Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2020

Supplementary Information

CH-π Interaction Between Cross-Strand Amino Acid Pair Stabilizes β-hairpins

Pritha Ghosh and Jayanta Chatterjee*

Molecular Biophysics Unit, Indian Institute of Science, Bengaluru 560012, India

Table of Contents

1.	Materials and Methods	S1-S2
2.	Characterization through HPLC and Mass spectrometry	S3
3.	¹ H NMR spectra and chemical shifts of Peptide 1 and its controls	
4.	¹ H NMR spectra and chemical shifts of Peptide 2 and its controls	.S6-S7
5.	¹ H NMR spectra and chemical shifts of Peptide 3 and its controls	
6.	¹ H NMR spectra and chemical shifts of Peptide 4 and its controls	.S10-S11
7.	Characteristic β-hairpin NOEs observed in Peptides 1-4	S12
8.	¹ H NMR spectra and chemical shifts of Peptide 5 and its controls	.S13-S14
9.	¹ H NMR spectra and chemical shifts of Peptide 6 and its controls	.S15-S16
10.	¹ H NMR spectra and chemical shifts of Peptide 7 and its controls	.S17-S18
11.	¹ H NMR spectra and chemical shifts of Peptide 8 and its controls	
12.	¹ H NMR spectra and chemical shifts of Peptide 9 and its controls	
13.	¹ H NMR spectra and chemical shifts of Peptide 10 and its controls	S23-S24
14.	Chemical shift deviation and ΣCSD of Peptides 3,5-10	S25
15.	Relative upfield shifts of the side-chain protons of 11 th residue in Peptides 3,5-10	. S26-S30
16.	Observed NOEs between $CH-\pi$ donor-acceptor pair in Peptides 3,5-10	S31-S37
17.	Chemical Shifts of Peptides B, C, D and F	S38
18.	Double mutant cycle analysis	. S39-S40
19.	Fraction folded and $\Delta G_{\rm f}$ of all the peptides	. S40
20.	Trp-Leu pairing in protein-ligand interactions	S41
21.	References	. S42

Materials and Methods:

General Information

All the Fmoc and orthogonally protected amino acids, 1-hydroxybenzotriazole (HOBt) and Rink Amide AM resin were purchased from GL Biochem, Shanghai, China. *N*,*N*'-Dimethylformamide (DMF), *N*,*N*'-Diisopropylcarbodiimide (DIC), *N*, *N*-diisopropylethylamine (DIPEA), Trifluoroacetic acid (TFA), Triisopropylsilane (TIPS), Glacial acetic acid, Calcium hydride, Piperidine and Iodine were purchased from Sigma-Aldrich. All the above reagents were used as commercially supplied. Solvents for RP-HPLC were purchased as HPLC grade and used without further purification. Dichloromethane was dried with Calcium hydride. All the other solvents were used as commercially supplied.

All the reactions were performed in oven-dried glass apparatus. Reactions on solid support were carried out in plastic syringes (10 ml) fitted with a frit column plate.

High-resolution mass spectra were recorded on a BrukerDaltonics ESI Q TOF- (Maxix Impact) with Nano LC (Proxeon easy nLC) mass spectrometer. ESI mass spectra were recorded in positive ion mode on a HCT ultra ETD II ion trap spectrometer (PTM Discovery System, BrukerDaltonics, Germany). MALDI mass spectra were recorded on UltrafleXtreme TOF/TOF (BrukerDaltonics, Germany) and the data were processed and analysed using the Flex Analysis 3.1 software.

Nuclear magnetic resonance (NMR) spectra were recorded either on a 700 MHz BrukerAvance spectrometer (Bruker, Karlsruhe, Germany), or a 500 MHz Agilent NMR spectrometer.

Analytical RP-HPLC was performed on a Shimadzu UFLC system equipped with Prominence Diode Array (PDA) UV Detector at 210 nm, 254 nm and 270 nm using an analytical column (Phenomenex C18, 250 mm x 4.6 mm I.D., 5 μ m) at a flow rate of 1 mL/min. Purifications were performed using a semi-preparative column (Phenomenex C18, 250 mm x 10 mm I.D., 5 μ m) at a flow rate of 4 mL/min.

Peptide Synthesis

Peptides **1** to **10**, peptides designed for double mutant cycle, their respective cyclic and unfolded controls were synthesized on Rink Amide AM resin (0.7 mmolg-1) on 200 mg scale (0.16 mmol) using standard Fmoc-based strategy. The resin was swollen in DMF and deprotected with 20% piperidine in DMF (5 min x 1, 15 min x 1) followed by thorough washing with DMF (3 times). The C-teminal amino acid, Fmoc-Gln(Trt)-OH (2.5 eq.) was loaded onto the resin by using standard coupling reagents (2.5 equiv HOBt, 2.5 equiv DIC) in DMF for 2 hours at room temperature. The entire peptide was assembled with this same protocol as well. In case of the cyclic (fully folded) controls of the respective peptides, amino acids were assembled on Rink Amide AM resin in a similar fashion to its linear counterparts with exception of the incorporation of Fmoc-Cys(Acm)-OH at both the N- and C-termini. The peptides were cyclized by oxidation using 4 equiv. of iodine in DMF for 2 hours.

N-terminal Acetylation of the Peptide

After the final Fmoc deprotection of all the peptides and their respective unfolded and fully folded controls, the N-terminal was acetylated with acetic anhydride (2.5 equiv) and DIPEA (2.5 equiv) for 5 mins twice in DCM at room temperature. The resin was then washed thoroughly with DMF (5 times) followed by DCM (2 times).

Global Deprotection and Cleavage from the Resin

All the peptides and their controls were cleaved off from the resin and globally deprotected by using the cleavage cocktail TFA: TIPS: H₂O (95: 2.5: 2.5) for 30 minutes at room temperature. The cleaved peptide solution was then precipitated in chilled diethyl ether, centrifuged twice and dissolved in water for purification by RP-HPLC.

Purification by RP-HPLC

A suitably adjusted 20-minute gradient of 15% B to 45% B was used for purification of compounds **1** to **10**, peptides of double mutant cycles and their respective unfolded and cyclic controls, where solvent A was 0.1% TFA in H₂O and B was 0.1% TFA in acetonitrile.

NMR Acquisition

For acquiring NMR all the peptides were dissolved in 100 mM sodium acetate buffer (pH 3.8) H₂O: D₂O (9:1). In all the compounds, 0.1% TMSP was used as an internal standard ($\delta = 0$ ppm). Standard Bruker pulse sequences *zgesgp* for ¹H, *mlevesgpph* (60 ms mixing time) for TOCSY and *roesyesgpph* (100 ms mixing time) for ROESY were used to acquire the NMR data. Two-dimensional data were obtained using 2048 data points in the direct dimension and 512 data points in the indirect dimension.

The NMR spectra were acquired using peptide concentrations of 1-2 mM at room temperature (298K).

All NMR data were processed using iNMR (www.inmr.net), and the 2D NMR data were analyzed with SPARKY.¹ The chemical shift tables were generated from TOCSY and ¹H spectra. The sequential assignments and inter- and intra-residue NOEs were determined through ROESY. The NOEs were then integrated and the integration values were converted to distances using the formula $D = A^*(B/X)^{1/6}$, where *X* is the integrated peak volume, *B* is the peak volume of Gly7-HA, *A* is the distance between the two HA protons of Gly7.

Determination of folding free energy (ΔG_f) of the peptides

The percentage of β -sheet population and ΔG_f were calculated from the H^{α} chemical shifts for each peptide at the reporter residues (Val3, Val5, Lys8 and Ile10). These reporter residues are located at the hydrogen-bonded position which allows accurate determination of β -sheet folded fraction. Fraction folded at each residue were calculated by Equation 1;

Percentage of Fraction Folded = $[(\delta_{obs}-\delta_U) / (\delta_F-\delta_U)]*100$

Where, δ_{obs} is the H^{α} chemical shift of the peptide of interest, δ_U is the H_{α} chemical shift of its unfolded control in which the D-amino acid is replaced with the L-amino acid and δ_F is the H^{α} chemical shift of its fully folded control obtained by cyclizing the peptide through disulfide bond formation. The error in NMR shift assignment was considered to be 0.01ppm and the final values were calculated using error propagation method.²

The equilibrium constant was calculated using Equation 2:

K = (*Fraction Folded*) / (1- *Fraction Folded*)

Finally, the $\Delta G_{\rm f}$ was calculated using Equation 3:

 $\Delta G_{\rm f} = -RT lnK$

The $\Delta G_{\rm f}$ was calculated at each reporter positions and the average of the four values have been reported.

Table S1: Characterization o	f compounds th	rough RP-HPLC and	Mass Spectrometry.
------------------------------	----------------	-------------------	--------------------

Peptides	Sequence	RP-HPLC	Mass spectrometry	
-	1	Retention time	Calculated	Observed
		(mins)	[M+H] ⁺ (Da)	$[M+H]^{+}(Da)$
1	Ac-RYVEV-pG-KKILQ-NH ₂	13.9	1470.7840	1470.8061
2	Ac-RFVEV-pG-KKILQ-NH ₂	14.6	1454.7850	1455.5200
3	Ac-RWVEV-pG-KKILQ-NH ₂	14.3	1493.8220	1493.9939
4	Ac-RHVEV-pG-KKILQ-NH2	13.3	1444.7540	1445.1933
5	Ac-RWVEV-pG-KKINvaQ-NH ₂	14.5	1479.7950	1479.8090
6	Ac-RWVEV-pG-KKINleQ-NH2	14.8	1493.8220	1493.9181
7	Ac-RWVEV-pG-KKIMQ-NH ₂	17.5	1551.8550	1552.4176
8	Ac-RWVEV-pG-KKIIQ-NH ₂	17.2	1493.8220	1494.5462
9	Ac-RWVEV-pG-KKIVQ-NH ₂	14.5	1479.7950	1479.4407
10	Ac-RWVEV-pG-KKITQ-NH ₂	16.1	1481.7670	1481.8062
В	Ac-RWVEV-pG-KKIAQ-NH ₂	14.2	1451.7450	1452.4146
С	Ac-RAVEV-pG-KKILQ-NH ₂	15.1	1378.6870	1378.8104
D	Ac-RAVEV-pG-KKIAQ-NH ₂	12.3	1336.6060	1337.6654
F	Ac-RAVEV-PG-KKINvaQ-NH ₂	13.5	1364.6603	1364.7944
1 cont	Ac-RYVEV-PG-KKILQ-NH ₂	13.8	1470.7840	1471.0103
2 cont	Ac-RFVEV-PG-KKILQ-NH ₂	14.7	1454.7850	1454.8937
3 cont	Ac-RWVEV-PG-KKILQ-NH ₂	14.3	1493.8220	1493.8507
4 cont	Ac-RHVEV-PG-KKILQ-NH ₂	13.1	1444.7540	1445.5408
5 cont	Ac-RWVEV-PG-KKINvaQ-NH ₂	14.5	1479.7950	1479.8093
6 cont	Ac-RWVEV-PG-KKINleQ-NH ₂	15.0	1493.8220	1493.9889
7 cont	Ac-RWVEV-PG-KKIMQ-NH ₂	17.4	1551.8550	1551.9909
8 cont	Ac-RWVEV-PG-KKIIQ-NH ₂	17.2	1493.8220	1494.9804
9 cont	Ac-RWVEV-PG-KKIVQ-NH ₂	14.5	1479.7950	1481.2131
10 cont	Ac-RWVEV-PG-KKITQ-NH ₂	16.1	1481.7670	1481.8111
B cont	Ac-RWVEV-PG-KKIAQ-NH ₂	14.2	1451.7450	1453.0167
C cont	Ac-RAVEV-PG-KKILQ-NH ₂	13.6	1378.6870	1378.7919
D cont	Ac-RAVEV-PG-KKIAQ-NH ₂	12.3	1336.6060	1336.9959
F cont	Ac-RAVEV-PG-KKINvaQ-NH ₂	13.5	1364.6603	1364.7702
		15.6	1 (75.04(0)	1 (7 (0000
1 cyc	AC-CRYVEV-pG-KKILQU-NH ₂	15.6	16/5.0460	16/6.0980
2 01/0		15.0	1650 0470	1650 8080
2 cyc		13.9	1039.0470	1039.0000
3 eve	Ac-CRWVEV-pG-KKUOC-NH	16.0	1698 08/0	1600 8028
Jeye	S-S	10.0	10/0.0040	1077.0720
4 cvc	Ac-CRHVEV-pG-KKILOC-NH ₂	15.0	1649.0120	1648,9058
	<u>S-S</u>			
5 cyc	Ac-CRWVEV-pG-KKINvaQC-NH2	16.5	1684.0570	1685.3365
	S-S			
6 cyc	Ac-CRWVEV-pG-KKINleQC-NH2	17.1	1698.0840	1698.8921
	S-S			
7 cyc	Ac-CRWVEV-pG-KKIMQC-NH ₂	18.2	1716.1170	1716.1908
	S-S			
8 cyc	Ac-CRWVEV-pG-KKIIQC-NH ₂	18.3	1698.0840	1698.7207
		165	1 (04.0570	1 (02 (220
9 cyc	$Ac-CRWVEV-pG-KKIVQC-NH_2$	16.5	1684.0570	1683.6229
10		167	1696 0200	1606.0620
10 cyc		10./	1080.0290	1080.0620
Beve	5-5 Ac- CRWVEV-nG-KKIAOC -NH	15.9	1656 0030	1657 2315
Dege		13.7	1050.0050	1037.2313
Ceve	Ac-CRAVEV-pG-KKILOC-NH	15.1	1582,9490	1583 1732
C CjC	S-S	1.5.1	1502.7770	1000.1102
D cvc	Ac-CRAVEV-pG-KKIAOC-NH ₂	12.8	1540.8680	1541.3212
	<u>S-S</u>			
F cyc	Ac-CRAVEV-pG-KKINvaQC-NH2	13.3	1568.9220	1568.8993

Characterization of compounds through NMR spectroscopy.

 Table S2: Chemical shifts of peptide 1 cyc, 1 and 1 cont (random coil).

 (only HN and HA chemical shifts were provided for the cyclic and random coil controls for all the peptides)

Resi	Residues		Peptides		
		1 cyc	1	1 cont	
N-term Cys	HN	8.44	-	-	
	HA	5.22	-	-	
	HN	8.74	8.14	8.19	
	HA	4.60	4.36	4.18	
	HB		1.68		
Arg1	HG		1.54		
	HD		3.17		
	NAc		1.96		
	HN	8.78	8.40	8.27	
Tyr2	HA	5.17	5.10	4.62	
	HB		2.76		
	HN	9.27	8.87	7.95	
Val3	HA	4.50	4.41	4.02	
Val3	HB		2.01		
	HG		0.88		
	HN	8.57	8.54	8.38	
Glu4	HA	5.05	5.00	4.30	
	HB		1.95		
	HG		2.26		
	HN	9.05	8.89	8.33	
Val5	HA	4.64	4.61	4.41	
-	HB		1.98		
	HG		0.93		
	HN	-	-	-	
D-Pro6 / L-	HA	4.37	4.36	4.11	
Pro6	HB		2.06/2.12		
	HG		1.98		
	HD		3.85		
Gly7	HN	8.65	8.57	8.50	
	HA	3.77/4.02	3.77/4.01	3.95	
	HN	7.89	7.92	8.38	
	HA	4.61	4.56	4.31	
Lys8	HB		1.79		
	HG		1.39		
	HD		1.68		
	HE	ļ	2.99		
	HN	8.44	8.43	8.11	
	HA	4.86	4.65	4.33	
Lys9	HB	L	1.58		
	HG		1.14		
	HD		1.33		
	HE	0.55	2.98	0.50	
	HN	9.22	9.02	8.28	
Π.10	HA	4.59	4.48	4.13	
neiu	HB		1.89		
	HG		1.39		
	HD	0.55	0.87	0.10	
	HN	8.65	8.58	8.40	
Lor-11	HA	4.09	4.11	4.38	
LeuII	HB		1.40/1.58		
	HG		1.17		
	HD		0.58/0.66		
C1 10	HN	9.14	8.65	8.36	
Gln12	HA	4.62	4.30	4.30	
	HB		2.03		
	HG	0.55	2.27		
C-term Cys	HN	8.98	-	-	
	HA	5.09	-	-	

Figure S2: ¹H NMR overlay of 2 cyclic, 2 and 2 random coil control (top to bottom), acquired at 298K, in 100mM sodium acetate buffer : D₂O (9:1), pH 3.8.

Table S3: Chemical shifts of peptide 2 cyc, 2 and 2 cont (random coil).

Resid	ues	Peptides		
		2 cyc	2	2 cont
N-term Cys	HN	8.43	-	-
	HA	5.22	-	-
	HN	8.72	8.15	8.21
	HA	4.57	4.32	4.17
	HB		1.69	
Arg1	HG		1.52	
	HD		3.16	
	NAc		1.95	
	HN	8.79	8.38	8.33
Phe2	HA	5.25	5.13	4.67
	HB		2.87	
	HN	9.30	8.84	8.00
Val3	HA	4.45	4.36	4.02
	HB		2.01	
	HG		0.90	
	HN	8.57	8.56	8.38
Glu4	HA	5.03	4.98	4.30
	HB		1.91/2.00	
	HG		2.29	
	HN	9.04	8.86	8.38
Val5	HA	4.60	4.58	4.39
	HB		1.99	
	HG		0.94	
	HN	-	-	-
D-Pro6 / L-	HA	4.36	4.36	4.10
Pro6	HB		2.13/2.37	
	HG		1.99	
	HD		3.85	
Gly7	HN	8.65	8.58	8.51
	HA	3.77/4.02	3.78/3.99	3.93
_	HN	7.89	7.93	8.41
T 0	HA	4.60	4.54	4.33
Lysð	HB		1.80	
_	HG		1.39	
F	HD		1.68	
	HE	0.42	2.99	0.10
F	HN	8.42	8.43	8.13
T0	HA	4.81	4.61	4.30
Lysy	HB		1.58	
F	HU		1.11	
F	HD		1.30	
	HE	0.22	2.99	0 20
F	HIN	9.22	8.90	ð.30 4 1 2
Tle10		4.00	4.40	4.13
11010	ПВ		1.89	
F			1.20/1.40	
		9.66	0.00	Q 12
F	LIN LIN	0.00	0.39	0.43
Leu11	LIN LIR	4.10	4.23	4.33
Louii			1.47/1.39	
F			1.14	
		0.12	0.03/0.70 9.61	8 27
Cln12		9.15	0.01	0.37
Gm12		4.01	4.31	4.30
F	ПВ		1.00/2.05	
C-torm Cvs		8.00	2.20	
C-term Cys	LIN LIN	0.99 5.05	-	-
	пА	5.05	-	-

Figure S3: ¹H NMR overlay of 3 cyclic, 3 and 3 random coil control (top to bottom), acquired at 298K, in 100mM sodium acetate buffer: D₂O (9:1), pH 3.8

Resi	Residues		Peptides	
		3 cvc	3	3 cont
N-term Cys	HN	8.40	-	-
	HA	5.23	-	-
	HN	8.73	8.04	8.17
	HA	4.60	4.41	4.16
	HB		1.66	
Arg1	HG		1.52	
	HD		3.14	
	NAc		1.91	
	HN	8.71	8.35	8.18
Trp2	HA	5.10	5.11	4.73
	HB		3.02	
X7. 12	HN	9.57	9.25	7.83
Val3	HA	4.55	4.50	4.00
	HB		2.04	
	HG	0.50	0.87	0.20
Chu4	HN	8.58	8.58	8.30
GIU4	HA	5.09	5.00	4.38
	HB	+	1.89/2.01	
		9.06	2.29	8 30
Val5	НА	9.00	4.63	4 39
vais	HR	4.05	1.03	4.37
	HG		0.92	
	HN	_	-	_
D-Pro6 / L-	HA	4.37	4.37	4.09
Pro6	HB		2.11/2.37	
	HG		2.00	
	HD		3.85	
Gly7	HN	8.66	8.60	8.51
	HA	3.79/4.03	3.80/4.02	3.94
	HN	7.91	7.90	8.40
	HA	4.64	4.62	4.32
Lys8	HB		1.81	
	HG		1.40	
	HD		1.67	
	HE		3.00	
	HN	8.44	8.42	8.12
I wall	HA	5.04	4.86	4.32
Lyss	HB		1.65	
	HG		1.18	
			2.00	
	HN	0.3/	9.21	8 30
	НА	4 69	4.61	4 14
Ile10	HB	4.07	1.85	7.17
	HG		1.17/1.40	
	HD		0.86	
	HN	8.39	8.35	8.40
	HA	3.88	4.01	4.37
Leu11	HB		0.93/1.30	
	HG		0.56	
	HD		0.14/0.42	
	HN	9.06	8.72	8.38
Gln12	HA	4.60	4.32	4.29
	HB		1.83/2.01	
	HG		2.23	
C-term Cys	HN	8.96	-	-
	HA	5.05	-	-

Table S4: Chemical shifts of peptide 3 cyc, 3 and 3 cont (random coil).

Figure S4: ¹H NMR overlay of 4 cyclic, 4 and 4 random coil control (top to bottom), acquired at 298K, in 100mM sodium acetate buffer: D₂O (9:1), pH 3.8

Resid	Residues		Peptides	
		4 cyc	4	4 cont
N-term Cys	HN	8.42	-	-
-	HA	5.09	-	-
	HN	8.54	8.30	8.25
	HA	4.49	4.24	4.23
	HB		1.71	
Arg1	HG		1.58	
	HD		3.18	
	NAc		1.99	
	HN	8.70	8.72	8.65
His2	HA	5.09	4.86	4.74
	HB		3.19	
	HN	9.00	8.40	8.23
Val3	HA	4.61	4.20	4.14
	HB		2.03	
	HG		0.86	
	HN	8.54	8.54	8.32
Glu4	HA	5.11	4.61	4.28
	HB		1.96	
	HG	0.07	2.36	0.04
Valf	HN	8.86	8.56	8.34
vais	HA	4.59	4.51	4.44
	HB		2.03	
	HG		0.94	
D-Prof / L-	HN	-	-	-
D-FF00 / L- Pro6	HA	4.35	4.41	4.21
1100	HB		2.04/2.35	
			1.98	
Gly7	HN	8 60	8.40	8 4 3
Giy7	НА	3 77/4 00	3.91	3.93
	HN	7 92	8.03	8 36
	HA	4.58	4.38	4.32
Lvs8	HB		1.82	1102
·	HG		1.41	
	HD		1.70	
	HE		3.01	
	HN	8.54	8.44	8.10
	HA	5.10	4.39	4.29
Lys9	HB		1.60/1.74	
	HG		1.21	
	HD		1.32	
	HE		3.00	
	HN	8.95	8.38	8.23
	HA	4.58	4.21	4.10
Ile10	HB		1.85	
	HG		1.16/1.42	
	HD		0.89	
	HN	8.60	8.45	8.38
	HA	4.35	4.40	4.37
Leu11	HB		1.59	
	HG		1.21	
	HD		0.87	
	HN	8.96	8.42	8.51
Gln12	HA	4.59	4.30	4.39
	HB		2.09	
	HG		2.35	
C-term Cys	HN	8.99	-	-
	HA	5.03	-	-

Table S5: Chemical shifts of peptide 4 cyc, 4 and 4 cont (random coil).

Figure S5: The characteristic backbone β-hairpin NOEs observed in 1-4, where the thick arrows denote strong (1.8–2.2 Å), the thin arrows denote medium to weak NOEs (> 2.2 Å). The distances were resolved as mentioned in the previous section, taking the distance between the two HA protons of Gly7 as 1.77 Å.

Figure S6: ¹H NMR overlay of 5 cyclic, 5 and 5 random coil control (from top to bottom), acquired at 298K, in 100mM sodium acetate buffer: D₂O (9:1), pH 3.8.

Table S6: Chemical shifts of peptide 5 cyc, 5 and 5 cont (random coil).

Resi	Residues		Peptides			
		5 cyc	5	5 cont		
N-term Cys	HN	8.42	-	-		
	HA	5.13	-	-		
	HN	8.64	8.07	8.16		
	HA	4.63	4.37	4.15		
A	HB		1.66			
Argi	HG	_	1.54			
	HD		3.14			
	INAC	8 72	1.92 8.22	9.16		
Trp2		5.14	8.55 5.08	<u> </u>		
11p2	HR	5.14	3.04	4.73		
	HN	9.48	9.08	7.83		
Val3	HA	4.56	4.47	4.00		
	HB		2.06			
	HG		0.88			
	HN	8.59	8.56	8.28		
Glu4	HA	5.07	5.02	4.28		
Giut	HB		1.94/2.03			
	HG		2.31			
	HN	9.07	8.95	8.27		
Val5	HA	4.60	4.59	4.39		
	HB		2.00			
	HG		0.95			
	HN	-	-	-		
D-Pro6 / L- Pro6	HA	4.36	4.38	3.99		
1100	HB		2.00/2.37			
<u> </u>	HG		1.90			
Cly7		8.64	3.04 8.58	8.40		
Gly/	НА	3 79/4 02	3 80/4 01	3.49		
	HN	7.90	7.92	8.39		
	HA	4.64	4.58	4.31		
Lys8	HB		1.79			
-	HG		1.39			
	HD		1.65			
	HE		2.99			
	HN	8.44	8.42	8.11		
	HA	5.00	4.80	4.32		
Lys9	HB		1.70			
	HG		1.14			
	HD		1.38			
	HE	0.22	3.01	0.00		
	HN	9.52	9.11	8.28		
Tle10	ПА ПР	4.00	4.30	4.14		
11110	НС		1.05			
	HD		0.89			
	HN	8.33	8.37	8,36		
	HA	3.92	4.04	4.29		
Nva11	HB		0.85/1.39			
	HG		0.65/0.74			
	HD		0.43			
	HN	9.06	8.60	8.38		
Gln12	HA	4.55	4.30	4.29		
	HB		1.86/2.03			
	HG		2.26			
C-term Cys	HN	8.96	-	-		
	HA	5.02	-	-		

Figure S7: ¹H NMR overlay of 6 cyclic, 6 and 6 random coil control (from top to bottom), acquired at 298K, in 100mM sodium acetate buffer: D₂O (9:1), pH 3.8.

Table S7: Chemical shifts of peptide 6 cyc, 6 and 6 cont (random coil).

Resid	lues	Peptides		
		6 cyc	6	6 cont
N-term Cys	HN	8.68	-	-
	HA	5.14	-	-
	HN	8.69	8.04	8.16
_	HA	4.63	4.40	4.16
	HB		1.71	
Arg1	HG		1.52	
_	HD		3.15	
	NAc		1.93	
	HN	8.41	8.30	8.16
Trp2	HA	5.20	5.07	4.73
	HB		3.05	
X7.12	HN	9.55	9.11	7.84
Val3	HA	4.55	4.52	4.00
-	HB	-	2.07	
	HG	0.50	0.91	
Ch. 4	HN	8.58	8.55	8.29
Glu4	HA	5.07	5.05	4.26
ŀ	HB		1.98/2.04	
	HG	0.07	2.28	0.07
¥7-17	HN	9.07	8.92	8.27
Val5	HA	4.64	4.61	4.39
-	HB	-	2.01	
	HG	-	0.93	
DDV//I	HN	-	-	-
D-Proo / L-	HA	4.38	4.37	4.16
FT00	HB		2.01/2.37	
-	HG		1.91	
CL 7	HD	0.64	3.84	0.40
Gly/	HN	8.64	8.57	8.49
	HA	3.80/4.02	3.80/4.01	3.93
-	HIN	1.91	7.91	8.11
Lvs8		4.05	4.58	4.32
Lyso		-	1.65	
-		-	1.43	
	HE		2.00	
	HN	8.43	8 30	8 30
	НА	5.02	4.83	4.33
Lvs9	HR	5.02	1.65	т.))
-,	HG		1.04	
ŀ	HD		1.37	
ŀ	HE		3.00	
	HN	9.32	9.11	8.27
ł	HA	4 68	4.51	4.15
Ile10	HB		1.89	
	HG	1	1.40	
ŀ	HD		0.90	
	HN	8.34	8.36	8.35
f	HA	3.94	4.06	4.28
Nle11	HB		1.45	0
f	HG		0.80	
f	HD		0.89	
f	HE		0.58	
	HN	9.03	8.61	8.39
Gln12	HA	4.57	4.32	4.29
F	HB		1.85/2.01	/
ŀ	HG	1	2.24	
C-term Cvs	HN	8.95	-	-
2	HA	5.04	_	-
	•			

Figure S8: ¹H NMR overlay of 7 cyclic, 7 and 7 random coil control (top to bottom), acquired at 298K, in 100mM sodium acetate buffer: D₂O (9:1), pH 3.8

Table S8: Chemical shifts of peptide 7 cyc,7 and7 cont (random coil).

Resid	lues	Peptides		
		7 cyc	7	7 cont
N-term Cys	HN	8.37	-	-
-	HA	5.16	-	-
	HN	8.64	8.07	8.16
	HA	4.61	4.38	4.17
	HB		1.68	
Arg1	HG		1.54	
	HD		3.14	
	NAc		1.94	
	HN	8.55	8.20	8.16
Trp2	HA	5.10	5.12	4.74
	HB		3.09	
	HN	9.47	9.06	7.85
Val3	HA	4.54	4.47	4.01
	HB		2.05	
	HG		0.88	
	HN	8.55	8.57	8.27
Glu4	HA	5.05	5.08	4.25
	HB		1.94/2.04	
	HG		2.27	
	HN	9.00	8.92	8.27
Val5	HA	4.63	4.61	4.39
	HB		1.99	
	HG		0.94	
	HN	-	-	-
D-Pro6 / L-	HA	4.35	4.36	4.16
Pro6	HB		2.10/2.37	
	HG		1.89	
	HD		3.86	
Gly7	HN	8.64	8.56	8.49
	HA	3.79/4.03	3.80/4.00	3.94
	HN	7.90	7.92	8.39
	HA	4.64	4.57	4.33
Lys8	HB		1.79	
	HG		1.41	
	HD		1.67	
	HE		2.99	
	HN	8.40	8.39	8.11
	HA	5.02	4.80	4.33
Lys9	HB		1.72	
	HG		1.29	
	HD		1.39	
	HE		2.99	
	HN	9.31	9.11	8.28
	HA	4.71	4.55	4.14
Ile10	HB		1.91	
	HG		1.40	
	HD		0.81	
	HN	8.55	8.55	8.51
N	HA	4.20	4.37	4.51
Met11	HB		1.87	
	HG		1.76	
	HD		1.33	
	HN	9.03	8.62	8.42
Gln12	HA	4.57	4.33	4.30
	HB		1.86/2.05	
	HG		2.25	
C-term Cys	HN	8.92	-	-
	HA	5.04	-	-

Figure S9: ¹H NMR overlay of 8 cyclic, 8 and 8 random coil control (from top to bottom), acquired at 298K, in 100mM sodium acetate buffer: D₂O (9:1), pH 3.8.

Table S9: Chemical shifts of peptide 8 cyc, 8 and 8 cont (random coil).

Resid	lues	Peptides			
		8 cyc	8	8 cont	
N-term Cys	HN	8.43	-	-	
	HA	5.13	-	-	
_	HN	8.64	8.09	8.12	
_	HA	4.64	4.31	4.15	
	HB		1.67		
Argi	HG		1.52		
-	HD		3.17		
	NAc	0.55	1.93	0.11	
T.m.1	HN	8.55	8.06	8.11	
1 гр2	HA	5.10	5.07	4.72	
	HB	0.40	3.07	7 70	
V9l3		9.49	8.93 4.40	3.00	
v als	HR	4.52	2.03	3.99	
-	HG		0.88		
	HN	8 55	8.52	8 25	
Glu4	HA	5.09	5.01	4.26	
	HB	5.07	1.91/2.02		
X7.15	HG		2.26		
	HN	9.03	8.85	8.23	
Val5	HA	4.63	4.58	4.38	
	HB		1.98		
	HG		0.93		
	HN	-	-	-	
D-Pro6 / L-	HA	4.36	4.37	4.11	
Pro6	HB		2.36		
	HG		1.81		
~	HD		3.85		
Gly7	HN	8.64	8.53	8.45	
	HA	3.79/4.02	3.79/4.00	3.93	
-	HN	7.90	7.91	8.34	
L vc8	HA	4.64	4.55	4.31	
Lyso	НВ		1.//		
	HD		1.50		
-	HE		3.00		
	HN	8.41	8.36	8.07	
-	HA	5.06	4.73	4.31	
Lys9	HB	0.00	1.73	1101	
	HG		1.16		
l t	HD		1.37		
	HE		2.99		
	HN	9.26	8.98	8.26	
[HA	4.82	4.56	4.16	
Ile10	HB		1.89		
	HG		1.17		
	HD		0.88	a	
	HN	8.17	8.26	8.37	
По11	HA	4.08	4.13	4.17	
nell	HB		1.46		
1011	HG		0.72/1.02		
├		8.04	0.48	Q 15	
Glp12		8.94 1 55	0.00	0.45	
01112	HR	4.33	4.31	4.20	
	HG		2.02		
C-term Cvs	HN	8 99	-	-	
	HA	5.03	_	-	
		5.00			

Figure S10: ¹H NMR overlay of 9 cyclic, 9 and 9 random coil control (top to bottom), acquired at 298K, in 100mM sodium acetate buffer: D₂O (9:1), pH 3.8

Table S10: Chemical shifts of peptide 9 cyc, 9 and 9 cont (random coil).

Resid	ues	Peptides		
		9 cyc	9	9 cont
N-term Cys	HN	8.40	-	-
	HA	5.11	-	-
	HN	8.61	8.09	8.12
	HA	4.65	4.25	4.14
	HB		1.71	
Argl	HG		1.57	
_	HD		3.16	
	NAc	0.51	1.93	
T 2	HN	8.51	8.04	8.11
1rp2	HA	5.17	5.06	4.73
	HB	0.42	3.11	7.70
Val2	HN	9.42	8.78	7.79
vais	HA	4.55	4.30	3.98
-	HB		1.98	
		951	0.91	0.24
Clu4		5.10	8.32 4.06	<u> </u>
Glu4		5.10	4.90	4.23
F	HC IID		2 21	
	HN	9.00	2.51	8 22
Val5	НА	9.00	4.55	4 39
, uic	HB	4.05	2.00	4.37
	HG		0.87	
	HN	-	-	-
D-Pro6 / L-	НА	4.36	4.37	4.07
Pro6	HB		2.11/2.38	
F	HG		1.84	
F	HD		3.87	
Gly7	HN	8.62	8.50	8.44
	HA	3.80/4.02	3.80/3.98	3.92
	HN	7.91	7.92	8.35
	HA	4.63	4.50	4.31
Lys8	HB		1.78	
	HG		1.40	
	HD		1.68	
	HE		2.98	
	HN	8.40	8.37	8.07
• •	HA	5.00	4.64	4.31
Lys9	HB		1.77	
-	HG		1.28	
_	HD		1.42	
	HE	0.21	3.00	0.00
F	HN	9.21	8.90	8.28
Tle10		4./4	4.47	4.13
11.10	ПВ		1.90	
F			0.80	
	HN	8 16	8 31	8 20
F	НА	4 11	4 09	4.13
Val11	HR	r.11	1.77	
F	HG	1	0.63/0.78	
F	HD		-	
	HN	8.95	8.51	8.46
Gln12	HA	4.60	4.31	4.28
F	HB		1.87/2.03	
F	HG		2.28	
C-term Cvs	HN	8.96	-	-
ř F	HA	5.06	-	-

Figure S11: ¹H NMR overlay of 10 cyclic, 10 and 10 random coil control (top to bottom), acquired at 298K, in 100mM sodium acetate buffer: D₂O (9:1), pH 3.8

Table S11: Chemical shifts of peptide 10 cyc, 10 and 10 cont (random coil).

Residues			Peptides	
		10 cyc	10	10 cont
N-term Cys	HN	8.41	-	-
	HA	5.02	-	-
	HN	8.53	8.15	8.16
	HA	4.56	4.23	4.15
	HB		1.71	
Argl	HG		1.58	
	HD		3.18	
	NAc	0.00	1.94	0.1.6
T 2	HN	8.38	8.02	8.16
1 rp2	HA	5.29	5.04	4./3
	HB	0.26	3.20	7.92
Val3	HIN	9.20	8.75	/.85
v als		4.30	4.42	4.01
	HG		2.01	
	HN	8.60	8.53	8.28
Glu4	НА	5.13	4.91	4.28
Giut	HB	5.15	1.91/2.01	4.20
	HG	1	2.31	
	HN	9.01	8.61	8.26
Val5	НА	4.63	4.29	4.38
	HB		2.02	
	HG		0.88	
	HN	-	-	-
D-Pro6 / L-	HA	4.35	4.36	4.01
Pro6	HB		2.37	
	HG		1.92	
	HD		3.86	
Gly7	HN	8.63	8.51	8.47
	HA	3.78/4.01	3.80/3.97	3.92
	HN	7.90	7.93	8.42
X O	HA	4.61	4.50	4.32
Lys8	HB		1.77	
	HG		1.40	
	HD		1.69	
	HE	0.41	2.99	0.11
	HIN	<u> </u>	8.41	<u> 8.11</u>
LveQ		4.89	4.33	4.33
1.35	HG		1.74	
	HD		1.2)	
	HE	-	2.99	
	HN	9.22	8.85	836
	НА	4.78	4.48	4.24
Ile10	HB		1.94	
	HG		1.21	
	HD		0.91	
	HN	8.38	8.37	8.23
	HA	4.53	4.37	4.19
Thr11	HB		4.04	
	HG		1.09	
	HD		-	
	HN	8.92	8.43	8.42
Gln12	HA	4.60	4.33	4.32
	HB		1.90/2.04	
	HG		2.27	
C-term Cys	HN	8.94	-	-
	HA	4.99	-	-

Figure S12: Chemical shift deviation (A) and summation of the chemical shifts (ΣCSD) of peptides 3, 5-10 (B).

Relative upfield shifts of the side chains of 11th residue in 3, 5-10:

Peptide 3: Ac-RWVEV-pG-KKILQ-NH2

Figure S13: (A) Relative upfield shift of Leu11 side-chain protons w.r.t its unfolded control. TOCSY slices of 3(B) and 3 cont(C).

Peptide 5: Ac-RWVEV-pG-KKINvaQ-NH2

Figure S14: (A) Relative upfield shift of Nva11 side-chain protons w.r.t its unfolded control. TOCSY slices of 5(B) and 5 cont(C).

Peptide 6: Ac-RWVEV-pG-KKINleQ-NH2

Peptides	HN	HA	HB	HG	HD	HE
6	8.37	4.06	1.45	0.80	0.89	0.58
6 cont	8.35	4.28	1.79	1.75	1.67	1.29

Figure S15: (A) Relative upfield shift of Nle11 side-chain protons w.r.t its unfolded control. TOCSY slices of 6(B) and 6 cont(C).
(D) Comparison of the relative upfield shifts when Nle is placed at the diagonal(i) or at the cross-strand position(ii) w.r.t Trp2. The Δδ values for D(i) has been adopted from the work of Waters et al.³

Peptide 7: Ac-RWVEV-pG-KKIMQ-NH₂

Figure S16: (A) Relative upfield shift of Met11 side-chain protons w.r.t its unfolded control. TOCSY slices of **7**(B) and **7 cont**(C). (D) Comparison of the relative upfield shifts when Met is placed at the diagonal(i) or at the cross-strand position(ii) w.r.t Trp2. The $\Delta\delta$ values for D(i) has been adopted from the work of Waters et al.³

Peptide 8: Ac-RWVEV-pG-KKIIQ-NH2

Figure S17: (A) Relative upfield shift of Ile11 side-chain protons w.r.t its unfolded control. TOCSY slices of 8(B) and 8 cont(C).

Peptide 9: Ac-RWVEV-pG-KKIVQ-NH₂

Figure S18: (A) Relative upfield shift of Val11 side-chain protons w.r.t its unfolded control. TOCSY slices of 9(B) and 9 cont(C).

Peptide 10: Ac-RWVEV-pG-KKITQ-NH₂

Figure S19: (A) Relative upfield shift of Thr11 side-chain protons w.r.t its unfolded control. TOCSY slices of 10(B) and 10 cont(C).

Peptide 3: Ac-RWVEV-pG-KKILQ-NH₂

Figure S20: Observed NOEs between the indole aromatic ring of Trp2 and isopropyl side chain of Leu11.

S31

Figure S21: Observed NOEs between the indole side chain of Trp2 and Nva11.

Figure S22: Observed NOEs between the indole side chain of Trp2 and Nle11.

Α

В

Α

Figure S23: Observed NOEs between the indole side chain of Trp2 and Met11.

Figure S24: Observed NOEs between the indole side chain of Trp2 and Ile11.

В

В

Α

Figure S25: Observed NOEs between the indole side chain of Trp2 and Val11.

Trp2 \mathbf{H}^{n1} Η^{ζ2} $H^{\eta 2}$ $H^{\zeta 3}$ -1.0 Hγ 0 Θ í -1.5 ,-1⁻¹Η (ppm) Thr11 -2.0 7.5 7.4 7.3 7.2 7.1 10.30 10.15

ω₂-¹H (ppm)

Figure S26: Observed NOEs between the indole side chain of Trp2 and Thr11.

в

Table S12: Chemical shifts of the peptides of double mutant cycles, their cyclic and random coil (unfolded) control.

	A*	В	С	D	E*	F
Xaa2	Trp	Trp	Ala	Ala	Trp	Ala
Yaa11	Leu	Ala	Leu	Ala	Nva	Nva

Residue	Residues Compounds												
		B cyc	В	B_cont	C cyc	С	C cont	D cyc	D	D cont	F cyc	F	F cont
N-term Cys	HN	8.47	-	-	8.46	-	-	8.46	-	-	8.47	-	-
-	HA	5.09	-	-	5.10	-	-	5.10	-	-	5.09	-	-
Arg1	HN	8.37	8.03	8.16	8.44	8.26	8.25	8.46	8.26	8.26	8.65	8.27	8.27
-	HA	4.53	4.24	4.14	4.73	4.29	4.27	4.71	4.28	4.27	4.55	4.29	4.27
Xaa2	HN	8.60	8.09	8.15	8.64	8.41	8.39	8.55	8.39	8.42	8.59	8.40	8.38
	HA	5.21	5.06	4.71	4.98	4.52	4.32	4.58	4.42	4.33	4.94	4.40	4.30
Val3	HN	9.31	8.78	7.78	9.05	8.36	8.15	8.56	8.24	8.15	8.84	8.30	8.16
	HA	4.54	4.33	3.98	4.47	4.20	4.08	4.35	4.14	4.07	4.40	4.17	4.07
Glu4	HN	8.59	8.50	8.28	8.51	8.41	8.35	8.55	8.38	8.37	8.53	8.42	8.41
	HA	5.08	4.96	4.24	4.99	4.71	4.30	4.46	4.66	4.28	4.97	8.38	4.31
Val5	HN	9.02	8.78	8.22	8.89	8.63	8.36	8.90	8.55	8.35	8.97	8.60	8.38
	HA	4.62	4.56	4.24	4.61	4.52	4.42	4.59	4.50	4.42	4.60	4.52	4.42
D-Pro6/L-	HN	-	-	-	-	-	-	-	-	-	-	-	-
Pro6	HA	4.35	4.31	4.28	4.32	4.30	4.26	4.35	4.25	4.27	4.36	4.36	4.29
Gly7	HN	8.64	8.49	8.49	8.62	8.44	8.49	8.57	8.41	8.49	8.64	8.45	8.51
	HA	3.78/4.02	3.79/3.96	3.93	3.77/4.01	3.82/3.97	3.93	3.79/4.00	3.81/3.95	3.93	3.77/4.02	3.82/3.96	3.94
Lys8	HN	7.89	7.91	8.42	7.88	7.96	8.12	7.87	7.96	8.12	7.88	7.98	8.13
	HA	4.61	4.50	4.32	4.60	4.45	4.30	4.57	4.42	4.30	4.60	4.44	4.30
Lys9	HN	8.41	8.36	8.11	8.68	8.41	8.25	8.67	8.45	8.42	8.44	8.44	8.40
	HA	4.91	4.60	4.32	4.55	4.43	4.27	4.53	4.40	4.34	4.69	4.42	4.31
Ile10	HN	9.29	8.90	8.25	9.06	8.49	8.27	8.87	8.34	8.26	9.02	8.44	8.30
	HA	4.64	4.42	4.13	4.62	4.23	4.13	4.41	4.19	4.13	4.46	4.21	4.14
Yaa11	HN	8.48	8.54	8.44	8.42	8.45	8.42	8.64	8.47	8.45	8.49	8.45	8.37
	HA	4.10	4.24	4.30	4.70	4.46	4.36	4.55	4.35	4.33	4.67	4.43	4.37
Gln12	HN	8.94	8.23	8.35	8.68	8.45	8.45	8.73	8.38	8.44	8.98	8.39	8.47
	HA	4.50	4.26	4.24	4.55	4.33	4.40	4.53	4.29	4.40	4.63	4.29	4.39
C-term Cys	HN	8.99	-	-	8.98	_	-	8.94	-	-	8.94	-	-
	HA	5.03	-	-	5.04	-	-	5.04	-	-	5.01	-	-

*The chemical shifts of A, E and their controls are given in Table S4 and S6 under Peptide 3 and 5.

Double mutant cycle analysis to calculate pairwise interaction energy between Trp-Leu pair in Peptide 3:

 $\Delta\Delta \mathbf{G}_{dmut} = (\Delta \mathbf{G}_{\mathsf{A}} + \Delta \mathbf{G}_{\mathsf{D}}) - (\Delta \mathbf{G}_{\mathsf{B}} + \Delta \mathbf{G}_{\mathsf{C}})$

Figure S27: Schematic representation of the double mutant cycle which varies W and L individually and jointly. The pairwise interaction between W and L is calculated by the subtracting the stabilities of "B" and "C" from that of "A" and "D".

Table S13: Foldin	g free ener	gies of the	peptides involved	in double mutant	cvcle analysis.
	B	B			-,,,,,,,,,,

	Sequence	$\Delta G_{ m f}$	$\Delta\Delta G_{ m dmut}$
		(kcal/mol)	(kcal/mol)
Α	Ac- ¹ RWVEVpGKKILQ ¹² -NH ₂	-1.68 ± 0.8	
В	Ac- ¹ RWVEVpGKKIAQ ¹² -NH ₂	-0.44 ± 0.2	-1.14
С	Ac- ¹ RAVEVpGKKILQ ¹² -NH ₂	0.30 ± 0.2	
D	Ac- ¹ RAVEVpGKKIAQ ¹² -NH ₂	0.40 ± 0.2	

Double mutant cycle analysis to calculate pairwise interaction energy between Trp-Nva pair in Peptide 5:

$\Delta \Delta \mathbf{G}_{dmut} = (\Delta \mathbf{G}_{\mathsf{E}} + \Delta \mathbf{G}_{\mathsf{D}}) - (\Delta \mathbf{G}_{\mathsf{B}} + \Delta \mathbf{G}_{\mathsf{F}})$

Figure S28: Schematic representation of the double mutant cycle which varies W and Nva individually and jointly. The pairwise interaction between W and Nva is calculated as discussed previously.

Table S14: Folding free energies of the peptides involved in double mutant cycle analysis.

	Sequence	$\Delta G_{ m f}$	$\Delta\Delta G_{ m dmut}$
		(kcal/mol)	(kcal/mol)
Е	Ac- ¹ RWVEVpGKKINvaQ ¹² -NH ₂	-1.12 ± 0.3	
В	Ac- ¹ RWVEVpGKKIAQ ¹² -NH ₂	-0.44 ± 0.2	-0.58
F	Ac- ¹ RAVEVpGKKINvaQ ¹² -NH ₂	0.30 ± 0.2	
D	Ac- ¹ RAVEVpGKKIAQ ¹² -NH ₂	0.40 ± 0.2	

Table S15: Fraction folded and folding free energies of all the peptides.

		Fraction	folded (%)	% folded		
Peptides	Val3	Val5	Lys8	Ile10	population	$\Delta G_{\rm f}({\rm kcal/mol})$
1	81	87	83	78	82 ± 2	-0.90 ± 0.1
2	79	90	78	70	79 ± 4	-0.83 ± 0.2
3 (A)	91	100	94	85	93 ± 3	-1.68 ± 0.8
4	40	20	37	43	35 ± 5	0.39 ± 0.1
5 (E)	84	95	82	81	85 ± 3	-1.12 ± 0.3
6	95	88	79	68	83 ± 6	-1.02 ± 0.3
7	87	92	77	72	82 ± 4	-0.95 ± 0.2
8	77	80	73	61	73 ± 4	-0.59 ± 0.1
9	69	67	59	54	62 ± 3	-0.31 ± 0.1
10	84	NA	62	44	63 ± 11	-0.37 ± 0.3
В	63	84	62	57	66 ± 6	-0.44 ± 0.2
С	31	53	50	20	38 ± 5	0.30 ± 0.2
D	25	47	44	21	34 ± 6	0.40 ± 0.2
F	30	56	47	22	39 ± 8	0.30 ± 0.2

Potential of Trp-Leu pairing in protein-protein interactions and ligand designing:

To demonstrate whether this weak interaction could be harnessed to design inhibitors of enzymes and proteinprotein interaction, we came across the study by Kinoshita et al., where they report the CH- π interaction between Leu300 and Trp111 at the active site of the human aldose reductase holoenzyme (Fig S29 A).^{4,5} However, the binding of a potent inhibitor, zenarestat, disrupts the native CH- π interaction and the phenyl ring of zenarestat engages in a CH- π interaction with Leu300 and π - π interaction with Trp111 (Fig S29 B). In another study, Schoepfer et al. designed highly potent inhibitors of Grb2-SH2 domain by exploiting the CH- π interaction between indolyl moiety of the peptidic inhibitor and alkyl groups of Leu β D'1 and Lys β D6 in the protein.⁶ By enriching the electron density of the indolyl ring through substitution with electron donating groups, they amplified the CH- π interaction, which directly correlated with enhanced affinity of the inhibitor.⁷

Figure S29: (A) CH- π interaction between Trp111 and Leu300 in Aldose Reductase (1ads).⁵ (B) Co-crystal structure of Human Aldose Reductase with Zenarestat, displaying a CH- π - π interaction between the enzyme and its inhibitor (1iei).⁴ (C) CH- π interaction between indolyl moiety of the peptidic inhibitor and alkyl groups of Leu β D'1 in Grb2-SH2 domain.⁶ (D) Modulating CH- π interaction, by enriching the electron density of the indolyl ring through substitution with electron withdrawing/donating groups which directly correlated with their

- 1. T. D. Goddard, D. G. Kneller, SPARKY 3, University of California, San Francisco.
- 2. F. A. Syud, J. F. Espinosa, S. H. Gellman, J. Am. Chem. Soc. 1999, 121, 11577-11578.
- 3. C. D. Tatko and M. L. Waters, J. Am. Chem. Soc. 2004, 126, 2028.
- 4. T. Kinoshita, H. Miyake, T. Fujii, S. Takakura and T. Goto, Acta Cryst. 2002, D58, 622.
- 5. D. K. Wilson, K. M. Bohren, K. H. Gabbay and F. A. Quiocho, *Science* 1992, 257, 81.
- 6. P. Furet, B. Gay, G. Caravatti, C. García-Echeverría, J. Rahuel, J. Schoepfer and H. Fretz, *J. Med. Chem.* 1998, **41**, 3442.
- 7. J. Schoepfer, H. Fretz, B. Gay, P. Furet, C. García-Echeverría, N. End and G. Caravatti, *Bioorg. Med. Chem. Lett.* 1999, **9**, 221.