Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Lewis acid catalysed asymmetric cascade reaction of cyclopropyl ketones: concise synthesis of pyrrolobenzothiazoles

Fenzhen Chang, Bin Shen, Sijing Wang, Lili Lin* and Xiaoming Feng*

Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China

Table of Contents

(A) General Information	2
(B) Typical Procedure for Preparation of the Racemic Products	2
(C) Typical Procedure for Catalytic Asymmetric Reaction of D-A Cyclopropane with 2-Aminothiophenol	2
(D) Optimization of the Reaction Conditions	3
(E) Gram-Scale Synthesis of 3aa	6
(F) Transformation of the Product 3ga	6
(G) Control Experiments:	7
(H) The Kinetic Resolution Experiments	8
(I) Crystal Data of Products	8
(J) References	12
(K) Spectral Characterization Data for the Products	15
(L) Copies of NMR Spectra	31
(M) Copies of CD spectra for Recovered D-A Cyclopropanes	58

(A) General Information

¹H NMR spectra were recorded at 400 MHz. The chemical shifts were recorded in ppm relative to tetramethylsilane at 0.00 ppm (δ ppm). Data were reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, dd = doublet of doublets, t = triplet, m = multiplet), coupling constants (Hz), integration. ¹³C{¹H} NMR data were collected at 100 MHz with complete proton decoupling. Chemical shifts were reported in terms of chemical shift in reference to the CDCl₃ solvent signal (77.16 ppm). ¹⁹F{¹H} NMR spectra were collected at 376 MHz with complete proton decoupling. Optical rotations were reported as follows: $[\alpha]_{\lambda}^{T} = (c: g/100 \text{ mL}, \text{ in solvent}, \lambda: 589 \text{ nm})$. All ee values were determined by chiral HPLC analysis on Daicel chiralpak IA, ID, IE, IG, AD-H and UPC² analysis on chiral Daicel chiralcel OJ-3, in comparison with the authentic racemates. IR spectra were recorded on commercial instrument and the wave numbers of the absorption peaks are given in cm⁻¹. HRMS were recorded on a commercial apparatus (ESI source) and methanol was used to dissolve the sample. Reactions were monitored by thin layer chromatography (TLC). All reactions were performed in sealed oven-dried glass tubes unless otherwise noted. 1,1,2,2-tetrachloroethane (TCE) was distilled over powered CaH₂. The *N*,*N'*-Dioxide were prepared according to the methods reported in the literature.¹ Donor-Acceptor cyclopropanes were prepared according to previous work.² Unless noted, other commercial reagents were used without further purification.

(B) Typical Procedure for Preparation of the Racemic Products

Racemic ligand (±)-L₃-PiPr₂ (5 mol%), Sc(OTf)₃ (5 mol%), and D-A cyclopropane **1** (0.10 mmol) were stirred in 0.5 mL of 1,1,2,2-tetrachloroethane at 35 °C under nitrogen atmosphere for 0.5 h. Then, 2-aminothiophenol **2** (0.10 mmol) was added and the mixture was stirred at 35 °C for 48 h. Then, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/dichloromethane = 2/1) to afford the desired racemic product.

(C) Typical Procedure for Catalytic Asymmetric Reaction of D-A Cyclopropane with 2-Aminothiophenol

N,N'-Dioxide ligand **L**₃-**PiPr**₃ (5 mol%), Sc(OTf)₃ (5 mol%), LiCl (30 mol%) and D-A cyclopropane **1a** (0.22 mmol) were stirred in 0.5 mL of 1,1,2,2-tetrachloroethane at 35 °C under nitrogen atmosphere for 0.5 h. Then, 2-aminothiophenol **2a** (0.10 mmol) was added and the mixture was stirred at 45 °C for 48 h. Then, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/dichloromethane = 2/1) to afford the desired product as a yellow foam in 85% yield with 83:17 d.r. and 95% ee.

(D) Optimization of the Reaction Conditions

Table S1. Screening of Metals.

Ph (±)-1a	COPh COPh + 2a	SH Metal/L ₃ -P TCE, 35 °	iPr ₃ C 3aa P	Ph COPh O A h	N N N N N N N N N N
	Entry ^a	Metal	Yield (%) ^b	d.r. ^c	ee (%) ^c
	1	Y(OTf) ₃	39	76:24	58/60
	2	Yb(OTf) ₃	40	70:30	46/56
	3	Mg(OTf) ₂	n.r.		
	4	Zn(OTf) ₂	n.r.		
	5	AI(OTf) ₃	n.r.		
	6	Sc(OTf) ₃	60	65:35	93/93
	7	ScCl₃·6H₂O	12	60:40	96/96
	8	Hf(OTf) ₄	8	59:41	2/0
	9	Tb(OTf) ₃	18	78:22	56/54
	10	In(OTf) ₃	9	83:17	0/0
	11	Ga(OTf) ₃	12	80:20	4/4
	12	Sm(OTf)₃	16	79:21	63/64

^a All reaction were performed with metal/L₃-PiPr₃ (10 mol%, 1:1), D-A cyclopropane 1a (0.22 mmol), 2-aminothiophenol 2a (0.1 mmol) in 1,1,2,2-tetrachloroethane (0.5 mL) at 35 °C for 26 h. ^b Isolated yield. ^c Determined by HPLC analysis on Daicel chiralpak ID.

Table S2. Screening of Ligands.

Ph CO (±)-1a	Ph DPh + 2a	,SH <u>Sc(OTf)₃/l</u> TCE, 35 `NH ₂	-igand •°C 3a	N N Ph
Entry ^a	Ligand	Yield (%) ^b	d.r.°	ee (%) ^c
1	L ₃ -RaPr ₂	28	53:47	90/89
2	L ₃ -PrPr ₂	34	64:36	80/80
3	L ₃ -PiPr ₂	62	73:27	91/92
4	L₃-TQ <i>t</i> Bu	26	69:31	-16/-26
5	L ₃ -PePr ₂	34	75:25	88/87
6	L₃-PiPh	18	77:23	24/32
7	L₃-PiBn	30	82:18	5/5
8	L ₃ -PiMe ₂	34	81:19	35/29
8	L ₃ -PiEt ₂	44	82:18	60/59
9	L ₃ -PiPr ₃	60	65:35	93/93

10	L ₂ -PiPr ₃	74	82:18	34/31
11	L ₄ -PiPr ₃	10	45:55	64/70
12	РуВох	42	78:22	-15/-11
13	Вох	<5	-	-

^a All reaction were performed with Sc(OTf)₃/ligand (1:1, 10 mol%), D-A cyclopropane **1a** (0.22 mmol), 2-aminothiophenol **2a** (0.1 mmol) in 1,1,2,2-tetrachloroethane (0.5 mL) at 35 °C for 26 h. ^b Isolated yield. *c* Determined by HPLC analysis on Daicel chiralpak ID.

Table S3. Screening of Solvents.

Ph (±)-	COPh + SH COPh + NH ₂	Sc(OTf) ₃ /L ₃ -Pil solvent, 35 °C	Pr ₃ 3aa	S Ph COPh N Ph
Entry ^a	Solvent	Yield (%) ^b	d.r. ^c	ee (%) ^c
1	Tetrahydrofuran	<5	66:34	73/84
2	Toluene	12	66:34	50/55
3	Dichloromethane	22	54:46	92/93
4	Dichloroethane	35	64:36	89/91
5	Trichloromethane	51	67:33	93/94
6	1,1,2,2-tetrachloroethane	60	65:35	93/93

^a All reaction were performed with Sc(OTf)₃/L₃-**PiPr**₃ (10 mol%, 1:1), D-A cyclopropane **1a** (0.22 mmol), 2-aminothiophenol **2a** (0.1 mmol) in solvent (0.5 mL) at 35 °C for 26 h. ^b Isolated yield. ^c Determined by HPLC analysis on Daicel chiralpak ID.

Table S4. Screening of Additives.

Ph (±)-1a	COPh COPh +	SH Sc(OTf) ₃ / TCE, 35 °C	C ₃ -PiPr ₃ ↓	Ph 3aa
Entry ^a	Additive	Yield (%) ^b	d.r.°	ee (%) ^c
1	3 Å M.S.	6	80:20	55/60
2	4 Å M.S.	12	79:21	53/55
3	5 Å M.S.	23	77:23	53/56

4	H ₂ O	67	61:39	93/94
5	LiCl	75	80:20	95/95
6	LiBr	63	76:24	91/91
7	LiNTf ₂	42	56:44	64/64
8	CaCl ₂	73	80:20	96/95
9	NaCl	76	72:28	95/95
10	MgBr ₂	52	66:34	96/96

^a All reaction were performed with Sc(OTf)₃/L₃-PiPr₃ (10 mol%, 1:1), D-A cyclopropane **1a** (0.22 mmol), 2-aminothiophenol **2a** (0.1 mmol), additive (1 equiv) in 1,1,2,2-tetrachloroethane (0.5 mL) at 35 °C for 26 h. ^b Isolated yield. ^c Determined by HPLC analysis on Daicel chiralpak ID.

Table S5. Screening of Temperature.

Ph (±)-1a	COPh COPh + 2a	, SH Sc(OTf) ₃ /L₃-Pi TCE, LiCl, T NH₂	Pr ₃	S Ph COPh N Ph
Entry ^a	Temperature (°C)	Yield (%) ^b	d.r. ^c	ee (%) ^c
1	30	65	76:24	96/96
2	35	75	81:19	96/96
3	40	65	84:16	96/96
4	45	72	83:17	96/96
5	50	71	85:15	96/96

^a All reaction were performed with Sc(OTf)₃/L₃-PiPr₃ (10 mol%, 1:1), D-A cyclopropane **1a** (0.22 mmol), 2-aminothiophenol **2a** (0.1 mmol), LiCl (50 mol%) in 1,1,2,2-tetrachloroethane (0.5 mL) for 26 h. ^b Isolated yield. ^c Determined by HPLC analysis on Daicel chiralpak ID.

Table S6. Screening the Ratio of Substrates.

Ph (±)-1	COPh COPh + S N a 2a	H Sc(OTf) ₃ /L ₃ -Pi (1:1, 10 mol%) H ₂ TCE, LiCl, 45		S Ph COPh N Ph
Entry ^a	1a:2a	Yield (%) ^b	d.r. ^c	ee (%) ^c
1	2.1:1	62	82:18	93/93
2	2.2:1	72	83:17	96/96
3	2.5:1	62	82:18	95/96
4	2:1	65	85:15	95/96
5	1:1.2	58	82:18	51/41
6 ^{<i>d</i>}	2.2:1	78	83:17	95/95

^a All reaction were performed with Sc(OTf)₃/L₃-**PiPr**₃ (10 mol%, 1:1), LiCl (1 equiv) in 1,1,2,2-tetrachloroethane (0.2 M) for 26 h. ^b Isolated yield. ^c Determined by HPLC analysis on Daicel chiralpak ID. ^d Sc(OTf)₃/L₃-**PiPr**₃ (5 mol%, 1:1), LiCl (50 mol%) in 1,1,2,2-tetrachloroethane (0.2 M) for 48 h.

Table S7. Screening the Amount of LiCI.

Ph (±) 1a	COPh COPh + K NH ₂ 2a	Sc(OTf) ₃ / L₃-PiF (1:1, 5 mol%) TCE, LiCl, 45 °	Pr ₃ C N S aa	Ph COPh h a
Entry ^a	Amount of LiCl (mol%)	Yield (%) ^b	d.r. ^c	ee (%) ^c
1	50	79	82:18	95/95
2	45	68	83:17	96/95
3	40	80	83:17	96/95
4	35	72	83:17	94/94
5	30	85	83:17	95/96
6	25	84	80:20	95/95
7	10	77	85:15	95/95

^a All reaction were performed with Sc(OTf)₃/L₃-PiPr₃ (5 mol%, 1:1) in 1,1,2,2-tetrachloroethane (0.2 M) at 45 °C for 48 h. ^b Isolated yield. ^c Determined by HPLC analysis on Daicel chiralpak ID.

(E) Gram-Scale Synthesis of 3aa.

A 100 mL of dry round-bottom flask was charged with *N*,*N*'-dioxide ligand L_3 -PiPr₃ (0.2 mmol), Sc(OTf)₃ (0.2 mmol), LiCl (1.0 mmol) and **1a** (8.8 mmol) under nitrogen atmosphere. The 1,1,2,2-tetrachloroethane (20 mL) was added and the mixture were stirred at 35 °C for 2 h. Then, **2a** (4.0 mmol) was added. The mixture was stirred at 45 °C for 2 days. The reaction mixture was purified by flash chromatography (petroleum ether/dichloromethane = 2/1) on silica gel to afford the desired product in 83% yield (1.44 g) with 83:17 d.r. and 95% ee as a yellow foam.

(F) Transformation of the Product 3ga.

1) Transformation of 3ga to 4

The **3ga** with high diastereoselectivity (>19:1 d.r.) was separated from the mixture of diastereoisomers by flash chromatography (petroleum ether/dichloromethane = 2/1).

A solution of product **3ga** (0.1 mmol), NaBH₄ (0.2 mmol) in MeOH (0.5 mL) was stirred at r.t. for 10 min. The reaction mixture was quenched at 0 °C with water and was then extracted with DCM (3 x 10 mL). The combined organic layers were dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure. The product was purified by flash column chromatography on silica gel to furnished alcohol **4** in 99% yield with >19:1 d.r. and 95% ee.

2) Transformation of 3ga to 5

The **3ga** with high diastereoselectivity (>19:1 d.r.) was separated from the mixture of diastereoisomer by flash chromatography (petroleum ether/ dichloromethane = 2/1).

A solution of product **3ga** (0.1 mmol), *m*-CPBA (1.2 equiv) in DCM (2.0 mL) was stirred at r.t. and monitored by TLC. After the **3ga** was consumed, the reaction mixture was purified by flash column chromatography on silica gel to furnished sulfoxide **5** in 63% yield with >19:1 d.r. and 96% ee.

(G) Control Experiments:

Condition a: N,N-Dioxide ligand L₃-**PiPr**₃ (5 mol%), Sc(OTf)₃ (5 mol%), LiCl (30 mol%) and **3aa** (0.1 mmol) with different diastereoselectivity were stirred in 0.5 mL of 1,1,2,2-tetrachloroethane at 45 °C under nitrogen atmosphere for 24 h. Then, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/dichloromethane = 2/1) to afford the product, which was further analyzed by HPLC.

Condition b: **3aa** (0.1 mmol) were stirred in 0.5 mL of 1,1,2,2-tetrachloroethane at 70 °C under nitrogen atmosphere for 24 h. Then, the reaction mixture was purified by column chromatography on silica gel (petroleum ether/dichloromethane = 2/1) to afford the product, which was further analyzed by HPLC.

The d.r. values were determined by HPLC analysis on Daicel chiralpak IE.

(H) The Kinetic Resolution Experiments.

^a All reaction were performed with Sc(OTf)₃/L₃-**PiPr**₃ (5 mol%, 1:1), D-A cyclopropane 1 (0.2 mmol), 2-aminothiophenol **2a** (0.1 mmol), LiCl (30 mol%) in 1,1,2,2-tetrachloroethane (0.5 mL) for 48 h. ^b Isolated yield based on the amount of cyclopropanes. ^c Determined by HPLC on Daicel chiralpak ID, IE.

The kinetic resolution experiments were operated according to the typical procedure for catalytic asymmetric reaction of D-A cyclopropane with 2-aminothiophenol. When 0.2 mmol D-A cyclopropane reacted with 0.1 mmol 2-aminothiophenol, the products **3** were obtained in 37–41% yield with 77:23–91:9 d.r. and 70–95% ee. Meanwhile, the D-A cyclopropane **1** were recovered in 49–54% yield with 84–90% ee. The absolute configuration of the recovered D-A cyclopropane **1** was determined to be (*R*) by comparing their circular dichroism spectra with previous report.^{2a}

(I) Crystal Data of Products

(1) The following single crystal **3da** [C₂₉H₂₂BrNOS] was recrystallized from ethyl acetate/ethanol. The absolute configuration of **3da** was determined by X-ray diffraction. The data have been deposited at the Cambridge Crystallographic Data Center (CCDC1997496).

The colourless crystals in block-shape were selected and mounted for the single-crystal X-ray diffraction. The data set was collected at 300(2)K equipped with micro-focus Mo radiation source (K_a = 0.71073Å). Applied with face-indexed numerical absorption correction, the structure solution was solved and refinement was processed by SHELXTL (version 6.14) program package.³ The structure was analyzed by ADDSYM routine implemented in PLATON suite and no higher symmetry was suggested.⁴

Figure S1. the thermal ellipsoid figure of 3da with 50% probabilities

Empirical formula	C ₂₉ H ₂₂ BrNOS
Formula weight	512.44
Temperature/K	300(2)
Crystal system	monoclinic
Space group	P2 ₁
a/Å	10.6630(14)
b/Å	9.0225(9)
c/Å	12.3447(16)
α/°	90
β/°	90.216(5)
γ/°	90
Volume/Å	1187.6(2)
Z	2
ρ _{calc} g/cm ³	1.433
µ/mm ⁻¹	1.841
F(000)	524.0
Crystal size/mm ³	
Radiation	ΜοΚα (λ = 0.71073)
2O range for data collection/°	5.592 to 52.796
Index ranges	-12 ≤ h ≤ 13, -10 ≤ k ≤ 11, -15 ≤ l ≤ 15
Reflections collected	8989
Independent reflections	4595 [$R_{int} = 0.0228, R_{sigma} = 0.0601$]
Data/restraints/parameters	4595/1/298
Goodness-of-fit on F ²	1.073
Final R indexes [I>=2σ (I)]	$R_1 = 0.0373, wR_2 = 0.0864$
Final R indexes [all data]	R ₁ = 0.0478, wR ₂ = 0.0908

Table S9 Crystal data and structure refinement for (1*R*, 3*R*, 3a*R*)-3da.

Largest diff. peak/hole / e Å-3	0.33/-0.44
Flack parameter	0.042(6)

2) The following single crystal of major diastereomer **3aa** [$C_{29}H_{23}NOS$] was recrystallized from ether/petroleum ether. The absolute configuration of **3aa** was determined by X-ray diffraction. The data have been deposited at the Cambridge Crystallographic Data Center (CCDC 2008000).

The colourless crystals in block-shape were selected and mounted for the single-crystal X-ray diffraction. The data set was collected at 170(2)K equipped with micro-focus Cu radiation source ($K_{\alpha} = 1.54178$ Å). Applied with face-indexed numerical absorption correction, the structure solution was solved and refinement was processed by SHELXTL (version 6.14) program package.^[3] The structure was analyzed by ADDSYM routine implemented in PLATON suite and no higher symmetry was suggested.^[4]

Figure S2. the thermal ellipsoid figure of 3aa with 50% probabilities

	Table S10 Cr	ystal data an	d structure	refinement for	(1R, 3)	3R, 3aR)-3aa.
--	--------------	---------------	-------------	----------------	---------	---------	--------

Empirical formula	$C_{58}H_{46}N_2O_2S_2$
Formula weight	867.09
Temperature/K	170(2)
Crystal system	orthorhombic
Space group	P212121
a/Å	10.0966(5)
b/Å	16.0127(8)
c/Å	27.6462(14)
α/°	90
β/°	90
γ/°	90
Volume/Å	4469.7(4)

Z	4
$\rho_{calc}g/cm^3$	1.289
µ/mm ⁻¹	1.444
F(000)	1824.0
Crystal size/mm ³	0.318 × 0.212 × 0.125
Radiation	CuKα (λ = 1.54178)
2O range for data collection/°	6.378 to 161.376
Index ranges	-11 $\leq h \leq$ 12, -20 $\leq k \leq$ 20, -35 $\leq l \leq$ 35
Reflections collected	81260
Independent reflections	9717 [$R_{int} = 0.0625, R_{sigma} = 0.0451$]
Data/restraints/parameters	9717/0/578
Goodness-of-fit on F ²	1.055
Final R indexes [I>=2o (I)]	$R_1 = 0.0305, wR_2 = 0.0672$
Final R indexes [all data]	$R_1 = 0.\ 0.0336,\ wR_2 = 0.\ 0.0691$
Largest diff. peak/hole / e Å-3	0.23/-0.21
Flack parameter	0.010(3)

3) The following single crystal of minor diastereomer **3aa'** [$C_{29}H_{23}NOS$] was recrystallized from ethyl acetate/ethanol. The absolute configuration of **3aa'** was determined by X-ray diffraction. The data have been deposited at the Cambridge Crystallographic Data Center (CCDC1997497).

The colourless crystals in block-shape were selected and mounted for the single-crystal X-ray diffraction. The data set was collected at 303(2)K equipped with micro-focus Mo radiation source ($K_{\alpha} = 0.71073$ Å). Applied with face-indexed numerical absorption correction, the structure solution was solved and refinement was processed by SHELXTL (version 6.14) program package.³ The structure was analyzed by ADDSYM routine implemented in PLATON suite and no higher symmetry was suggested.⁴

Figure S3. the thermal ellipsoid figure of 3aa' with 50% probabilities

Empirical formula	C ₂₉ H ₂₃ NOS
Formula weight	433.54
Temperature/K	303(2)
Crystal system	monoclinic
Space group	P21
a/Å	9.7976(15)
b/Å	8.7230(9)
c/Å	14.089(2)
α/°	90
β/°	110.142(5)
γ/°	90
Volume/Å	1130.5(3)
Z	2
ρ _{calc} g/cm ³	1.274
µ/mm ⁻¹	0.165
F(000)	456.0
Crystal size/mm ³	
Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection/°	5.594 to 56.532
Index ranges	-13 ≤ h ≤ 11, -11 ≤ k ≤ 10, -18 ≤ l ≤ 18
Reflections collected	10157
Independent reflections	5121 [$R_{int} = 0.0632$, $R_{sigma} = 0.1074$]
Data/restraints/parameters	5121/1/289
Goodness-of-fit on F ²	0.975
Final R indexes [I>=2σ (I)]	$R_1 = 0.0593$, $wR_2 = 0.1226$
Final R indexes [all data]	$R_1 = 0.1420, wR_2 = 0.1772$
Largest diff. peak/hole / e Å-3	0.19/-0.23
Flack parameter	0.11(8)

Table S11 Crystal data and structure refinement for (1R, 3S, 3aR)-3aa'.

4) The following single crystal of **3ad** [C₂₉H₂₃NO₂] was recrystallized from DMSO. The absolute configuration of **3ad** was determined by X-ray diffraction. The data have been deposited at the Cambridge Crystallographic Data Center (CCDC 2032629).

The colourless crystal in flake-shape, with approximate dimensions of $0.076 \times 0.11 \times 0.366 \text{ mm}^3$, was selected and mounted for the single-crystal X-ray diffraction. The data set was collected by Bruker D8 Venture Photon II diffractometer at 143(2)K equipped with micro-focus Cu radiation source ($K_a = 1.54178$ Å). Applied with face-indexed numerical absorption correction, the structure solution was solved and refinement was processed by SHELXTL (version 6.14) program package.³ The structure was analyzed by ADDSYM routine implemented in PLATON suite and no higher symmetry was suggestedd.⁴

Figure S4. the thermal ellipsoid figure of **3ad** with 50% probabilities

Empirical formula	C ₂₉ H ₂₃ NO ₂
Formula weight	417.48
Temperature/K	143(2)
Crystal system	orthorhombic
Space group	P212121
a/Å	7.1433(2)
b/Å	16.4271(5)
c/Å	18.9190(6)
α/°	90
β/°	90
γ/°	90
Volume/Å	2220.03(12)
Z	2
ρ _{calc} g/cm ³	1.249
µ/mm ⁻¹	0.613
F(000)	880.0
Crystal size/mm ³	0.076 × 0.11 × 0.366
Radiation	CuKα (λ = 1.54178)
2O range for data collection/°	7.126 to 144.762
Index ranges	$-8 \le h \le 7$, $-20 \le k \le 20$, $-23 \le l \le 23$

Table S12 Crystal data and structure refinement for (*R*)-3ad.

Reflections collected	19698
Independent reflections	4355 [$R_{int} = 0.0662$, $R_{sigma} = 0.0594$]
Data/restraints/parameters	4355/1/293
Goodness-of-fit on F ²	1.079
Final R indexes [I>=2σ (I)]	$R_1 = 0.0419, wR_2 = 0.0994$
Final R indexes [all data]	$R_1 = 0.0455, wR_2 = 0.1013$
Largest diff. peak/hole / e Å ⁻³	0.33/-0.30
Flack parameter	0.02(9)

(J) References

- 1 (a) Y. H. Wen, X. Huang, J. L. Huang, Y. Xiong, B. Qin, and X. M. Feng, *Synlett.* 2005, **16**, 2445; (b) X. H. Liu, L. L. Lin, and X. M. Feng, *Acc. Chem. Res.* 2011, **44**, 574; (c) X. H. Liu, L. L. Lin, and X. M. Feng, *Org. Chem. Front.* 2014, **1**, 298–302.
- (a) Y. Xia, X. H. Liu, H. F. Zheng, L. L. Lin, and X. M. Feng, Angew. Chem. Int. Ed. 2015, 54, 227. (b) Y. Xia, L. L. Lin, F. Z. Chang, Y. T. Liao, X. H. Liu, and X. M. Feng, Angew. Chem. Int. Ed. 2016, 55, 12228. (c) F. Z. Chang, L. L. Lin, Y. Xia, H. Zhang, S. X. Dong, X. H. Liu, and X. M. Feng, Adv. Synth. Catal. 2018, 360, 2608. (d) Y. Xia, X. H. Liu, H. Z. Zheng, L. L. Lin, and X. M. Feng, Angew. Chem. Int. Ed. 2015, 54, 227.
- 3 (a) Sheldrick, G. M. Acta Cryst. 2008, A64, 112; (b) Sheldrick, G. M. Acta Cryst. 2015, A71, 3; (c) Sheldrick, G. M. Acta Cryst. 2015, C71, 3.
- 4 Spek, A. L. J. Appl. Cryst. 2003, 36, 7.

(K) Spectral Characterization Data for the Products

(1,3a-Diphenyl-1,2,3,3a-tetrahydrobenzo[d]pyrrolo[2,1-b]thiazol-3-yl)(phenyl)methanone (3aa).

(C₂₉H₂₃NOS) Prepared according to the general procedure for 48 h. 36.7 mg, 85% yield; yellow foam. Melting point: 60 – 64 °C. $[α]^{20}_D$ = +506.5 (*c* 0.69, CH₂Cl₂). 83:17 d.r. (determined by ¹H NMR), 95% ee for the major isomer and 95% ee for the minor isomer. HPLC (Chiral ID column), *i*PrOH/*n*Hexane = 20/80, Flow rate: 1.0 mL/min, 227 nm, t_{major isomer} = 8.05 min (major), 6.85 min (minor); t_{minor isomer} = 7.45 min (major), 6.27 min (minor). Major isomer: ¹H NMR (400 MHz, CDCl₃) δ 7.88 – 7.80 (m, 4H), 7.63 – 7,58 (m, 2H), 7.57 – 7.42 (m, 1H), 7.47 – 7.41 (m, 4H), 7.38 – 7.34 (m, 1H), 7.34 – 7.27 (m, 2H), 7.25 – 7.19 (m, 1H), 7.09 – 7.03 (m, 1H), 6.87 – 6.79 (m, 2H), 6.68 – 6.62 (m, 1H), 4.78 (dd, *J* = 6.0, 8.0 Hz, 1H), 4.67 (t, *J* = 7.2 Hz, 1H), 3.01 – 2.90 (m, 1H), 2.42 – 2.31 (m, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 198.3, 148.6, 147.4, 144.3, 137.1, 133.6, 133.2, 128.9, 128.9, 128.8, 128.4, 127.7,

127.6, 127.2, 125.9, 124.9, 124.4, 121.7, 116.2, 91.1, 70.8, 56.0, 40.3. **HRMS (FTMS+c ESI)** calcd for $C_{30}H_{26}NO_2S^+$ ([M]+H⁺) = 434.1573, Found 434.1576; **IR (neat)**: 3059, 1681, 1579, 1491, 1451, 1262, 1220, 1024, 736, 699 cm⁻¹

	Retention Time	Area	% Area	
1	6.266	16398	0.40	
2	6.850	88036	2.14	
3	7.452	660590	16.06	
4	8.053	3348253	81.40	

Phenyl{3a-phenyl-1-(p-tolyl)-1,2,3,3a-tetrahydrobenzo[d]pyrrolo[2,1-b]thiazol-3-yl}methanone (3ba)

(C₃₀H₂₅NOS) Prepared according to the general procedure for 48 h. 31.9 mg, 71% yield; yellow foam. Melting point: 78 – 82 °C. [α]²⁰_D = +472.0 (*c* 0.60, CH₂Cl₂). 83:17 d.r. (determined by ¹H NMR), 95% ee for the major isomer and 95% ee for the minor isomer. HPLC (Chiral ID column), *i*PrOH/*n*Hexane = 20/80, Flow rate: 1.0 mL/min, 227 nm, t_{major isomer} = 8.20 min (major), 6.73 min (minor); t_{minor isomer} = 7.48 min (major), 5.75 min (minor). Major isomer: ¹H NMR (400 MHz, CDCl₃) δ 7.88 – 7,80 (m, 4H), 7.52 – 7.39 (m, 5H), 7.32 – 7.23 (m, 5H), 7.08 – 7.03 (m, 1H), 6.86 – 6.81 (m, 2H), 6.69 – 6.63 (m, 1H), 4.75 (dd, *J* = 4.0, 8.0 Hz, 1H), 4.66 (t, *J* = 7.2 Hz, 1H), 2.98 – 2.89 (m, 1H), 2.41 (s, 3H), 2.39 – 2.32 (m, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 198.4, 148.6, 147.5, 141.3, 137.2, 137.1, 133.6, 133.2, 129.6, 128.9, 128.8, 128.4, 127.7, 127.1, 125.9, 124.9, 124.3, 121.7, 116.2, 91.1, 70.6, 56.1, 40.3, 21.3. HRMS (FTMS+c ESI) calcd for C₃₀H₂₆NOS⁺ ([M]+H⁺) = 448.1730, Found 448.1736; IR (neat): 3056, 1681,

1596, 1579, 1446, 1260, 1219, 749, 697 cm⁻¹

	Retention Time	Area	% Area
1	5.750	77331	9.70
2	6.732	318438	39.96

Retention Time		Area	% Area
1	5.747	16695	0.42
2	6.734	84691	2.13
3	7.483	664753	16.72
4	8.196	3209735	80.73

{1-(4-Chlorophenyl)-3a-phenyl-1,2,3,3a-tetrahydrobenzo[d]pyrrolo[2,1-b]thiazol-3-yl}(phenyl)methanone (3ca)

(**C**₂₉**H**₂₂**CINOS**) Prepared according to the general procedure for 48 h. 36.8 mg, 79% yield; yellow foam. Melting point: 70 – 74 °C. $[α]^{20}_{D}$ = +445.9 (*c* 0.73, CH₂Cl₂). 83:17 d.r. (determined by ¹H NMR), 96% *ee* for the major isomer and 92% *ee* for the minor isomer. **HPLC** (Chiral **ID** column), *i*PrOH/*n*Hexane = 10/90, Flow rate: 1.0 mL/min, 227 nm, t_{major isomer} = 9.87 min (major), 8.52 min (minor); t_{minor isomer} = 10.72 min (major), 7.41 min (minor). Major isomer: ¹H **NMR** (400 MHz, CDCl₃) δ 7.88 – 7.83 (m, 2H), 7.81 – 7.74 (m, 2H), 7.58 – 7.51 (m, 3H), 7.47 – 7.39 (m, 4H), 7.34 – 7.28 (m, 2H), 7.25 – 7.22 (m, 1H), 7.08 – 7.02 (m, 1H), 6.90 – 6.80 (m, 2H), 6.64 – 6.59 (m, 1H), 4.76 (t, *J* = 6.8 Hz, 1H), 4.65 (t, *J* = 7.2 Hz, 1H), 3.00 – 2.90 (m, 1H), 2.37 – 2.21 (m, 1H). ¹³C{¹H} **NMR** (100 MHz, CDCl₃) δ 198.2, 148.3, 147.2, 142.8, 137.0, 133.7, 133.3, 133.1, 129.1, 128.9, 128.8, 128.5, 128.5, 127.8, 125.8, 125.0, 124.5, 121.8, 116.1, 91.0, 70.2, 55.8, 40.1. **HRMS (FTMS+c ESI)** calcd for C₂₉H₂₃³⁵CINOS⁺ ([M]+H⁺) =

468.1183, Found 468.1184; calcd for $C_{29}H_{23}{}^{37}CINOS^+$ ([M]+H⁺) = 470.1154, Found 470.1161; **IR (neat)**: 3056, 1681, 1596, 1579, 1461, 1264, 1219, 735, 697 cm⁻¹

	Retention Lime	Area	% Area
1	7.405	58871	0.67
2	8.521	145510	1.66
З	9.869	7154047	81.77
4	10.724	1390897	15.90

{1-(4-Bromophenyl)-3a-phenyl-1,2,3,3a-tetrahydrobenzo[d]pyrrolo[2,1-b]thiazol-3-yl}(phenyl)methanone (3da)

(C₂₉H₂₂BrNOS) Prepared according to the general procedure for 72 h. 43.0 mg, 84% yield; yellow foam. Melting point: 64 - 68 °C. [α]²⁰_D = +394.8 (*c* 0.74, CH₂Cl₂). 82:18 d.r. (determined by ¹H NMR), 96% *ee* for the major isomer and 96% *ee* for the minor isomer. HPLC (Chiral ID column), *i*PrOH/*n*Hexane = 20/80, Flow rate: 1.0 mL/min, 227 nm, t_{major isomer} = 8.26 min (major), 7.25 min (minor); t_{minor isomer} = 8.86 min (major), 6.40 min (minor). Major isomer: ¹H NMR (400 MHz, CDCl₃) δ 7.87 – 7.83 (m, 2H), 7.80 – 7.75 (m, 2H), 7.58 – 7.54 (m, 3H), 7.50 – 7.42 (m, 4H), 7.34 – 7.27 (m, 2H), 7.25 – 7.19 (m, 1H), 7.08 – 7.02 (m, 1H), 6.88 – 6.81 (m, 2H), 6.64 – 6.59 (m, 1H), 4.74 (dd, *J* = 6.4, 8.4 Hz, 1H), 4.65 (t, *J* = 7.2 Hz, 1H), 3.00 – 2.89 (m, 1H), 2.35 – 2.25 (m, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 198.2, 148.3, 147.1, 143.3, 137.0, 133.7, 133.1, 132.1, 128.9, 128.9, 128.8, 128.5, 127.8, 125.8, 125.0, 124.5, 121.8, 121.4, 116.1, 91.0, 70.2, 55.8, 40.1. HRMS (FTMS+c ESI) calcd for C₂₉H₂₃⁷⁹BrNO₂S⁺ ([M]+H⁺) =

512.0678, Found 512.0676; calcd for $C_{29}H_{23}^{81}$ BrNO₂S⁺ ([M]+H⁺) = 514.0658, Found 514.0650; **IR (neat)**: 3059, 1681, 1588, 1487, 1465, 1355, 1261, 1219, 1010, 823, 749, 696 cm⁻¹

	Retention Time	Area	% Area
1	6.399	33860	0.34
2	7.251	183340	1.86
3	8.262	8062309	81.84
4	8.863	1572321	15.96

Phenyl[3a-phenyl-1-(m-tolyl)-1,2,3,3a-tetrahydrobenzo[d]pyrrolo[2,1-b]thiazol-3-yl]methanone (3ea)

(C₃₀H₂₅NOS) Prepared according to the general procedure for 48h. 38.5 mg, 86% yield; yellow foam. Melting point: 92 – 96 °C. $[α]^{20}_{D}$ = +449.0 (*c* 0.21, CH₂Cl₂). 83:17 d.r. (determined by ¹H NMR), 95% *ee* for the major isomer and 93% *ee* for the minor isomer. HPLC (Chiral IE column), *i*PrOH/*n*Hexane = 20/80, Flow rate: 1.0 mL/min, 227 nm, t_{major isomer} = 6.94 min (major), 7.37 min (minor); t_{minor isomer} = 5.94 min (major), 5.02 min (minor). Major isomer: ¹H NMR (400 MHz, CDCl₃) δ 7.87 – 7.80 (m, 4H), 7.58 – 7.52 (m, 1H), 7.52 – 7.46 (m, 1H), 7.46 – 7.41 (m, 3H), 7.37 – 7.35 (m, 1H), 7.32 – 7.26 (m, 2H), 7.24 – 7.19 (m, 1H), 7.18 – 7.13 (m, 1H), 7.06 – 7.02 (m, 1H), 6.86 – 6.81 (m, 2H), 6.69 – 6.65 (m, 1H), 4.75 (dd, *J* = 6.0, 8.0 Hz, 1H), 4.67 (t, *J* = 7.2 Hz, 1H), 2.99 – 2.90 (m, 1H), 2.41 (s, 3H), 2.39 – 2.31 (m, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 198.4, 148.6, 147.4, 144.3, 138.5, 137.1, 133.6, 133.1, 128.9, 128.8,

128.8, 128.4, 128.3, 127.9, 127.7, 126.0, 124.9, 124.3, 124.2, 121.7, 116.2, 91.1, 70.8, 56.0, 40.3, 21.8. HRMS (FTMS+c ESI) calcd for $C_{30}H_{26}NOS^+$ ([M]+H⁺) = 448.1730, Found; 448.1733; **IR** (neat): 3057, 1681, 1587, 1450, 1353, 1263, 1218, 1023, 734, 698 cm⁻¹

	Retention Time	Area	% Area	
1	5.023	561703	16.31	
2	5.951	560190	16.27	
3	6.955	1160817	33.71	
4	7.384	1160639	33.71	
			A	
			12	
			∞	

	Retention Time	Area	% Area
1	5.018	77255	0.64
2	5.938	2016529	16.65
3	6.938	9773090	80.69
4	7.366	245319	2.03

{1-(3-Chlorophenyl)-3a-phenyl-1,2,3,3a-tetrahydrobenzo[a]pyrrolo[2,1-b]thiazol-3-yl}(phenyl)methanone (3fa)

(C₂₉H₂₂CINOS) Prepared according to the general procedure for 72 h. 33.8 mg, 72% yield; yellow foam. Melting point: 70 – 73 °C. $[\alpha]^{20}_{D}$ = +441.3 (*c* 1.04, CH₂Cl₂). 83:17 d.r. (determined by ¹H NMR), 96% *ee* for the major isomer and 88% *ee* for the minor isomer. HPLC (Chiral IE column), *i*PrOH/*n*Hexane =

0.80 ⊋ 0.60 20/80, Flow rate: 1.0 mL/min, 227 nm, $t_{major isomer} = 6.82$ min (major), 7.18 min (minor); $t_{minor isomer} = 6.07$ min (major), 5.21 min (minor). Major isomer: ¹H NMR (400 MHz, CDCl₃) δ 7.88 – 7.83 (m, 2H), 7.81 – 7.76 (m, 2H), 7.62 – 7.54 (m, 2H), 7.49 – 7.42 (m, 3H), 7.39 – 7.35 (m, 1H), 7.35 – 7.28 (m, 3H), 7.25 – 7.19 (m, 1H), 7.08 – 7.03 (m, 1H), 6.89 – 6.81 (m, 2H), 6.68 – 6.61 (m, 1H), 4.75 (dd, J = 6.4, 8.4 Hz, 1H), 4.66 (t, J = 7.6 Hz, 1H), 3.00 – 2.84 (m, 1H), 2.36 – 2.26 (m, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 198.2, 148.3, 147.0, 146.5, 137.0, 134.8, 133.7, 133.1, 130.3, 128.9, 128.8, 128.5, 127.9, 127.8, 127.3, 125.8, 125.3, 125.0, 124.6, 121.8, 116.1, 91.0, 70.3, 55.8, 40.1. HRMS (FTMS+c ESI) calcd for $C_{29}H_{23}^{35}$ CINO₂S⁺ ([M]+H⁺) = 470.1154, Found 470.1156; IR (neat): 3060, 1680, 1592, 1576, 1466, 1451, 1352, 1262, 1218, 1023, 752, 695 cm⁻¹

	Retention Time	Area	% Area
1	5.213	88722	1.03
2	6.071	1402081	16.22
3	6.816	7004487	81.01
4	7.178	151138	1.75

{1-(3-Methoxyphenyl)-3a-phenyl-1,2,3,3a-tetrahydrobenzo[d]pyrrolo[2,1-b]thiazol-3-yl}(phenyl)methanone (3ga)

 $(C_{30}H_{25}NO_2S)$ Prepared according to the general procedure for 36 h. 35.6 mg, 77% yield; yellow foam. Melting point: 65 – 70 °C. $[\alpha]^{20}_{D}$ = +495.0 (*c* 0.62, CH₂Cl₂). 90:10 d.r. (determined by ¹H NMR), 95% *ee* for the major isomer and 93% *ee* for the minor isomer. **HPLC** (Chiral **IE** column), *i*PrOH/*n*Hexane = 10/90, Flow rate: 1.0 mL/min, 227 nm, t_{major isomer} = 11.15 min (major), 12.12 min (minor); t_{minor isomer} = 10.60 min (major), 7.95 min (minor). Major isomer: ¹H NMR (400 MHz, CDCl₃) δ 7.89 – 7.84 (m, 2H), 7.84 – 7.78 (m, 2H), 7.59 – 7.53 (m, 1H), 7.47 – 7.41 (m, 2H), 7.38 – 7.33 (m, 1H), 7.33 – 7.27 (m, 2H), 7.24 – 7.20 (m, 1H), 7.19 – 7.15 (m, 2H), 7.06 – 7.02 (m, 1H), 6.91 – 6.87 (m, 1H), 6.87 – 6.83 (m, 2H), 6.72 – 6.68 (m, 1H), 4.77 (dd, *J* = 6.0, 8.4 Hz, 1H), 4.68 (t, *J* = 7.2 Hz, 1H), 3.82 (s, 3H), 3.01 – 2.91 (m, 1H), 2.41 – 2.31 (m, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 198.4, 160.1, 148.6, 147.4, 146.1, 137.1,

133.6, 133.0, 130.0, 128.9, 128.8, 128.5, 127.7, 125.9, 125.0, 124.3, 121.6, 119.4, 116.0, 113.0, 112.6, 90.8, 70.8, 55.9, 55.4, 40.3, **HRMS (FTMS+c ESI)** calcd for $C_{30}H_{26}NO_2S^+$ ([M]+H⁺) = 464.1679, Found 464.1682; **IR (neat)**: 3058, 1680, 1590, 1463, 1261, 1219, 1044, 754, 697 cm⁻¹

	Retention Time	Area	% Area		
1	7.937	673683	6.67		
2	10.601	649230	6.43		
3	11.144	4399681	43.55		
4	12.099	4380807	43.36		

	Retention Time	Area	% Area
1	7.952	47778	0.52
2	10.598	1346033	14.59
3	11.147	7647241	82.91
4	12.120	182846	1.98

{1-(3-Bromophenyl)-3a-phenyl-1,2,3,3a-tetrahydrobenzo[*a*]pyrrolo[2,1-*b*]thiazol-3-yl}(phenyl)methanone (3ha)

(C₂₉H₂₂BrNOS) Prepared according to the general procedure for 48 h. 41.5 mg, 81% yield; yellow foam. Melting point: 72 – 76 °C. $[α]^{20}_{D}$ = +394.1 (*c* 0.66, CH₂Cl₂). 82:18 d.r. (determined by ¹H NMR), 96% ee for the major isomer and 90% ee for the minor isomer. HPLC (Chiral IE column), *i*PrOH/*n*Hexane = 20/80, Flow rate: 1.0 mL/min, 227 nm, t_{major isomer} = 7.03 min (major), 7.45 min (minor); t_{minor isomer} = 6.21 min (major), 5.36 min (minor). Major isomer: ¹H NMR (400 MHz, CDCl₃) δ 7.88 – 7.83 (m, 2H), 7.81 – 7.74 (m, 3H), 7.57 – 7.50 (m, 2H), 7.48 – 7.42 (m, 3H), 7.34 – 7.28 (m, 3H), 7.26 – 7.20 (m, 1H), 7.08 – 7.02 (m, 1H), 6.88 – 6.82 (m, 2H), 6.68 – 6.61 (m, 1H), 4.75 (dd, *J* = 6.0, 8.0 Hz, 1H), 4.66 (t, *J* = 7.2 Hz, 1H), 3.00 – 2.83 (m, 1H), 2.36 – 2.26 (m, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 198.2, 148.3, 147.0, 146.7, 137.0, 133.7, 133.0, 130.7, 130.6, 130.2, 128.9, 128.8, 128.5, 127.9, 125.8, 125.1,

124.5, 123.1, 121.8, 116.1, 91.0, 70.2, 55.8, 40.1, **HRMS (FTMS+c ESI)** calcd for $C_{29}H_{23}^{79}BrNO_2S^+$ ([M]+H⁺) = 512.0680, Found 512.0682; calcd for $C_{29}H_{23}^{81}BrNO_2S^+$ ([M]+H⁺) = 514.0662, Found 514.0660; **IR (neat)**: 3058, 1680, 1590, 1573, 1466, 1450, 1351, 1262, 1218, 734, 696 cm⁻¹

	Retention Time	Area	% Area
-	5.380	409214	12.96
2	2 6.209	371389	11.76
3	3 7.039	1247748	39.51
2	7.454	1129612	35.77

	Retention Time	Area	% Area
1	5.355	35534	0.82
2	6.206	702822	16.22
3	7.032	3520070	81.21
4	7.453	75840	1.75

Phenyl{3a-phenyl-1-(o-tolyl)-1,2,3,3a-tetrahydrobenzo[d]pyrrolo[2,1-b]thiazol-3-yl}methanone (3ia)

($C_{30}H_{25}NOS$) Prepared according to the general procedure for 48 h. 36.7 mg, 82% yield; yellow foam. Melting point: 60 – 64 °C. [α]²⁰_D = +419.7 (*c* 0.79, CH₂Cl₂). 87:13 d.r. (determined by ¹H NMR), 92% *ee* for the major isomer and 92% *ee* for the minor isomer. HPLC (Chiral ID column), *i*PrOH/*n*Hexane = 20/80, Flow rate: 1.0 mL/min, 227 nm, t_{major isomer = 8.04 min (major), 5.82 min (minor); t_{minor isomer} = 6.98 min (major), 5.40 min (minor). Major isomer: ¹H NMR (400 MHz, CDCl₃) δ 8.13 – 8.06 (m, 1H), 7.89 – 7.79 (m, 4H), 7.57 – 7.52 (m, 1H), 7.44 – 7.38 (m, 2H), 7.38 – 7.33 (m, 1H), 7.32 – 7.27 (m, 2H), 7.26 – 7.18 (m, 3H), 7.14 – 7.09 (m, 1H), 6.92 – 6.85 (m, 1H), 6.84 – 6.78 (m, 1H), 6.72 – 6.66 (m, 1H), 4.87 (dd, *J* = 5.2, 8.8 Hz, 1H), 4.66 (dd, *J* = 7.6, 9.2 Hz, 1H), 3.08 – 2.96 (m, 1H), 2.26 (s, 3H), 2.25 - 2.20 (m, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 198.3, 148.9, 147.0, 142.4, 136.8, 135.1, 134.2, 133.7, 130.8, 128.9,}

128.8, 128.4, 127.7, 127.2, 127.2, 126.6, 126.5, 126.0, 125.0, 124.9, 122.0, 117.0, 91.6, 67.8, 55.6, 39.7, 19.7. HRMS (FTMS+c ESI)

calcd for $C_{30}H_{26}NO_2S^+$ ([M]+H⁺) = 448.1730, Found 448.1734; **IR (neat)**: 3059, 1681, 1596, 1452, 1356, 1263, 1221, 1023, 754, 696 cm⁻¹

{1-(2-Methoxyphenyl)-3a-phenyl-1,2,3,3a-tetrahydrobenzo[d]pyrrolo[2,1-b]thiazol-3-yl}(phenyl)methanone (3ja)

661569

4152477

6.979

8.042

3

4

 $(C_{30}H_{25}NO_2S)$ Prepared according to the general procedure for 72 h. 32.4 mg, 70% yield; yellow foam. Melting point: 58 – 64 °C. $[\alpha]^{20}_{D}$ = +423.0 (c 0.59, CH₂Cl₂). 84:16 d.r. (determined by ¹H NMR), 91% *ee* for the major isomer and 89% *ee* for the minor isomer. **HPLC** (Chiral **ID** column), *i*PrOH/*n*Hexane = 20/80, Flow rate: 1.0 mL/min, 227 nm, t_{major isomer} = 13.25 min (major), 8.29 min (minor); t_{minor isomer} = 7.67 min (major), 5.71 min (minor). Major isomer: ¹H NMR (400 MHz, CDCl₃) δ 8.05 – 7.99 (m, 1H), 7.87 – 7.78 (m, 4H), 7.54 – 7.47 (m, 1H), 7.41 – 7.30 (m, 3H), 7.29 – 7.23 (m, 2H), 7.21 – 7.16 (m, 1H), 7.16 – 7.12 (m, 1H), 7.10 – 7.06 (m, 1H), 6.93 – 6.78 (m, 4H), 4.89 (dd, *J* = 3.6, 9.6 Hz, 1H), 4.63 (dd, *J* = 7.6, 10.8 Hz, 1H), 3.77 (s, 3H), 3.10 – 2.97 (m, 1H), 2.35 – 2.25 (m, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 198.4, 156.6, 149.4, 147.0, 136.8, 134.3, 133.5, 132.8, 128.8, 128.7, 128.4, 128.3, 127.6, 127.6, 126.0,

13.21

82.90

124.8, 124.8, 121.9, 120.6, 116.9, 110.5, 91.6, 66.4, 56.0, 55.3, 39.8, **HRMS (FTMS+c ESI)** calcd for $C_{30}H_{26}NO_2S^+$ ([M]+H⁺) = 464.1679, Found 464.1678; **IR (neat)**: 3059, 1681, 1594, 1487, 1455, 1357, 1237, 1026, 754, 696 cm⁻¹

	Retention Time	Area	% Area
1	5.711	175957	1.00
2	7.665	2950777	16.78
3	8.287	631064	3.59
4	13.253	13832051	78.64

[1-(2-Bromophenyl)-3a-phenyl-1,2,3,3a-tetrahydrobenzo[d]pyrrolo[2,1-b]thiazol-3-yl](phenyl)methanone (3ka)

 $(C_{29}H_{22}BrNO_2S)$ Prepared according to the general procedure for 96 h. 45.6 mg, 89% yield; yellow foam. Melting point: 75 – 80 °C. $[a]^{20}_{D}$ = +387.9 (*c* 0.73, CH₂Cl₂). 87:13 d.r. (determined by ¹H NMR), 87% *ee* for the major isomer and 68% *ee* for the minor isomer. **HPLC** (Chiral **ID** column), *i*PrOH/*n*Hexane = 20/80, Flow rate: 1.0 mL/min, 227 nm, t_{major isomer} = 14.15 min (major), 7.53 min (minor); t_{minor isomer} = 6.45 min (major), 5.41 min (minor). Major isomer: ¹H NMR (400 MHz, CDCl₃) δ 8.19 – 8.13 (m, 1H), 7.85 – 7.78 (m, 4H), 7.63 – 7.58 (m, 1H), 7.56 – 7.50 (m, 1H), 7.49 – 7.43 (m, 1H), 7.42 – 7.36 (m, 2H), 7.32 – 7.25 (m, 2H), 7.24 – 7.17 (m, 2H), 7.17 – 7.12 (m, 1H), 6.95 – 6.83 (m, 2H), 6.77 – 6.72 (m, 1H), 4.95 (dd, *J* = 3.6, 9.2 Hz, 1H), 4.62 (dd, *J* = 7.6, 10.4 Hz, 1H), 3.22 – 3.09 (m, 1H), 2.36 – 2.25 (m, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 198.0, 148.7, 146.6, 143.5, 136.7, 134.2, 133.7,

133.4, 129.0, 128.9 (2C), 128.7 (2C), 128.6, 128.4 (2C), 127.9, 127.8, 125.8 (2C), 125.2, 125.1, 122.9, 122.1, 116.9, 91.5, 70.6, 55.2, 39.9. **HRMS (FTMS+c ESI)** calcd for $C_{29}H_{23}^{79}BrNO_2S^+$ ([M]+H⁺) = 512.0678, Found; 512.0680; calcd for $C_{29}H_{23}^{81}BrNO_2S^+$ ([M]+H⁺) = 514.0658, Found 514.0660; **IR (neat)**: 3059, 1681, 1588, 1451, 1353, 1260, 1220, 1022, 753, 695 cm⁻¹

	Retention Time	Area	% Area
1	5.413	304335	2.44
2	6.454	1569187	12.58
3	7.525	715087	5.73
4	14.150	9885164	79.25

[1-(3,4-Dichlorophenyl)-3a-phenyl-1,2,3,3a-tetrahydrobenzo[*d*]pyrrolo[2,1-*b*]thiazol-3-yl](phenyl)methanone (3la)

 $(C_{29}H_{21}Cl_2NOS)$ Prepared according to the general procedure for 72 h. 38.5 mg, 77% yield; yellow foam. Melting point: 70 – 74 °C. $[\alpha]^{20}_{D}$ = +487.9 (*c* 0.24, CH₂Cl₂). 83:17 d.r. (determined by ¹H NMR), 96% ee for the major isomer and 90% ee for the minor isomer. HPLC (Chiral IE column), *i*PrOH/*n*Hexane = 10/90, Flow rate: 1.0 mL/min, 227 nm, t_{major isomer} =8.35 min (major), 8.77 min (minor); t_{minor isomer} =7.55 min (major), 6.26 min (minor). Major isomer: ¹H NMR (400 MHz, CDCl₃) δ 7.88 – 7.83 (m, 2H), 7.80 – 7.75 (m, 2H), 7.71 – 7.67 (m, 1H), 7.58 – 7.54 (m, 1H), 7.52 – 7.48 (m, 1H), 7.48 – 7.46 (m, 1H), 7.46 – 7.41 (m, 2H), 7.36 – 7.29 (m, 2H), 7.26 – 7.22 (m, 1H), 7.07 – 7.01 (m, 1H), 6.89 – 6.82 (m, 2H), 6.66 – 6.59 (m, 1H), 4.74 (dd, *J* = 6.0, 8.0 Hz, 1H), 4.66 (t, *J* = 7.2 Hz, 1H), 3.00 – 2.90 (m, 1H), 2.32 – 2.23 (m, 1H). ¹³C{¹H} NMR (100 MHz, 100 MHz,

CDCl₃) δ198.1, 148.1, 146.9, 144. 7, 137.0, 133.7, 133.1, 133.0, 131.6, 131.0, 129.1, 129.0, 128.8, 128.6, 128.6, 128.0, 126.5, 125.8, 125.1, 124.7, 121.9, 116.0, 90.9, 69.8, 55.6, 40.0. **HRMS (FTMS+c ESI)** calcd for $C_{29}H_{22}{}^{35}Cl^{35}CINOS^+$ ([M]+H⁺) = 502.0794, Found 502.0790; calcd for $C_{29}H_{22}{}^{35}Cl^{37}CINOS^+$ ([M]+H⁺) = 504.0764, Found 504.0760; calcd for $C_{29}H_{22}{}^{37}Cl^{37}CINOS^+$ ([M]+H⁺) = 506.0735, Found 506.0742; **IR (neat)**: 3060, 1682, 1588, 1467, 1351, 1263, 1220, 1027, 737, 698 cm⁻¹

AU	0.050 0.040 0.030 0.020 0.010 0.000					^							6.411	A~	7.681		- 100 F					
	-0.010	0.50 1	1.00 1.	50 2.00	2.50	3.00	3.50	4.00	4.50	5.00	5.50	6.00	6.50	7.00	7.50	8.00	8.50	ó.e	0 9.6	50 10.0	0 10.50	11.00
											5 5 0 1 d 0 0											

	Retention Time	Area	% Area
1	6.411	269767	14.02
2	7.681	259545	13.49
3	8.507	706829	36.73
4	8.941	688392	35.77

	Retention Time	Area	% Area
1	6.258	30665	0.79
2	7.547	583645	15.09
3	8.345	3186074	82.35
4	8.771	68476	1.77

[1-(Naphthalen-1-yl)-3a-phenyl-1,2,3,3a-tetrahydrobenzo[d]pyrrolo[2,1-b]thiazol-3-yl](phenyl)methanone (3ma)

 $(C_{33}H_{25}NOS)$ Prepared according to the general procedure for 48 h. 40.6 mg, 84% yield; yellow foam. Melting point: 91 – 93 °C. [α]²⁰_D = +511.3 (*c* 0.68, CH₂Cl₂). 94:6 d.r. (determined by ¹H NMR), 95% ee for the major isomer and 90% ee for the minor isomer. HPLC (Chiral ID column), *i*PrOH/*n*Hexane = 20/80, Flow rate: 1.0 mL/min, 227 nm, t_{major isomer} = 13.35 min (major), 10.90 min (minor); t_{minor isomer} = 8.42 min (major), 6.48 min (minor). Major isomer: ¹H NMR (400 MHz, CDCl₃) δ 8.42 – 8.35 (m, 1H), 7.95 – 7.89 (m, 4H), 7.89 – 7.85 (m, 1H), 7.80 – 7.74 (m, 2H), 7.65 – 7.59 (m, 1H), 7.53 – 7.43 (m, 3H), 7.38 – 7.28 (m, 4H), 7.25 – 7.22 (m, 1H), 7.19 – 7.15 (m, 1H), 6.94 – 6.86 (m, 1H), 6.84 – 6.77 (m, 2H), 5.38 (dd, *J* = 4.0, 9.6 Hz, 1H), 4.68 (dd, *J* = 7.2, 10.4 Hz, 1H), 3.37 – 3.18 (m, 1H), 2.47 – 2.35 (m, 1H). ¹³C{¹H} NMR (100

MHz, CDCl₃) δ 198.2, 149.1, 146.8, 140.0, 136.6, 134.4, 134.2, 133.7, 130.6, 129.1, 128.9, 128.7, 128.4, 128.1, 127.8, 126.4, 126.0, 125.9, 125.8, 125.1, 125.0, 123.9, 123.4, 122.1, 117.1, 91.6, 68.2, 55.8, 40.6. **HRMS (FTMS+c ESI)** calcd for C₃₃H₂₆NOS⁺ ([M]+H⁺) = 484.1730, Found 448.1734; **IR (neat)**: 3058, 1680, 1593, 1451, 1260, 1221, 734, 696 cm⁻¹

	Retention Time	Area	% Area
3	10.898	587313	2.05
1	6.484	104522	0.37
2	8.416	1958224	6.84
4	13.350	25985981	90.75

[1-(Naphthalen-2-yl)-3a-phenyl-1,2,3,3a-tetrahydrobenzo[a]pyrrolo[2,1-b]thiazol-3-yl](phenyl)methanone (3na)

(C₃₃H₂₅NOS) Prepared according to the general procedure for 48 h. 33.8 mg, 70% yield; yellow foam. Melting point: 76 – 79 °C. [α]²⁰_D = +402.2 (*c* 1.19, CH₂Cl₂). 84:16 d.r. (determined by ¹H NMR), 95% ee for the major isomer and 94% ee for the minor isomer. HPLC (Chiral ID column), *i*PrOH/*n*Hexane = 20/80, Flow rate: 1.0 mL/min, 227 nm, t_{major isomer} = 9.80 min (major), 8.16 min (minor); t_{minor isomer} =11.52 min (major), 7.54 min (minor). Major isomer: ¹H NMR (400 MHz, CDCl₃) δ 8.05 (s, 1H), 7.93 – 7.83 (m, 7H), 7.73 – 7.68 (m, 1H), 7.54 – 7.48 (m, 3H), 7.44 – 7.38 (m, 2H), 7.36 – 7.28 (m, 2H), 7.26 – 7.20 (m,1H), 7.08 – 7.03 (m, 1H), 6.87 – 6.75 (m, 2H), 6.68 – 6.63 (m, 1H), 4.93 (dd, *J* = 6.4, 8.4 Hz, 1H), 4.72 (t, *J* = 7.6 Hz, 1H), 3.07 – 2.96 (m, 1H), 2.49 – 2.38 (m, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 198.3, 148.5, 147.4, 141.6, 137.0, 133.6, 133.5, 133.2, 133.1, 128.9, 128.9, 128.8, 128.5, 128.2, 127.9, 127.8, 126.5, 126.1, 126.0, 125.9, 125.1, 125.0, 124.4, 121.7, 116.3, 91.1, 70.9, 56.0, 40.1. HRMS

(FTMS+c ESI) calcd for $C_{33}H_{26}NOS^+$ ([M]+H⁺) = 484.1730, Found 484.1728; IR (neat): 3057, 1680, 1464, 1450, 1264, 1219, 749, 695 cm⁻¹

	Retention Time	Area	% Area
1	7.538	236917	0.49
2	8.159	1067791	2.20
3	9.800	39500358	81.23
4	11.520	7824128	16.09

Phenyl(3a-phenyl-1-vinyl-1,2,3,3a-tetrahydrobenzo[*a*]pyrrolo[2,1-*b*]thiazol-3-yl)methanone (3oa)

(C₂₅H₂₁NOS) Prepared according to the general procedure for 96 h. 13.9 mg, 36% yield; yellow oil. $[α]^{20}$ _D = +443.2 (*c* 0.22, CH₂Cl₂). 85:15 d.r. (determined by ¹H NMR), 93% ee for the major isomer and 95% ee for the minor isomer. HPLC (Chiral ADH column), *i*PrOH/*n*Hexane = 10/90, Flow rate: 1.0 mL/min, 227 nm, t_{major isomer = 6.23 min (major), 7.16 min (minor); t_{minor isomer} = 9.12 min (major), 5.12 min (minor). Major isomer: ¹H NMR (400 MHz, CDCl₃) δ 7.93 – 7.88 (m, 2H), 7.74 – 7.68 (m, 2H), 7.62 – 7.56 (m, 1H), 7.50 – 7.44 (m, 2H), 7.33 – 7.27 (m, 2H), 7.24 – 7.18 (m,1H), 7.02 – 6.92 (m, 3H), 6.84 – 6.79 (m, 1H), 6.23 –}

6.08 (m, 1H), 5.60 – 5.52 (m, 1H), 5.33 – 5.28 (m, 1H), 4.55 (t, J = 6.8 Hz, 1H), 4.30 (dd, J = 6.8, 14.0 Hz, 1H), 2.69 – 2.59 (m, 1H), 2.15 – 2.05 (m, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 198.5, 148.7, 147.8, 141.1, 137.3, 133.5, 132.0, 128.9, 128.7, 128.4, 127.6, 125.7, 125.0, 123.3, 121.3, 116.4, 114.7, 90.3, 69.5, 56.1, 36.9. HRMS (FTMS+c ESI) calcd for C₂₅H₂₂NOS⁺ ([M]+H⁺) = 384.1417, Found 384.1418; **IR (neat)**: 3060, 1681, 1579, 1467, 1264, 1219, 1022, 994, 931, 753, 697 cm⁻¹

	Retention Time	Area	% Area
1	5.117	9001	0.30

2	6.227	2519020	84.36
3	7.159	91123	3.05
4	9.116	366736	12.28

(4-Fluorophenyl){3a-(4-fluorophenyl)-1-phenyl-1,2,3,3a-tetrahydrobenzo[d]pyrrolo[2,1-b]thiazol-3-yl}methanone (3pa)

(C₂₉H₂₁F₂NOS) Prepared according to the general procedure for 48 h. 40.4 mg, 86% yield; yellow foam. Melting point: 58 - 62 °C. [α]²⁰_D = +404.6 (*c* 0.68, CH₂Cl₂). 77:23 d.r. (determined by ¹H NMR), 96% ee for the major isomer and 97% ee for the minor isomer. HPLC (Chiral IA column), *i*PrOH/*n*Hexane = 10/90, Flow rate: 1.0 mL/min, 227 nm, t_{major isomer} = 7.04 min (major), 6.58 min (minor); t_{minor isomer} =13.03 min (major), 6.15 min (minor). Major isomer: ¹H NMR (400 MHz, CDCl₃) δ 7.88 - 7.76 (m, 4H), 7.61 - 7.55 (m, 2H), 7.48 - 7.42 (m, 3H), 7.13 - 7.05 (m, 3H), 7.00 - 6.93 (m, 2H), 6.91 - 6.80 (m, 2H), 6.69 - 6.65 (m, 1H), 4.69 (dd, *J* = 5.2, 8.4 Hz, 1H), 4.55 (t, *J* = 8.0 Hz, 1H), 3.04 - 2.95 (m, 1H), 2.43 - 2.34 (m, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ196.4, 166.1 (d, *J* = 254.7 Hz), 162.2 (d, *J* = 245.3 Hz), 148.4, 144.1, 142.6 (d, *J* = 2.9 Hz), 133.4, 133.2 (d, *J* = 3.1 Hz), 131.3 (d, *J* = 9.3 Hz), 129.0, 129.0, 128.2, 127.8 (d, *J* = 8.0

Hz), 127.7, 127.1, 125.1, 124.9, 121.9, 116.9, 116.0 (d, J = 21.8 Hz), 115.0 (d, J = 21.4 Hz), 91.0, 70.6, 56.3, 40.3. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -103.9, -114.9. HRMS (FTMS+c ESI) calcd for C₂₉H₂₂F₂NOS⁺ ([M]+H⁺) = 470.1385, Found 470.1376; IR (neat): 3064, 1682, 1596, 1502, 1462, 1225, 1156, 835, 743, 701 cm⁻¹

	Retention Time	Area	% Area
1	6.165	540557	12.96
2	6.590	1557441	37.33
3	7.048	1562679	37.46
4	13 054	511249	12 25

	Retention Time	Area	% Area
1	6.153	14738	0.33
2	6.578	59045	1.31
3	7.037	3355368	74.29
4	13.032	1087190	24.07

1-(3a-Methyl-1-phenyl-1,2,3,3a-tetrahydrobenzo[d]pyrrolo[2,1-b]thiazol-3-yl)ethan-1-one (3qa)

(C₂₅H₂₁NOS) Prepared according to the general procedure for 96 h. 20.0 mg, 65% yield; yellow oil. $[α]^{20}_{D}$ = +138.9 (*c* 0.31, CH₂Cl₂). 53:47 d.r. (determined by ¹H NMR), 74% ee for the major isomer and 77% ee for the minor isomer. HPLC (Chiral IE column), *i*PrOH/*n*Hexane = 10/90, Flow rate: 1.0 mL/min, 227 nm, t_{major isomer} = 5.63 min (major), 5.18 min (minor); t_{minor isomer} =7.30 min (major), 6.97 min (minor). Major isomer: ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.36 (m, 3H), 7.34 – 7.28 (m, 2H), 7.06 – 7.01 (m, 1H), 6.84 – 6.76 (m, 2H), 6.26 – 6.15 (m, 1H), 4.47 (dd, *J* = 6.8, 10.4 Hz, 1H), 3.75 (dd, *J* = 6.8, 12.8 Hz, 1H),

2.50 – 2.41 (m, 1H), 2.41 – 2.33 (m, 1H), 2.31 (s, 3H), 1.64 (s, 3H). ${}^{13}C{^{+}H} NMR$ (100 MHz, CDCl₃) δ 205.2, 148.7, 144.3, 132.2, 129.0, 127.6, 126.2, 125.4, 123.5, 121.7, 115.4, 82.8, 68.5, 60.5, 38.0, 33.6, 29.8. HRMS (FTMS+c ESI) calcd for C₂₅H₂₂NOS⁺ ([M]+H⁺) = 310.1260, Found 310.1256; IR (neat): 2969, 1710, 1579, 1466, 1360, 1272, 1264, 1219, 1169, 1133, 1029, 749, 702 cm⁻¹

	Retention Time	Area	% Area
1	5.186	519417	25.62
2	5.642	509869	25.15

	Retention Time	Area	% Area
1	5.180	1012704	7.37
2	5.633	6934463	50.49
3	6.966	659977	4.81
4	7.304	5126702	37.33

6-phenyl-7,7a-dihydrobenzo[d]indeno[1',2':2,3]pyrrolo[2,1-b]thiazol-8(6H)-one (3ra)

(C₂₃H₁₇NOS) Prepared according to the general procedure. 30.7 mg, 86% yield; yellow foam. Melting point: 50 - 56 °C. [α]²⁰_D = +154.5 (*c* 0.61, CH₂Cl₂). 86:14 d.r. (determined by ¹H NMR), 70% ee for the major isomer and 80% ee for the minor isomer. HPLC (Chiral IB column), *I*PrOH/*n*Hexane = 5/95, Flow rate: 1.0 mL/min, 227 nm, t_{major isomer} =9.76 min (major), 8.52 min (minor); t_{minor isomer} =10.96 min (major), 6.88 min (minor). Major isomer: ¹H NMR (400 MHz, CDCl₃) δ 7.68 – 7.64 (m, 2H), 7.64 – 7.60 (m, 1H), 7.49 – 7.42 (m, 1H), 7.25 – 7.19 (m, 6H), 6.99 – 6.91 (m, 1H), 6.89 – 6.80 (m, 1H), 6.33 – 6.25 (m, 1H), 4.76 (dd, *J* = 6.8, 8.8 Hz, 1H), 3.73 (dd, *J* = 7.6, 10.0 Hz, 1H), 2.93 – 2.83 (m, 1H), 2.27 – 2.17 (m, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 203.5, 156.5, 147.6, 141.5, 136.7, 132.7, 132.1, 129.8, 128.7, 127.8, 127.2, 125.4, 125.4, 124.0, 123.2, 121.3, 116.1, 88.6, 74.0, 59.3, 38.3. HRMS (FTMS+c ESI) calcd for

C₂₃H₁₈NOS⁺ ([M]+H⁺) = 356.1104, Found 356.1096; **IR (neat)**: 3059, 1718, 1599, 1463, 1264, 733, 701 cm⁻¹

	Retention Time	Area	% Area
1	6.884	288471	1.53
2	8.522	2389299	12.69
3	9.763	13592745	72.18
4	10.963	2560749	13.60

Methyl 3a-methyl-1-phenyl-1,2,3,3a-tetrahydrobenzo[d]pyrrolo[2,1-b]thiazole-3-carboxylate (3sa)

 $(C_{19}H_{19}NO_2S)$ Prepared according to the general procedure for 48 h. 26.9 mg, 83% yield; yellow oil. $[\alpha]^{20}_{D} = +115.6$ (*c* 0.55, CH₂Cl₂). 51:49 d.r. (determined by ¹H NMR), 57% ee for the major isomer and 56% ee for the minor isomer. HPLC (Chiral AD-H column), *i*PrOH/*n*Hexane = 2/98, Flow rate: 1.0 mL/min, 227 nm, t_{major isomer} = 10.20 min (major), 7.90 min (minor); t_{minor isomer} = 8.64 min (major), 6.89 min (minor). Major isomer: ¹H NMR (400 MHz, CDCl₃) δ 7.51 – 7.35 (m, 4H), 7.34 – 7.31 (m, 1H), 7.13 – 7.07 (m, 1H), 6.81 – 6.74 (m, 2H), 6.21 – 6.14 (m, 1H), 4.47 (dd, *J* = 6.4, 10.4 Hz, 1H), 3.77 (s, 3H),

3.26 (t, J = 7.2 Hz, 1H), 2.64 – 2.53 (m, 1H), 2.29 – 2.21 (m, 1H), 1.71 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 172.2, 147.7, 144.0,

129.6, 129.0, 127.7, 126.4, 125.1, 121.9, 121.2, 112.5, 83.3, 70.6, 54.2, 52.1, 37.4, 29.8. **HRMS (FTMS+c ESI)** calcd for $C_{20}H_{19}NO_2S^+$ ([M]+H⁺) = 326.1209, Found 326.1214; **IR (neat)**: 2978, 1736, 1493, 1265, 1202, 1027, 734, 701 cm⁻¹

	Retention Time	Area	% Area
1	6.886	537875	9.99
2	7.897	629990	11.70
3	8.638	1915871	35.59
4	10.195	2299287	42.71

Ethyl 1,3a-diphenyl-1,2,3,3a-tetrahydrobenzo[d]pyrrolo[2,1-b]thiazole-3-carboxylate (3ta)

(C₂₅H₂₃NO₂S) Prepared according to the general procedure for 48 h. 27.3 mg, 68% yield; yellow oil. $[α]^{20}_D$ = +253.6 (*c* 0.55, CH₂Cl₂). 82:18 d.r. (determined by ¹H NMR), 38% ee for the major isomer and 50% ee for the minor isomer. HPLC (Chiral AD-H column), *i*PrOH/*n*Hexane = 10/90, Flow rate: 1.0 mL/min, 227 nm, t_{major isomer} = 6.15 min (major), 4.75 min (minor); t_{minor isomer} = 7.14 min (major), 9.85 min (minor). Major isomer: ¹H NMR (400 MHz, CDCl₃) δ 7.80 – 7.76 (m, 2H), 7.56 – 7.50 (m, 2H), 7.44 – 7.31 (m, 5H), 7.27 – 7.21 (m, 1H), 7.02 – 6.97 (m, 1H), 6.85 – 6.74 (m, 2H), 6.47 – 6.41 (m, 1H), 4.78 (dd, *J* = 6.8, 8.8

Hz, 1H), 4.27 (q, J = 7.2 Hz, 2H), 3.75 (dd, J = 3.6, 7.6 Hz, 1H), 2.88 – 2.76 (m, 1H), 2.24 – 2.10 (m, 1H), 1.32 (t, J = 7.2 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 172.0, 148.5, 148.2, 143.3, 132.1, 128.9, 128.5, 128.1, 127.8, 127.5, 127.4, 125.5, 124.9, 124.0, 121.4, 115.8, 90.7, 70.7, 61.4, 56.0, 38.6, 14.3. HRMS (FTMS+c ESI) calcd for C₂₅H₂₃NNaO₂S⁺ ([M]+Na⁺) = 424.1342, Found 424.1349; IR (neat): 2927, 1733, 1462, 1255, 1180, 1027, 742, 698 cm⁻¹

	Retention Time	Area	% Area
1	4.757	3695380	41.18
2	6.153	3620707	40.35
3	7.154	891947	9.94
4	9.865	765376	8.53

	Retention Time	Area	% Area
1	4.754	2807752	25.76
2	6.147	6177256	56.68
3	7.144	1436587	13.18
4	9.850	477009	4.38

(7-Chloro-1,3a-diphenyl-1,2,3,3a-tetrahydrobenzo[d]pyrrolo[2,1-b]thiazol-3-yl)(phenyl)methanone (3ab)

(C₂₉H₂₂CINOS) Prepared according to the general procedure for 48 h. 40.0 mg, 85% yield; yellow foam. Melting point: 74 – 78 °C. $[\alpha]^{20}_{D}$ = +446.1 (*c* 0.77, CH₂Cl₂). 85:15 d.r. (determined by ¹H NMR), 92% ee for the major isomer and 91% ee for the minor isomer. UPCC (Chiral OJ-3 column), EtOH/CO₂ = 10/90, Flow rate: 1.5 mL/min, 227 nm, t_{major isomer} =11.50 min (major), 10.53 min (minor); t_{minor isomer} =9.74 min (major), 9.29 min (minor). Major isomer: ¹H NMR (400 MHz, CDCl₃) $\overline{\delta}$ 7.89 – 7.84 (m, 2H), 7.79 – 7.73 (m, 2H), 7.60 – 7.54 (m, 3H), 7.48 – 7.42 (m, 4H), 7.39 – 7.29

(m, 3H), 7.27 – 7.21 (m, 1H), 6.94 – 6.90 (m, 1H), 6.84 – 6.78 (m, 1H), 6.66 – 6.61 (m, 1H), 4.84 (dd, J = 6.0, 8.4 Hz, 1H), 4.70 (t, J = 7.2 Hz, 1H), 2.99 – 2.89 (m, 1H), 2.42 – 2.27 (m, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 198.3, 149.9, 146.9, 143.7, 137.0, 133.7, 131.4, 130.3, 129.1, 129.0, 128.7, 128.6, 127.9, 127.8, 126.9, 125.7, 123.9, 122.1, 115.8, 91.5, 70.7, 55.6, 40.1. HRMS (FTMS+c ESI) calcd for C₂₉H₂₃³⁵CINOS⁺ ([M]+H⁺) = 468.1183, Found 468.1188; calcd for C₂₉H₂₃³⁷CINOS⁺ ([M]+H⁺) = 470.1154, Found 470.1165; IR (neat): 3059, 1680, 1575, 1449, 1357, 1264, 1219, 1079, 739, 697 cm⁻¹

	Retention Time	Area	% Area
1	9.290	52294	0.65
2	9.735	1156337	14.39
3	10.532	261797	3.26
4	11.500	6564697	81.70

[1-(3-Mercaptophenyl)-2,5-diphenyl-4,5-dihydro-1*H*-pyrrol-3-yl](phenyl)methanone (3ac)

(C₂₉H₂₃NOS) Prepared according to the general procedure for 24 h. 17.5 mg, 40% yield; yellow oil. [α]²⁰_D = +185.8 (c 0.10, CH₂Cl₂). 94% ee. HPLC (Chiral IG column), *i*PrOH/*n*Hexane = 20/80, Flow rate: 1.0 mL/min, 230 nm, t_{major} = 22.80 min, t_{minor} = 15.52 min. ¹H NMR (400 MHz, CDCl₃) δ 7.52 – 7.46 (m, 2H), 7.46 – 7.39 (m, 2H), 7.37 – 7.30 (m, 1H), 7.27 – 7.22 (m, 2H), 7.11 – 7.02 (m, 4H), 7.00 – 6.92 (m, 4H), 6.84 – 6.77 (m, 1H), 6.77 – 6.71 (m, 1H), 6.50 – 6.44 (m, 1H), 6.40 – 6.28 (m, 1H), 5.19 (dd, *J* = 4.8, 11.2 Hz, 1H), 3.95 (dd, *J* = 11.2, 15.2 Hz, 1H), 3.13 (s, 1H), 3.08 (dd, *J* = 4.8, 15.2 Hz, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 193.5, 157.6, 143.3, 143.1, 140.5, 131.2, 131.2, 130.2, 129.9, 129.3, 129.0,

128.6, 128.0, 128.0, 127.3, 126.1, 124.7, 123.8, 120.6, 114.2, 68.9, 41.9. **HRMS (FTMS+c ESI)** calcd for $C_{29}H_{24}NOS^+$ ([M]+H⁺) = 434.1573, Found 434.1578; **IR (neat)**: 3056, 2925, 2852, 1581, 1555, 1477, 1373, 1264, 736, 699 cm⁻¹

	Retention Time	Area	% Area
1	15.522	23598	2.83
2	22.799	809265	97.17

(R)-[1-(2-hydroxyphenyl)-2,5-diphenyl-4,5-dihydro-1H-pyrrol-3-yl](phenyl)methanone (3ad)

(C₂₉H₂₃NO₂) Prepared according to the general procedure for 96 h. 9.9 mg, 24% yield; yellow oil. $[\alpha]^{20}_{D} = -156.6$ (*c* 0.20, MeOH). 71% *ee.* HPLC (Chiral IA column), *i*PrOH/*n*Hexane = 20/80, Flow rate: 1.0 mL/min, 227 nm, t = 6.83 min (major), 6.01 min (minor); ¹H NMR (400 MHz, *d*₆-DMSO) δ 9.71 (s, 1H), 7.50 - 7.45 (m, 2H), 7.37 - 7.30 (m, 2H), 7.27 - 7.20 (m, 1H), 7.12 - 7.07 (m, 2H), 7.06 - 7.01 (m, 1H), 6.97 - 6.89 (m, 5H), 6.86 - 6.75 (m, 3H), 6.65 - 6.50 (m, 2H), 6.42 - 6.30 (m, 1H), 3.35 (dd, *J* = 9.2, 11.6 Hz, 1H), 3.86 (dd, *J* = 12.0, 15.2 Hz, 1H), 3.00 (dd, *J* = 9.2, 15.2 Hz, 1H). ¹³C{¹H} NMR (100 MHz, *d*₆-

DMSO) δ 190.27, 153.63, 141.31, 131.18, 129.59, 128.56, 128.46, 128.19, 127.95, 127.55, 127.51, 127.45, 127.15, 126.85, 126.73, 118.29, 115.84, 79.14, 67.15, 40.65. **HRMS (FTMS+c ESI)** calcd for C₂₉H₂₄NO₂⁺ ([M]+H⁺) = 418.1802, Found 418.1810; **IR (neat)**: 3394, 1659, 1265, 1024, 1005, 1029, 822, 759, 729 cm⁻¹

1	6.007	125008	14.64
2	6.834	728667	85.36

{1-(3-Methoxyphenyl)-3a-phenyl-1,2,3,3a-tetrahydrobenzo[d]pyrrolo[2,1-b]thiazol-3-yl}(phenyl)methanol (4)

 $(C_{30}H_{27}NO_2S)$ 99% yield; yellow oil. [α]²⁰_D = +455.0 (*c* 0.40, CH₂Cl₂). HPLC (Chiral ID column), *i*PrOH/*n*Hexane = 20/80, Flow rate: 1.0 mL/min, 230 nm, tr (minor) = 7.41 min, tr (major) = 8.87 min; ¹H NMR (400 MHz, CDCl₃) δ 7.94 – 7.86 (m, 2H), 7.42 – 7.31 (m, 6H), 7.31 – 7.26 (m, 1H), 7.26 – 7.20 (m, 2H), 7.12 – 7.07 (m, 1H), 7.03 – 6.96 (m, 2H), 6.90 – 6.78 (m, 3H), 6.50 – 6.42 (m, 1H), 5.04 (dd, *J* = 3.6, 9.2 Hz, 1H), 4.44 (t, *J* = 7.6 Hz, 1H), 3.75 (s, 3H), 3.24 – 3.11 (m, 1H), 2.71 (d, *J* = 3.2 Hz, 1H), 1.92 – 1.82 (m, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ160.0, 149.7, 147.9, 145.0, 142.7, 131.8, 129.8, 128.8, 128.4, 128.4, 127.2, 127.2, 126.1, 125.0, 123.8, 121.6, 119.7, 115.7, 113.1, 112.9, 93.5, 69.4, 77.2, 56.8, 55.3, 39.7. HRMS (FTMS+c ESI) calcd for C₃₀H₂₈NO₂S⁺ ([M]+H⁺) = 466.1835, Found 466.1825; IR (neat): 3551, 3466, 3058, 2936, 1601, 1488, 1462, 1262, 1158, 1129, 1037, 893, 748, 700 cm⁻¹.

	Retention Time	Area	% Area
1	7.349	557022	50.36
2	8.797	548981	49.64

	Retention Time	Area	% Area
1	7.409	171807	2.27
2	8.866	7409782	97.73

{1-(3-Methoxyphenyl)-4-oxido-3a-phenyl-1,2,3,3a-tetrahydrobenzo[d]pyrrolo[2,1-b]thiazol-3-yl}(phenyl)methanone (5)

(C₃₀H₂₅NO₂**S)** 63% yield; yellow oil. $[α]^{20}_{D}$ = +883.7 (c 0.10, CH₂Cl₂). **HPLC** (Chiral IA column), *I*PrOH/*n*Hexane = 20/80, Flow rate: 1.0 mL/min, 220 nm, tr (minor) = 14.07 min, tr (major) = 12.43 min; ¹H NMR (400 MHz, CDCl₃) δ 8.24 – 8.17 (m, 2H), 7.74 – 7.69 (m, 1H), 7.68 – 7.64 (m, 1H), 7.61 – 7.55 (m, 2H), 7.46 – 7.39 (m, 1H), 7.37 – 7.32 (m, 2H), 7.32 – 7.27 (m, 1H), 7.24 – 7.20 (m, 2H), 7.19 – 7.16 (m, 1H), 7.15 – 7.10 (m, 2H), 7.05 – 7.00 (m, 1H), 7.00 – 6.95 (m, 1H), 6.62 – 6.56 (m, 1H), 5.24 (dd, *J* = 6.4, 12.0 Hz, 1H), 4.67 (dd, *J* = 5.2, 11.6 Hz, 1H), 3.89 (s, 3H), 3.26 – 3.12 (m, 1H), 2.71 – 2.61 (m, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ196.7, 160.1, 143.2, 137.9, 135.3, 134.8, 133.9, 133.7, 133.6, 130.1, 129.2, 129.0, 128.9, 128.6, 128.3, 128.0, 124.1, 120.1, 118.2, 113.6, 113.5, 10 1.0, 69.5, 55.3, 46.1, 41.9. HRMS (FTMS+c ESI) calcd for C₃₀H₂₆NO₂S⁺ ([M]+H⁺) = 480.1628, Found 480.1624; IR (neat): 3061, 3466, 3058, 2936, 1601, 1590, 1463, 1262, 1158, 1129, 1040, 755, 700 cm⁻¹.

	Retention Time	Area	% Area
1	12.435	247055	50.28
2	14.257	244316	49.72

	Retention Time	Area	% Area
1	12.434	3634274	97.93
2	14.069	76644	2.07

(L) Copies of NMR Spectra.

Compound 3aa:

¹H NMR (400 MHz, CDCl₃)

Compound 3ba:

¹H NMR (400 MHz, CDCl₃)

Compound 3ca:

¹H NMR (400 MHz, CDCl₃)

Compound 3da:

¹H NMR (400 MHz, CDCl₃)

$\begin{array}{c} 7.286\\ 7.286\\ 7.777\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.75\\ 7.77\\ 7.75\\ 7.77\\ 7.75\\ 7.77\\ 7.75\\ 7.$

Compound 3ea:

¹H NMR (400 MHz, CDCl₃)

¹³C{¹H} NMR (100 MHz, CDCI₃)

Compound 3fa:

¹H NMR (400 MHz, CDCl₃)

7.88 7.88 7.88 7.788 7.788 7.788 7.788 7.788 7.788 7.788 7.788 7.798 7.733 7.732 7.722 7.722 7.722 7.722 7.722 7.72

Compound 3ga:

¹H NMR (400 MHz, CDCl₃)

Compound 3ha:

¹H NMR (400 MHz, CDCl₃)

 $\begin{array}{c} 7.8 \\ 7.7 \\ 7.8 \\ 7.7 \\ 7.8 \\ 7.7 \\$

Compound 3ia:

¹H NMR (400 MHz, CDCl₃)

Compound 3ja:

¹H NMR (400 MHz, CDCl₃)

$\begin{array}{c} 8 & 0.3 \\ 2 & 0.4 \\ 2 & 0.5 \\$

Compound 3ka:

¹H NMR (400 MHz, CDCl₃)

¹³C{¹H} NMR (100 MHz, CDCI₃)

Compound 3la:

¹H NMR (400 MHz, CDCl₃)

Compound 3ma:

¹H NMR (400 MHz, CDCl₃)

Compound 3na:

200

190

180

170

160

150

140

130

120

¹H NMR (400 MHz, CDCl₃)

-- 0.00 = 84 : 16 3na′ 3na -AMA 1.00 5.25 5.20 5.15 5.10 5.05 5.00 4.95 4.90 1.01 4 8 <u>9</u> 4 2.18 8 83 2 55 5 5 7.5 6.5 6.0 5.5 5.0 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 8.0 7.0 4.5 ¹³C{¹H} NMR (100 MHz, CDCI₃) 148.51 147.37 147.37 133.58 133.58 133.24 133.05 133.05 133.05 133.05 133.05 133.05 133.05 128.45 128.45 128.45 128.45 128.45 127.45 127.46 127.77 124.42 127.48 126.04 127.77 126.03 127.48 12 - 198.30 56.03 - 40.14 M 130.5 128.5 127.5 125.5 124.5 133.5 132.5 131.5 129.5 126.5

S44

100

90

80

70

60

40

50

Compound 3oa:

¹H NMR (400 MHz, CDCl₃)

7,792 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,798 7,775 7,798 7,775 7,738 7,739 7,749

Compound 3pa:

¹H NMR (400 MHz, CDCl₃)

$\begin{array}{c} 7,8,\\ 7,8,\\ 7,8,\\ 7,8,\\ 7,8,\\ 7,8,\\ 7,8,\\ 7,8,\\ 7,8,\\ 7,8,\\ 7,8,\\ 7,8,\\ 7,8,\\ 7,8,\\ 7,8,\\ 8,8,\\$

¹⁹F{¹H} NMR (376 MHz, CDCl₃)

— -114.54 — -114.92

02.5 -103.5 -104.5 -105.5 -106.5 -107.5 -108.5 -109.5 -110.5 -111.5 -112.5 -113.5 -114.5 -115.5 -116.5

Compound 3qa:

¹H NMR (400 MHz, CDCl₃)

Compound 3ra:

¹H NMR (400 MHz, CDCl₃)

¹³C{¹H} NMR (100 MHz, CDCI₃)

Compound 3sa:

¹H NMR (400 MHz, CDCl₃)

175 170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 2

Compound 3ta:

¹H NMR (400 MHz, CDCl₃)

Compound 3ab:

¹H NMR (400 MHz, CDCl₃)

¹³C{¹H} NMR (100 MHz, CDCI₃)

Compound 3ac:

¹H NMR (400 MHz, CDCl₃)

Compound 3ad:

¹H NMR (400 MHz, *d*₆-DMSO)

Compound 4:

¹H NMR (400 MHz, CDCl₃)

$\begin{array}{c} 7.5 \\$

Compound 5:

¹H NMR (400 MHz, CDCl₃)

(M) Copies of CD Spectra for Recovered D-A Cyclopropanes

