Electronic Supporting Information

Rhodium-Catalyzed Coupling of Arenes and Fluorinated α-DiazoDiketones: Synthesis of Chromones

Jiayi Yao, Lingheng Kong, Xingwei Li*

Key Laboratory of Applied Surface and Colloid Chemistry of MOE \& School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an 710062, China
Table of Contents
I. General Information S1
II. Experiment Details and Analytical Data of 3, 6 and 7a S2
III. Preparation of 3aa in Gram Scale S16
IV. Derivatization of 3aa S17
V. Mechanistic Studies S19
VI. References S23
VII. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR Spectra of New Compounds. S24

I. General Information

All chemicals were obtained from commercial sources and were used as received unless otherwise noted. N-pyrimidylindoles, ${ }^{1}$ diazos, ${ }^{2} N$-pyrimidylisoquinolinone ${ }^{3}$ and 2 -pyridone ${ }^{4}$ were synthesized according to literature reports. The reactions were monitored with the aid of thin-layer chromatography (TLC) on 0.25 mm precoated silica gel plates. Visualization was carried out with UV light or aqueous potassium permanganate stain. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at $25^{\circ} \mathrm{C}$ on a Bruker 600 MHz and 151 MHz NMR spectrometers, respectively. And ${ }^{19} \mathrm{~F}$ NMR were recorded at $25{ }^{\circ} \mathrm{C}$ on a JEOL 376 MHz NMR spectrometers. Chemical shifts (δ) are given in ppm relative to TMS. The residual solvent signals were used as references for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra and the chemical shifts were converted to the TMS scale (TMS: $\delta \mathrm{H}=0.00 \mathrm{ppm}, \mathrm{CDCl}_{3}: \delta \mathrm{H}=7.26 \mathrm{ppm}, \delta \mathrm{C}=77.16 \mathrm{ppm}, \mathrm{CD}_{2} \mathrm{Cl}_{2}: \delta \mathrm{H}=5.32$ ppm, $\delta \mathrm{C}=53.84 \mathrm{ppm})$. Coupling constants (J) are given in Hertz (Hz). Letters $\mathrm{m}, \mathrm{s}, \mathrm{d}, \mathrm{t}$ and q stand for multiplet, singlet, doublet, triplet, and quartet, respectively. High resolution mass spectra were recorded on Bruck Microtof. Column chromatography was performed on silica gel (300-400 mesh) using ethyl acetate (EA)/petroleum ether (PE).

II. Experiment Details and Analytical Data of 3, 6 and 7a

1) Optimization of the Reaction Conditions

2) Table S1. Optimization of the Reaction Conditions ${ }^{a, b}$

 1a	[Cp*R $+$ AgS 2a	$\begin{aligned} & \left.\mathrm{RhCl}_{2}\right]_{2}(4 \mathrm{~mol} \%) \\ & \mathrm{SbF}_{6}(16 \mathrm{~mol} \%) \end{aligned}$ Additive Solvent, air		
Entry	Additive (equiv.)	Solvent	$T\left({ }^{\circ} \mathrm{C}\right)$	Yield(\%)
1	$\mathrm{Na}_{2} \mathrm{CO}_{3}$ (2.0)	m-Xylene	140	45
2	$\mathrm{K}_{3} \mathrm{PO}_{4}$ (2.0)	m-Xylene	140	55
3	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (2.0)	m-Xylene	140	20
4	$\mathrm{CsOAc}(2.0)$	m-Xylene	140	67
5	CsOAc (2.0)	PhCl	140	45
6	$\mathrm{CsOAc}(2.0)$	PhMe	140	40
7	$\mathrm{CsOAc}(1.0)+\mathrm{Na}_{2} \mathrm{CO}_{3}$ (1.0)	m-Xylene	140	88
8	$\mathrm{Cs}_{2} \mathrm{CO}_{3}(1.0)+\mathrm{Na}_{2} \mathrm{CO}_{3}(1.0)$	m-Xylene	140	58
9	$\mathrm{Cs}_{2} \mathrm{CO}_{3}(1.0)+\mathrm{CsOAc}$ (1.0)	m-Xylene	140	50
10	$\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.75)+\mathrm{Na}_{2} \mathrm{CO}_{3}(0.75)$	m-Xylene	140	59
11	$\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.5)+\mathrm{CsOAc}(0.5)$	m-Xylene	140	23
12	$\mathrm{CsOAc}(0.5)+\mathrm{Na}_{2} \mathrm{CO}_{3}(1.0)$	m-Xylene	140	46
13	$\mathrm{CsOAc}(1.0)+\mathrm{Na}_{2} \mathrm{CO}_{3}(0.5)$	$m-X y l e n e$	140	48
14	CsOAc (1.25) $+\mathrm{Na}_{2} \mathrm{CO}_{3}(0.75)$	m-Xylene	140	70
15	CsOAc (0.75) $+\mathrm{Na}_{2} \mathrm{CO}_{3}(1.25)$	$m-X y l e n e$	140	68
16	$\mathrm{CsOAc}(1.0)+\mathrm{Na}_{2} \mathrm{CO}_{3}(1.0)$	m-Xylene	135	62
$17^{\text {c }}$	CsOAc (1.0) $+\mathrm{Na}_{2} \mathrm{CO}_{3}$ (1.0)	m-Xylene	140	nd

${ }^{a}$ Reaction conditions: $\mathbf{1 a}(0.1 \mathrm{mmol})$, $\mathbf{2 a}$ (2.0 equiv.), $\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}(4 \mathrm{~mol} \%), \mathrm{AgSbF}_{6}(16 \mathrm{~mol} \%)$, solvent (1.5 mL) under air for 12 h . ${ }^{b}$ Isolated yield after column chromatography. ${ }^{\mathrm{c}} \mathrm{No}\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}$ was used.

Representative Synthesis of Product 3: A pressure tube was charged with $\mathbf{1 a}(39.0 \mathrm{mg}, 0.2 \mathrm{mmol})$, 2a ($82.5 \mathrm{mg}, 0.4 \mathrm{mmol}$), $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}(5.0 \mathrm{mg}, 4 \mathrm{~mol} \%), \mathrm{AgSbF}_{6}(11.0 \mathrm{mg}, 16 \mathrm{~mol} \%)$, $\mathrm{CsOAc}(38.4 \mathrm{mg}$, $0.2 \mathrm{mmol}), \mathrm{Na}_{2} \mathrm{CO}_{3}(21.2 \mathrm{mg}, 0.2 \mathrm{mmol})$ and anhydrous m-Xylene $(2.0 \mathrm{~mL})$. The reaction mixture was stirred at $140^{\circ} \mathrm{C}$ for 12 h under air. After the reaction was completed as indicated by TLC analysis, the solvent was removed under reduced pressure and the residue was purified by silica gel chromatography using petroleum ether/ethyl acetate 5:1 (v/v) to give the corresponding product 3aa ($62.2 \mathrm{mg}, 88 \%$).

2-Methyl-3-(1-(pyrimidin-2-yl)-1 \mathbf{H}-indol-2-yl)-4H-chromen-4-one (3aa) yellow solid ($62.2 \mathrm{mg}, 88 \%$), ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.54$ (d, $J=4.8$ $\mathrm{Hz}, 2 \mathrm{H}), 8.51(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{dd}, J=7.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.67-7.62$ $(\mathrm{m}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 1 \mathrm{H})$, $6.97(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 176.7,164.0,158.1,157.9,156.1,137.0,133.4,131.7,129.2,126.4$, 124.9, 123.7, 123.1, 122.0, 120.6, 118.9, 117.8, 117.0, 115.0, 110.2, 19.9. HRMS (ESI-TOF) (m/z): Calcd for $\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{NaO}_{2}$, $\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 376.1056$, found 376.1055 .

2-Methyl-3-(3-methyl-1-(pyrimidin-2-yl)-1 H -indol-2-yl)-4H-chromen-4one (3ba)
brown solid ($35.2 \mathrm{mg}, 48 \%$), ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.54$ (d, $J=8.3$ $\mathrm{Hz}, 1 \mathrm{H}), 8.49(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.17$ (dd, $J=7.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.69-7.65$ $(\mathrm{m}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.33(\mathrm{~m}$, $2 \mathrm{H}), 7.29-7.26(\mathrm{~m}, 1 \mathrm{H}), 6.91(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.9,164.2,158.1,157.9,156.2,136.8,133.4,130.4,128.1,126.5$, 124.9, 124.0, 123.2, 121.7, 118.9, 117.8, 117.1, 116.5, 115.1, 19.5, 9.5. HRMS (ESI-TOF) (m/z): Calcd for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{NaO}_{2},\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 390.1213$, found 390.1211.

3-(3-Ethyl-1-(pyrimidin-2-yl)-1H-indol-2-yl)-2-methyl-4H-chromen-4one (3ca)
yellow solid ($29.7 \mathrm{mg}, 39 \%$), ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.54(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 1 \mathrm{H}), 8.49(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 2 \mathrm{H}), 8.21(\mathrm{dd}, J=7.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.69-7.65$ $(\mathrm{m}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.32(\mathrm{~m}$, $1 \mathrm{H}), 7.27(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{t}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.70-2.63(\mathrm{~m}, 2 \mathrm{H})$, $2.25(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.9,164.5,158.0,157.9,156.1$, $137.1,133.4,129.5,127.3,126.6,124.9,123.8,123.2,123.16,121.7,119.1,117.8,117.7,116.4,115.2$, 19.6, 18.2, 14.6. HRMS (ESI-TOF) (m/z): Calcd for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{NaO}_{2}$, $\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 404.1369$, found 404.1371 .

2-Methyl-3-(4-methyl-1-(pyrimidin-2-yl)-1H-indol-2-yl)-4H-chromen-4one (3da)
yellow solid ($61.7 \mathrm{mg}, 84 \%$), ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.53$ (d, $J=4.8$ $\mathrm{Hz}, 2 \mathrm{H}), 8.35(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.68-7.63(\mathrm{~m}$, $1 \mathrm{H}), 7.47(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.06(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{t}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H})$, $2.46(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.7,164.0,158.0,157.9,156.0,136.7,133.3,131.0,129.9$, 128.9, 126.3, 124.8, 123.7, 123.0, 122.3, 118.9, 117.7, 116.9, 112.5, 108.6, 19.9, 18.7. HRMS (ESI-TOF) $(\mathrm{m} / \mathrm{z})$: Calcd for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{NaO}_{2},\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 390.1213$, found 390.1214.

3-(4-Methoxy-1-(pyrimidin-2-yl)-1H-indol-2-yl)-2-methyl-4H-chromen-4-one (3ea)
brown solid ($69.0 \mathrm{mg}, 90 \%$), ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.55(\mathrm{~d}, J=4.8$ $\mathrm{Hz}, 2 \mathrm{H}), 8.14-8.09(\mathrm{~m}, 2 \mathrm{H}), 7.67-7.64(\mathrm{~m}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.37-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.28(\mathrm{t}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.81$ $(\mathrm{s}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 2.51(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.5,164.0,158.1,157.9,155.9,152.9,138.2,133.3,130.1,126.3,124.7,124.4,123.0$, 119.7, 118.8, 117.7, 117.1, 108.1, 107.1, 102.0, 55.5, 19.9. HRMS (ESI-TOF) (m/z): Calcd for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{NaO}_{3},\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 406.1162$, found 406.1164 .

3-(4-Fluoro-1-(pyrimidin-2-yl)-1 \boldsymbol{H}-indol-2-yl)-2-methyl-4H-chromen-4one (3fa)
yellow solid ($60.9 \mathrm{mg}, 82 \%$), ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.55$ (d, $J=4.2$ $\mathrm{Hz}, 2 \mathrm{H}), 8.27(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.19(\mathrm{~m}$, $1 \mathrm{H}), 7.00(\mathrm{t}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{t}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}), 2.49(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.5,164.3,158.0,157.9,156.0,155.9(J=246.5 \mathrm{~Hz}), 139.2(J=$ $15.5 \mathrm{~Hz}), 133.5,131.8,126.2,124.9,124.1(J=7.4 \mathrm{~Hz}), 122.9,118.4,118.2(J=22.1 \mathrm{~Hz}), 117.7,117.4$, $111.0(J=3.1 \mathrm{~Hz}), 106.9(J=18.5 \mathrm{~Hz}), 105.4,100.0,19.9 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-118.2$. HRMS (ESI-TOF) $(\mathrm{m} / \mathrm{z})$: Calcd for $\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{FN}_{3} \mathrm{NaO}_{2}$, $\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, 394.0962, found 394.0969.

3-(4-Bromo-1-(pyrimidin-2-yl)-1 H -indol-2-yl)-2-methyl-4H-chromen-4-one (3ga)
yellow solid ($66.4 \mathrm{mg}, 77 \%$), ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.55(\mathrm{~d}, J=$ $4.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.45(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{t}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~s}, 1 \mathrm{H})$, $2.50(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.4,164.3,158.0,157.8$, $155.9,137.2,133.5,132.5,129.7,126.2,124.9,124.8,124.5,122.9,118.3,117.8,117.5,114.4,114.0$, 109.7, 20.0. HRMS (ESI-TOF) $(\mathrm{m} / \mathrm{z})$: Calcd for $\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{BrN}_{3} \mathrm{NaO}_{2}$, $\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 454.0162$, found 454.0172.

2-Methyl-3-(1-(pyrimidin-2-yl)-4-(trifluoromethyl)-1 H -indol-2-yl)-4H-chromen-4-one (3ha)
brown solid ($67.4 \mathrm{mg}, 80 \%$), ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.67(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 8.57(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.08(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.68-7.63(\mathrm{~m}$, $1 \mathrm{H}), 7.53(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.33(\mathrm{~m}, 2 \mathrm{H})$, $7.03(\mathrm{t}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H}), 2.52(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 176.4,164.5,158.1,157.7,156.0,137.4,133.7,133.6,126.2,125.5$, $125.0(J=272.8 \mathrm{~Hz}), 124.99,122.9,122.86,121.7(J=32.7 \mathrm{~Hz}), 119.3(J=4.7 \mathrm{~Hz}), 118.4,118.2,117.8$ $(J=10.66 \mathrm{~Hz}), 108.1,20.0 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-68.6$. HRMS (ESI-TOF) $(\mathrm{m} / \mathrm{z})$: Calcd for $\mathrm{C}_{23} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{NaO}_{2},\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 444.0930$, found 444.0942.

2-Methyl-3-(5-methyl-1-(pyrimidin-2-yl)-1H-indol-2-yl)-4H-chromen-

 4-one (3ia)brown solid ($67.6 \mathrm{mg}, 92 \%$), ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.51(\mathrm{~d}, J=4.7$ $\mathrm{Hz}, 2 \mathrm{H}), 8.42$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.13$ (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.67-7.63$ (m, $1 \mathrm{H}), 7.46(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~s}, 1 \mathrm{H}), 7.35(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}$, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{t}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~s}, 1 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.7,163.8,158.1,157.8,156.0,135.3,133.4,131.6,131.3,129.4$, $126.3,125.2,124.8,123.1,120.3,119.0,117.7,116.7,114.8,110.0,21.4,19.8$. HRMS (ESI-TOF) $(\mathrm{m} / \mathrm{z})$: Calcd for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{NaO}_{2},\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 390.1213$, found 390.1224.

3-(5-Chloro-1-(pyrimidin-2-yl)-1H-indol-2-yl)-2-methyl-4H-

chromen-4-one (3ja)
brown solid ($60.4 \mathrm{mg}, 78 \%$), ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.53$ (d, $J=$ $3.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.45(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.58$ (s, 1H), 7.46 (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.27(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{t}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~s}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.5,164.0,158.0,157.8,156.0,135.4,133.5,133.1,130.3,127.5$, 126.3, 124.9, 123.8, 123.0, 119.9, 118.6, 117.8, 117.3, 116.2, 109.4, 19.9. HRMS (ESI-TOF) (m/z): Calcd for $\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{ClN}_{3} \mathrm{NaO}_{2},\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 410.0667$, found 410.0663 .

Methyl 2-(2-methyl-4-oxo-4H-chromen-3-yl)-1-(pyrimidin-2-yl)-1H-indole-5-carboxylate (3ka)
yellow solid ($69.1 \mathrm{mg}, 84 \%$), ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.55$ (d, $J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.48(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.37(\mathrm{~s}, 1 \mathrm{H}), 8.07(\mathrm{dd}, J=$ $7.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{dd}, J=8.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-7.62(\mathrm{~m}, 1 \mathrm{H})$, 7.45 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{t}, J=4.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.74(\mathrm{~s}, 1 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.4,167.9,164.2,158.1$, 157.7, 156.0, 139.5, 133.6, 133.3, 128.7, 126.3, 124.9, 124.9, 123.8, 123.1, 123.0, 118.3, 117.8, 117.6, 114.5, 110.6, 52.0, 19.9. HRMS (ESI-TOF) (m/z): Calcd for $\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{NaO}_{4}$, ($[\mathrm{M}+\mathrm{Na}]^{+}$), 434.1111, found 434.1110.

2-Methyl-3-(6-methyl-1-(pyrimidin-2-yl)-1H-indol-2-yl)-4H-chromen-4-one (31a)
yellow solid ($44.1 \mathrm{mg}, 60 \%$), ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.54(\mathrm{~d}, J=$ $4.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.31(\mathrm{~s}, 1 \mathrm{H}), 8.11(\mathrm{dd}, J=7.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-7.63(\mathrm{~m}$, $1 \mathrm{H}), 7.52(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.08(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 2.53$ ($\mathrm{s}, 3 \mathrm{H}$), $2.45(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.7,164.0,158.1,158.0,156.0,137.4,133.7$, 133.4, 131.0, 127.0, 126.4, 124.8, 123.6, 123.1, 120.2, 119.0, 117.8, 116.9, 114.8, 110.1, 22.3, 19.9. HRMS (ESI-TOF) (m / z): Calcd for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{NaO}_{2},\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 390.1213$, found 390.1211.

3-(6-Methoxy-1-(pyrimidin-2-yl)-1 H -indol-2-yl)-2-methyl-4H-

 chromen-4-one (3ma)brown solid ($47.5 \mathrm{mg}, 62 \%$), ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.52$ (d, J $=4.7 \mathrm{~Hz}, 2 \mathrm{H}), 8.14(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{dd}, J=7.9,1.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.65-7.62(\mathrm{~m}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.33(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{t}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{dd}, J=8.5,2.2$ $\mathrm{Hz}, 1 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.7$, 163.7, 158.1, $157.8,157.4,155.9,137.8,133.3,130.5,126.3,124.7,123.3,123.0,120.9,119.0,117.7,116.8,111.2$, 110.1, 99.4, 55.8, 19.8. HRMS (ESI-TOF) (m/z): Calcd for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{NaO}_{3}$, $\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 406.1162$, found 406.1161 .

3-(6-Fluoro-1-(pyrimidin-2-yl)-1H-indol-2-yl)-2-methyl-4H-chromen-4-one (3na)
brown solid ($52.0 \mathrm{mg}, 70 \%$), ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.52(\mathrm{~d}, J=$ $4.7 \mathrm{~Hz}, 2 \mathrm{H}), 8.31(\mathrm{dd}, J=11.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.66$ - $7.63(\mathrm{~m}, 1 \mathrm{H}), 7.53(\mathrm{dd}, J=8.5,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.34(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.02-6.96(\mathrm{~m}, 2 \mathrm{H}), 6.63(\mathrm{~s}, 1 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($\left.151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.6,163.9,160.8(J=238.1 \mathrm{~Hz}), 156.0,157.94,157.91,156.0,137.1$ $(J=12.9 \mathrm{~Hz}), 133.5,132.2,126.3,125.6,124.9,123.0,121.1(J=9.9 \mathrm{~Hz}), 118.8,117.8,117.2,110.4(J$ $=24.4 \mathrm{~Hz}), 102.3(J=28.8 \mathrm{~Hz}), 19.9 .{ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-118.43$. HRMS (ESI-TOF) $(\mathrm{m} / \mathrm{z})$: Calcd for $\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{FN}_{3} \mathrm{NaO}_{2}$, $\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 394.0962$, found 394.0964.

2-(2-Methyl-4-oxo-4H-chromen-3-yl)-1-(pyrimidin-2-yl)-1H-indole-6-carbaldehyde (3oa)
yellow solid ($55.6 \mathrm{mg}, 73 \%$), ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.10$ (s, $1 \mathrm{H}), 9.00(\mathrm{~s}, 1 \mathrm{H}), 8.59(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.08(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, 7.79 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.47$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{t}, J=4.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.73(\mathrm{~s}, 1 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 192.8,176.3,164.2,158.2,157.7$, 156.0, 136.6, 136.1, 134.1, 133.7, 132.6, 126.3, 125.1, 122.9, 122.4, 121.0, 118.9, 118.3, 117.8, 117.8, 110.2, 19.9. HRMS (ESI-TOF) (m/z): Calcd for $\mathrm{C}_{23} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{NaO}_{3}$, $\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 404.1006$, found 404.1005 .

Methyl 2-(2-methyl-4-oxo-4H-chromen-3-yl)-1-(pyrimidin-2-yl)-1H-indole-6-carboxylate (3pa)

yellow solid ($69.9 \mathrm{mg}, 85 \%$), ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.16$ (s, $1 \mathrm{H}), 8.58(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 2 \mathrm{H}), 8.09(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{t}, J$ $=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{t}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H})$, $2.45(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.3,168.2,164.2,158.2,157.6,156.0,136.3,134.9,133.6$, 132.7, 126.3, 125.2, 125.0, 123.1, 122.9, 120.2, 118.3, 117.8, 117.6, 117.0, 109.9, 52.1, 19.9. HRMS (ESI-TOF) $(\mathrm{m} / \mathrm{z})$: Calcd for $\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{NaO}_{4},\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 434.1111$, found 434.1116.

3-(7-Ethyl-1-(pyrimidin-2-yl)-1H-indol-2-yl)-2-methyl-4H-chromen-4one (3qa)
brown solid ($40.4 \mathrm{mg}, 53 \%$), ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.62$ (d, $J=4.8$ $\mathrm{Hz}, 2 \mathrm{H}), 8.06(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 2.49$ $(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.01(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.4,166.4$, 158.7, 158.0, 155.9, 136.1, 133.4, 133.2, 129.9, 129.1, 126.3, 124.9, 123.9, 122.9, 121.8, 118.7, 117.7, $116.8,108.5,26.3,19.9,13.8$. HRMS (ESI-TOF) (m/z): Calcd for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{NaO}_{2},\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 404,1369$, found 404,1368.

3-(7-Methoxy-1-(pyrimidin-2-yl)-1H-indol-2-yl)-2-methyl-4H-chromen-4-one (3ra)
yellow solid ($29.9 \mathrm{mg}, 39 \%$), ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.61$ ($\mathrm{d}, J=$ $4.7 \mathrm{~Hz}, 2 \mathrm{H}), 8.06(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{t}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{t}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H})$, $3.71(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.3,166.6,158.3,157.5,155.9,147.6,133.4$, $132.8,131.1,127.4,126.4,125.0,123.1,122.0,118.5,117.7,116.4,113.7,108.0,105.5,55.8,20.0$. HRMS (ESI-TOF) $(\mathrm{m} / \mathrm{z})$: Calcd for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{NaO}_{3},\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 406.1162$, found 406.1163 .

3-(7-Fluoro-1-(pyrimidin-2-yl)-1H-indol-2-yl)-2-methyl-4H-chromen-4one (3sa)
yellow solid ($54.2 \mathrm{mg}, 73 \%$), ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.60(\mathrm{~d}, J=4.8$ $\mathrm{Hz}, 2 \mathrm{H}), 8.05(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{dd}, J=7.9$, $5.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.12(\mathrm{~m}, 1 \mathrm{H}), 7.08(\mathrm{t}, J=4.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.00(\mathrm{dd}, J=12.1,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.3,166.1,158.0,157.4,155.1(J=248.4 \mathrm{~Hz}), 149.3,133.6,133.5$, $132.6(J=4.2 \mathrm{~Hz}), 126.3,125.0,124.8(J=9.5 \mathrm{~Hz}), 123.0,121.9(J=6.8 \mathrm{~Hz}), 118.5,117.8,116.6(J=$ $3.4 \mathrm{~Hz}), 116.5,109.8(J=19.3 \mathrm{~Hz}), 108.9(J=1.4 \mathrm{~Hz})$, 19.9. ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-116.6$. HRMS (ESI-TOF) $(\mathrm{m} / \mathrm{z})$: Calcd for $\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{FN}_{3} \mathrm{NaO}_{2},\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, 394.0962, found 394.0964.

Methyl 2-(2-methyl-4-oxo-4H-chromen-3-yl)-1-(pyrimidin-2-yl)$\mathbf{1 H}$-indole-7-carboxylate (3ta) brown solid ($47.7 \mathrm{mg}, 58 \%$), ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.53$ (d, $J=$ $4.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.01(\mathrm{dd}, J=7.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.75$ $-7.70(\mathrm{~m}, 1 \mathrm{H}), 7.66-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{t}, J$ $=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H}), 7.03(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~s}, 1 \mathrm{H}), 3.38$ ($\mathrm{s}, 3 \mathrm{H}$), $2.44(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.4,168.1,166.0,158.8,157.8,155.9,134.0$, 133.6, 130.6, 126.2, 125.6, 125.0, 124.8, 122.9, 121.1, 118.6, 118.2, 117.8, 117.0, 108.7, 51.7, 20.0. HRMS (ESI-TOF) (m/z): Calcd for $\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{NaO}_{4},\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 434.1111$, found 434.1115.

3-(6-Chloro-5-fluoro-1-(pyrimidin-2-yl)-1H-indol-2-yl)-2-methyl-4H-chromen-4-one (3ua)

yellow solid ($55.9 \mathrm{mg}, 69 \%$), ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.66(\mathrm{~d}, J=$ $6.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.54(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 2 \mathrm{H}), 8.09(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{t}, J$ $=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.00(\mathrm{t}, J=$ $4.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $176.5,164.0,158.0,157.6,156.0,154.2(J=240.9 \mathrm{~Hz}), 133.8(J=3.5 \mathrm{~Hz}), 133.6,133.1,128.2(J=9.0$ $\mathrm{Hz}), 126.3,125.0,123.0,118.5,117.8,117.4,117.0(J=20.2 \mathrm{~Hz}), 116.9,109.7(J=3.9 \mathrm{~Hz}), 106.5(J=$ 23.4 Hz), 19.9. ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-123.9. HRMS (ESI-TOF) (m/z): Calcd for $\mathrm{C}_{22} \mathrm{H}_{13} \mathrm{ClFN}_{3} \mathrm{NaO}_{2},\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 428.0573$, found 428.0578 .

2-Methyl-3-(1-(5-methylpyrimidin-2-yl)-1H-indol-2-yl)-4H-chromen-4one (3va)
yellow solid ($25.7 \mathrm{mg}, 35 \%$), ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.42(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 1 \mathrm{H}), 8.37(\mathrm{~s}, 2 \mathrm{H}), 8.11$ (dd, $J=7.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.67-7.62(\mathrm{~m}, 2 \mathrm{H})$, 7.46 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.23$ (t, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.64$ $(\mathrm{s}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 176.7, 164.2, 158.1, 156.3, 156.1, 137.0, 133.4, 131.6, 129.1, 126.5, 126.2, 124.8, 123.6, 123.1, 121.8, 120.6, $118.8,117.8,114.6,109.6,20.0,15.2$. HRMS (ESI-TOF) $(\mathrm{m} / \mathrm{z})$: Calcd for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{NaO}_{2}$, $\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, 390.1213 , found 390.1220 .

2-Methyl-3-(1-(pyridin-2-yl)-1 \mathbf{H}-indol-2-yl)-4H-chromen-4-one (3wa)
brown solid ($37.3 \mathrm{mg}, 53 \%$), ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.46$ (dd, $J=4.7$, $1.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{dd}, J=7.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.72-7.69(\mathrm{~m}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=$ $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-7.62(\mathrm{~m}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{dd}, J=16.1$, $8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.20-7.18(\mathrm{~m}, 1 \mathrm{H})$, 7.17 - $7.14(\mathrm{~m}, 1 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.6,166.9,156.0,151.7,149.2,138.3,137.4,133.6,131.2,128.7,126.4,125.2,123.1,123.0,121.8$, 121.1, 120.9, 120.5, 117.8, 116.4, 111.3, 107.4, 20.0. HRMS (ESI-TOF) (m/z): Calcd for $\mathrm{C}_{23} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{NaO}_{2}$, $\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 375.1104$, found 375.1110.

8-Bromo-2-methyl-3-(1-(pyrimidin-2-yl)-1 H-indol-2-yl)-4H-chromen-4-one (3ab)
yellow solid ($71.6 \mathrm{mg}, 83 \%$), ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.54(\mathrm{~d}, J=$ $4.9 \mathrm{~Hz}, 3 \mathrm{H}), 8.06(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{t}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{t}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 2.53(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.0,164.1,158.0,157.9,152.7,137.1,136.9,131.1,129.2,125.8,125.5,124.4$, 123.9, 122.1, 120.7, $119.2117 .0,115.1,111.3,110.4,19.8$. HRMS (ESI-TOF) (m / z): Calcd for $\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{BrN}_{3} \mathrm{NaO}_{2},\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 454.0162$, found 454.0170.

2-Methyl-3-(1-(pyrimidin-2-yl)-1H-indol-2-yl)-8-(trifluoromethyl)-

 4H-chromen-4-one (3ac)brown solid ($28.6 \mathrm{mg}, 34 \%$), ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.56-8.53$ $(\mathrm{m}, 3 \mathrm{H}), 8.31(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.00(\mathrm{t}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 2.52(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 175.5,163.9$, $158.1,158.0,152.8,137.1,131.0(J=4.8 \mathrm{~Hz}), 130.8,130.7,129.2,124.1(J=5.0 \mathrm{~Hz}), 124.0,122.9(J=$ 275.1 Hz), 122.2, 120.7, $120.0(J=32.1 \mathrm{~Hz}), 119.7$, $117.1,115.2,110.6,19.9 .{ }^{19}$ F NMR (376 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$-69.1. HRMS (ESI-TOF) (m/z): Calcd for $\mathrm{C}_{23} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{NaO}_{2}$, $\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 444.0930$, found 444.0935.

2,7-Dimethyl-3-(1-(pyrimidin-2-yl)-1H-indol-2-yl)-4H-chromen-4-one (3ad)
black solid ($43.3 \mathrm{mg}, 59 \%$), ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.54(\mathrm{~d}, J=4.3$ $\mathrm{Hz}, 2 \mathrm{H}), 8.50(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.33(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.97(\mathrm{t}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 176.7, 163.8, 157.9, 156.2, 144.7, 137.0, 131.8, 129.2, 126.4, 126.2, 123.7, 122.0, 120.9, 120.8, 120.6, 117.54, 117.51, 117.0, 114.9, 110.1, 21.9, 19.9. HRMS (ESI-TOF) (m/z): Calcd for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{NaO}_{2}$, ([M $+\mathrm{Na}]^{+}$), 390.1213, found 390.1221.

7-Methoxy-2-methyl-3-(1-(pyrimidin-2-yl)-1 H -indol-2-yl)-4H-

 chromen-4-one (3ae)black solid ($36.8 \mathrm{mg}, 48 \%$), ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.55$ (d, $J=$ $4.7 \mathrm{~Hz}, 2 \mathrm{H}), 8.49(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}$, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.98$ (t, $J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{dd}, J=8.8,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H})$, $2.42(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.0,163.4,158.1,157.9,157.7,137.0,131.9,129.3,127.8$, 123.7, 122.0, 120.6, 118.6, 117.0, 114.9, 114.0, 110.2, 100.1, 55.9, 19.8. HRMS (ESI-TOF) (m/z): Calcd for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{NaO}_{3}\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 406.1162$, found 406.1170 .

7-Chloro-2-methyl-3-(1-(pyrimidin-2-yl)-1 H-indol-2-yl)-4H-chromen-4-one (3af)
brown solid ($31.7 \mathrm{mg}, 41 \%$), ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.57-8.49$ $(\mathrm{m}, 3 \mathrm{H}), 8.04(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~s}, 1 \mathrm{H})$, $7.33(\mathrm{dd}, J=16.6,8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{t}, J=4.7$ $\mathrm{Hz}, 1 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.9$, $164.0,158.1,157.9,156.2,139.4,137.1,131.2,129.2,127.8,125.7,123.9,122.1,121.7,120.7,119.3$, $117.9,117.0,115.1,110.4,19.8$. HRMS (ESI-TOF) (m/z): Calcd for $\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{ClN}_{3} \mathrm{NaO}_{2}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, 410.0667 , found 410.0671 .

2,6-Dimethyl-3-(1-(pyrimidin-2-yl)-1H-indol-2-yl)-4H-chromen-4-one (3ag)
yellow solid ($50.7 \mathrm{mg}, 69 \%$), ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.45$ (d, $J=3.3$ $\mathrm{Hz}, 2 \mathrm{H}), 8.40(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~s}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.36$ $(\mathrm{d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.15(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{t}, J=$ $4.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.7,163.9,158.0$, $157.9,154.3,137.0,134.7,131.9,129.2,125.7,123.7,122.7,121.9,120.6,118.6,117.5,117.0,114.9$, 110.1, 21.0, 19.9. HRMS (ESI-TOF) (m/z): Calcd for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{NaO}_{2}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, 390.1213, found 390.1221 .

6-Bromo-2-methyl-3-(1-(pyrimidin-2-yl)-1H-indol-2-yl)-4H-chromen-4one (3ah)
yellow solid ($67.2 \mathrm{mg}, 78 \%$), ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.54(\mathrm{~d}, J=4.7$ $\mathrm{Hz}, 2 \mathrm{H}), 8.52(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.23(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{dd}, J=8.8$, $2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{t}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 175.3,164.2,158.0,157.9,154.8,137.0,136.4,131.1,129.1,128.9,124.4,123.9,122.1$, 120.7, 119.8, 119.1, 118.2, 117.1, 115.0, 110.4, 19.9. HRMS (ESI-TOF) (m/z): Calcd for $\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{BrN}_{3} \mathrm{NaO}_{2}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, 454.0162 , found 454.0160 .

5-Fluoro-2-methyl-3-(1-(pyrimidin-2-yl)-1H-indol-2-yl)-4H-chromen-4-

 one (3ai)brown solid ($25.2 \mathrm{mg}, 34 \%$), ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.57-8.53(\mathrm{~m}$, $3 \mathrm{H}), 7.62(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.26$ - $7.22(\mathrm{~m}, 2 \mathrm{H}), 7.00-6.97(\mathrm{~m}, 2 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 174.9,162.9,161.0(J=264.95 \mathrm{~Hz}), 158.1,157.9,157.1(J=3.8 \mathrm{~Hz}), 137.1,133.4$ $(J=10.6 \mathrm{~Hz}), 131.2,129.2,123.8,122.1,120.6,120.1,117.0,115.3,113.7(J=4.3 \mathrm{~Hz}), 113.6(J=10.1$ $\mathrm{Hz}), 111.8(J=20.8 \mathrm{~Hz}), 110.5,19.7 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-111.2$. HRMS (ESI-TOF) $(\mathrm{m} / \mathrm{z})$: Calcd for $\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{FN}_{3} \mathrm{NaO}_{2}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, 394.0962, found 394.0969.

5-Chloro-2,6-dimethyl-3-(1-(pyrimidin-2-yl)-1 H -indol-2-yl)-4H-chromen-4-one (3aj)
brown solid ($44.1 \mathrm{mg}, 55 \%$), ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.56-8.53$ (m, $3 \mathrm{H}), 7.62(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{t}, J=6.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.28(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{t}, J=4.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 175.9,161.9,158.1,157.9$, $156.0,137.1,134.5,132.9,131.6,129.3,123.7,122.0,120.6,120.2,120.0,116.9,116.2,115.3,110.5$, 20.5, 19.5. HRMS (ESI-TOF) $(\mathrm{m} / \mathrm{z})$: Calcd for $\mathrm{C}_{23} \mathrm{H}_{16} \mathrm{ClN}_{3} \mathrm{NaO}_{2}\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 424.0823$, found 424.0833 .

2-Ethyl-3-(1-(pyrimidin-2-yl)-1 \mathbf{H}-indol-2-yl)-4H-chromen-4-one (3ak) yellow solid ($58.0 \mathrm{mg}, 79 \%$), ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.53(\mathrm{t}, J=6.6$ $\mathrm{Hz}, 3 \mathrm{H}), 8.15(\mathrm{dd}, J=7.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.68-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.49(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.37-7.33(\mathrm{~m}, \quad 2 \mathrm{H}), 7.26(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{t}, J=4.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 2.77(\mathrm{dd}, J=7.5,4.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.24(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.0,167.7,158.0,157.8,156.1,137.0,133.4$, 131.6, 129.2, 126.3, 124.8, 123.6, 123.0, 122.0, 120.6, 118.1, 117.8, 117.0, 115.0, 110.0, 26.5, 11.5 . HRMS (ESI-TOF) (m/z): Calcd for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{NaO}_{2}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, 390.1213, found 390.1220.

2-Ethyl-3-(1-(pyrimidin-2-yl)-1 \mathbf{H}-indol-2-yl)-4H-chromen-4-one (3al)

yellow solid ($45.7 \mathrm{mg}, 55 \%$), ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.57$ (d, $J=4.8$ $\mathrm{Hz}, 2 \mathrm{H}), 8.51(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.15(\mathrm{dd}, J=7.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{ddd}$, $J=8.6,7.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{dd}, J=8.4,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.47(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{td}, J=7.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.31-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~s}, 1 \mathrm{H}), 7.17(\mathrm{t}$, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.38(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.0,158.0,158.0$, $156.3,137.0,133.8,133.6,132.1,130.4,129.4,129.0,128.3,128.3,126.5,125.1,123.6,123.1,121.9$, $120.8,118.3,118.1,117.0,114.9,110.6$. HRMS (ESI-TOF) (m/z): Calcd for $\mathrm{C}_{27} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{NaO}_{2}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, 438.1213 , found 438.1214 .

General procedure for preparation of 6

Representative Synthesis of Product 6: A pressure tube was charged with $\mathbf{4 a}(44.4 \mathrm{mg}, 0.2 \mathrm{mmol})$, 2a ($82.5 \mathrm{mg}, 0.4 \mathrm{mmol}$), $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}(5.0 \mathrm{mg}, 4 \mathrm{~mol} \%), \mathrm{AgSbF}_{6}(11.0 \mathrm{mg}, 16 \mathrm{~mol} \%), \mathrm{CsOAc}(38.4 \mathrm{mg}$, $0.2 \mathrm{mmol}), \mathrm{Na}_{2} \mathrm{CO}_{3}(21.2 \mathrm{mg}, 0.2 \mathrm{mmol})$ and anhydrous THF (2.0 mL). The reaction mixture was stirred at $140^{\circ} \mathrm{C}$ for 12 h under air. After the reaction was completed as indicated by TLC analysis, the solvent was removed under reduced pressure and the residue was purified by silica gel chromatography using petroleum ether/ethyl acetate $2: 1(\mathrm{v} / \mathrm{v})$ to give the corresponding product $\mathbf{6 a a}(67.7 \mathrm{mg}, 89 \%)$.

3-(2-Methyl-4-oxo-4H-chromen-3-yl)-2-(pyridin-2-yl)isoquinolin$\mathbf{1 (2 H)}$-one (6aa)

yellow solid ($67.7 \mathrm{mg}, 89 \%$), ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.46(\mathrm{~d}, J=7.9$ $\mathrm{Hz}, 1 \mathrm{H}), 8.40(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.66-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.61-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.53(\mathrm{t}, J=7.7 \mathrm{~Hz}, 3 \mathrm{H})$, $7.32(\mathrm{dd}, J=15.0,7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{dd}, J=7.0,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{~s}, 1 \mathrm{H})$, $2.52(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.7,167.4,163.4,155.7,152.4,148.8,137.9,137.0,135.2$, $133.8,132.9,128.4,127.4,126.4,126.3,126.0,125.3,124.4,123.8,122.7,119.1,117.8,109.0,20.3$. HRMS (ESI-TOF) (m / z): Calcd for $\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{NaO}_{3}\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 403.1053$, found 403.1063.

5-Bromo-3-(2-methyl-4-oxo-4H-chromen-3-yl)-2-(pyridin-2-

 yl)isoquinolin- $\mathbf{1 (2 H)}$-one (6ba)yellow solid ($49.5 \mathrm{mg}, 54 \%$), ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.44(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 8.40(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.66(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.38-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.15(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H}), 2.54(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 175.6,167.4,162.7,155.8,152.1,148.9,138.0,136.7,136.6,136.3$, 133.9, 128.0, 127.9, 127.88, 126.0, 125.4, 124.3, 124.0, 122.7, 121.1, 119.1, 117.9, 107.6, 20.4. HRMS (ESI-TOF) $(\mathrm{m} / \mathrm{z})$: Calcd for $\mathrm{C}_{24} \mathrm{H}_{15} \mathrm{BrN}_{2} \mathrm{NaO}_{3}\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 481.0158$, found 481.0159.

6-Methoxy-3-(2-methyl-4-oxo-4H-chromen-3-yl)-2-(pyridin-2-yl)isoquinolin-1 (2H)-one (6ca)
yellow solid ($43.5 \mathrm{mg}, 53 \%$), ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.37(\mathrm{t}, J$ $=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 8.03(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.64-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.60-$ $7.56(\mathrm{~m}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{dd}, J=12.9,7.9 \mathrm{~Hz}, 2 \mathrm{H})$, 7.12 - 7.10 (m, 1H), 7.08 (dd, $J=8.9,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=2.2$ $\mathrm{Hz}, 1 \mathrm{H}), 6.43(\mathrm{~s}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.6,167.2,163.3$, 163.0, 155.7, 152.4, 148.8, 139.1, 137.8, 135.8, 133.7, 130.4, 126.0, 125.3, 124.4, 123.7, 122.7, 120.0, 119.1, 117.8, 116.6, 108.8, 107.4, 55.6, 20.3. HRMS (ESI-TOF) (m/z): Calcd for $\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{NaO}_{4}$ ([M + $\mathrm{Na}]^{+}$), 433.1159, found 433.1159.

6-Bromo-3-(2-methyl-4-oxo-4H-chromen-3-yl)-2-(pyridin-2-yl)isoquinolin-1 (2H)-one (6da)
yellow solid ($42.1 \mathrm{mg}, 46 \%$), ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.39(\mathrm{~d}, J$ $=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.30(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.69$ $(\mathrm{s}, 1 \mathrm{H}), 7.66-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.62-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.35-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.14$ (dd, $J=6.9,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.43$ (s, 1H), $2.50(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.5,167.3,162.9,155.7,152.1,148.9,138.4,138.0,136.8$, 133.9, 130.7, 130.2, 128.8, 128.1, 126.0, 125.4, 124.9, 124.3, 124.0, 122.7, 118.9, 117.9, 107.8, 20.3. HRMS (ESI-TOF) $(\mathrm{m} / \mathrm{z})$: Calcd for $\mathrm{C}_{24} \mathrm{H}_{15} \mathrm{BrN}_{2} \mathrm{NaO}_{3}\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 481.0158$, found 481.0157.

2-(4-Methoxypyridin-2-yl)-3-(2-methyl-4-oxo-4H-chromen-3-yl)isoquinolin- $\mathbf{1 (2 H)}$)-one (6ea)
brown solid ($36.1 \mathrm{mg}, 44 \%$), ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.46(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 8.20(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.61(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.04(\mathrm{~s}, 1 \mathrm{H}), 6.66(\mathrm{dd}, J=5.7,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H}), 3.73(\mathrm{~s}$, 3 H), $2.47(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.0,167.4,167.0,163.3,155.8,154.0,149.5,137.0$, $135.1,133.8,132.8,128.3,127.4,126.3,126.28,125.9,125.4,122.9,119.0,117.9,111.8,109.0,108.9$, 55.6, 20.3. HRMS (ESI-TOF) $(\mathrm{m} / \mathrm{z})$: Calcd for $\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{NaO}_{4}\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 433.1159$, found 433.1154.

2-(4-Chloropyridin-2-yl)-3-(2-methyl-4-oxo-4H-chromen-3-

 yl)isoquinolin- $\mathbf{1 (2 H}$)-one (6fa)yellow solid ($25.7 \mathrm{mg}, 31 \%$), ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.45(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 8.28(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.62(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{t}, J=6.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.37-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.15(\mathrm{dd}, J=5.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~s}, 1 \mathrm{H})$, $2.51(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.6,167.3,163.2,155.8,153.2,149.2,145.1,136.9,134.9$, 133.9, 133.1, 128.4, 127.6, 126.4, 126.1, 125.5, 125.2, 124.4, 122.8, 119.0, 117.8, 109.4, 100.1, 20.3. HRMS (ESI-TOF) (m/z): Calcd for $\mathrm{C}_{24} \mathrm{H}_{15} \mathrm{ClN}_{2} \mathrm{NaO}_{3}\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 437.0663$, found 437.0672.

6-(2-Methyl-4-oxo-4H-chromen-3-yl)-2H-[1,2'-bipyridin]-2-one (6ga)
black solid ($26.4 \mathrm{mg}, 40 \%$), ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.39$ (dd, $J=4.8,1.1$ $\mathrm{Hz}, 1 \mathrm{H}), 8.02(\mathrm{dd}, J=8.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.62-7.58(\mathrm{~m}, 1 \mathrm{H})$, 7.47 (dd, $J=9.3,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.13(\mathrm{~m}, 1 \mathrm{H}), 6.73$ (dd, $J=9.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{dd}, J=6.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.3,167.0,163.7,155.7,152.0,148.9,141.5,140.1$, 138.1, 133.9, 126.0, 125.4, 124.1, 123.9, 122.6, 121.7, 118.7, 117.9, 108.7, 20.2. HRMS (ESI-TOF) $(\mathrm{m} / \mathrm{z})$: Calcd for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{NaO}_{3}\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 353.0897$, found 353.0904.

3-(7-Methoxy-2-methyl-4-oxo-4H-chromen-3-yl)-2-(pyridin-2-yl)isoquinolin- $\mathbf{1 (2 H}$)-one (6ab)
yellow solid ($49.2 \mathrm{mg}, 60 \%$), ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.45$ (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.39(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.68-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.13$ (dd, $J=6.9,5.3 \mathrm{~Hz}$, $1 \mathrm{H}), 6.87(\mathrm{dd}, J=8.9,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{~s}$, $1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.1,166.7,164.1,163.3,157.4,152.4$, $148.8,137.9,137.0,135.3,132.8,128.3,127.3,127.3,126.3,126.2,124.4,123.8,118.8,116.5,114.5$, 108.9, 100.2, 55.9, 20.1. HRMS (ESI-TOF) (m/z): Calcd for $\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{NaO}_{4}\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 433.1159$, found 433.1170.

3-(2,7-Dimethyl-4-oxo-4H-chromen-3-yl)-2-(pyridin-2-

 yl)isoquinolin- $\mathbf{1 (2 H)}$)-one (6ac)yellow solid ($63.8 \mathrm{mg}, 81 \%$), ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.45(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.39(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.68-$ 7.61 (m, 2H), $7.53-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.13-7.10(\mathrm{~m}, 3 \mathrm{H}), 6.52(\mathrm{~s}, 1 \mathrm{H}), 2.48$ ($\mathrm{s}, 3 \mathrm{H}$), $2.41(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.6,167.0,163.3,155.8,152.4,148.8,145.2$, $137.9,137.0,135.3,132.8,128.3,127.3,126.8,126.3,126.2,125.7,124.4,123.8,120.4,118.9,117.6$, 109.0, 21.8, 20.2. HRMS (ESI-TOF) (m/z): Calcd for $\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{NaO}_{3}\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 417.1210$, found 417.1221.

3-(2,6-Dimethyl-4-oxo-4H-chromen-3-yl)-2-(pyridin-2-

yl)isoquinolin-1(2H)-one (6ad)

yellow solid ($51.2 \mathrm{mg}, 65 \%$), ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.45(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.38(\mathrm{dd}, J=4.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~s}, 1 \mathrm{H}), 7.68-7.62(\mathrm{~m}$, 2 H), $7.54-7.48$ (m, 3H), 7.38 (dd, $J=8.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.14-7.10(\mathrm{~m}, 1 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 175.7,167.1,163.3,154.0,152.4,148.8,137.9,137.0,135.3,135.3,135.0,132.8,128.3$, 127.3, 126.3, 126.2, 125.2, 124.3, 123.8, 122.3, 118.9, 117.5, 109.0, 20.9, 20.3. HRMS (ESI-TOF) (m/z): Calcd for $\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{NaO}_{3}\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 417.1210$, found 417.1211.

3-(6-Bromo-2-methyl-4-oxo-4H-chromen-3-yl)-2-(pyridin-2-yl)isoquinolin- $\mathbf{1 (2 H}$)-one (6ae)
yellow solid ($38.5 \mathrm{mg}, 42 \%$), ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.46$ (d, J $=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.38(\mathrm{dd}, J=4.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.70-7.65(\mathrm{~m}, 3 \mathrm{H}), 7.52(\mathrm{dd}, J=16.2,7.9 \mathrm{~Hz}, 3 \mathrm{H}), 7.23(\mathrm{~d}, J=8.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.15(\mathrm{dd}, J=7.0,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H}), 2.52(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 174.3,167.7,163.3,154.5,152.3,148.8,138.0,136.9,136.8,134.7,132.9,128.6$, 128.4, 127.5, 126.4, 126.3, 124.4, 124.1, 123.9, 119.8, 119.3, 118.8, 109.1, 20.3. HRMS (ESI-TOF) $(\mathrm{m} / \mathrm{z})$: Calcd for $\mathrm{C}_{24} \mathrm{H}_{15} \mathrm{BrN}_{2} \mathrm{NaO}_{3}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, 481.0158, found 481.0169 .

Procedure for preparation of 7a

Synthesis of Product 7a: A pressure tube was charged with $5(31.0 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathbf{2 a}(82.5 \mathrm{mg}, 0.4$ mmol), $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}(5.0 \mathrm{mg}, 4 \mathrm{~mol} \%), \mathrm{AgSbF}_{6}(11.0 \mathrm{mg}, 16 \mathrm{~mol} \%), \mathrm{CsOAc}(76.8 \mathrm{mg}, 0.4 \mathrm{mmol})$ and anhydrous m-Xylene (2.0 mL). The reaction mixture was stirred at $140^{\circ} \mathrm{C}$ for 12 h under air. After the reaction was completed as indicated by TLC analysis, the solvent was removed under reduced pressure and the residue was purified by silica gel chromatography using petroleum ether/ethyl acetate $1: 1(\mathrm{v} / \mathrm{v})$ to give the corresponding product $7 \mathbf{a}(28.2 \mathrm{mg}, 45 \%)$.

2-Methyl-3-(2-(pyridin-2-yl)phenyl)-4H-chromen-4-one (7a)

yellow solid ($28.2 \mathrm{mg}, 45 \%$), ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.57(\mathrm{~d}, J=4.8 \mathrm{~Hz}$, $1 \mathrm{H}), 8.22(\mathrm{dd}, J=8.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.68(\mathrm{~m}, 1 \mathrm{H}), 7.64-7.61(\mathrm{~m}, 1 \mathrm{H})$, $7.53-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.29(\mathrm{t}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.10(\mathrm{dd}, J=7.4,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.4,164.1,159.1,156.1,149.5,141.5,136.1,133.4,131.8,131.5,130.18,128.8,128.7,126.4,124.9$, 123.9, 123.3, 121.9, 117.8, 19.5. HRMS (ESI-TOF) (m/z): Calcd for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{NNaO}_{2}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, 336.0995 , found 336.0999 .

III. Preparation of 3aa in Gram Scale

A pressure tube was charged with $\mathbf{1 a}(1.0 \mathrm{~g}, 5.12 \mathrm{mmol}), \mathbf{2 a}\left(2.1 \mathrm{~g}, 2.0\right.$ equiv.), $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}(79.2 \mathrm{mg}$, $2.5 \mathrm{~mol} \%$), AgSbF_{6} ($176.0 \mathrm{mg}, 10 \mathrm{~mol} \%$), $\mathrm{CsOAc}\left(983.4 \mathrm{mg}, 1.0\right.$ equiv.), $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ($543.0 \mathrm{mg}, 1.0$ equiv.) and anhydrous m-Xylene (30.0 mL). The reaction mixture was stirred at $140^{\circ} \mathrm{C}$ for 12 h under air. After the reaction was completed as indicated by TLC analysis, the solvent was removed under reduced pressure and the residue was purified by silica gel chromatography using petroleum ether/ethyl acetate 5:1 (v/v) to give the corresponding product 3aa ($1.24 \mathrm{~g}, 69 \%$).

IV. Derivatization of 3aa

A pressure tube was charged with 3aa ($70.7 \mathrm{mg}, 0.2 \mathrm{mmol}$), $\mathrm{NaOAc}(40.8 \mathrm{mg})$ and anhydrous DMSO (2 mL). The reaction mixture was stirred at $100{ }^{\circ} \mathrm{C}$ for 24 h under N_{2}. After the reaction was completed as indicated by TLC analysis, the solvent was removed under reduced pressure and the residue was purified by silica gel chromatography using petroleum ether/ethyl acetate $1: 1(\mathrm{v} / \mathrm{v})$ to give the corresponding product $\mathbf{8}(62.9 \mathrm{mg}, 89 \%)$.

3-(1H-indol-2-yl)-2-(pyrimidin-2-ylmethyl)-4H-chromen-4-one (8) yellow solid ($62.9 \mathrm{mg}, 89 \%$), ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.73(\mathrm{~s}, 1 \mathrm{H})$, 8.78 (d, $J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.27(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{t}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.42-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.27(\mathrm{t}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{t}$, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~s}, 1 \mathrm{H}), 4.68(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 177.3, 166.7, 162.7, 157.8, 155.7, 136.2, 133.8, 129.3, 128.2, 126.3, 125.3, 123.3, 122.2, 120.7, 119.79, 119.7, 117.9, 116.9, 111.3, 104.5, 43.7. HRMS (ESI-TOF) (m/z): Calcd for $\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{NaO}_{2}\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 376.1056$, found 376.1062.

3aa
TsN_{3} (2.0 equiv)
$\xrightarrow[\mathrm{AgNTf}_{2}(10.0 \mathrm{~mol} \%)]{\left[\mathrm{Cp}^{*} \mathrm{IrCl}_{2}\right]_{2}(2.5 \mathrm{~mol} \%)}$
DCE, $60^{\circ} \mathrm{C}$, air, 12 h 90\%

9

To a solution of 3aa ($70.7 \mathrm{mg}, 0.2 \mathrm{mmol}$) in DCE (2 mL) was added $\mathrm{TsN}_{3}(78.9 \mathrm{mg}, 0.4 \mathrm{mmol})$, $\left[\mathrm{Cp}^{*} \mathrm{IrCl}_{2}\right]_{2}(4 \mathrm{mg}, 2.5 \mathrm{~mol} \%), \mathrm{AgNTf}_{2}(7.8 \mathrm{mg}, 10.0 \mathrm{~mol} \%)$ and the mixture was stirred at $60^{\circ} \mathrm{C}$ for 12 h under air. After the reaction was completed as indicated by TLC analysis, the solvent was removed under reduced pressure and the residue was purified by silica gel chromatography using petroleum ether/ethyl acetate 2:1 (v/v) to give the corresponding product 9 ($94.0 \mathrm{mg}, 90 \%$).

4-Methyl- N -(2-methyl-4-oxo-3-(1-(pyrimidin-2-yl)-1 H -indol-2-yl)-4H-chromen-5-yl)benzenesulfonamide (9)

yellow solid ($94.0 \mathrm{mg}, 90 \%$), ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.07(\mathrm{~s}, 1 \mathrm{H})$, $8.52(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.93(\mathrm{dd}, J=7.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-7.60(\mathrm{~m}, 1 \mathrm{H})$, 7.49 (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{dd}, J=14.8,8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.23(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 6.89(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $176.0,164.9,157.9,156.6,155.9,142.9,136.9,133.6,133.5,131.2,129.3,129.2,126.3,126.1,125.0$,
123.3, 122.7, 122.6, 122.1, 119.2, 118.2, 117.8, 117.76, 110.7, 21.5, 19.9. HRMS (ESI-TOF) (m/z): Calcd for $\mathrm{C}_{29} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{NaO}_{4} \mathrm{~S}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, 545.1254, found 545.1255.

Sodium ($27.6 \mathrm{mg}, 1.2 \mathrm{mmol}$) was gradually added to dry methanol (2 mL) and the mixture was stirred until the solution reached room temperature. 3aa ($70.7 \mathrm{mg}, 0.2 \mathrm{mmol}$) and benzaldehyde (25.6 $\mathrm{mg}, 0.24 \mathrm{mmol}$) were added and the resulting mixture was allowed to stir at reflux for 12 h . After this period, the solution was poured into iced water and the pH was adjusted to 4 with aqueous HCl . The solid was removed by filtration, taken up in DCM, and purified with silica gel chromatography (petroleum ether/ethyl acetate $=1: 1$) to give $\mathbf{1 0}(62.6 \mathrm{mg}, 71 \%)$ as a yellow solid.

4(E)-3-(1-(Pyrimidin-2-yl)-1H-indol-2-yl)-2-styryl-4H-chromen-4-one
(10)
yellow solid ($62.6 \mathrm{mg}, 71 \%$), ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 8.56(\mathrm{~d}, J=4.4$ $\mathrm{Hz}, 2 \mathrm{H}), 8.52(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.76-7.71(\mathrm{~m}$, $2 \mathrm{H}), 7.69(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.39-7.26(\mathrm{~m}, 7 \mathrm{H}), 7.02(\mathrm{t}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}(151$ $\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 177.0,158.8,158.3,156.0,137.5,136.9,136.0,134.2,131.5$, $130.0,129.4,129.3,128.2,126.3,125.1,124.2,123.5,122.3,121.3,120.0$, 118.7, 118.2, 117.6, 115.1, 111.8, 100.4. HRMS (ESI-TOF) (m/z): Calcd for $\mathrm{C}_{29} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{NaO}_{2}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, 464.1369, found 464.1374.

V. Mechanistic Studies

(1) Complex A

Rhodium Complex A was synthesized according to literature report. ${ }^{5} \mathbf{1 a}(70.7 \mathrm{mg}, 0.2 \mathrm{mmol})$, 2a (82.5, 0.4 mmol), complex A ($7.1 \mathrm{mg}, 8 \mathrm{~mol} \%$), $\mathrm{AgSbF}_{6}(5.5 \mathrm{mg}, 8 \mathrm{~mol} \%$), $\mathrm{CsOAc}(38.4 \mathrm{mg}, 0.2 \mathrm{mmol})$, $\mathrm{Na}_{2} \mathrm{CO}_{3}(21.2 \mathrm{mg}, 0.2 \mathrm{mmol})$, and m-Xylene $(2.0 \mathrm{~mL})$ were charged into a pressure tube. The reaction mixture was stirred at $140^{\circ} \mathrm{C}$ for 12 h under air. The solvent was removed under reduced pressure and the residue was purified by silica gel chromatography (petroleum ether/ethyl acetate $=5: 1$) to yield product 3aa (63.1 mg , 89%).

(2) H/D Exchange Experiments

A pressure tube was charged with $\mathbf{1 a}(70.7 \mathrm{mg}, 0.2 \mathrm{mmol}),\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}(5.0 \mathrm{mg}, 2.5 \mathrm{~mol} \%)$, $\mathrm{AgSbF}_{6}(10.0 \mathrm{mg}, 16 \mathrm{~mol} \%), \mathrm{CsOAc}(38.4 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathrm{Na}_{2} \mathrm{CO}_{3}(21.2 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathrm{D}_{2} \mathrm{O}(36 \mathrm{uL}$, 10.0 equiv.) and m-Xylene (2.0 mL). The reaction mixture was stirred at $140{ }^{\circ} \mathrm{C}$ for 12 h under air. The solvent was removed under reduced pressure and the residue was purified by silica gel chromatography using petroleum ether/ethyl acetate $5: 1(\mathrm{v} / \mathrm{v})$ to give the corresponding product, and the extent of deuteration was obtained by ${ }^{1} \mathrm{H}$ NMR analysis.

(3) Control Experiments

A pressure tube was charged with 1a ($39.0 \mathrm{mg}, 0.2 \mathrm{mmol}$), 2a $(82.5 \mathrm{mg}, 0.4 \mathrm{mmol}),\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}(5.0$ $\mathrm{mg}, 4 \mathrm{~mol} \%), \mathrm{AgSbF}_{6}(11.0 \mathrm{mg}, 16 \mathrm{~mol} \%), \mathrm{PivOH}(40.8 \mathrm{mg}, 0.2 \mathrm{mmol})$, and anhydrous DCE (2.0 mL). The reaction mixture was stirred at $120{ }^{\circ} \mathrm{C}$ for 12 h under air. After the reaction was completed as indicated by TLC analysis, the solvent was removed under reduced pressure and the residue was purified by silica gel chromatography using petroleum ether/ethyl acetate $5: 1(\mathrm{v} / \mathrm{v})$ to give the corresponding product 11 ($52.2 \mathrm{mg}, 70 \%$).

$11(79.2 \mathrm{mg}, 0.2 \mathrm{mmol})$ and anhydrous m-Xylene $(2.0 \mathrm{~mL})$ were charged into a pressure tube. The reaction mixture was stirred at $140^{\circ} \mathrm{C}$ for 8 h under air. The solvent was removed under reduced pressure and the residue was purified by silica gel chromatography using petroleum ether/ethyl acetate 5:1 (v/v) to give product $\mathbf{3 a a}(48.7 \mathrm{mg}, 69 \%)$.
$11(79.2 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathrm{CsOAc}(38.4 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathrm{Na}_{2} \mathrm{CO}_{3}(21.2 \mathrm{mg}, 0.2 \mathrm{mmol})$ and anhydrous $m-$ Xylene (2.0 mL) were charged into a pressure tube. The reaction mixture was stirred at $140{ }^{\circ} \mathrm{C}$ for 8 h under air. The solvent was removed under reduced pressure and the residue was purified by silica gel chromatography using petroleum ether/ethyl acetate 5:1 (v/v) to give product 3aa ($57.9 \mathrm{mg}, 82 \%$).

(Z)-1-(2-Fluorophenyl)-3-hydroxy-2-(1-(pyrimidin-2-yl)-1H-indol-2-yl)but-2-en-1-one (11)
brown solid ($52.2 \mathrm{mg}, 70 \%$), ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.72(\mathrm{~d}, J=4.7$ $\mathrm{Hz}, 2 \mathrm{H}), 8.25(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.17$ (t, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.11$ (m, 2H), $7.07-7.04$ (m, 1H), 6.85 $-6.78(\mathrm{~m}, 2 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 199.5,177.9,159.0(J=251.8$ $\mathrm{Hz}), 158.0,157.5,136.3,133.9,131.5(J=8.2 \mathrm{~Hz}), 129.1(J=2.6 \mathrm{~Hz}), 128.8,123.6,123.5(J=3.3 \mathrm{~Hz})$, $122.0,120.5,117.2,115.7(J=21.5 \mathrm{~Hz}), 114.5,111.0,109.5,27.1,26.3 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ -113.9. HRMS (ESI-TOF) (m/z): Calcd for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{FN}_{3} \mathrm{NaO}_{2}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, 396.1119, found 396.1124.
(4) Competition experiment

A pressure tube was charged with $\mathbf{1 1}(20.9 \mathrm{mg}, 0.1 \mathrm{mmol}), \mathbf{1 p}(25.4 \mathrm{mg}, 0.1 \mathrm{mmol}), \mathbf{2 a}(49.5 \mathrm{mg}$, 0.24 mmol), $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}(5.0 \mathrm{mg}, 4 \mathrm{~mol} \%), \mathrm{AgSbF}_{6}(11.0 \mathrm{mg}, 16 \mathrm{~mol} \%), \mathrm{CsOAc}(38.4 \mathrm{mg}, 0.2 \mathrm{mmol})$, $\mathrm{Na}_{2} \mathrm{CO}_{3}(21.2 \mathrm{mg}, 0.2 \mathrm{mmol})$ and anhydrous m-Xylene $(2.0 \mathrm{~mL})$. The reaction mixture was stirred at 140 ${ }^{\circ} \mathrm{C}$ for 12 h under air. After the reaction was completed as indicated by TLC analysis, the solvent was removed under reduced pressure and the residue was purified by silica gel chromatography using petroleum ether/ethyl acetate $2: 1(\mathrm{v} / \mathrm{v})$ to afford product 3la and 3pa. The ratio of 3la:3pa $=1.24: 1$ was determined on the basis of ${ }^{1} \mathrm{H}$ NMR analysis.

VI. References

1 L. Ackermann and A. V. Lygin, Org. Lett., 2011, 13, 3332-3335.
2 (a) Y. Bai, W. Chen, Y. Chen, H. Huang, F. Xiao and G. Deng, RSC Adv., 2015, 5, 8002-8005;
(b) H. Zhang, D. Feng, H. Sheng, X. Ma, J. Wan and Q. Tang, RSC Adv., 2014, 4, 6417-6423;
(c) K. O. Marichev, Y. Wang, A. M. Carranco, E. C. Garcia, Z.-H. Yu and M. P. Doyle, Chem. Commun., 2018, 54, 9513-9516.

3 D. Das, and R. Samanta, Adv. Synth. Catal., 2018, 360, 379-384.
4 R. Odani, K. Hirano, T. Satoh and M. Miura, Angew. Chem., Int. Ed., 2014, 53, 10784-10788.
5 X. Zhou, Y. Pan and X. Li, Angew. Chem., Int. Ed., 2017, 56, 8163-8167.
VII. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR Spectra of New Compounds

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of 3aa

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3aa

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3ba

[^0]
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of 3ca

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3ca

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3da

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3da

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of 3 ea

${ }^{13} \mathrm{C}$ NMR ($\left.151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of 3ea

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of 3fa

[^1]
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3fa

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3ga

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3 ga

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of 3ha

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3ha

${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3ha

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of 3ia

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3ia

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of $\mathbf{3 j a}$

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of $\mathbf{3 k a}$

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3ka

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of 31a

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 31a

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of 3 ma

[^2]
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of 3na

[^3]
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3na

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of 3 oa

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3 oa

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3pa

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3pa

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of $3 q \mathbf{q}$

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3 qa

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3ra

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3ra

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of 3 sa

${ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3sa

${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3sa

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of 3 ta

${ }^{13} \mathrm{C} \mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of 3ta

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3ua

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3ua

${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3ua

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3va

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3va

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3wa

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3wa

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3ab

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3ab

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3ac

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3ac

${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3ac

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3ad

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3ad

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of 3ae

[^4]
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3af

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3af

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of $\mathbf{3 a g}$

[^5]
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3ah

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3 ah

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of 3ai

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3ai

${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3ai

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of 3aj

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3aj

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of 3 ak

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3ak

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of 3al

${ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}) spectrum of 3al

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of 6 aa

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 6aa

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{6 b a}$

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{6 b a}$

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{6 c a}$

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 6 ca

[^6]
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 6da

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{6 e a}$

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 6ea

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of $\mathbf{6 f a}$

${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1 ~ M H z}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{6 f a}$

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of $\mathbf{6 g a}$

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 6 ga

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{6 a b}$

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 6ab

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 6ac

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 6 ac

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{6 a d}$

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 6 ad

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 6ae

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 6 ae

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 7 a

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 7 a

[^7]
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 8

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 9

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 9

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) spectrum of 10

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) spectrum of 10

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 11

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 11

${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 11

[^0]: ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3ba

[^1]: ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3fa

[^2]: ${ }^{13} \mathrm{C} \mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of 3 ma

[^3]: ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3na

[^4]: ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3ae

[^5]: ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3ag

[^6]: ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of 6 da

[^7]: ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 8

