(13)$
$\mathrm{C} 6-\mathrm{N} 2-\mathrm{C} 4-\mathrm{S} 2$	$-27.8(9)$	

Table S5. Hydrogen bonds under 213 K for 1.

$\mathrm{D} — \mathrm{H} \cdots \mathrm{A}$	$\mathrm{D}-\mathrm{H}$	$\mathrm{H} \cdots \mathrm{A}$	$\mathrm{D} \cdots \mathrm{A}$	$<\mathrm{DHA}$
$\mathrm{N} 1 — \mathrm{H} 1 \mathrm{~A} \cdots \mathrm{Cl}^{\text {viii }}$	0.890	2.514	3.291	146.20
$\mathrm{~N} 1 — \mathrm{H} 1 \mathrm{~B} \cdots \mathrm{Cl} 1^{\text {ix }}$	0.890	2.373	3.247	167.01
$\mathrm{~N} 2 — \mathrm{H} 2 \mathrm{~A} \cdots \mathrm{Cl}^{\text {iii }}$	0.890	2.326	3.177	160.15
$\mathrm{~N} 2 — \mathrm{H} 2 \mathrm{~B} \cdots \mathrm{Cl}^{\text {vi }}$	0.890	2.280	3.158	168.90
$\mathrm{C} 1 — \mathrm{H} 1 \mathrm{D} \cdots \mathrm{Cl}^{\text {viii }}$	0.970	2.861	3.544	128.19
$\mathrm{C} 3 — \mathrm{H} 3 \mathrm{~A} \cdots \mathrm{Cl}^{\text {vii }}$	0.970	2.812	3.755	164.40
$\mathrm{C} 3 — \mathrm{H} 3 \mathrm{~B} \cdots \mathrm{Cl}^{\text {viii }}$	0.970	2.938	3.841	155.33
$\mathrm{C} 4 — \mathrm{H} 4 \mathrm{~A} \cdots \mathrm{Cl1}^{\text {iv }}$	0.970	2.782	3.588	141.71
$\mathrm{C} 4 — \mathrm{H} 4 \mathrm{~B} \cdots \mathrm{Cl}^{\text {iii }}$	0.970	2.905	3.754	140.98
$\mathrm{C} 5 — \mathrm{H} 5 \mathrm{~A} \cdots \mathrm{~S}^{\mathrm{v}}$	0.970	3.025	3.834	146.81

Symmetry codes: (iii) $-\mathrm{x}+1, \mathrm{y}-1 / 2,-\mathrm{z}+1 / 2$; (iv) $\mathrm{x}-1, \mathrm{y}, \mathrm{z}$; (v) $\mathrm{x}, \mathrm{y}-1, \mathrm{z}-1$; (vi) $-\mathrm{x}+1, \mathrm{y}+1 / 2$, $-\mathrm{z}+1 / 2$; (vii) $\mathrm{x}-1,-\mathrm{y}+3 / 2, \mathrm{z}+1 / 2$; (viii) $-\mathrm{x}+1,-\mathrm{y}+1,-\mathrm{z}+1$; (ix) $-\mathrm{x}+1,-\mathrm{y}+2,-\mathrm{z}+1$.

Table S6. Hydrogen bonds under 363 K for 1.

| $\mathrm{D}-\mathrm{H} \cdots \mathrm{A}$ | $\mathrm{D}-\mathrm{H}$ | $\mathrm{H} \cdots \mathrm{A}$ | $\mathrm{D} \cdots \mathrm{A}$ | $<$ DHA |
| :--- | :--- | :--- | :--- | :--- | :--- |

$\mathrm{N} 1 — \mathrm{H} 1 \mathrm{~A} \cdots \mathrm{Cl}^{\mathrm{v}}$	0.890	2.958	3.606	131.05
$\mathrm{~N} 1 — \mathrm{H} 1 \mathrm{~A} \cdots \mathrm{Cl}^{\mathrm{v}}$	0.890	2.723	3.350	128.48
$\mathrm{~N} 1 — \mathrm{H} 1 \mathrm{~B} \cdots \mathrm{Cl}^{\mathrm{iv}}$	0.890	2.581	3.323	141.31
$\mathrm{~N} 2 — \mathrm{H} 2 \mathrm{~A} \cdots \mathrm{Cl} 2$	0.890	2.374	3.236	162.96
$\mathrm{~N} 2 — \mathrm{H} 2 \mathrm{~B} \cdots \mathrm{Cl}^{\mathrm{vi}}$	0.890	2.410	3.283	166.54
$\mathrm{C} 4 — \mathrm{H} 4 \mathrm{~A} \cdots \mathrm{Cl1}^{\mathrm{i}}$	0.970	2.840	3.588	134.49
$\mathrm{C} 4 — \mathrm{H} 4 \mathrm{~A} \cdots \mathrm{Cl}^{\mathrm{vi}}$	0.970	2.988	3.646	126.19
$\mathrm{C} 4 — \mathrm{H} 4 \mathrm{~B} \cdots \mathrm{Cl} 4$	0.970	2.981	3.825	146.23

Symmetry codes: (i) $-\mathrm{x}+1, \mathrm{y}+1 / 2,-\mathrm{z}+3 / 2$; (iii) $\mathrm{x}+1, \mathrm{y}, \mathrm{z}$; (iv) $-\mathrm{x}+1,-\mathrm{y}+1,-\mathrm{z}+1$; (v) $-\mathrm{x}+1,-\mathrm{y}$, $-\mathrm{Z}^{+} 1$; (vi) $x, y+1, z$.

