Electronic Supplementary Information

Selenium-Containing Heterodimeric Crown Ether Acting as an Unconventional Multi-Responsive Amphiphile in water

Jie Shang,^a Shuangran Li,^a Tiezheng Pan,^a Bo Li,^a Qian Zhang,^a Ping Lv^a, Zhiliyu Cui,^a Yan Ge,^{*a} Zhenhui Qi^{*a}

^aSino-German Joint Research Lab for Space Biomaterials and Translational Technology,
 Synergetic Innovation Center of Biological Optoelectronics and Healthcare Engineering (BOHE)
 Shaanxi Provincial Synergistic Innovation Center for Flexible Electronics & Health Sciences
 (FEHS), School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072,
 P. R. China

Email: gi@nwpu.edu.cn; ge@nwpu.edu.cn

Table of Contents

1. General Methods and Materials	3
2. Synthesis and Characterization of Compounds	4
3. The solubility test of 1 in water	15
4. Self-Assembly Behaviors of Amphiphile 1 in Water	15
4.1 UV/Vis Investigation	15
4.2 ¹ H NMR investigation	16
4.3 Fluorescence Investigation	17
4.4 TEM Investigation	18
4.5 SEM Investigation	19
4.6 Small-Angle XRD Investigation	20
4.7 Determination of Critical Micelle Concentration	21
4.8 2D NOESY Investigation	21
5. The solubility test of 2 in water	22
6. Redox-responsive Behaviors of 1 in water	23
7. pH-responsive behavior of 1 in water	26
8. The doxorubicin (DOX) encapsulation experiment of micelles formed by 1	28
9. Reference	30

1. General Methods and Materials

All reagents were commercially available and used without further purification. Compounds 3, 4 were synthesized by the protocol developed in our group.^{S1,S2} Milli-Q water was used in all measurements. Nuclear magnetic resonance (NMR) spectra were recorded with a Bruker Avance III-400 spectrophotometer, using the deuterated solvent as the lock and residual solvent or TMS as the internal reference. For the structural characterization of synthetic compounds, high-resolution mass spectrum (HR-MS) was performed using an electrospray ionization (ESI) interface on an Agilent LC/MSD TOF system. The transmittance experiments were measured at 700 nm using a ThermoFisher Evolution 260 Bio UV/Vis spectrometer with a temperature controllable system. The heating rate was adjusted at 1.0 °C min⁻¹. Fluorescence experiments were performed in 1.0 cm quartz cuvettes and recorded on an F-380 spectrofluorimeter (GANGDONG SCI. & TECH.) in the range of 250 to 760 nm at excitation wavelength 250 nm with 5 nm slit. TEM images were obtained with a FEI Talos F200X transmission electron microscope with an accelerating voltage of 300 kV. Droplets (~1 µL) of aqueous solution of sample compounds were placed on carbon film coated copper grids (Electron Microscopy China, Beijing, China). The grids were allowed to air-dry at least 40 min and were subsequently transferred into the microscope without use of a contrasting step. SEM images were obtained with a Verios G4. Dynamic light scattering (DLS) was carried out on a Malvern Nanosizer S instrument at room temperature. The conductivities of aqueous anion salt solutions were determined on a DDS-307A instrument.

2. Synthesis and Characterization of Compounds

Scheme S1. The synthetic route of compounds 1 and 2.

Preparation of Compound C9NH2

Step 1: While stirring vigorously under N₂ atmosphere, a suspension of K₂CO₃ (2.44 g, 17.68 mmol) and KBF₄ (4.45 g, 35.36 mmol) in anhydrous CH₃CN (150 mL) was heated to reflux. To the suspension, a solution of the compound **3** (2.00 g, 2.95 mmol) prepared according literature^{S3} and 3,4-dihydroxybenzonitrile (0.40 g, 2.95 mmol) in CH₃CN (100 mL) was added dropwise. The resulting reaction mixture was stirred under reflux for 48 h at 75 °C. After cooling to r.t., the suspension was filtered and washed with CH₂Cl₂ (80 mL). The filtrate was concentrated in vacuo. Then the residue was dissolved in CH₂Cl₂ (100 ml) and washed by brine (100 ml). The organic phases were dried over anhydrous Na₂SO₄, and concentrated under reduced pressure to give the crude product, which was purified by silica gel column chromatography (CH₂Cl₂/MeOH, ν/ν 100:1 \rightarrow 50/1 and EA/MeOH, ν/ν 100:1 \rightarrow 40/1) to yield the cyano-substituted intermediate **C9** (1.12 g, 80.9%) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.25 (d, *J* = 1.9 Hz, 1H), 7.12 (d, *J* = 1.8 Hz, 1H), 6.91 (d, *J* = 8.4 Hz, 1H), 4.23 – 4.14 (m, 4H), 3.91 (dd, *J* = 9.2, 5.6 Hz, 4H), 3.79 – 3.75 (m, 4H), 3.70 – 3.65 (m, 20H); ¹³C NMR (100 MHz, CDCl₃) δ = 153.08, 149.05, 126.90,

119.36, 116.94, 113.40, 104.18, 71.26, 71.24, 70.91, 70.85, 69.73, 69.58, 69.18; HR-MS (ESI) *m/z* (M+Na⁺) calcd. for C₂₃H₃₅NO₉Na⁺: 492.2210, Found: 492.2211.

Figure S1. ¹H NMR spectrum (400 MHz, CDCl₃, 298K) of intermediate C9CN.

Figure S2. ¹³C NMR spectrum (100 MHz, CDCl₃, 298K) of intermediate C9CN.

Figure S3. HR-MS characterization of intermediate C9CN.

Step 2: The obtained intermediate **C9CN** (1.50 g, 3.19 mmol) was further dissolved in dissolved in dry THF (50 mL), which was added by a solution of borane-tetrahydrofuran complex (32 mL of 1 M BH₃•THF, 32.0 mmol) in dry THF (75 mL) at 0 °C. The solution was stirred for 30 min at 0 °C, then it was heated to reflux for 20 h. After refluxing, the reaction mixture was cooled to 0 °C, and hydrochloric acid (1.6 mL, 37% in water) dissolved in methanol (37 mL) was added dropwise (be careful: hydrogen gas evolution), and the reaction mixture was stirred for additional 1 h and subsequently evaporated to dryness under reduced pressure. The residue was dissolved in methanol (80 mL) and the solution was concentrated to dryness, then repeat this procedure twice. The viscous liquid was dissolved in sodium hydroxide solution (150 mL, 1 M), and the aqueous was extracted by dichloromethane 100 mL x 3. The combined organic layers were dried over anhydrous Na₂SO₄ and filtered. The filtrate was concentrated under reduced pressure. Then 0.1 M HCl was added into the residue dissolved in H₂O (8 mL) to adjust the pH to 1~2. The liquid mixture was washed by n-heptane 8 mL x 8, and the aqueous was extracted by dichloromethane

40 mL x 3. The combined organic layers were dried over anhydrous Na₂SO₄, and concentrated under reduced pressure to yield pure compound **C9NH₂** (1.44 g, 95.0%) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ = 6.88-6.82 (m, 3H), 4.22 – 4.11 (m, 4H), 3.90 – 3.87 (m, 4H), 3.79 – 3.78 (m, 6H), 3.73 – 3.62 (m, 20H).

Figure S4. ¹H NMR spectrum (400 MHz, CDCl₃, 298K) of C9NH2.

Preparation of Compound C7SeCHO

K₂CO₃ (5.06 g.36.6 mmol) and KBF₄ (4.62 g, 36.6 mmol) was suspended in CH₃CN (300 mL) degassed by nitrogen and was heated to 75~80 °C. Compound **4** (8.0 g, 12.2 mmol) prepared according literature^{S2} and 3,4-dihydroxybenzaldehyde (1.69 g, 12.2 mmol) dissolved in CH₃CN (100 mL) and was added dropwise during 5 h. After addition, the mixture was stirred at 80 °C overnight. The reaction was cooled to room temperature and was filtered. The cake was washed by CH₂Cl₂ 50 mL twice. The filtrate was concentrated under reduced pressure. The residue was resolved in 100 mL CH₂Cl₂, then the solution was washed by brine 50 mL. After drying the organic layer over Na₂SO₄, solvents were removed, the residue was purified by silicon column with CH₂Cl₂/MeOH (500/1~500/10, *v*/*v*) to yield pure compound **C7SeCHO** (3.7 g, 68%) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ = 9.84 (s, 1H), 7.48 – 7.39 (m, 2H), 6.97 (d, *J* = 8.2, 1H), 4.26 – 4.21 (m, 4H), 3.97 – 3.92 (m, 4H), 3.82-3.76 (m, 8H), 3.68 – 3.66 (m, 4H), 2.83 (td, *J*

= 6.4, 1.8, 4H); ¹³C NMR (100 MHz, CDCl3) δ = 191.03, 154.52, 149.35, 130.38, 126.97, 112.54, 111.84, 72.58, 72.52, 71.19, 71.13, 70.51, 70.49, 69.76, 69.62, 69.13 (s), 29.82, 23.17, 23.15; HR-MS (ESI) *m/z* (M+Na⁺) *calcd*. for C₁₉H₂₈O₇SeNa⁺: 471.0898, *Found*: 471.0902.

Figure S5. ¹H NMR spectrum (400 MHz, CDCl₃, 298K) of C7SeCHO.

Figure S6. ¹C NMR spectrum (100 MHz, CDCl₃, 298K) of C7SeCHO.

Figure S7. HR-MS characterization of C7SeCHO.

Preparation of Compound 1

Compound **C9NH2** (100 mg, 0.21 mmol) and compound **C7SeCHO** (99.3 mg, 0.22 mmol.) were dissolved in anhydrous EtOH (10 mL) under N₂ atmosphere and Na₂SO₄ (0.5 g) was added. The mixture was heated to reflux and stirred for 36 h. After TLC showed compound **C9NH2** was consumed completely (MeOH/DCM = 15/1, v/v), the solution was cooled to room temperature. NaBH₄ (24 mg, 0.63 mmol) was added and the mixture was stirred for another 24 h at 25 °C under N₂ protection. Solvent was removed under reduced pressure and the residue was suspended in 50 ml DCM. To the mixture 30 brine was added, it was stirred for 0.5 h. Organic layer was dried over Na₂SO₄. Solvent was removed under reduced pressure and the residue was purified by prepared silicon plate with MeOH/DCM = 1/20 (v/v) as eluent. Product was washed from silicon by NH₄OH/MeOH/DCM = 2/10/100 (v/v/v). Product (110 mg) was obtained as a slight yellow oil (yield: 58%). ¹H NMR (400 MHz, CDCl₃) δ = 6.91 (s, 2H), 6.84 (d, *J* = 1.7, 4H), 4.19 – 4.14 (m, 8H), 3.91 – 3.86 (m, 8H), 3.82 – 3.76 (m, 12H), 3.70 – 3.65 (m, 28H), 2.84 (t, *J* = 6.5, 4H); ¹³C

NMR (101 MHz, CDCl₃) δ = 148.98, 148.94, 147.96, 147.95, 133.36, 133.25, 121.16, 121.09, 114.55, 114.47, 114.39, 114.27, 72.46, 74.42, 70.93, 70.88, 70.71, 70.67, 70.42, 70.38, 69.92, 69.90, 69.84, 52.60, 29.72, 22.95; HR-MS (ESI) *m/z* (M+H⁺) *calcd*. for C₄₂H₆₇NO₁₅SeH⁺: 906.3676. *Found*: 906.3744.

Figure S8. ¹H NMR spectrum (400MHz, CDCl₃, 298K) of 1.

Figure S9. ¹³C NMR spectrum (100 MHz, CDCl₃, 298K) of **1**.

Figure S10. HR-MS characterization of 1. The full spectrum (top) and isotopic pattern (bottom) of the target compound. The peak at m/z 906 shows characteristic isotopic pattern of selenium, indicating the successful incorporation of selenium atom in amphiphile 1.

Preparation of Compound 2

Compound **2** was synthesized by the similar protocol employed for **1**, except using benzyleamine. Product (150 mg) was obtained as a slight yellow oil (yield: 62%). ¹H NMR (400 MHz, CDCl₃) δ = 7.33 (d, *J* = 4.3 Hz, 4H), 7.26 – 7.23 (m, 1H), 6.92 (s, 1H), 6.85 (s, 2H), 4.23 – 4.11 (m, 4H), 3.96 – 3.86 (m, 4H), 3.87 – 3.74 (m, 10H), 3.73 (s, 2H), 3.68 – 3.66 (m, 4H), 2.84 (t, *J* = 6.5 Hz, 4H). ¹³C NMR (100 MHz, CDCl₃) δ = 149.22, 148.13, 140.35, 133.94, 128.51, 128.28, 127.06, 121.22, 114.93, 72.55, 71.04 , 70.52, 70.06, 69.38, 53.55, 53.17, 52.88, 23.08.. HR-MS (ESI) *m/z* (M+H⁺) *calcd*. for C₂₆H₃₇NO₆SeH⁺: 540.1684, *Found*: 540.1863.

Figure S11 ¹H NMR spectrum (400MHz, CDCl₃, 298K) of 2.

Figure S12. ¹³C NMR spectrum (100 MHz, CDCl₃, 298K) of **2**.

Figure S13. HR-MS characterization of 2.

3. The solubility test of 1 in water

Figure S14. Image of compound 1 in water (12 mM) after vigorous shaking.

4. Self-Assembly Behaviors of Amphiphile 1 in Water

4.1 UV/Vis Investigation

Figure S15. UV/Vis spectra of crown amphiphile 1 in water with different concentration in aqueous, there is a constant increase of the absorption as the concentration of 1 increase.

4.2 ¹H NMR investigation

Fig. S16. Changes in ¹H NMR spectral of compound **1** with different concentration (D₂O, 500 MHz, 293 K, d_4 -trimethylsilyspropionic acid sodium salt as internal standard). The proton signal shifted downfield with concentration decreased suggested compound **1** was aggregates at 0.2 mM in aqueous.

Figure S17. a) Fluorescence intensity of aqueous solution of **1** with different concentrations (1, 5, 10, 20 mM) obtained under excitation wavelength of 250 nm. b) Photographs of aqueous solution of **1** with different concentration (0, 1, 5, 10, 20 mM) under the irradiation of UV light at a wavelength of 365 nm.

Figure S18. Fluorescence spectra upon addition of H_2O_2 and CO_2 to the aqueous solution of 1 at 1 mM. For oxidation, H_2O_2 (3 eq.) was added to the aqueous of 1, The reason for fluorescence band slightly red shifted and the intensity of fluorescence decreased were considered compound 1 was oxidized to another compound and became needle-like shape. After bubbling CO_2 to the solution of 1, the fluorescence band blue shifted and the intensity of fluorescence increased owing to the aggregates of 1 expanded by interaction with CO_2 .

4.4 TEM Investigation

Figure S19. TEM images of the aggregate formed from 1 in water.

Figure S20. TEM images of the aggregate formed from 1 with DOX loading in water.

4.5 SEM Investigation

Figure S21. SEM images of the aggregate formed from 1 in water.

Figure S22. Small-angle X-ray scattering (SAXS) scan of **1** in water. $2d\text{Sin}\theta = \lambda = 0.1541$ nm, and $2\theta = 2.25^{\circ}$.^{S4}

Figure S23. The simulated molecular length of amphiphile 1 is ~2.98 nm.

4.7 Determination of Critical Micelle Concentration

Figure S24. The concentration-dependent conductivity of **1** in water. The critical micelle concentration (CMC) was determined to be $(8.5 \pm 1) \times 10^{-5}$ M.

4.8 2D NOESY Investigation

Figure S25. 2D NOESY spectrum (500 MHz, D₂O, 293 K) of 1 (12.0 mM).

Figure S26. Changes in transmittance of 1 (12.0 mm) when cycling between 25 and 65 °C.

5. The solubility test of 2 in water

Figure 27. The photograph of **2** (2.8 mg) is insoluble in water (0.5 mL) **2** evidencing the strong hydration role of **C9** moiety.

6. Redox-responsive Behaviors of 1 in water

Figure S28. TEM images of 1 after oxidation. For oxidation, $H_2O_2(3 \text{ eq.})$ was added to the aqueous of 1 (12 mM).

Figure S29. DLS of a solution of 1 (1 mM) in water after added H_2O_2 (3.0 eq.), the average diameter is 228.2 nm.

Figure S30. TEM images of 1 after the oxidation and then reduction. After 1 (12 mM) in water was oxidized by H_2O_2 (3.0 eq.), Vc (9 eq.) was added to the solution.

Figure S31. HR-MS characterization of **1** after oxidized by H_2O_2 in which the selenide is oxidized into the selenoxide.

Figure S32. TEM images of aqueous solution of 1 (12 mM) after bubbling CO₂ (10 min)

Figure S33. DLS of a solution of 1 (1 mM) in water after bubbled with CO₂, the average diameter is 367.5 nm.

Figure S34. TEM images of aqueous solution of 1 (12 mM) after bubbling CO_2 (10 min), then bubbling Ar (20 min).

Figure S35. DLS of a solution of **1** (1 mM) in water a) after the oxidation by H_2O_2 and then reduction by Vc, the average diameter is 127.6 nm; b) bubbling CO_2 , then bubbling Ar, the average diameter is 124.9 nm. These results further suggested that the vesicles based on **1** are responsive to H_2O_2/Vc and CO_2/Ar , and this process is chemically reversible.

7. pH-responsive behavior of 1 in water

Figure S36. ¹H NMR spectra for compound **1** (12 mM) a) before and b) after adding HCl (1 M) to adjust the pH = 4 (D₂O, 400 MHz, 298 K, d_4 -trimethylsilyspropionic acid sodium salt as internal standard).

Figure S37. Transmittance as a function of temperature for aqueous solution of **1** and in the presence of HCl (1 M).

Figure S38. TEM images of aqueous solution of 1 (12 mM) a) after adding HCl (1 M) to adjust its pH = 4.

8. The doxorubicin (DOX) encapsulation experiment of micelles formed by 1

We examine the controlled release of small molecules. The hydrophobic anti-cancer drug, doxorubicin (DOX), was used as the model cargo. After uploading with DOX, the TEM images showed that the micelles **1** deformed (Fig. S20, ESI[†]). In the absence of external stimuli, DOX only showed o than 3% release within 45 h.

Figure S39. UV/Vis absorption spectra of DOX-loaded micelles, DOX and unloaded micelles in water and water. Inset: color change of DOX-loaded micelles (right) compared with unloaded one (left).

Figure S40. Changes in UV/Vis absorption spectra of DOX-loaded micelles in water with time. [1] = 1 mM, [DOX] = 0.2 mM.

Figure S41. Changes in UV/Vis absorption spectra of DOX with different concentrations in water.

Figure S42. DOX standard curve line determined by the Changes in UV/Vis absorption spectra of DOX with different concentrations in water.

9. Reference

- S1 Z. Qi, P. Malo de Molina, W. Jiang, Q. Wang, K. Nowosinski, A. Schulz, M. Gradzielski and C.
 A. Schalley, *Chem. Sci.*, 2012, 3, 2073.
- S2 L. Jin, B. Li, Z. Cui, J. Shang, Y. Wang, C. Shao, T. Pan, Y. Ge and Z. Qi, *J. Phys. Chem. B*, 2019, 123, 9692.
- S3 E. C. Dreaden, B. E. Gryder, L. A. Austin, B. A. Tene Defo, S. C. Hayden, M. Pi, L. D. Quarles,
 A. K. Qyelere and M. A. El-Sayed. *Bioconjugate Chem.*, 2012, 23, 1507.
- S4 Q. Zhang, Z. Gao, F. Xu, S. Tai, X. Liu, S. Mo, and F. Niu. Langmuir, 2012, 28, 11979.