Electronic Supplementary Information

Accelerating charge transfer to enhance H₂ evolution of defect-rich

CoFe₂O₄ by constructing a Schottky junction

Experimental Section

Reagents and materials: $Co(NO_3)_2 \cdot 6H_2O$, $NiCl_2 \cdot 6H_2O$ were bought from Shanghai Maclean Biochemical Technology Co., Ltd. $Fe(NO_3)_3 \cdot 9H_2O$ and $Zn(NO_3)_2 \cdot 6H_2O$ were purchased from Sinopharm Chemical Reagent Co., Ltd. $NaBH_4$ was bought from Tianjin Kemiou Chemical Reagent Co., Ltd. Deionized water was homemade using UPT-II-10T ultrapure water system.

Preparation of defect-rich CoFe₂O₄ (DCF). CoFe₂O₄ were synthesized at room temperature by a simple wet chemical method. Taking Co(NO₃)₂·6H₂O (1 mmol), Fe(NO₃)₃·9H₂O (2 mmol) dissolved in 60 mL of deionized water and stirred for 30 minutes. 20 mL of NaBH₄ solution (1.3 mmol·L⁻¹) was then added into the above mixture. After vigorously stirred at room temperature for 6 h, the deionized water/ ethanol washed sample was then dried in a vacuum drying box overnight to obtain DCF.

Preparation of FeNi/DCF/NC. The obtained CoFe₂O₄ (100 mg) and Zn(NO₃)₂·6H₂O (0.5 mmol) dissolved in 15 mL of methanol and were stirred for 30 min to obtain solution A. 2-methylimidazole (2 mmol) dissolved in 15 mL of methanol to obtain solution B after 15 min ultrasonic treatment. After adding solution B to solution A and stirring (6 h) at room temperature, the washed sample was then dispersed with 20 mL of methanol and 75 μ L NiCl₂ solution (100 mg·mL⁻¹). 2 hour's stirring later, the product was centrifuged and dried. Then, the temperature was raised to 900 °C at 5 °C/min maintaining for 2 h under N₂. The naturally cooled sample was named as FeNi/DCF/NC. FeNi/DCF/NC-5 and FeNi/DCF/NC-10 were prepared by above same method except the different volume of NiCl₂ solution (Table S1). Ni-NC was synthesized by the same process as FeNi/DCF/NC without using DCF.

Characterization: The X-ray diffraction (XRD) patterns were examined on a Bruker D8 Focus Diffractometer (Cu-K α , 40kV). The morphology of the samples was characterized by a field emission scanning electron microscope (FE-SEM, Quanta 250 FEG) and Field emission transmission electron microscope (FE-TEM, FEI Tecnai G2 F20). X-ray photoelectron spectroscopy (XPS) measurements were performed on Thermo Fisher Scientific K-Alpha. Raman spectrum was measured by the

Horibajylabram HR Evolution with a 532 nm excitation laser. The electron spin resonance (ESR) test was performed on JES-FA300 Electron spin resonance spectrometer.

Electrochemical tests: First, 6 mg of sample, 40 µL of Nafion membrane solution, 960 µL of ethanol were mixed and ultrasonicated for more than 1 h. Then, 25 µL of the slurry was coated on the treated carbon paper (0.5*0.5 cm) and dried at 50 °C to obtain a working electrode. Graphite rod and saturated calomel electrode (SCE) were used as the counter electrode and reference electrode, respectively. The electrolyte was 1.0 M KOH. The cyclic voltammetry (CV) and linear voltammetry (LSV) were performed on an electrochemical workstation (CHI630E, Shanghai Chenhua). The potential range of CV and LSV test was $-1.0 \sim -1.5$ V, with a different scanning speed of 50 mV/s in CV while 2 mV/s in LSV. Electrochemical impedance spectroscopy (EIS) test was accomplished on the Admiral instruments (Squidstat Plus) at an overpotential of 100 mV in 1.0 M KOH solution. The potentials in this work were showed vs. the reversible hydrogen electrode (RHE) according to the formula of E(RHE) = E(SCE) + 0.059 pH + 0.242 V.

DFT calculations

All DFT calculations were performed as implemented in the Vienna Ab Initio Simulation Package (VASP). The projector augmented wave (PAW) method with the Perdew-Burke-Ernzerhof (PBE) was used to describe the interaction between the ions and the electrons with frozen-core approximation. A cut-off energy was set to 400 eV. Stationary points were identified by the conjugate gradient method until the forces acting on each ion were smaller than 0.02 eV/Å. The convergence tolerance of the energy was set to be 10^{-4} eV. The k-points meshes of $3 \times 3 \times 1$ was used for the Brillouim zone integration.

Fig. S1 Schematic illustration of the preparation of FeNi/DCF/NC.

Fig. S2 Binding energy of Co-O and Fe-O peaks.

Fig. S3 The corresponding high resolution spectra of N 1s.

Fig. S4 The corresponding high resolution spectra of Ni 2p.

Fig. S5 The overpotential of FeNi/DCF/NC at different current density.

Fig. S6 The equivalent circuit diagram of FeNi/DCF/NC.

Fig. S7 The overpotentials of recent reported oxides delivered at 10 mA cm⁻² in 1.0 M KOH.

Fig. S8 The time-dependent current density curve, inset shows the polarization curve of FeNi/DCF/NC.

Precursor sample	$Co(NO_3)_2 \cdot 6H_2O$	$Fe(NO_3)_3 \cdot 9H_2O$	NiCl ₂ ·6H ₂ O
FeNi/CF/NC	1	2	0.06
CoFe ₂ O ₄ -V _O	1	2	0
FeNi/CF/NC-5	1	2	0.04
FeNi/CF/NC-10	1	2	0.08
Ni-NC	0	0	0.06

Table S1 The amount of raw materials (mmol) used to prepare samples.

Note: $Zn(NO_3)_2 \cdot 6H_2O$ (0.5 mmol), 2-methylimidazole (2 mmol).

2θ (degree)	Corresponding structure	PDF card	
18.3			
30.1			
35.4		22-1086	
43.1	CoFe ₂ O ₄		
53.4			
57.0			
62.6			
39.6	N;	90 7120	
44.6	INI	89-7129	
43.6			
50.8	Fe _{0.64} Ni _{0.36}	47-1405	
74.7			

 Table S2 Corresponding structure of XRD peaks in FeNi/DCF/NC.

Raman shift (cm ⁻¹)	Corresponding	Refs.
	structure	
215	Ni-Fe	Nat. Mater. 2009, 8, 882.
287	Ni-Fe	Nat. Mater. 2009, 8, 882.
326	NiFe-O	Adv. Energy Mater. 2017, 1701347.
385	Fe-O	J. Nanomater. 2019, 5394325.
480	CoFe ₂ O ₄	Adv. Funct. Mater. 2019, 1900030.
666	CoFe ₂ O ₄	Adv. Funct. Mater. 2019, 1900030.
1313	D-band	ACS Energy Lett. 2018, 3, 1183.
1408	С	J. Raman Spectrosc. 2007, 38, 704.

 Table S3 The assignment of the major Raman peaks of FeNi/DCF/NC.

Element	Binding energy (eV)	Corresponding	Refs.
		structure	
	779.9	Co 2p _{3/2} (Co ³⁺)	
	781.9	Co 2p _{3/2} (Co ²⁺)	
Ca	794.9	Co 2p _{1/2} (Co ³⁺)	J. Am. Chem. Soc.
Co	796.8	Co 2p _{1/2} (Co ²⁺)	2019, 141, 10417.
	786	Satellite peak	
	802.6	Satellite peak	
	710.4	Fe 2p _{3/2}	
	712.4	Fe ³⁺	Adv. Energy Mater.
	724.4	Fe 2p _{1/2}	2017, 1701347.
Fe	718.4	Fe ³⁺	
	733.8	Fe ³⁺	Nano Energ. 2017,
			41, 327.
	529.8	O ²⁻	Adv. Energy Mater.
	531.1	OH^{-} and O^{-} or O^{2-}	2017, 1701347.
Ο	532.5	adsorbed water	Appl. Catal. B
			Environ. 2019, 244,
			1096.
	284.8	C-C	Adv Motor 2017
С	286	C-N	Auv. Mater. 2017,
	288.4	С=О	1003937.

Table S4 The assignment of the major XPS peaks of FeNi/DCF/NC.

Element	Atomic %
С	30.76
Ν	1.04
0	42.79
Fe	17.93
Со	6.52
Ni	0.94

Table S5 The element contents of FeNi/DCF/NC from XPS test.

Element	Atomic %
С	89.49
Ν	10.36
Ni	0.15

Table S6 The element contents of Ni/NC from XPS test.

Element	Atomic %
Со	11.31
Fe	21.24
0	47.24

Table S7 The element contents of DCF from XPS test.

Sample	R1 (Ω cm ⁻²)	R2 (Ω cm ⁻²)	R3 (Ω cm ⁻²)	C1 (F)	C2 (F)
FeNi/DCF/NC	3.498	1.443	0.158	0.0013	0.0025
DCF	3.497	22.021	2.214	0.0001	0.0002
Ni/NC	3.073	57.455	4.273	0.0034	0.0033

Table S8 EIS calculation parameters of FeNi/DCF/NC and reference samplesobtained by fitting the Nyquist plots of Fig. 3f.

Catalanta		Tafel slope	Dafa	
Catalysts	η ₁₀ (mv)	(mV dec ⁻¹)	Keis.	
FeNi/DCF/NC	169	98	This work	
NdBaMn ₂ O _{5.5}	290	87	ACS Catal. 2018,8,364.	
Fe _{1.89} Mo _{4.11} O ₇ /MoO ₂	197	79	Chem. Sci. 2018, 9, 5640.	
NCMC	160 5	110	Chem. Commun. 2019, 55,	
INCIME	109.5	119	6515.	
SNCE ND	222	102	Adv. Energy Mater. 2017, 7,	
SINCE-INK	232	103	1602122.	
NiFeO _x nanoparticles	360	N/A	Nat. Commun. 2015, 6, 7261.	
NiEs svids	107	120	ACS Appl. Mater. Inter. 2017,	
MIFe-oxide	197	130	9, 41906.	
NiCo ₂ O ₄	200	71.2	J. Catal. 2018, 357, 238.	
	200	(5	Int. J. Hydrogen Energ. 2019,	
C0 ₃ O ₄ -CuO	288	03	44, 26148.	
Pr _{0.5} BSCF	237	45	Adv. Mater. 2016, 28, 6442.	
	220	26	J. Mater. Chem. A 2016, 6,	
$H-MINIOO_4$	~220	30	1600528.	
	2(0	67	Adv. Funct. Mater. 2015, 25,	
MI-MIO/M-IGO	200	0 /	5799.	
Ni Ca O	450	102	J. Mater. Chem. A 2016, 4,	
$INI_X CO_{3-x} O_4$	430	123	7549.	

Table S9 HER performance of FeNi/CF/NC and other electrocatalysts reportedrecently in 1.0 M KOH.

	NC	FeNi	DCF
Work function	5.23	4.34	4.17
Bandgap	0.32	0	0
Fermi	-2.05	-0.34	-1.70
E vacuum	3.18	4	2.47