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General Aspects:

All chemicals including anthracene, 1,2,4,5-tetramethyl benzene, paraformaldehyde, and
dimethyl-5-hydroxyisophthalate were obtained from Sigma-Aldrich. All other solvents including
glacial acetic acid and HBr were freshly distilled prior to use. Fourier transform IR (FTIR)
spectra were recorded with a Perkin-Elmer instrument. Thermogravimetric analysis (TGA) data
were recorded under nitrogen atmosphere at a heating rate of 5°C/min with a Perkin-Elmer
instrument, Pyris Diamond TG/DTA. Powder X-ray diffraction (PXRD) data were recorded with
a BRUKER-AXS-D8-ADVANCE diffractometer at room temperature. 'H NMR (200/400/600
MHz) spectra were recorded on a BRUKER-AC 200/400/600 MHz. spectrometer. Melting
points were recorded using a Fisher Scientific melting point apparatus cat. No. 12-144-1. The
surface morphology of the samples were characterized by using a field emission scanning

electron microscope (ZEISS EVO 60 with oxford EDS detector).
Section S1: Synthesis of Carboxylate Ligands and Characterizations
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Preparation of the tetramethyl-ester: In the first step, 1,4-Bis(bromomethyl)-2,3,5,6-
tetramethyl benzene was prepared from 1,2,4,5-tetramethyl benzene following a reported
literature procedure with slight modifications.S! In the next step, a mixture of dimethyl 5-
hydroxy isophthalate (919 mg, 4.38 mmol) and K,CO3 (908 mg, 6.57 mmol) was taken in a two
neck RB in presence of dry acetonitrile solvent and heated for at least half an hour at 80°C. 1,4-
Bis(bromomethyl)-2,3,5,6-tetramethyl benzene (700 mg, 2.19 mmol) was subsequently added
into this reaction mixture and the entire solution was refluxed for 24 hrs at 80°C. After the
completion of the reaction, it was quenched by adding water leading to the formation of a white
curdy precipitate. The precipitate was filtered and washed thoroughly with water and then dried
under vacuum. The resulting tetramethyl-ester obtained here was used in the next step for

hydrolysis. Yield = 85%.

Hydrolysis of the ester to obtain Hy,TMCA: The tetramethyl-ester (800 mg, 1.38 mmol) was
taken in a RB and 100 ml of 6M NaOH solution in MeOH/THF solvent mixture was added to it.
The resulting solution mixture was then stirred at room temperature for about 48 hrs. After this,
the solution was worked up with aqueous HCI, leading to the formation of the tetra-acid
(H4TMCA) as a white precipitate. The resulting precipitate was washed thoroughly with water
for several times and dried under vacuum. The product was further characterized by 'H NMR

and 13C NMR spectroscopy.
Yield = 75%, m.p = 237-240°C.

Synthesis of H4AOIA: The anthracene based tetracarboxylic acid (H4AOIA) was prepared in the
similar way, starting from 9,10-Bis-bromomethyl anthracene following a previously reported

procedure.S?



'H NMR Spectrum of H;TMCA in de-DMSO:-
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Section S2: Preparation of Li-MOF based solid electrolytes

Synthesis of Li-AOIA: The as-synthesized ligand H4AOIA (28.3 mg, 0.05 mmol) was mixed
with Li(NOs) (7 mg, 0.1 mmol) in presence of 4 ml DMF/ethanol solvent mixture (3:1). The
resulting solution was taken in a 15 ml Pyrex tube and heated in an oven at 80°C for 24 hrs under
solvothermal conditions. Upon cooling down to room temperature, it resulted in the formation of

long needle shaped yellow colored crystals, suitable for SXRD analysis. Yield: ~75%.

Synthesis of Li-AOIA@X (X = CI, Br, I, BF4-and NOj3"): Li-AOIA crystals were filtered and
washed thoroughly with ethanol. It was then immersed in acetone for 7 days during which the
crystals were exchanged with fresh acetone for several times. The acetone exchanged crystals
were then activated at 80°C for 12 hrs to generate the desolvated framework of Li-AOIA. The
desolvated Li-AOIA powder (50 mg) were then soaked into a 1M LiX)/ethanolic solution (10
ml) for about 24 hrs. The resulting material was then washed thoroughly with ethanol, vacuum
filtered and air dried to obtain the free flowing powder of Li-AOIA@X. ICP-AES analysis

indicated the percentage uptake of Li-content in each of these materials.

Synthesis of Li-TMCA: The as-synthesized ligand HyTMCA (26.1 mg, 0.05 mmol) was mixed
with Li(NOs) (7 mg, 0.1 mmol) in presence of 4 ml DMF/ethanol solvent mixture (3:1). The
resulting solution was taken in a 15 ml Pyrex tube and heated in an oven at 80°C for 24 hrs under
solvothermal conditions. Upon cooling down to room temperature, it resulted in the formation of

small white plate shaped crystals, suitable for SXRD analysis. Yield: ~80%.

Synthesis of Li-TMCA@X (X = BF; and NOj): The synthesis was performed in the similar
procedure as of Li-AOIA@X. Further, ICP-AES analysis indicated the amount of increased Li-
content in Li-TMCA@BF, and Li-TMCA@NO;.



Section S3: Single Crystal Structure Analysis

Crystal Structure Determination:

The single crystal data was collected on a Bruker-APEX-II CCD X-ray diffractometer that uses
graphite monochromated Mo Ka radiation (A = 0.71073 A) at low temperature (100 K) by the.
hemisphere method. The structure was solved by direct methods and refined by least-squares
methods on F? using SHELXL-2014.5> Non-hydrogen atoms were refined anisotropically, and
hydrogen atoms were fixed at calculated positions and refined using a riding model. The H atoms

attached to the O atom or N atoms are located wherever possible and refined using the riding

model.

Table S1: Crystallographic parameters for Li-AOIA and Li-TMCA

Formula C;3¢H30Li,NsO3 C34H;35L1,N,0p
Mol. Wt. 754.53 680.54
T (K) 100(2) 100(2)
System Monoclinic Monoclinic
Space group C2/c C2/c
a(A) 23.699(3) 21.900(3)
b (A) 16.6746(2) 16.990(2)
c(A) 10.1581(1) 9.436(2)
a(®) 90.00 90.00
B(°) 101.153(3) 109.177(5)
v (°) 90.00 90.00
V (AY) 3938.3(8) 3316(8)
z 4 4
D(g/em?) 1273 1.363
R; [I>26(])] 0.0691 0.0679
wR, (on F2, all data) 0.2168 0.2294




Fig. S1 (a) Three connected node formed by both Li(I) and isophthalate moiety in the Li-MOFs; (b) 2D-double layer

formed by the isophthalate connectivities; (c) & (d) Topological representation of the 3D-porous framework in Li-

AOIA and Li-TMCA respectively; (e) & (f) interlayer separations in Li-AOIA and Li-TMCA respectively.



Section S4: Powder X-ray diffraction Patterns
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Fig. S2 Comparison of experimental and simulated powder patterns of Li-AOIA
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Fig. S3 Experimental powder patterns of Li-AOIA after gas adsorption analysis
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Fig. S4 Comparison of experimental and simulated powder patterns of Li-TMCA
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Fig. S5 Experimental powder patterns of the halide doped Li-AOIA materials.
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Fig. S6 Experimental powder patterns of Li-TMCA@NO; and Li-TMCA@BF,. Notice the difference in their
powder patterns from that of Li-TMCA.
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Fig. S7 Comparison of experimental powder patterns of activated and as-synthesized Li-AOIA.
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Fig. S8 Comparison of experimental powder patterns of activated and as-synthesized Li-TMCA.



Section S5: Thermogravimetric Analysis (TGA) of Li-MOF
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Fig. S9 Determination of thermal stability of Li-AOIA and Li-TMCA.

Section S6: FTIR Spectroscopic Analysis

53.6

50

45 |

40 4

35

30 4

25

%T

20

3514.39

344144
101 308552

04

-5.0

2584.02

591.74

145822
139461,

75603

6236 132659 1029.19

1596.31
61.89
1300.02
125341
120488

1705.30

L)
S00

4000.0 3600 3200 2800

Fig. S10 FTIR spectra of H4AOIA.
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Fig. S11 FTIR spectra of Li-AOIA.
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Fig. S12 FTIR spectra of Li-AOIA (black), LiBF, salt (blue) and Li-AOIA@BF, (red). Emergence of new peaks at

a higher stretching frequency with strong intensities indicates the coordination of the respective counter-anion BF,

to the open metal sites. This also corresponds to the asymmetric stretching modes generated due to the coordination,

disrupting the symmetric vibrations (T4 symmetry is reduced to Cs,).
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Fig. S13 FTIR spectra of Li-AOIA (black), LiNO; salt (blue) and Li-AOIA@NO; (red). Emergence of new peaks

at a higher stretching frequency with strong intensities indicates the coordination of the respective counter-anion

NO; to the open metal sites. This also corresponds to the asymmetric stretching modes generated due to the

coordination, disrupting the symmetric vibrations (D, symmetry is reduced to C,,).
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Fig. S18 FTIR spectra of Li-TMCA (red), LiBF, salt (black) and Li-TMCA@BF, (blue). Emergence of new peaks

at higher stretching frequencies indicates coordination of BF, anion with the open metal sites.
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Fig. S19 FTIR spectra of Li-TMCA (red), LiNO; salt (black) and Li-TMCA@NO; (blue). The spectra for Li-

TMCA and Li-TMCA@NQOj; are almost similar which indicates weaker interactions of NO;™ anions with the open

metallic sites in LI-TMCA@NO3.

Section S7: 'H NMR spectra of salt treated Li-MOF samples
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Fig. S20 'H NMR spectrum of digested Li-AOIA@NO;.
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/-'T{E'/ kn /lmf-4 -1h

—6.142

1,07 =
0.49>=

9

0
A

—=_

1.
1

il e

—3.386

<%

Fig. S22 'H NMR spectrum of digested Li-AOIA@CI.
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Section S8: Electrical Conductivity Measurements

Impedance measurements were performed in a two electrode system by using a Hioki LCR meter
over a frequency range of 10 Hz to 5 MHz. The pressed pellets were mounted on a metal block
(Cu) and kept at 5x10-° mbar vacuum pressure during measurements. For temperature dependent
investigations, the temperature was controlled by a homemade temperature controller built
around a PID unit (Honeywell DC1010). Temperature was recorded from a temperature sensor
(Pt100) sitting next to the sample. The stability was better than +0.5K throughout the whole
temperature range. The ionic conductivity (o) was calculated by using the low frequency end
point of the semicircle as the resistance (R), area (A) and thickness (1) of the pellet based on
o =1/(RA). The conductivity values were measured at different temperatures and by using

Arrhenius equation of conductivity, the activation energy (E,) was estimated from Inc vs 1/T

plot.
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Fig. S27 Nyquist plots obtained from ac impedance measurement for (a) Li-AOIA@Br; (b) Li-AOIA@CI; (c) Li-

TMCA@NO; and (d) Li-TMCA@BF,.
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Fig. S30 PXRD patterns of Li-AOIA , and 1mM LiOH treated MOF sample.



Tllustration of one such
channel

3D porous frameworks with channels + LiX
along c-axis

x =z:. (x = NOs;;‘dBit-), CI-. Br'-

LiX = LiClO,, LiNO;, LiBF,, LiTFSI
and Li halides

0 Free Li* cations for ion conduction
in the porous channels

Scheme S1. Schematic representation of the porous ionic channels in Li-AOIA
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Section S9: Microscopic Analysis-FESEM, EDX and Elemental Mapping
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Fig. S33 FESEM, EDX and elemental mapping for Li-AOIA@BF,
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Fig. S34 FESEM, EDX and elemental mapping for Li-AOIA@Br.

Fig. S35 FESEM, EDX and elemental mapping for Li-AOIA@CI.
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Fig. S36 FESEM, EDX and elemental mapping for Li-AOIA@NO;.
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Fig. S37 FESEM, EDX and elemental mapping for Li-TMCA@BF,
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Fig. S38 FESEM, EDX and elemental mapping for LI-TMCA@NO;
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Fig. S39 (a) Nyquist plot for Li-AOIA@BF, obtained from variable temperature ac impedance measurements; (b)
Arrhenius plot and the corresponding activation energy of Li-AOIA@BF,. The error bars were estimated from

values obtained for identical samples in dil lerent measurements.



Table S2: Comparison of surface area and hydrogen uptake capacity of reported Li-MOFs at
77K and 1 bar pressure.

Compounds BET Surface H, uptake References
(MOFs) Area (m?/g) (cm?/g)
[Liy(PyEP);(OH)] - 108.7 Cryst. Growth Des.

2016, /6, 6531-6536

CPM-46 592 - Cryst. Growth Des.
2014, 14, 897-900

CPM-42 - 59.9 Cryst. Growth Des.
2015, 15, 2550—2554

Liy(OPy),4 440.3 108.7 Chem. Commun.,
2011, 47, 55365538

Li-AOIA 605 125 This work

Table S3: Results of ICP-AES analysis

Li-MOF@X Amount of Li content Conductivity
electrolytes after salt treatment (S/cm)
Li-AOIA@NO; 1.48% 5.53 x 106
Li-AOIA@BF, 1.52% 1.09 x 10
Li-AOIA@Cl 1.32% 2.08 x 106
Li-AOIA@Br 1.28% 3.42 x 106
Li-TMCA@NO; 0.82% 5.03 x 107
Li-TMCA@BF, 0.9% 2.93 x 106




References:

S1. Zhou, L.-P.; Sun, Q.-F. A Self-assembled Pd,L, Cage that Selectively Encapsulates Nitrate.
Chem. Commun. 2015, 51, 16767-16770.

S2. Nath, K.; Bhunia, K.; Pradhan, D.; Biradha, K. MOF-Templated Cobalt Nanoparticles
Embedded in Nitrogen-Doped Porous Carbon: A Bifunctional Electrocatalyst for Overall Water
Splitting. Nanoscale Adv. 2019, 1, 2293-2302.

S3. Sheldrick, G. M. SHELXL-2014; University of Gottingen and Bruker AXS: Karlsruhe,
Germany, 2014.



