Electronic Supporting Information

Rhodium-Catalyzed Coupling of Arenes and Fluorinated α-Diazo

Diketones: Synthesis of Chromones

Jiayi Yao, Lingheng Kong, Xingwei Li*

Key Laboratory of Applied Surface and Colloid Chemistry of MOE & School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an 710062, China

Table of Contents

I. General Information	S1
II. Experiment Details and Analytical Data of 3, 6 and 7a	S2
III. Preparation of 3aa in Gram Scale	S16
IV. Derivatization of 3aa	S17
V. Mechanistic Studies	S19
VI. References	S23
VII. ¹ H, ¹³ C NMR Spectra of New Compounds.	S24

I. General Information

All chemicals were obtained from commercial sources and were used as received unless otherwise noted. *N*-pyrimidylindoles,¹ diazos,² *N*-pyrimidylisoquinolinone³ and 2-pyridone⁴ were synthesized according to literature reports. The reactions were monitored with the aid of thin-layer chromatography (TLC) on 0.25 mm precoated silica gel plates. Visualization was carried out with UV light or aqueous potassium permanganate stain. ¹H NMR and ¹³C NMR spectra were recorded at 25 °C on a Bruker 600 MHz and 151 MHz NMR spectrometers, respectively. And ¹⁹F NMR were recorded at 25 °C on a JEOL 376 MHz NMR spectrometers. Chemical shifts (δ) are given in ppm relative to TMS. The residual solvent signals were used as references for ¹H and ¹³C NMR spectra and the chemical shifts were converted to the TMS scale (TMS: δ H = 0.00 ppm, CDCl₃: δ H = 7.26 ppm, δ C = 77.16 ppm, CD₂Cl₂: δ H = 5.32 ppm, δ C = 53.84 ppm). Coupling constants (*J*) are given in Hertz (Hz). Letters m, s, d, t and q stand for multiplet, singlet, doublet, triplet, and quartet, respectively. High resolution mass spectra were recorded on Bruck Microtof. Column chromatography was performed on silica gel (300-400 mesh) using ethyl acetate (EA)/petroleum ether (PE).

II. Experiment Details and Analytical Data of 3, 6 and 7a

- 1) Optimization of the Reaction Conditions
- 2) Table S1. Optimization of the Reaction Conditions^{*a,b*}

N Pym	+ N_2 P_2 $P_$	hCl ₂] ₂ (4 mol %) pF ₆ (16 mol %) Additive Solvent, air	Pym O	
Entry	Additive (equiv.)	Solvent		Yield(%)
1	Na ₂ CO ₂ (2.0)	<i>m</i> -Xylene	140	45
2	$K_{2}PO_{4}(2,0)$	<i>m</i> -Xylene	140	55
-	$Cs_2CO_2(2.0)$	<i>m</i> -Xylene	140	20
4	CsOAc (2.0)	<i>m</i> -Xylene	140	67
5	CsOAc (2.0)	PhCI	140	45
6	CsOAc (2.0)	PhMe	140	40
7	CsOAc (1.0) + Na ₂ CO ₃ (1.0)	<i>m</i> -Xylene	140	88
8	Cs ₂ CO ₃ (1.0) + Na ₂ CO ₃ (1.0)	<i>m</i> -Xylene	140	58
9	Cs ₂ CO ₃ (1.0) + CsOAc (1.0)	<i>m</i> -Xylene	140	50
10	Cs ₂ CO ₃ (0.75) + Na ₂ CO ₃ (0.75)	<i>m</i> -Xylene	140	59
11	Cs ₂ CO ₃ (0.5) + CsOAc (0.5)	<i>m</i> -Xylene	140	23
12	CsOAc (0.5) + Na ₂ CO ₃ (1.0)	<i>m</i> -Xylene	140	46
13	CsOAc (1.0) + Na ₂ CO ₃ (0.5)	<i>m</i> -Xylene	140	48
14	CsOAc (1.25) + Na ₂ CO ₃ (0.75)	<i>m</i> -Xylene	140	70
15	CsOAc (0.75) + Na ₂ CO ₃ (1.25)	<i>m</i> -Xylene	140	68
16	CsOAc (1.0) + Na ₂ CO ₃ (1.0)	<i>m</i> -Xylene	135	62
17 ^c	CsOAc (1.0) + Na ₂ CO ₃ (1.0)	<i>m</i> -Xylene	140	nd

^{*a*}Reaction conditions: **1a** (0.1 mmol), **2a** (2.0 equiv.), [Cp*RhCl₂]₂ (4 mol %), AgSbF₆ (16 mol %), solvent (1.5 mL) under air for 12 h. ^{*b*}Isolated yield after column chromatography. ^{*c*}No [Cp*RhCl₂]₂ was used.

2) General procedure for preparation of 3

Representative Synthesis of Product 3: A pressure tube was charged with **1a** (39.0 mg, 0.2 mmol), **2a** (82.5 mg, 0.4 mmol), $[Cp*RhCl_2]_2$ (5.0 mg, 4 mol %), AgSbF₆ (11.0 mg, 16 mol %), CsOAc (38.4 mg, 0.2 mmol), Na₂CO₃ (21.2 mg, 0.2 mmol) and anhydrous *m*-Xylene (2.0 mL). The reaction mixture was stirred at 140 °C for 12 h under air. After the reaction was completed as indicated by TLC analysis, the solvent was removed under reduced pressure and the residue was purified by silica gel chromatography using petroleum ether/ethyl acetate 5:1 (v/v) to give the corresponding product **3aa** (62.2 mg, 88%).

2-Methyl-3-(1-(pyrimidin-2-yl)-1*H***-indol-2-yl)-4***H***-chromen-4-one (3aa)** yellow solid (62.2 mg, 88%), ¹H NMR (600 MHz, CDCl₃) δ 8.54 (d, *J* = 4.8 Hz, 2H), 8.51 (d, *J* = 8.4 Hz, 1H), 8.11 (dd, *J* = 7.9, 1.5 Hz, 1H), 7.67 – 7.62 (m, 2H), 7.46 (d, *J* = 8.4 Hz, 1H), 7.35 – 7.31 (m, 2H), 7.26 – 7.22 (m, 1H), 6.97 (t, *J* = 4.8 Hz, 1H), 6.66 (s, 1H), 2.46 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 176.7, 164.0, 158.1, 157.9, 156.1, 137.0, 133.4, 131.7, 129.2, 126.4,

 $124.9, 123.7, 123.1, 122.0, 120.6, 118.9, 117.8, 117.0, 115.0, 110.2, 19.9. HRMS (ESI-TOF) (m/z): Calcd for C_{22}H_{15}N_3NaO_2, ([M + Na]^+), 376.1056, found 376.1055.$

2-Methyl-3-(3-methyl-1-(pyrimidin-2-yl)-1*H*-indol-2-yl)-4*H*-chromen-4-one (3ba)

brown solid (35.2 mg, 48%), ¹H NMR (600 MHz, CDCl₃) δ 8.54 (d, J = 8.3 Hz, 1H), 8.49 (d, J = 4.8 Hz, 2H), 8.17 (dd, J = 7.9, 1.5 Hz, 1H), 7.69 – 7.65 (m, 1H), 7.61 (d, J = 7.7 Hz, 1H), 7.48 (d, J = 8.4 Hz, 1H), 7.39 – 7.33 (m, 2H), 7.29 – 7.26 (m, 1H), 6.91 (t, J = 4.8 Hz, 1H), 2.31 (s, 3H), 2.22 (s, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 176.9, 164.2, 158.1, 157.9, 156.2, 136.8, 133.4, 130.4, 128.1, 126.5, 124.9, 124.0, 123.2, 121.7, 118.9, 117.8, 117.1, 116.5, 115.1, 19.5, 9.5. HRMS (ESI-TOF) (m/z): Calcd for C₂₃H₁₇N₃NaO₂, ([M + Na]⁺), 390.1213, found 390.1211.

3-(3-Ethyl-1-(pyrimidin-2-yl)-1*H*-indol-2-yl)-2-methyl-4*H*-chromen-4-one (3ca)

yellow solid (29.7 mg, 39%), ¹H NMR (600 MHz, CDCl₃) δ 8.54 (d, J = 8.3 Hz, 1H), 8.49 (d, J = 4.7 Hz, 2H), 8.21 (dd, J = 7.9, 1.4 Hz, 1H), 7.69 – 7.65 (m, 2H), 7.47 (d, J = 8.3 Hz, 1H), 7.38 (t, J = 7.5 Hz, 1H), 7.35 – 7.32 (m, 1H), 7.27 (t, J = 7.2 Hz, 1H), 6.91 (t, J = 4.7 Hz, 1H), 2.70 – 2.63 (m, 2H),

2.25 (s, 3H), 1.24 (t, J = 7.6 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 176.9, 164.5, 158.0, 157.9, 156.1, 137.1, 133.4, 129.5, 127.3, 126.6, 124.9, 123.8, 123.2, 123.16, 121.7, 119.1, 117.8, 117.7, 116.4, 115.2, 19.6, 18.2, 14.6. HRMS (ESI-TOF) (m/z): Calcd for C₂₄H₁₉N₃NaO₂, ([M + Na]⁺), 404.1369, found 404.1371.

2-Methyl-3-(4-methyl-1-(pyrimidin-2-yl)-1*H*-indol-2-yl)-4*H*-chromen-4-one (3da)

yellow solid (61.7 mg, 84%), ¹H NMR (600 MHz, CDCl₃) δ 8.53 (d, J = 4.8 Hz, 2H), 8.35 (d, J = 8.4 Hz, 1H), 8.14 (d, J = 7.2 Hz, 1H), 7.68 – 7.63 (m, 1H), 7.47 (d, J = 8.4 Hz, 1H), 7.35 (t, J = 7.5 Hz, 1H), 7.25 (t, J = 7.3 Hz, 1H), 7.06 (d, J = 7.2 Hz, 1H), 6.96 (t, J = 4.7 Hz, 1H), 6.72 (s, 1H), 2.59 (s, 3H),

2.46 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 176.7, 164.0, 158.0, 157.9, 156.0, 136.7, 133.3, 131.0, 129.9, 128.9, 126.3, 124.8, 123.7, 123.0, 122.3, 118.9, 117.7, 116.9, 112.5, 108.6, 19.9, 18.7. HRMS (ESI-TOF) (m/z): Calcd for C₂₃H₁₇N₃NaO₂, ([M + Na]⁺), 390.1213, found 390.1214.

3-(4-Methoxy-1-(pyrimidin-2-yl)-1*H*-indol-2-yl)-2-methyl-4*H*-chromen-4-one (3ea)

brown solid (69.0 mg, 90%), ¹H NMR (600 MHz, CDCl₃) δ 8.55 (d, J = 4.8 Hz, 2H), 8.14 – 8.09 (m, 2H), 7.67 – 7.64 (m, 1H), 7.48 (d, J = 8.3 Hz, 1H), 7.37 – 7.33 (m, 1H), 7.28 (t, J = 4.1 Hz, 1H), 6.98 (t, J = 4.8 Hz, 1H), 6.81 (s, 1H), 6.70 (d, J = 7.9 Hz, 1H), 3.99 (s, 3H), 2.51 (s, 3H). ¹³C NMR (151

MHz, CDCl₃) δ 176.5, 164.0, 158.1, 157.9, 155.9, 152.9, 138.2, 133.3, 130.1, 126.3, 124.7, 124.4, 123.0, 119.7, 118.8, 117.7, 117.1, 108.1, 107.1, 102.0, 55.5, 19.9. HRMS (ESI-TOF) (m/z): Calcd for C₂₃H₁₇N₃NaO₃, ([M + Na]⁺), 406.1162, found 406.1164.

3-(4-Fluoro-1-(pyrimidin-2-yl)-1*H*-indol-2-yl)-2-methyl-4*H*-chromen-4-one (3fa)

yellow solid (60.9 mg, 82%), ¹H NMR (600 MHz, CDCl₃) δ 8.55 (d, J = 4.2 Hz, 2H), 8.27 (d, J = 8.3 Hz, 1H), 8.10 (d, J = 7.5 Hz, 1H), 7.65 (t, J = 7.3 Hz, 1H), 7.47 (d, J = 8.3 Hz, 1H), 7.34 (t, J = 7.2 Hz, 1H), 7.28 – 7.19 (m, 1H), 7.00 (t, J = 4.4 Hz, 1H), 6.92 (t, J = 8.7 Hz, 1H), 6.77 (s, 1H), 2.49 (s,

3H). ¹³C NMR (151 MHz, CDCl₃) δ 176.5, 164.3, 158.0, 157.9, 156.0, 155.9 (J = 246.5 Hz), 139.2 (J = 15.5 Hz), 133.5, 131.8, 126.2, 124.9, 124.1 (J = 7.4 Hz), 122.9, 118.4, 118.2 (J = 22.1 Hz), 117.7, 117.4, 111.0 (J = 3.1 Hz), 106.9 (J = 18.5 Hz), 105.4, 100.0, 19.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -118.2. HRMS (ESI-TOF) (m/z): Calcd for C₂₂H₁₄FN₃NaO₂, ([M + Na]⁺), 394.0962, found 394.0969.

3-(4-Bromo-1-(pyrimidin-2-yl)-1*H*-indol-2-yl)-2-methyl-4*H*-chromen-4-one (3ga)

yellow solid (66.4 mg, 77%), ¹H NMR (600 MHz, CDCl₃) δ 8.55 (d, J = 4.6 Hz, 2H), 8.45 (d, J = 8.3 Hz, 1H), 8.09 (d, J = 7.7 Hz, 1H), 7.66 (t, J = 7.5 Hz, 1H), 7.47 (d, J = 8.4 Hz, 1H), 7.41 (d, J = 7.6 Hz, 1H), 7.35 (t, J = 7.4 Hz, 1H), 7.18 (t, J = 8.0 Hz, 1H), 7.00 (t, J = 4.5 Hz, 1H), 6.76 (s, 1H), 2.50 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 176.4, 164.3, 158.0, 157.8,

155.9, 137.2, 133.5, 132.5, 129.7, 126.2, 124.9, 124.8, 124.5, 122.9, 118.3, 117.8, 117.5, 114.4, 114.0, 109.7, 20.0. HRMS (ESI-TOF) (m/z): Calcd for $C_{22}H_{14}BrN_3NaO_2$, ([M + Na]⁺), 454.0162, found 454.0172.

2-Methyl-3-(1-(pyrimidin-2-yl)-4-(trifluoromethyl)-1*H*-indol-2-yl)-4*H*chromen-4-one (3ha)

brown solid (67.4 mg, 80%), ¹H NMR (600 MHz, CDCl₃) δ 8.67 (d, J = 8.4 Hz, 1H), 8.57 (d, J = 4.8 Hz, 2H), 8.08 (d, J = 7.8 Hz, 1H), 7.68 – 7.63 (m, 1H), 7.53 (d, J = 7.5 Hz, 1H), 7.48 (d, J = 8.4 Hz, 1H), 7.39 – 7.33 (m, 2H), 7.03 (t, J = 4.7 Hz, 1H), 6.87 (s, 1H), 2.52 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 176.4, 164.5, 158.1, 157.7, 156.0, 137.4, 133.7, 133.6, 126.2, 125.5,

125.0 (J = 272.8 Hz), 124.99, 122.9, 122.86, 121.7 (J = 32.7 Hz), 119.3 (J = 4.7 Hz), 118.4, 118.2, 117.8 (J = 10.66 Hz), 108.1, 20.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -68.6. HRMS (ESI-TOF) (m/z): Calcd for C₂₃H₁₄F₃N₃NaO₂, ([M + Na]⁺), 444.0930, found 444.0942.

2-Methyl-3-(5-methyl-1-(pyrimidin-2-yl)-1*H*-indol-2-yl)-4*H*-chromen-4-one (3ia)

brown solid (67.6 mg, 92%), ¹H NMR (600 MHz, CDCl₃) δ 8.51 (d, J = 4.7 Hz, 2H), 8.42 (d, J = 8.5 Hz, 1H), 8.13 (d, J = 7.8 Hz, 1H), 7.67 – 7.63 (m, 1H), 7.46 (d, J = 8.4 Hz, 1H), 7.42 (s, 1H), 7.35 (t, J = 7.5 Hz, 1H), 7.16 (d, J = 8.5 Hz, 1H), 6.93 (t, J = 4.7 Hz, 1H), 6.60 (s, 1H), 2.49 (s, 3H), 2.44 (s,

3H). ¹³C NMR (151 MHz, CDCl₃) δ 176.7, 163.8, 158.1, 157.8, 156.0, 135.3, 133.4, 131.6, 131.3, 129.4, 126.3, 125.2, 124.8, 123.1, 120.3, 119.0, 117.7, 116.7, 114.8, 110.0, 21.4, 19.8. HRMS (ESI-TOF) (m/z): Calcd for C₂₃H₁₇N₃NaO₂, ([M + Na]⁺), 390.1213, found 390.1224.

3-(5-Chloro-1-(pyrimidin-2-yl)-1*H*-indol-2-yl)-2-methyl-4*H*chromen-4-one (3ja)

brown solid (60.4 mg, 78%), ¹H NMR (600 MHz, CDCl₃) δ 8.53 (d, J = 3.2 Hz, 2H), 8.45 (d, J = 8.8 Hz, 1H), 8.10 (d, J = 7.6 Hz, 1H), 7.65 (t, J = 7.4 Hz, 1H), 7.58 (s, 1H), 7.46 (d, J = 8.3 Hz, 1H), 7.35 (t, J = 7.2 Hz, 1H), 7.27 (d, J = 7.3 Hz, 1H), 6.98 (t, J = 4.9 Hz, 1H), 6.60 (s, 1H), 2.45 (s, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 176.5, 164.0, 158.0, 157.8, 156.0, 135.4, 133.5, 133.1, 130.3, 127.5, 126.3, 124.9, 123.8, 123.0, 119.9, 118.6, 117.8, 117.3, 116.2, 109.4, 19.9. HRMS (ESI-TOF) (m/z): Calcd for C₂₂H₁₄ClN₃NaO₂, ([M + Na]⁺), 410.0667, found 410.0663.

Methyl 2-(2-methyl-4-oxo-4*H*-chromen-3-yl)-1-(pyrimidin-2-yl)-1*H*-indole-5-carboxylate (3ka)

yellow solid (69.1 mg, 84%), ¹H NMR (600 MHz, CDCl₃) δ 8.55 (d, J = 4.8 Hz, 2H), 8.48 (d, J = 8.8 Hz, 1H), 8.37 (s, 1H), 8.07 (dd, J = 7.8, 1.0 Hz, 1H), 8.01 (dd, J = 8.8, 1.4 Hz, 1H), 7.66 – 7.62 (m, 1H), 7.45 (d, J = 8.4 Hz, 1H), 7.33 (t, J = 7.5 Hz, 1H), 7.01 (t, J = 4.8 Hz,

1H), 6.74 (s, 1H), 3.94 (s, 3H), 2.47 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 176.4, 167.9, 164.2, 158.1, 157.7, 156.0, 139.5, 133.6, 133.3, 128.7, 126.3, 124.9, 124.9, 123.8, 123.1, 123.0, 118.3, 117.8, 117.6, 114.5, 110.6, 52.0, 19.9. HRMS (ESI-TOF) (m/z): Calcd for C₂₄H₁₇N₃NaO₄, ([M + Na]⁺), 434.1111, found 434.1110.

2-Methyl-3-(6-methyl-1-(pyrimidin-2-yl)-1*H*-indol-2-yl)-4*H*chromen-4-one (3la)

yellow solid (44.1 mg, 60%), ¹H NMR (600 MHz, CDCl₃) δ 8.54 (d, *J* = 4.8 Hz, 2H), 8.31 (s, 1H), 8.11 (dd, *J* = 7.9, 1.3 Hz, 1H), 7.66 – 7.63 (m, 1H), 7.52 (d, *J* = 7.9 Hz, 1H), 7.45 (d, *J* = 8.4 Hz, 1H), 7.34 (t, *J* = 7.5 Hz, 1H), 7.08 (d, *J* = 7.9 Hz, 1H), 6.96 (t, *J* = 4.8 Hz, 1H), 6.61 (s, 1H), 2.53

(s, 3H), 2.45 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 176.7, 164.0, 158.1, 158.0, 156.0, 137.4, 133.7, 133.4, 131.0, 127.0, 126.4, 124.8, 123.6, 123.1, 120.2, 119.0, 117.8, 116.9, 114.8, 110.1, 22.3, 19.9. HRMS (ESI-TOF) (m/z): Calcd for C₂₃H₁₇N₃NaO₂, ([M + Na]⁺), 390.1213, found 390.1211.

3-(6-Methoxy-1-(pyrimidin-2-yl)-1*H*-indol-2-yl)-2-methyl-4*H*chromen-4-one (3ma)

brown solid (47.5 mg, 62%), ¹H NMR (600 MHz, CDCl₃) δ 8.52 (d, J = 4.7 Hz, 2H), 8.14 (d, J = 1.7 Hz, 1H), 8.11 (dd, J = 7.9, 1.0 Hz, 1H), 7.65 – 7.62 (m, 1H), 7.50 (d, J = 8.5 Hz, 1H), 7.45 (d, J = 8.4 Hz, 1H), 7.33 (t, J = 7.5 Hz, 1H), 6.95 (t, J = 4.7 Hz, 1H), 6.91 (dd, J = 8.5, 2.2)

Hz, 1H), 6.59 (s, 1H), 3.91 (s, 3H), 2.45 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 176.7, 163.7, 158.1, 157.8, 157.4, 155.9, 137.8, 133.3, 130.5, 126.3, 124.7, 123.3, 123.0, 120.9, 119.0, 117.7, 116.8, 111.2, 110.1, 99.4, 55.8, 19.8. HRMS (ESI-TOF) (m/z): Calcd for C₂₃H₁₇N₃NaO₃, ([M + Na]⁺), 406.1162, found 406.1161.

3-(6-Fluoro-1-(pyrimidin-2-yl)-1*H*-indol-2-yl)-2-methyl-4*H*chromen-4-one (3na)

brown solid (52.0 mg, 70%), ¹H NMR (600 MHz, CDCl₃) δ 8.52 (d, J = 4.7 Hz, 2H), 8.31 (dd, J = 11.0, 1.6 Hz, 1H), 8.11 (d, J = 7.1 Hz, 1H), 7.66 – 7.63 (m, 1H), 7.53 (dd, J = 8.5, 5.6 Hz, 1H), 7.46 (d, J = 8.4 Hz, 1H), 7.34 (t, J = 7.5 Hz, 1H), 7.02 – 6.96 (m, 2H), 6.63 (s, 1H), 2.46 (s, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 176.6, 163.9, 160.8 (J = 238.1 Hz), 156.0, 157.94, 157.91, 156.0, 137.1 (J = 12.9 Hz), 133.5, 132.2, 126.3, 125.6, 124.9, 123.0, 121.1 (J = 9.9 Hz), 118.8, 117.8, 117.2, 110.4 (J = 24.4 Hz), 102.3 (J = 28.8 Hz), 19.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -118.43. HRMS (ESI-TOF) (m/z): Calcd for C₂₂H₁₄FN₃NaO₂, ([M + Na]⁺), 394.0962, found 394.0964.

2-(2-Methyl-4-oxo-4*H*-chromen-3-yl)-1-(pyrimidin-2-yl)-1*H*indole-6-carbaldehyde (30a)

yellow solid (55.6 mg, 73%), ¹H NMR (600 MHz, CDCl₃) δ 10.10 (s, 1H), 9.00 (s, 1H), 8.59 (d, J = 4.6 Hz, 2H), 8.08 (d, J = 7.7 Hz, 1H), 7.79 (d, J = 8.0 Hz, 1H), 7.72 (d, J = 8.1 Hz, 1H), 7.66 (t, J = 7.5 Hz, 1H), 7.47 (d, J = 8.4 Hz, 1H), 7.35 (t, J = 7.5 Hz, 1H), 7.05 (t, J = 4.6

Hz, 1H), 6.73 (s, 1H), 2.47 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 192.8, 176.3, 164.2, 158.2, 157.7, 156.0, 136.6, 136.1, 134.1, 133.7, 132.6, 126.3, 125.1, 122.9, 122.4, 121.0, 118.9, 118.3, 117.8, 110.2, 19.9. HRMS (ESI-TOF) (m/z): Calcd for C₂₃H₁₅N₃NaO₃, ([M + Na]⁺), 404.1006, found 404.1005.

Methyl 2-(2-methyl-4-oxo-4*H*-chromen-3-yl)-1-(pyrimidin-2yl)-1*H*-indole-6-carboxylate (3pa)

yellow solid (69.9 mg, 85%), ¹H NMR (600 MHz, CDCl₃) δ 9.16 (s, 1H), 8.58 (d, J = 4.7 Hz, 2H), 8.09 (d, J = 7.7 Hz, 1H), 7.94 (d, J = 8.1 Hz, 1H), 7.66 – 7.62 (m, 2H), 7.46 (d, J = 8.4 Hz, 1H), 7.34 (t, J = 7.5 Hz, 1H), 7.02 (t, J = 4.7 Hz, 1H), 6.70 (s, 1H), 3.95 (s, 3H),

2.45 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 176.3, 168.2, 164.2, 158.2, 157.6, 156.0, 136.3, 134.9, 133.6, 132.7, 126.3, 125.2, 125.0, 123.1, 122.9, 120.2, 118.3, 117.8, 117.6, 117.0, 109.9, 52.1, 19.9. HRMS (ESI-TOF) (m/z): Calcd for C₂₄H₁₇N₃NaO₄, ([M + Na]⁺), 434.1111, found 434.1116.

3-(7-Ethyl-1-(pyrimidin-2-yl)-1*H*-indol-2-yl)-2-methyl-4*H*-chromen-4-one (3qa)

brown solid (40.4 mg, 53%), ¹H NMR (600 MHz, CDCl₃) δ 8.62 (d, J = 4.8 Hz, 2H), 8.06 (d, J = 7.1 Hz, 1H), 7.62 (t, J = 7.2 Hz, 1H), 7.53 (d, J = 7.6 Hz, 1H), 7.41 (d, J = 8.4 Hz, 1H), 7.32 (t, J = 7.5 Hz, 1H), 7.19 (t, J = 7.5 Hz, 1H), 7.14 (d, J = 7.2 Hz, 1H), 7.09 (t, J = 4.8 Hz, 1H), 6.66 (s, 1H), 2.49

(q, J = 7.4 Hz, 2H), 2.38 (s, 3H), 1.01 (t, J = 7.5 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 176.4, 166.4, 158.7, 158.0, 155.9, 136.1, 133.4, 133.2, 129.9, 129.1, 126.3, 124.9, 123.9, 122.9, 121.8, 118.7, 117.7, 116.8, 108.5, 26.3, 19.9, 13.8. HRMS (ESI-TOF) (m/z): Calcd for C₂₄H₁₉N₃NaO₂, ([M + Na]⁺), 404,1369, found 404,1368.

3-(7-Methoxy-1-(pyrimidin-2-yl)-1*H*-indol-2-yl)-2-methyl-4*H*chromen-4-one (3ra)

yellow solid (29.9 mg, 39%), ¹H NMR (600 MHz, CDCl₃) δ 8.61 (d, J = 4.7 Hz, 2H), 8.06 (d, J = 7.7 Hz, 1H), 7.61 (t, J = 7.3 Hz, 1H), 7.40 (d, J = 8.4 Hz, 1H), 7.32 (t, J = 7.4 Hz, 1H), 7.28 (d, J = 7.9 Hz, 1H), 7.14 (t, J = 7.8 Hz, 1H), 7.08 (t, J = 4.7 Hz, 1H), 6.76 (d, J = 7.8 Hz, 1H), 6.62 (s, 1H),

3.71 (s, 3H), 2.38 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 176.3, 166.6, 158.3, 157.5, 155.9, 147.6, 133.4, 132.8, 131.1, 127.4, 126.4, 125.0, 123.1, 122.0, 118.5, 117.7, 116.4, 113.7, 108.0, 105.5, 55.8, 20.0. HRMS (ESI-TOF) (m/z): Calcd for C₂₃H₁₇N₃NaO₃, ([M + Na]⁺), 406.1162, found 406.1163.

3-(7-Fluoro-1-(pyrimidin-2-yl)-1*H*-indol-2-yl)-2-methyl-4*H*-chromen-4-one (3sa)

yellow solid (54.2 mg, 73%), ¹H NMR (600 MHz, CDCl₃) δ 8.60 (d, J = 4.8 Hz, 2H), 8.05 (d, J = 7.2 Hz, 1H), 7.63 (t, J = 7.3 Hz, 1H), 7.43 (dd, J = 7.9, 5.3 Hz, 2H), 7.33 (t, J = 7.5 Hz, 1H), 7.15 – 7.12 (m, 1H), 7.08 (t, J = 4.8 Hz, 1H), 7.00 (dd, J = 12.1, 8.0 Hz, 1H), 6.68 (d, J = 1.5 Hz, 1H), 2.42 (s, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 176.3, 166.1, 158.0, 157.4, 155.1 (J = 248.4 Hz), 149.3, 133.6, 133.5, 132.6 (J = 4.2 Hz), 126.3, 125.0, 124.8 (J = 9.5 Hz), 123.0, 121.9 (J = 6.8 Hz), 118.5, 117.8, 116.6 (J = 3.4 Hz), 116.5, 109.8 (J = 19.3 Hz), 108.9 (J = 1.4 Hz), 19.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -116.6. HRMS (ESI-TOF) (m/z): Calcd for C₂₂H₁₄FN₃NaO₂, ([M + Na]⁺), 394.0962, found 394.0964.

Methyl 2-(2-methyl-4-oxo-4*H*-chromen-3-yl)-1-(pyrimidin-2-yl)-1*H*-indole-7-carboxylate (3ta)

brown solid (47.7 mg, 58%), ¹H NMR (600 MHz, CDCl₃) δ 8.53 (d, J = 4.8 Hz, 2H), 8.01 (dd, J = 7.9, 1.3 Hz, 1H), 7.80 (d, J = 7.8 Hz, 1H), 7.75 – 7.70 (m, 1H), 7.66 – 7.61 (m, 1H), 7.44 (d, J = 8.4 Hz, 1H), 7.32 (t, J = 7.4 Hz, 1H), 7.26 (s, 1H), 7.03 (t, J = 4.8 Hz, 1H), 6.71 (s, 1H), 3.38

(s, 3H), 2.44 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 176.4, 168.1, 166.0, 158.8, 157.8, 155.9, 134.0, 133.6, 130.6, 126.2, 125.6, 125.0, 124.8, 122.9, 121.1, 118.6, 118.2, 117.8, 117.0, 108.7, 51.7, 20.0. HRMS (ESI-TOF) (m/z): Calcd for C₂₄H₁₇N₃NaO₄, ([M + Na]⁺), 434.1111, found 434.1115.

3-(6-Chloro-5-fluoro-1-(pyrimidin-2-yl)-1*H*-indol-2-yl)-2-methyl-4*H*-chromen-4-one (3ua)

yellow solid (55.9 mg, 69%), ¹H NMR (600 MHz, CDCl₃) δ 8.66 (d, J = 6.6 Hz, 1H), 8.54 (d, J = 3.1 Hz, 2H), 8.09 (d, J = 7.9 Hz, 1H), 7.66 (t, J = 7.7 Hz, 1H), 7.46 (d, J = 8.4 Hz, 1H), 7.36 – 7.32 (m, 2H), 7.00 (t, J = 4.7 Hz, 1H), 6.59 (s, 1H), 2.45 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ

176.5, 164.0, 158.0, 157.6, 156.0, 154.2 (J = 240.9 Hz), 133.8 (J = 3.5 Hz), 133.6, 133.1, 128.2 (J = 9.0 Hz), 126.3, 125.0, 123.0, 118.5, 117.8, 117.4, 117.0 (J = 20.2 Hz), 116.9, 109.7 (J = 3.9 Hz), 106.5 (J = 23.4 Hz), 19.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -123.9. HRMS (ESI-TOF) (m/z): Calcd for C₂₂H₁₃ClFN₃NaO₂, ([M + Na]⁺), 428.0573, found 428.0578.

2-Methyl-3-(1-(5-methylpyrimidin-2-yl)-1*H*-indol-2-yl)-4*H*-chromen-4-one (3va)

yellow solid (25.7 mg, 35%), ¹H NMR (600 MHz, CDCl₃) δ 8.42 (d, J = 8.3 Hz, 1H), 8.37 (s, 2H), 8.11 (dd, J = 7.9, 1.2 Hz, 1H), 7.67 – 7.62 (m, 2H), 7.46 (d, J = 8.4 Hz, 1H), 7.36 – 7.30 (m, 2H), 7.23 (t, J = 7.4 Hz, 1H), 6.64 (s, 1H), 2.45 (s, 3H), 2.22 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 176.7,

164.2, 158.1, 156.3, 156.1, 137.0, 133.4, 131.6, 129.1, 126.5, 126.2, 124.8, 123.6, 123.1, 121.8, 120.6, 118.8, 117.8, 114.6, 109.6, 20.0, 15.2. HRMS (ESI-TOF) (m/z): Calcd for $C_{23}H_{17}N_3NaO_2$, ([M + Na]⁺), 390.1213, found 390.1220.

2-Methyl-3-(1-(pyridin-2-yl)-1*H*-indol-2-yl)-4*H*-chromen-4-one (3wa)

brown solid (37.3 mg, 53%), ¹H NMR (600 MHz, CDCl₃) δ 8.46 (dd, J = 4.7, 1.1 Hz, 1H), 8.14 (dd, J = 7.9, 1.4 Hz, 1H), 7.72 – 7.69 (m, 1H), 7.68 (d, J = 7.7 Hz, 1H), 7.66 – 7.62 (m, 1H), 7.61 (d, J = 8.1 Hz, 1H), 7.40 (dd, J = 16.1, 8.2 Hz, 2H), 7.36 (t, J = 7.6 Hz, 1H), 7.25 – 7.22 (m, 1H), 7.20 – 7.18 (m, 1H), 7.17 – 7.14 (m, 1H), 6.68 (s, 1H), 2.31 (s, 3H). ¹³C NMR (151 MHz, CDCl₃)

$$\begin{split} &\delta~176.6,\,166.9,\,156.0,\,151.7,\,149.2,\,138.3,\,137.4,\,133.6,\,131.2,\,128.7,\,126.4,\,125.2,\,123.1,\,123.0,\,121.8,\\ &121.1,\,120.9,\,120.5,\,117.8,\,116.4,\,111.3,\,107.4,\,20.0.\,\text{HRMS}~(\text{ESI-TOF})~(\text{m/z})\text{: Calcd for $C_{23}H_{16}N_2NaO_2$,}\\ &([M+Na]^+),\,375.1104,\,\text{found}~375.1110. \end{split}$$

8-Bromo-2-methyl-3-(1-(pyrimidin-2-yl)-1*H*-indol-2-yl)-4*H*-chromen-4-one (3ab)

yellow solid (71.6 mg, 83%), ¹H NMR (600 MHz, CDCl₃) δ 8.54 (d, J = 4.9 Hz, 3H), 8.06 (d, J = 7.6 Hz, 1H), 7.88 (d, J = 7.4 Hz, 1H), 7.64 (d, J = 7.5 Hz, 1H), 7.35 (t, J = 7.4 Hz, 1H), 7.25 (t, J = 7.6 Hz, 1H), 7.22 (t, J = 7.8 Hz, 1H), 6.97 (t, J = 4.2 Hz, 1H), 6.68 (s, 1H), 2.53 (s, 3H). ¹³C NMR

 $(151 \text{ MHz}, \text{CDCl}_3) \delta 176.0, 164.1, 158.0, 157.9, 152.7, 137.1, 136.9, 131.1, 129.2, 125.8, 125.5, 124.4, 123.9, 122.1, 120.7, 119.2 117.0, 115.1, 111.3, 110.4, 19.8. HRMS (ESI-TOF) (m/z): Calcd for C₂₂H₁₄BrN₃NaO₂, ([M + Na]⁺), 454.0162, found 454.0170.$

2-Methyl-3-(1-(pyrimidin-2-yl)-1*H*-indol-2-yl)-8-(trifluoromethyl)-4*H*-chromen-4-one (3ac)

brown solid (28.6 mg, 34%), ¹H NMR (600 MHz, CDCl₃) δ 8.56 – 8.53 (m, 3H), 8.31 (d, J = 7.7 Hz, 1H), 7.95 (d, J = 7.4 Hz, 1H), 7.64 (d, J = 7.7 Hz, 1H), 7.42 (t, J = 7.7 Hz, 1H), 7.35 (t, J = 7.6 Hz, 1H), 7.26 (t, J = 7.2

Hz, 1H), 7.00 (t, J = 4.7 Hz, 1H), 6.69 (s, 1H), 2.52 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 175.5, 163.9, 158.1, 158.0, 152.8, 137.1, 131.0 (J = 4.8 Hz), 130.8, 130.7, 129.2, 124.1 (J = 5.0 Hz), 124.0, 122.9 (J = 275.1 Hz), 122.2, 120.7, 120.0 (J = 32.1 Hz), 119.7, 117.1, 115.2, 110.6, 19.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -69.1. HRMS (ESI-TOF) (m/z): Calcd for C₂₃H₁₄F₃N₃NaO₂, ([M + Na]⁺), 444.0930, found 444.0935.

2,7-Dimethyl-3-(1-(pyrimidin-2-yl)-1*H*-indol-2-yl)-4*H*-chromen-4-one (3ad)

black solid (43.3 mg, 59%), ¹H NMR (600 MHz, CDCl₃) δ 8.54 (d, J = 4.3 Hz, 2H), 8.50 (d, J = 8.3 Hz, 1H), 8.00 (d, J = 7.9 Hz, 1H), 7.64 (d, J = 7.5 Hz, 1H), 7.33 (t, J = 7.5 Hz, 1H), 7.27 – 7.23 (m, 2H), 7.16 (d, J = 7.8 Hz,

1H), 6.97 (t, J = 4.6 Hz, 1H), 6.67 (s, 1H), 2.49 (s, 3H), 2.44 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 176.7, 163.8, 157.9, 156.2, 144.7, 137.0, 131.8, 129.2, 126.4, 126.2, 123.7, 122.0, 120.9, 120.8, 120.6, 117.54, 117.51, 117.0, 114.9, 110.1, 21.9, 19.9. HRMS (ESI-TOF) (m/z): Calcd for C₂₃H₁₇N₃NaO₂, ([M + Na]⁺), 390.1213, found 390.1221.

7-Methoxy-2-methyl-3-(1-(pyrimidin-2-yl)-1*H*-indol-2-yl)-4*H*chromen-4-one (3ae)

black solid (36.8 mg, 48%), ¹H NMR (600 MHz, CDCl₃) δ 8.55 (d, J = 4.7 Hz, 2H), 8.49 (d, J = 8.4 Hz, 1H), 8.01 (d, J = 8.8 Hz, 1H), 7.63 (d, J = 7.7 Hz, 1H), 7.32 (t, J = 7.6 Hz, 1H), 7.23 (t, J = 7.4 Hz, 1H), 6.98

(t, J = 4.7 Hz, 1H), 6.91 (dd, J = 8.8, 2.2 Hz, 1H), 6.86 (d, J = 2.2 Hz, 1H), 6.65 (s, 1H), 3.91 (s, 3H), 2.42 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 164.0, 163.4, 158.1, 157.9, 157.7, 137.0, 131.9, 129.3, 127.8, 123.7, 122.0, 120.6, 118.6, 117.0, 114.9, 114.0, 110.2, 100.1, 55.9, 19.8. HRMS (ESI-TOF) (m/z): Calcd for C₂₃H₁₇N₃NaO₃ ([M + Na]⁺), 406.1162, found 406.1170.

7-Chloro-2-methyl-3-(1-(pyrimidin-2-yl)-1*H*-indol-2-yl)-4*H*chromen-4-one (3af)

brown solid (31.7 mg, 41%), ¹H NMR (600 MHz, CDCl₃) δ 8.57 – 8.49 (m, 3H), 8.04 (d, J = 8.5 Hz, 1H), 7.63 (d, J = 7.7 Hz, 1H), 7.49 (s, 1H), 7.33 (dd, J = 16.6, 8.2 Hz, 2H), 7.24 (t, J = 8.0 Hz, 1H), 6.97 (t, J = 4.7 Hz, 1H), 6.66 (s, 1H), 2.44 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 175.9,

164.0, 158.1, 157.9, 156.2, 139.4, 137.1, 131.2, 129.2, 127.8, 125.7, 123.9, 122.1, 121.7, 120.7, 119.3, 117.9, 117.0, 115.1, 110.4, 19.8. HRMS (ESI-TOF) (m/z): Calcd for $C_{22}H_{14}ClN_3NaO_2$ ([M + Na]⁺), 410.0667, found 410.0671.

2,6-Dimethyl-3-(1-(pyrimidin-2-yl)-1*H*-indol-2-yl)-4*H*-chromen-4-one (3ag)

yellow solid (50.7 mg, 69%), ¹H NMR (600 MHz, CDCl₃) δ 8.45 (d, J = 3.3 Hz, 2H), 8.40 (d, J = 8.6 Hz, 1H), 7.80 (s, 1H), 7.54 (d, J = 7.5 Hz, 1H), 7.36 (d, J = 9.0 Hz, 1H), 7.30 – 7.21 (m, 2H), 7.15 (t, J = 6.9 Hz, 1H), 6.88 (t, J =

4.3 Hz, 1H), 6.57 (s, 1H), 2.36 (s, 3H), 2.32 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 176.7, 163.9, 158.0, 157.9, 154.3, 137.0, 134.7, 131.9, 129.2, 125.7, 123.7, 122.7, 121.9, 120.6, 118.6, 117.5, 117.0, 114.9, 110.1, 21.0, 19.9. HRMS (ESI-TOF) (m/z): Calcd for C₂₃H₁₇N₃NaO₂ ([M + Na]⁺), 390.1213, found 390.1221.

6-Bromo-2-methyl-3-(1-(pyrimidin-2-yl)-1*H*-indol-2-yl)-4*H*-chromen-4-one (3ah)

yellow solid (67.2 mg, 78%), ¹H NMR (600 MHz, CDCl₃) δ 8.54 (d, J = 4.7 Hz, 2H), 8.52 (d, J = 8.4 Hz, 1H), 8.23 (d, J = 2.1 Hz, 1H), 7.73 (dd, J = 8.8, 2.1 Hz, 1H), 7.64 (d, J = 7.7 Hz, 1H), 7.36 (d, J = 8.9 Hz, 1H), 7.33 (d, J =

7.9 Hz, 1H), 7.25 (t, J = 7.2 Hz, 1H), 6.99 (t, J = 4.7 Hz, 1H), 6.67 (s, 1H), 2.46 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 175.3, 164.2, 158.0, 157.9, 154.8, 137.0, 136.4, 131.1, 129.1, 128.9, 124.4, 123.9, 122.1, 120.7, 119.8, 119.1, 118.2, 117.1, 115.0, 110.4, 19.9. HRMS (ESI-TOF) (m/z): Calcd for C₂₂H₁₄BrN₃NaO₂ ([M + Na]⁺), 454.0162, found 454.0160.

5-Fluoro-2-methyl-3-(1-(pyrimidin-2-yl)-1*H*-indol-2-yl)-4*H*-chromen-4-one (3ai)

brown solid (25.2 mg, 34%), ¹H NMR (600 MHz, CDCl₃) δ 8.57 – 8.53 (m, 3H), 7.62 (d, J = 7.7 Hz, 1H), 7.59 – 7.54 (m, 1H), 7.35 – 7.31 (m, 1H), 7.26 – 7.22 (m, 2H), 7.00 – 6.97 (m, 2H), 6.65 (s, 1H), 2.41 (s, 3H). ¹³C NMR

(151 MHz, CDCl₃) δ 174.9, 162.9, 161.0 (J = 264.95 Hz), 158.1, 157.9, 157.1 (J = 3.8 Hz), 137.1, 133.4 (J = 10.6 Hz), 131.2, 129.2, 123.8, 122.1, 120.6, 120.1, 117.0, 115.3, 113.7 (J = 4.3 Hz), 113.6 (J = 10.1 Hz), 111.8 (J = 20.8 Hz), 110.5, 19.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -111.2. HRMS (ESI-TOF) (m/z): Calcd for C₂₂H₁₄FN₃NaO₂ ([M + Na]⁺), 394.0962, found 394.0969.

5-Chloro-2,6-dimethyl-3-(1-(pyrimidin-2-yl)-1*H*-indol-2-yl)-4*H*chromen-4-one (3aj)

brown solid (44.1 mg, 55%), ¹H NMR (600 MHz, CDCl₃) δ 8.56 – 8.53 (m, 3H), 7.62 (d, J = 7.1 Hz, 1H), 7.47 (d, J = 8.2 Hz, 1H), 7.32 (t, J = 6.9 Hz, 1H), 7.28 (d, J = 8.8 Hz, 1H), 7.23 (t, J = 7.2 Hz, 1H), 7.00 (t, J = 4.0 Hz,

1H), 6.65 (s, 1H), 2.43 (s, 3H), 2.38 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 175.9, 161.9, 158.1, 157.9, 156.0, 137.1, 134.5, 132.9, 131.6, 129.3, 123.7, 122.0, 120.6, 120.2, 120.0, 116.9, 116.2, 115.3, 110.5, 20.5, 19.5. HRMS (ESI-TOF) (m/z): Calcd for C₂₃H₁₆ClN₃NaO₂ ([M + Na]⁺), 424.0823, found 424.0833.

2-Ethyl-3-(1-(pyrimidin-2-yl)-1*H***-indol-2-yl)-4***H***-chromen-4-one (3ak) yellow solid (58.0 mg, 79%), ¹H NMR (600 MHz, CDCl₃) \delta 8.53 (t,** *J* **= 6.6 Hz, 3H), 8.15 (dd,** *J* **= 7.9, 1.4 Hz, 1H), 7.68 – 7.64 (m, 2H), 7.49 (d,** *J* **= 8.4 Hz, 1H), 7.37 – 7.33 (m, 2H), 7.26 (t,** *J* **= 7.4 Hz, 1H), 6.95 (t,** *J* **= 4.8 Hz, 1H), 6.68 (s, 1H), 2.77 (dd,** *J* **= 7.5, 4.8 Hz, 2H), 1.24 (t,** *J* **= 7.6 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) \delta 177.0, 167.7, 158.0, 157.8, 156.1, 137.0, 133.4,**

131.6, 129.2, 126.3, 124.8, 123.6, 123.0, 122.0, 120.6, 118.1, 117.8, 117.0, 115.0, 110.0, 26.5, 11.5. HRMS (ESI-TOF) (m/z): Calcd for $C_{23}H_{17}N_3NaO_2$ ([M + Na]⁺), 390.1213, found 390.1220.

2-Ethyl-3-(1-(pyrimidin-2-yl)-1*H***-indol-2-yl)-4***H***-chromen-4-one (3al) yellow solid (45.7 mg, 55%), ¹H NMR (600 MHz, CDCl₃) δ 8.57 (d,** *J* **= 4.8 Hz, 2H), 8.51 (d,** *J* **= 8.4 Hz, 1H), 8.15 (dd,** *J* **= 7.9, 1.3 Hz, 1H), 7.70 (ddd,** *J* **= 8.6, 7.1, 1.5 Hz, 1H), 7.62 (dd,** *J* **= 8.4, 1.1 Hz, 2H), 7.56 (d,** *J* **= 8.3 Hz, 1H), 7.47 (d,** *J* **= 7.7 Hz, 1H), 7.39 (td,** *J* **= 7.1, 3.5 Hz, 1H), 7.34 (t,** *J* **= 7.4 Hz, 1H), 7.31 – 7.28 (m, 1H), 7.27 (d,** *J* **= 7.9 Hz, 1H), 7.25 (s, 1H), 7.17 (t,**

 $J = 7.4 \text{ Hz}, 1\text{H}, 7.00 \text{ (t}, J = 4.8 \text{ Hz}, 1\text{H}, 6.38 \text{ (s}, 1\text{H}). {}^{13}\text{C NMR} (151 \text{ MHz}, \text{CDCl}_3) \delta 161.0, 158.0, 158.0, 156.3, 137.0, 133.8, 133.6, 132.1, 130.4, 129.0, 128.3, 128.3, 126.5, 125.1, 123.6, 123.1, 121.9, 120.8, 118.3, 118.1, 117.0, 114.9, 110.6. HRMS (ESI-TOF) (m/z): Calcd for C₂₇H₁₇N₃NaO₂ ([M + Na]⁺), 438.1213, found 438.1214.$

General procedure for preparation of 6

Representative Synthesis of Product 6: A pressure tube was charged with **4a** (44.4 mg, 0.2 mmol), **2a** (82.5 mg, 0.4 mmol), $[Cp*RhCl_2]_2$ (5.0 mg, 4 mol %), AgSbF₆ (11.0 mg, 16 mol %), CsOAc (38.4 mg, 0.2 mmol), Na₂CO₃ (21.2 mg, 0.2 mmol) and anhydrous THF (2.0 mL). The reaction mixture was stirred at 140 °C for 12 h under air. After the reaction was completed as indicated by TLC analysis, the solvent was removed under reduced pressure and the residue was purified by silica gel chromatography using petroleum ether/ethyl acetate 2:1 (v/v) to give the corresponding product **6aa** (67.7 mg, 89%).

3-(2-Methyl-4-oxo-4*H*-chromen-3-yl)-2-(pyridin-2-yl)isoquinolin-1(2*H*)-one (6aa)

yellow solid (67.7 mg, 89%), ¹H NMR (600 MHz, CDCl₃) δ 8.46 (d, *J* = 7.9 Hz, 1H), 8.40 (d, *J* = 3.6 Hz, 1H), 8.03 (d, *J* = 7.9 Hz, 1H), 7.68 (t, *J* = 7.5 Hz, 1H), 7.66 – 7.63 (m, 1H), 7.61 – 7.58 (m, 1H), 7.53 (t, *J* = 7.7 Hz, 3H), 7.32 (dd, *J* = 15.0, 7.8 Hz, 2H), 7.13 (dd, *J* = 7.0, 5.2 Hz, 1H), 6.52 (s, 1H),

2.52 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 175.7, 167.4, 163.4, 155.7, 152.4, 148.8, 137.9, 137.0, 135.2, 133.8, 132.9, 128.4, 127.4, 126.4, 126.3, 126.0, 125.3, 124.4, 123.8, 122.7, 119.1, 117.8, 109.0, 20.3. HRMS (ESI-TOF) (m/z): Calcd for C₂₄H₁₆N₂NaO₃ ([M + Na]⁺), 403.1053, found 403.1063.

5-Bromo-3-(2-methyl-4-oxo-4*H*-chromen-3-yl)-2-(pyridin-2-yl)isoquinolin-1(2*H*)-one (6ba)

yellow solid (49.5 mg, 54%), ¹H NMR (600 MHz, CDCl₃) δ 8.44 (d, *J* = 7.8 Hz, 1H), 8.40 (d, *J* = 3.0 Hz, 1H), 8.03 (d, *J* = 7.6 Hz, 1H), 7.92 (d, *J* = 7.5 Hz, 1H), 7.66 (t, *J* = 7.6 Hz, 1H), 7.60 (t, *J* = 7.2 Hz, 1H), 7.53 (d, *J* = 7.7 Hz, 1H), 7.38 – 7.30 (m, 3H), 7.15 (t, *J* = 5.7 Hz, 1H), 6.87 (s, 1H), 2.54 (s,

3H). ¹³C NMR (151 MHz, CDCl₃) δ 175.6, 167.4, 162.7, 155.8, 152.1, 148.9, 138.0, 136.7, 136.6, 136.3, 133.9, 128.0, 127.9, 127.88, 126.0, 125.4, 124.3, 124.0, 122.7, 121.1, 119.1, 117.9, 107.6, 20.4. HRMS (ESI-TOF) (m/z): Calcd for C₂₄H₁₅BrN₂NaO₃ ([M + Na]⁺), 481.0158, found 481.0159.

6-Methoxy-3-(2-methyl-4-oxo-4*H*-chromen-3-yl)-2-(pyridin-2-yl)isoquinolin-1(2*H*)-one (6ca)

yellow solid (43.5 mg, 53%), ¹H NMR (600 MHz, CDCl₃) δ 8.37 (t, J = 6.1 Hz, 2H), 8.03 (d, J = 7.8 Hz, 1H), 7.64 – 7.61 (m, 1H), 7.60 – 7.56 (m, 1H), 7.51 (d, J = 7.9 Hz, 1H), 7.31 (dd, J = 12.9, 7.9 Hz, 2H), 7.12 – 7.10 (m, 1H), 7.08 (dd, J = 8.9, 2.3 Hz, 1H), 6.88 (d, J = 2.2

Hz, 1H), 6.43 (s, 1H), 3.90 (s, 3H), 2.50 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 175.6, 167.2, 163.3, 163.0, 155.7, 152.4, 148.8, 139.1, 137.8, 135.8, 133.7, 130.4, 126.0, 125.3, 124.4, 123.7, 122.7, 120.0, 119.1, 117.8, 116.6, 108.8, 107.4, 55.6, 20.3. HRMS (ESI-TOF) (m/z): Calcd for C₂₅H₁₈N₂NaO₄ ([M + Na]⁺), 433.1159, found 433.1159.

6-Bromo-3-(2-methyl-4-oxo-4*H*-chromen-3-yl)-2-(pyridin-2-yl)isoquinolin-1(2*H*)-one (6da)

yellow solid (42.1 mg, 46%), ¹H NMR (600 MHz, CDCl₃) δ 8.39 (d, J = 3.9 Hz, 1H), 8.30 (d, J = 8.6 Hz, 1H), 8.02 (d, J = 7.5 Hz, 1H), 7.69 (s, 1H), 7.66 – 7.63 (m, 1H), 7.62 – 7.58 (m, 2H), 7.51 (d, J = 7.9 Hz, 1H), 7.35 – 7.30 (m, 2H), 7.14 (dd, J = 6.9, 5.3 Hz, 1H), 6.43 (s, 1H),

2.50 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 175.5, 167.3, 162.9, 155.7, 152.1, 148.9, 138.4, 138.0, 136.8, 133.9, 130.7, 130.2, 128.8, 128.1, 126.0, 125.4, 124.9, 124.3, 124.0, 122.7, 118.9, 117.9, 107.8, 20.3. HRMS (ESI-TOF) (m/z): Calcd for C₂₄H₁₅BrN₂NaO₃ ([M + Na]⁺), 481.0158, found 481.0157.

2-(4-Methoxypyridin-2-yl)-3-(2-methyl-4-oxo-4*H*-chromen-3yl)isoquinolin-1(2*H*)-one (6ea)

brown solid (36.1 mg, 44%), ¹H NMR (600 MHz, CDCl₃) δ 8.46 (d, J = 7.8 Hz, 1H), 8.20 (d, J = 5.6 Hz, 1H), 8.07 (d, J = 7.5 Hz, 1H), 7.67 (t, J = 7.3 Hz, 1H), 7.61 (t, J = 7.5 Hz, 1H), 7.52 (t, J = 7.8 Hz, 2H), 7.34 (t, J = 7.2 Hz, 2H), 7.04 (s, 1H), 6.66 (dd, J = 5.7, 2.0 Hz, 1H), 6.51 (s, 1H), 3.73 (s,

3H), 2.47 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) *δ* 176.0, 167.4, 167.0, 163.3, 155.8, 154.0, 149.5, 137.0, 135.1, 133.8, 132.8, 128.3, 127.4, 126.3, 126.28, 125.9, 125.4, 122.9, 119.0, 117.9, 111.8, 109.0, 108.9, 55.6, 20.3. HRMS (ESI-TOF) (m/z): Calcd for C₂₅H₁₈N₂NaO₄ ([M + Na]⁺), 433.1159, found 433.1154.

2-(4-Chloropyridin-2-yl)-3-(2-methyl-4-oxo-4*H*-chromen-3-yl)isoquinolin-1(2*H*)-one (6fa)

yellow solid (25.7 mg, 31%), ¹H NMR (600 MHz, CDCl₃) δ 8.45 (d, J = 8.1 Hz, 1H), 8.28 (d, J = 5.3 Hz, 1H), 8.07 (d, J = 7.2 Hz, 1H), 7.70 (t, J = 7.3 Hz, 1H), 7.62 (t, J = 7.2 Hz, 1H), 7.59 (d, J = 1.1 Hz, 1H), 7.54 (t, J = 6.8 Hz, 2H), 7.37 – 7.32 (m, 2H), 7.15 (dd, J = 5.3, 1.5 Hz, 1H), 6.53 (s, 1H),

2.51 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 175.6, 167.3, 163.2, 155.8, 153.2, 149.2, 145.1, 136.9, 134.9, 133.9, 133.1, 128.4, 127.6, 126.4, 126.1, 125.5, 125.2, 124.4, 122.8, 119.0, 117.8, 109.4, 100.1, 20.3. HRMS (ESI-TOF) (m/z): Calcd for C₂₄H₁₅ClN₂NaO₃ ([M + Na]⁺), 437.0663, found 437.0672.

6-(2-Methyl-4-oxo-4*H*-chromen-3-yl)-2*H*-[1,2'-bipyridin]-2-one (6ga)

black solid (26.4 mg, 40%), ¹H NMR (600 MHz, CDCl₃) δ 8.39 (dd, J = 4.8, 1.1 Hz, 1H), 8.02 (dd, J = 8.3, 1.6 Hz, 1H), 7.66 – 7.63 (m, 1H), 7.62 – 7.58 (m, 1H), 7.47 (dd, J = 9.3, 6.8 Hz, 2H), 7.34 – 7.30 (m, 2H), 7.15 – 7.13 (m, 1H), 6.73 (dd, J = 9.4, 1.1 Hz, 1H), 6.17 (dd, J = 6.7, 1.1 Hz, 1H), 2.46 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 175.3, 167.0, 163.7, 155.7, 152.0, 148.9, 141.5, 140.1,

138.1, 133.9, 126.0, 125.4, 124.1, 123.9, 122.6, 121.7, 118.7, 117.9, 108.7, 20.2. HRMS (ESI-TOF) (m/z): Calcd for $C_{20}H_{14}N_2NaO_3$ ([M + Na]⁺), 353.0897, found 353.0904.

3-(7-Methoxy-2-methyl-4-oxo-4*H*-chromen-3-yl)-2-(pyridin-2-yl)isoquinolin-1(2*H*)-one (6ab)

yellow solid (49.2 mg, 60%), ¹H NMR (600 MHz, CDCl₃) δ 8.45 (d, J = 7.9 Hz, 1H), 8.39 (d, J = 3.9 Hz, 1H), 7.92 (d, J = 8.9 Hz, 1H), 7.68 – 7.62 (m, 2H), 7.53 – 7.49 (m, 3H), 7.13 (dd, J = 6.9, 5.3 Hz, 1H), 6.87 (dd, J = 8.9, 2.1 Hz, 1H), 6.72 (d, J = 2.0 Hz, 1H), 6.51 (s,

1H), 3.84 (s, 3H), 2.46 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 175.1, 166.7, 164.1, 163.3, 157.4, 152.4, 148.8, 137.9, 137.0, 135.3, 132.8, 128.3, 127.3, 127.3, 126.3, 126.2, 124.4, 123.8, 118.8, 116.5, 114.5, 108.9, 100.2, 55.9, 20.1. HRMS (ESI-TOF) (m/z): Calcd for C₂₅H₁₈N₂NaO₄ ([M + Na]⁺), 433.1159, found 433.1170.

3-(2,7-Dimethyl-4-oxo-4*H*-chromen-3-yl)-2-(pyridin-2yl)isoquinolin-1(2*H*)-one (6ac)

yellow solid (63.8 mg, 81%), ¹H NMR (600 MHz, CDCl₃) δ 8.45 (d, *J* = 7.8 Hz, 1H), 8.39 (d, *J* = 3.2 Hz, 1H), 7.90 (d, *J* = 8.3 Hz, 1H), 7.68 – 7.61 (m, 2H), 7.53 – 7.49 (m, 3H), 7.13 – 7.10 (m, 3H), 6.52 (s, 1H), 2.48

(s, 3H), 2.41 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 175.6, 167.0, 163.3, 155.8, 152.4, 148.8, 145.2, 137.9, 137.0, 135.3, 132.8, 128.3, 127.3, 126.8, 126.3, 126.2, 125.7, 124.4, 123.8, 120.4, 118.9, 117.6, 109.0, 21.8, 20.2. HRMS (ESI-TOF) (m/z): Calcd for C₂₅H₁₈N₂NaO₃ ([M + Na]⁺), 417.1210, found 417.1221.

3-(2,6-Dimethyl-4-oxo-4*H*-chromen-3-yl)-2-(pyridin-2yl)isoquinolin-1(2*H*)-one (6ad)

yellow solid (51.2 mg, 65%), ¹H NMR (600 MHz, CDCl₃) δ 8.45 (d, J = 8.0 Hz, 1H), 8.38 (dd, J = 4.7, 0.9 Hz, 1H), 7.80 (s, 1H), 7.68 – 7.62 (m, 2H), 7.54 – 7.48 (m, 3H), 7.38 (dd, J = 8.5, 1.6 Hz, 1H), 7.22 (d, J = 8.5 Hz, 1H), 7.14 – 7.10 (m, 1H), 2.49 (s, 3H), 2.37 (s, 3H). ¹³C NMR (151

MHz, CDCl₃) δ 175.7, 167.1, 163.3, 154.0, 152.4, 148.8, 137.9, 137.0, 135.3, 135.3, 135.0, 132.8, 128.3, 127.3, 126.3, 126.2, 125.2, 124.3, 123.8, 122.3, 118.9, 117.5, 109.0, 20.9, 20.3. HRMS (ESI-TOF) (m/z): Calcd for C₂₅H₁₈N₂NaO₃ ([M + Na]⁺), 417.1210, found 417.1211.

3-(6-Bromo-2-methyl-4-oxo-4*H*-chromen-3-yl)-2-(pyridin-2-yl)isoquinolin-1(2*H*)-one (6ae)

yellow solid (38.5 mg, 42%), ¹H NMR (600 MHz, CDCl₃) δ 8.46 (d, J = 7.8 Hz, 1H), 8.38 (dd, J = 4.8, 1.1 Hz, 1H), 8.14 (d, J = 2.3 Hz, 1H), 7.70 – 7.65 (m, 3H), 7.52 (dd, J = 16.2, 7.9 Hz, 3H), 7.23 (d, J = 8.9 Hz, 1H), 7.15 (dd, J = 7.0, 5.2 Hz, 1H), 6.51 (s, 1H), 2.52 (s, 3H). ¹³C NMR

 $(151 \text{ MHz}, \text{CDCl}_3) \delta 174.3, 167.7, 163.3, 154.5, 152.3, 148.8, 138.0, 136.9, 136.8, 134.7, 132.9, 128.6, 128.4, 127.5, 126.4, 126.3, 124.4, 124.1, 123.9, 119.8, 119.3, 118.8, 109.1, 20.3. HRMS (ESI-TOF) (m/z): Calcd for C₂₄H₁₅BrN₂NaO₃ ([M + Na]⁺), 481.0158, found 481.0169.$

Procedure for preparation of 7a

Synthesis of Product 7a: A pressure tube was charged with 5 (31.0 mg, 0.2 mmol), 2a (82.5 mg, 0.4 mmol), $[Cp*RhCl_2]_2$ (5.0 mg, 4 mol %), AgSbF₆ (11.0 mg, 16 mol %), CsOAc (76.8 mg, 0.4 mmol) and anhydrous *m*-Xylene (2.0 mL). The reaction mixture was stirred at 140 °C for 12 h under air. After the reaction was completed as indicated by TLC analysis, the solvent was removed under reduced pressure and the residue was purified by silica gel chromatography using petroleum ether/ethyl acetate 1:1 (v/v) to give the corresponding product 7a (28.2 mg, 45%).

2-Methyl-3-(2-(pyridin-2-yl)phenyl)-4*H*-chromen-4-one (7a)

yellow solid (28.2 mg, 45%), ¹H NMR (600 MHz, CDCl₃) δ 8.57 (d, J = 4.8 Hz, 1H), 8.22 (dd, J = 8.0, 1.4 Hz, 1H), 7.70 – 7.68 (m, 1H), 7.64 – 7.61 (m, 1H), 7.53 – 7.50 (m, 1H), 7.49 – 7.45 (m, 2H), 7.39 – 7.35 (m, 2H), 7.29 (t, J = 8.4 Hz, 2H), 7.10 (dd, J = 7.4, 5.0 Hz, 1H), 1.95 (s, 3H). ¹³C NMR (151 MHz, CDCl₃)

 δ 177.4, 164.1, 159.1, 156.1, 149.5, 141.5, 136.1, 133.4, 131.8, 131.5, 130.18, 128.8, 128.7, 126.4, 124.9, 123.9, 123.3, 121.9, 117.8, 19.5. HRMS (ESI-TOF) (m/z): Calcd for C₂₁H₁₅NNaO₂ ([M + Na]⁺), 336.0995, found 336.0999.

III. Preparation of 3aa in Gram Scale

A pressure tube was charged with **1a** (1.0 g, 5.12 mmol), **2a** (2.1 g, 2.0 equiv.), $[Cp*RhCl_2]_2$ (79.2 mg, 2.5 mol %), AgSbF₆ (176.0 mg, 10 mol %), CsOAc (983.4 mg, 1.0 equiv.), Na₂CO₃ (543.0 mg, 1.0 equiv.) and anhydrous *m*-Xylene (30.0 mL). The reaction mixture was stirred at 140 °C for 12 h under air. After the reaction was completed as indicated by TLC analysis, the solvent was removed under reduced pressure and the residue was purified by silica gel chromatography using petroleum ether/ethyl acetate 5:1 (v/v) to give the corresponding product **3aa** (1.24 g, 69%).

IV. Derivatization of 3aa

A pressure tube was charged with **3aa** (70.7 mg, 0.2 mmol), NaOAc (40.8 mg) and anhydrous DMSO (2 mL). The reaction mixture was stirred at 100 °C for 24 h under N₂. After the reaction was completed as indicated by TLC analysis, the solvent was removed under reduced pressure and the residue was purified by silica gel chromatography using petroleum ether/ethyl acetate 1:1 (v/v) to give the corresponding product **8** (62.9 mg, 89%).

3-(1*H*-indol-2-yl)-2-(pyrimidin-2-ylmethyl)-4*H*-chromen-4-one (8)

yellow solid (62.9 mg, 89%), ¹H NMR (600 MHz, CDCl₃) δ 10.73 (s, 1H), 8.78 (d, *J* = 4.9 Hz, 2H), 8.27 (d, *J* = 7.4 Hz, 1H), 7.63 (t, *J* = 9.0 Hz, 2H), 7.42 – 7.37 (m, 3H), 7.27 (t, *J* = 5.1 Hz, 1H), 7.18 (t, *J* = 7.5 Hz, 1H), 7.09 (t, *J* = 7.4 Hz, 1H), 6.82 (s, 1H), 4.68 (s, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 177.3, 166.7, 162.7, 157.8, 155.7, 136.2, 133.8, 129.3, 128.2, 126.3, 125.3,

 $123.3,\,122.2,\,120.7,\,119.79,\,119.7,\,117.9,\,116.9,\,111.3,\,104.5,\,43.7.\ \text{HRMS}\ (\text{ESI-TOF})\ (\text{m/z}):\ \text{Calcd for}\ C_{22}H_{15}N_3NaO_2\ ([M+Na]^+),\,376.1056,\,\text{found}\ 376.1062.$

To a solution of **3aa** (70.7 mg, 0.2 mmol) in DCE (2 mL) was added TsN₃ (78.9 mg, 0.4 mmol), $[Cp*IrCl_2]_2$ (4 mg, 2.5 mol %), AgNTf₂ (7.8 mg, 10.0 mol %) and the mixture was stirred at 60 °C for 12 h under air. After the reaction was completed as indicated by TLC analysis, the solvent was removed under reduced pressure and the residue was purified by silica gel chromatography using petroleum ether/ethyl acetate 2:1 (v/v) to give the corresponding product **9** (94.0 mg, 90 %).

4-Methyl-*N*-(2-methyl-4-oxo-3-(1-(pyrimidin-2-yl)-1*H*-indol-2-yl)-4*H*chromen-5-yl)benzenesulfonamide (9)

yellow solid (94.0 mg, 90%), ¹H NMR (600 MHz, CDCl₃) δ 10.07 (s, 1H), 8.52 (d, *J* = 4.8 Hz, 2H), 7.93 (dd, *J* = 7.9, 1.3 Hz, 1H), 7.66 – 7.60 (m, 1H), 7.49 (d, *J* = 7.7 Hz, 1H), 7.45 (dd, *J* = 14.8, 8.1 Hz, 2H), 7.29 (t, *J* = 7.5 Hz, 1H), 7.23 (t, *J* = 7.8 Hz, 1H), 7.05 (t, *J* = 4.8 Hz, 1H), 6.99 (d, *J* = 8.0 Hz,

2H), 6.89 (d, J = 8.0 Hz, 2H), 6.57 (s, 1H), 2.39 (s, 3H), 2.26 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 176.0, 164.9, 157.9, 156.6, 155.9, 142.9, 136.9, 133.6, 133.5, 131.2, 129.3, 129.2, 126.3, 126.1, 125.0,

123.3, 122.7, 122.6, 122.1, 119.2, 118.2, 117.8, 117.76, 110.7, 21.5, 19.9. HRMS (ESI-TOF) (m/z): Calcd for $C_{29}H_{22}N_4NaO_4S$ ([M + Na]⁺), 545.1254, found 545.1255.

Sodium (27.6 mg, 1.2 mmol) was gradually added to dry methanol (2 mL) and the mixture was stirred until the solution reached room temperature. **3aa** (70.7 mg, 0.2 mmol) and benzaldehyde (25.6 mg, 0.24 mmol) were added and the resulting mixture was allowed to stir at reflux for 12 h. After this period, the solution was poured into iced water and the pH was adjusted to 4 with aqueous HCl. The solid was removed by filtration, taken up in DCM, and purified with silica gel chromatography (petroleum ether/ethyl acetate = 1:1) to give **10** (62.6 mg, 71%) as a yellow solid.

4(*E*)-3-(1-(Pyrimidin-2-yl)-1*H*-indol-2-yl)-2-styryl-4*H*-chromen-4-one (10)

yellow solid (62.6 mg, 71%), ¹H NMR (600 MHz, CD₂Cl₂) δ 8.56 (d, J = 4.4 Hz, 2H), 8.52 (d, J = 8.3 Hz, 1H), 8.02 (d, J = 7.6 Hz, 1H), 7.76 – 7.71 (m, 2H), 7.69 (d, J = 7.6 Hz, 1H), 7.63 (d, J = 8.3 Hz, 1H), 7.52 (d, J = 6.6 Hz, 2H), 7.39 – 7.26 (m, 7H), 7.02 (t, J = 4.3 Hz, 1H), 6.77 (s, 1H). ¹³C NMR (151 MHz, CD₂Cl₂) δ 177.0, 158.8, 158.3, 156.0, 137.5, 136.9, 136.0, 134.2, 131.5, 130.0, 129.4, 129.3, 128.2, 126.3, 125.1, 124.2, 123.5, 122.3, 121.3, 120.0,

118.7, 118.2, 117.6, 115.1, 111.8, 100.4. HRMS (ESI-TOF) (m/z): Calcd for $C_{29}H_{19}N_3NaO_2$ ([M + Na]⁺), 464.1369, found 464.1374.

V. Mechanistic Studies

(1) Complex A

Rhodium Complex **A** was synthesized according to literature report.⁵ **1a** (70.7 mg, 0.2 mmol), **2a** (82.5, 0.4 mmol), complex **A** (7.1 mg, 8 mol %), AgSbF₆ (5.5 mg, 8 mol %), CsOAc (38.4 mg, 0.2 mmol), Na₂CO₃ (21.2 mg, 0.2 mmol), and *m*-Xylene (2.0 mL) were charged into a pressure tube. The reaction mixture was stirred at 140 °C for 12 h under air. The solvent was removed under reduced pressure and the residue was purified by silica gel chromatography (petroleum ether/ethyl acetate = 5:1) to yield product **3aa** (63.1 mg, 89%).

(2) H/D Exchange Experiments

A pressure tube was charged with **1a** (70.7 mg, 0.2 mmol), $[Cp*RhCl_2]_2$ (5.0 mg, 2.5 mol %), AgSbF₆ (10.0 mg, 16 mol %), CsOAc (38.4 mg, 0.2 mmol), Na₂CO₃ (21.2 mg, 0.2 mmol), D₂O (36 uL, 10.0 equiv.) and *m*-Xylene (2.0 mL). The reaction mixture was stirred at 140 °C for 12 h under air. The solvent was removed under reduced pressure and the residue was purified by silica gel chromatography using petroleum ether/ethyl acetate 5:1 (v/v) to give the corresponding product, and the extent of deuteration was obtained by ¹H NMR analysis.

A pressure tube was charged with **1a** (39.0 mg, 0.2 mmol), **2a** (82.5 mg, 0.4 mmol), $[Cp*RhCl_2]_2$ (5.0 mg, 4 mol %), AgSbF₆ (11.0 mg, 16 mol %), PivOH (40.8 mg, 0.2 mmol), and anhydrous DCE (2.0 mL). The reaction mixture was stirred at 120 °C for 12 h under air. After the reaction was completed as indicated by TLC analysis, the solvent was removed under reduced pressure and the residue was purified by silica gel chromatography using petroleum ether/ethyl acetate 5:1 (v/v) to give the corresponding product **11** (52.2 mg, 70%).

11 (79.2 mg, 0.2 mmol) and anhydrous *m*-Xylene (2.0 mL) were charged into a pressure tube. The reaction mixture was stirred at 140 °C for 8 h under air. The solvent was removed under reduced pressure and the residue was purified by silica gel chromatography using petroleum ether/ethyl acetate 5:1 (v/v) to give product **3aa** (48.7 mg, 69%).

11 (79.2 mg, 0.2 mmol), CsOAc (38.4 mg, 0.2 mmol), Na₂CO₃ (21.2 mg, 0.2 mmol) and anhydrous *m*-Xylene (2.0 mL) were charged into a pressure tube. The reaction mixture was stirred at 140 °C for 8 h under air. The solvent was removed under reduced pressure and the residue was purified by silica gel chromatography using petroleum ether/ethyl acetate 5:1 (v/v) to give product **3aa** (57.9 mg, 82%).

(Z)-1-(2-Fluorophenyl)-3-hydroxy-2-(1-(pyrimidin-2-yl)-1*H*-indol-2-yl)but-2-en-1-one (11)

brown solid (52.2 mg, 70%), ¹H NMR (600 MHz, CDCl₃) δ 8.72 (d, *J* = 4.7 Hz, 2H), 8.25 (d, *J* = 8.3 Hz, 1H), 7.51 (d, *J* = 7.7 Hz, 1H), 7.25 (t, *J* = 7.2 Hz, 1H), 7.17 (t, *J* = 7.4 Hz, 1H), 7.14 – 7.11 (m, 2H), 7.07 – 7.04 (m, 1H), 6.85

- 6.78 (m, 2H), 6.51 (s, 1H), 2.14 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 199.5, 177.9, 159.0 (*J* = 251.8 Hz), 158.0, 157.5, 136.3, 133.9, 131.5 (*J* = 8.2 Hz), 129.1 (*J* = 2.6 Hz), 128.8, 123.6, 123.5 (*J* = 3.3 Hz), 122.0, 120.5, 117.2, 115.7 (*J* = 21.5 Hz), 114.5, 111.0, 109.5, 27.1, 26.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -113.9. HRMS (ESI-TOF) (m/z): Calcd for C₂₂H₁₆FN₃NaO₂ ([M + Na]⁺), 396.1119, found 396.1124.

(4) Competition experiment

A pressure tube was charged with **11** (20.9 mg, 0.1 mmol), **1p** (25.4 mg, 0.1 mmol), **2a** (49.5 mg, 0.24 mmol), $[Cp*RhCl_2]_2$ (5.0 mg, 4 mol%), AgSbF₆ (11.0 mg, 16 mol%), CsOAc (38.4 mg, 0.2 mmol), Na₂CO₃ (21.2 mg, 0.2 mmol) and anhydrous *m*-Xylene (2.0 mL). The reaction mixture was stirred at 140 °C for 12 h under air. After the reaction was completed as indicated by TLC analysis, the solvent was removed under reduced pressure and the residue was purified by silica gel chromatography using petroleum ether/ethyl acetate 2:1 (v/v) to afford product **3la** and **3pa**. The ratio of **3la:3pa** = 1.24:1 was determined on the basis of ¹H NMR analysis.

VI. References

- 1 L. Ackermann and A. V. Lygin, Org. Lett., 2011, 13, 3332-3335.
- (a) Y. Bai, W. Chen, Y. Chen, H. Huang, F. Xiao and G. Deng, *RSC Adv.*, 2015, 5, 8002-8005;
 (b) H. Zhang, D. Feng, H. Sheng, X. Ma, J. Wan and Q. Tang, *RSC Adv.*, 2014, 4, 6417-6423;
 (c) K. O. Marichev, Y. Wang, A. M. Carranco, E. C. Garcia, Z.-H. Yu and M. P. Doyle, *Chem. Commun.*, 2018, 54, 9513-9516.
- 3 D. Das, and R. Samanta, Adv. Synth. Catal., 2018, 360, 379-384.
- 4 R. Odani, K. Hirano, T. Satoh and M. Miura, Angew. Chem., Int. Ed., 2014, 53, 10784-10788.
- 5 X. Zhou, Y. Pan and X. Li, *Angew. Chem., Int. Ed.*, 2017, **56**, 8163-8167.

VII. ¹H, ¹³C NMR Spectra of New Compounds

¹H NMR (600 MHz, CDCl₃) spectrum of 3aa

¹³C NMR (151 MHz, CDCl₃) spectrum of 3aa

¹H NMR (600 MHz, CDCl₃) spectrum of 3ba

¹³C NMR (151 MHz, CDCl₃) spectrum of 3ba

¹H NMR (600 MHz, CDCl₃) spectrum of 3ca

¹³C NMR (151 MHz, CDCl₃) spectrum of 3ca

¹H NMR (600 MHz, CDCl₃) spectrum of 3da

¹³C NMR (151 MHz, CDCl₃) spectrum of 3da

¹H NMR (600 MHz, CDCl₃) spectrum of 3ea

¹³C NMR (151 MHz, CDCl₃) spectrum of 3ea

¹H NMR (600 MHz, CDCl₃) spectrum of 3fa

¹³C NMR (151 MHz, CDCl₃) spectrum of 3fa

¹⁹F NMR (376 MHz, CDCl₃) spectrum of 3fa

¹H NMR (600 MHz, CDCl₃) spectrum of 3ga

¹³C NMR (151 MHz, CDCl₃) spectrum of 3ga

¹H NMR (600 MHz, CDCl₃) spectrum of 3ha

¹³C NMR (151 MHz, CDCl₃) spectrum of 3ha

¹⁹F NMR (376 MHz, CDCl₃) spectrum of 3ha

¹H NMR (600 MHz, CDCl₃) spectrum of 3ia

¹³C NMR (151 MHz, CDCl₃) spectrum of 3ia

¹H NMR (600 MHz, CDCl₃) spectrum of 3ja

¹³C NMR (151 MHz, CDCl₃) spectrum of 3ja

¹H NMR (600 MHz, CDCl₃) spectrum of 3ka

¹³C NMR (151 MHz, CDCl₃) spectrum of 3ka

¹H NMR (600 MHz, CDCl₃) spectrum of 3la

¹³C NMR (151 MHz, CDCl₃) spectrum of 3la

¹H NMR (600 MHz, CDCl₃) spectrum of 3ma

¹³C NMR (151 MHz, CDCl₃) spectrum of 3ma

¹H NMR (600 MHz, CDCl₃) spectrum of 3na

¹³C NMR (151 MHz, CDCl₃) spectrum of 3na

¹⁹F NMR (376 MHz, CDCl₃) spectrum of 3na

¹H NMR (600 MHz, CDCl₃) spectrum of 30a

¹³C NMR (151 MHz, CDCl₃) spectrum of 30a

¹H NMR (600 MHz, CDCl₃) spectrum of 3pa

¹³C NMR (151 MHz, CDCl₃) spectrum of 3pa

¹H NMR (600 MHz, CDCl₃) spectrum of 3qa

¹³C NMR (151 MHz, CDCl₃) spectrum of 3qa

¹H NMR (600 MHz, CDCl₃) spectrum of 3ra

¹³C NMR (151 MHz, CDCl₃) spectrum of 3ra

¹H NMR (600 MHz, CDCl₃) spectrum of 3sa

¹³C NMR (151 MHz, CDCl₃) spectrum of 3sa

¹⁹F NMR (376 MHz, CDCl₃) spectrum of 3sa

¹H NMR (600 MHz, CDCl₃) spectrum of 3ta

¹³C NMR (151 MHz, CDCl₃) spectrum of 3ta

¹H NMR (600 MHz, CDCl₃) spectrum of 3ua

¹³C NMR (151 MHz, CDCl₃) spectrum of 3ua

¹⁹F NMR (376 MHz, CDCl₃) spectrum of 3ua

¹H NMR (600 MHz, CDCl₃) spectrum of 3va

¹³C NMR (151 MHz, CDCl₃) spectrum of 3va

¹H NMR (600 MHz, CDCl₃) spectrum of 3wa

¹³C NMR (151 MHz, CDCl₃) spectrum of 3wa

¹H NMR (600 MHz, CDCl₃) spectrum of 3ab

¹³C NMR (151 MHz, CDCl₃) spectrum of 3ab

¹H NMR (600 MHz, CDCl₃) spectrum of 3ac

¹³C NMR (151 MHz, CDCl₃) spectrum of 3ac

¹⁹F NMR (376 MHz, CDCl₃) spectrum of 3ac

¹H NMR (600 MHz, CDCl₃) spectrum of 3ad

¹³C NMR (151 MHz, CDCl₃) spectrum of 3ad

¹H NMR (600 MHz, CDCl₃) spectrum of 3ae

¹³C NMR (151 MHz, CDCl₃) spectrum of 3ae

¹H NMR (600 MHz, CDCl₃) spectrum of 3af

¹³C NMR (151 MHz, CDCl₃) spectrum of 3af

¹H NMR (600 MHz, CDCl₃) spectrum of 3ag

¹³C NMR (151 MHz, CDCl₃) spectrum of 3ag

¹H NMR (600 MHz, CDCl₃) spectrum of 3ah

¹³C NMR (151 MHz, CDCl₃) spectrum of 3ah

¹H NMR (600 MHz, CDCl₃) spectrum of 3ai

¹³C NMR (151 MHz, CDCl₃) spectrum of 3ai

¹⁹F NMR (376 MHz, CDCl₃) spectrum of 3ai

¹H NMR (600 MHz, CDCl₃) spectrum of 3aj

¹³C NMR (151 MHz, CDCl₃) spectrum of 3aj

¹H NMR (600 MHz, CDCl₃) spectrum of 3ak

¹³C NMR (151 MHz, CDCl₃) spectrum of 3ak

¹H NMR (600 MHz, CDCl₃) spectrum of 3al

¹³C NMR (151 MHz, CDCl₃) spectrum of 3al

¹H NMR (600 MHz, CDCl₃) spectrum of 6aa

¹³C NMR (151 MHz, CDCl₃) spectrum of 6aa

¹H NMR (600 MHz, CDCl₃) spectrum of 6ba

¹³C NMR (151 MHz, CDCl₃) spectrum of 6ba

¹H NMR (600 MHz, CDCl₃) spectrum of 6ca

¹³C NMR (151 MHz, CDCl₃) spectrum of 6ca

¹H NMR (600 MHz, CDCl₃) spectrum of 6da

¹³C NMR (151 MHz, CDCl₃) spectrum of 6da

¹H NMR (600 MHz, CDCl₃) spectrum of 6ea

¹³C NMR (151 MHz, CDCl₃) spectrum of 6ea

¹H NMR (600 MHz, CDCl₃) spectrum of 6fa

¹³C NMR (151 MHz, CDCl₃) spectrum of 6fa

¹H NMR (600 MHz, CDCl₃) spectrum of 6ga

¹³C NMR (151 MHz, CDCl₃) spectrum of 6ga

¹H NMR (600 MHz, CDCl₃) spectrum of 6ab

¹³C NMR (151 MHz, CDCl₃) spectrum of 6ab

¹H NMR (600 MHz, CDCl₃) spectrum of 6ac

¹³C NMR (151 MHz, CDCl₃) spectrum of 6ac

¹H NMR (600 MHz, CDCl₃) spectrum of 6ad

¹³C NMR (151 MHz, CDCl₃) spectrum of 6ad

¹H NMR (600 MHz, CDCl₃) spectrum of 6ae

¹³C NMR (151 MHz, CDCl₃) spectrum of 6ae

¹H NMR (600 MHz, CDCl₃) spectrum of 7a

¹³C NMR (151 MHz, CDCl₃) spectrum of 7a

¹H NMR (600 MHz, CDCl₃) spectrum of 8

¹³C NMR (151 MHz, CDCl₃) spectrum of 8

¹H NMR (600 MHz, CDCl₃) spectrum of 9

¹³C NMR (151 MHz, CDCl₃) spectrum of 9

¹H NMR (600 MHz, CD₂Cl₂) spectrum of 10

¹³C NMR (151 MHz, CD₂Cl₂) spectrum of 10

¹H NMR (600 MHz, CDCl₃) spectrum of 11

¹³C NMR (151 MHz, CDCl₃) spectrum of 11

¹⁹F NMR (376 MHz, CDCl₃) spectrum of 11