Electronic Supplementary Information

Combining API in a dual-drug ternary cocrystal approach

Lixing Song,^a Koen Robeyns,^a Nikolay Tumanov,^b Johan Wouters,^b and Tom Leyssens^a

^aInstitute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1 Place Louis Pasteur, B-1348 Louvain-La-Neuve, Belgium, E-mail: <u>tom.leyssens@uclouvain.be</u>

^bUnité de Chimie Physique Théorique et Structurale, Chemistry Department, Namur Institute of Structured Matter (NISM), University of Namur, 61 rue de Bruxelles, B-5000 Namur, Belgium.

Contents

bbreviation of cocrystal forms	2
laterials and methods	2
ocrystal screening	4
tructural characteristics	8
olid-state reaction scheme and phase diagrams for all TICCs	0
hermal behavior of the TICCs1	5
olution behavior of TICCs2	1
xperimental XRPD of binary ionic cocrystals vs calculated one from single crystal	5
eferences	7

Abbreviation of cocrystal forms

ICC1	LEV2·CaCl2·2H2O
ICC2	INA2·CaCl2·4H2O
ICC3	NA ₂ ·CaCl ₂ ·2H ₂ O
ICC4	ETI2·CaCI2·2H2O
TICC1	ETI2·INA·CaCl2·H2O
TICC2	LEV2·INA·CaCl2·H2O
TICC3	LEV ₂ ·NA·CaCl ₂ ·H ₂ O

Materials and methods

Starting Materials. LEV was purchased from Xiamen Top Health Biochem Tech. Co. Ltd. ETI was prepared by racemization of LEV. 10 g of LEV together with catalytic amount (0.05 eq.) of MeONa were added to 10 mL of methanol. The solution was refluxed under continuous stirring for 24 h, and then cooled to room temperature. The compound crystallizes spontaneously. After filtration, the product was washed twice with methanol. The recovered product was used as such (XRPD is consistent with the calculated one and no impure signals). Calcium chloride anhydrous powder (96% pure), NA (99% pure) and INA (99% pure) was purchased from ACROS. pH 1.2 HCl aqueous solution was prepared by diluting 8.3 mL concentrated HCl into 1000 mL aqueous solution. All the solvents were reagent grade. They are all used without further purification.

Liquid Assisting Grinding (LAG). Powder samples can be obtained mechanochemically through LAG of different stoichiometric mixtures of LEV or ETI (+/- 30mg), INA or NA, and CaCl₂, with the addition of 4 stainless-steel balls and 20 μ L methanol. The sample was ground in a RETSCH Mixer Mill MM 400 for 90 min with a beating frequency of 30 Hz.

Solution experiments. All the single crystals were prepared by dissolution of the starting materials ETI/LEV, NA/INA and CaCl₂ in 2:1:1 (TICC2 and TICC3) or 2:2:1 (TICC1, also could be re-prepared under 2:1:1) stoichiometry in methanol. The solutions were then left to evaporate at room temperature seeding with the powders obtained from the LAG experiments.

Slurry experiments. The slurry experiments for the cocrystal screening were performed by stirring the suspensions of the starting materials in methanol. The stoichiometric ratios of

ETI/LEV:INA/NA:CaCl₂ were selected as 1:1:1, 2:2:1, 2:1:1, 1:2:1, 4:1:1, 4:2:1, 1:4:1 and 2:4:1. The total mass of starting materials was 100 mg. The amount of methanol was set at 80 μ L. The suspensions were seeded with starting materials and corresponding cocrystals (from LAG experiments) and stirred at 25 °C for over 48 h to make sure the system reached thermodynamic equilibrium. Then samples were filtered over sintered glass, followed by XRPD analysis of the solid phases. The results are shown in Table S1.

The slurry experiments for congruency testing were performed by stirring suspensions of starting materials in different solvents under the stoichiometry of the specific cocrystal LEV-CaCl₂ (2:1), ETI-CaCl₂ (2:1),INA-CaCl₂ (2:1), NA-CaCl₂ (2:1), ETI-INA-CaCl₂ (2:1:1), LEV-INA-CaCl₂ (2:1:1) and LEV-NA-CaCl₂ (2:1:1). The total mass of starting material was 100 mg. The solvents were selected as H₂O, methanol, ethanol, acetone, isopropanol, chloroform, dichloromethane, acetonitrile, ethyl acetate, toluene, hexane and pH 1.2 HCl aqueous solution. We made sure the amount of solvent added did not lead to full dissolution. The suspensions were seeded with starting materials and corresponding cocrystals and stirred at 25 °C for over 48 h to make sure the system reached thermodynamic equilibrium. Then samples were filtered over sintered glass, followed by XRPD analysis of the solid phases. The results are shown in Table S4.

Solubility measurement. If the cocrystal system was found congruent for a given solvent, the particular cocrystal is the only stable solid phase in suspension at equilibrium. Thus, in solution the compounds show the same stoichiometry as the cocrystal solid phase Solubility measurement were performed by gravimetric method. A suspension of starting materials under corresponding stoichiometry was created and left to stir for 48 h at 25 °C. Supernatant was removed, weighed and left at 105 °C for a few days until the weight did not decrease any longer (complete solvent removal). This is confirmed by TGA analysis, showing a weight loss of less than 1% up to 160 °C, showing full solvent removal. By mass balance and knowing the stoichiometry of the solid, the solubility of each parent compound is obtained. The experiments were repeated three times and the average taken.

X-Ray Powder diffraction (XRPD) and Variable Temperature X-Ray Powder diffraction (VT-XRPD). X-ray powder diffraction data were collected with a Siemens D5000 diffractometer equipped with a Cu X-ray source operating at 40 kV and 40 mA and the secondary monochromator allowing to select the K α radiation of Cu (λ = 1.5418 Å). A scanning range of 2 θ values from 5° to 50° at a scan rate of 0.6° min⁻¹ was applied. VT-XRPD was performed using an X'pert PRO PANalytical diffractometer (2 θ scanned from 4 to 40°, CuK α radiation, Bragg–Brentano geometry) and an Anton Paar TTK 450 system for measurement at controlled temperature. Thermal programs were selected based on TGA results.

Single crystal X-ray diffraction (SC-XRD). Data collection was carried out on a MAR345 using monochromated MoK α radiation (λ = 0.71073 Å) (Xenocs Fox3D mirror) produced by a Rigaku UltraX18S rotating anode at room temperature.

Differential scanning calorimetry (DSC). DSC measurements were performed on a TA DSC2500 with Tzero technology calibrated with indium under 50 mL/min continuous nitrogen flow. Samples were prepared in aluminium Tzero pans with punctured hermetic lid. The temperature profile applied starts at 30 °C and increases up to 160 °C with a rate of 2 °C /min.

Thermogravimetric analysis (TGA). TGA measurements were performed on a Mettler Toledo TGA/SDTA851° using an alumina crucible. The heating profile applied starts at 25 ° C and goes up to 300 °C with a rate of 2 °C /min under continuous nitrogen flow of 50.0 mL/min.

Cocrystal screening

The stoichiometry of LAG experiments was first selected as 2:2:1 (ETI/LEV:INA/NA:CaCl₂) based on the stoichiometry of binary ICCs. After confirming the appearance of new forms by XRPD, the single crystals were prepared under the stoichiometric ratio of 2:2:1 in methanol with seeding, resulting in single crystals with the stoichiometry of 2:1:1. Thus, we measured the LAG experiments under a 2:1:1 ratio as well conforming the excess INA/NA in the initial 2:2:1 samples. As no TICC formation was observed for the ETI-NA-CaCl₂ system, grinding experiments were furthermore performed under the ratios 4:2:1, 4:1:1, 2:4:1, 2:2:1, 2:1:1, 1:1:1, 1:2:1, 1:4:1. All however led to a mixture of ICC4 and NA. It should be mentioned that a polymorphic transformation of ETI occurs in some cases during the LAG process as temperatures fluctuate around the transition temperature for this enantiotropically related system.¹ The results are shown in XRPD overlays.

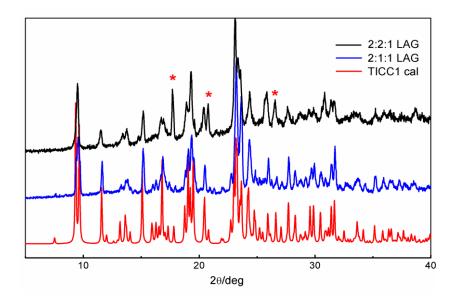


Figure S1. LAG results for the ETI-INA-CaCl₂ system. LAG of 2:2:1 ratio (black); LAG of 2:1:1 ratio (blue); simulated XRPD from single crystal (red). Some corresponding peaks of INA are marked with asterisks.

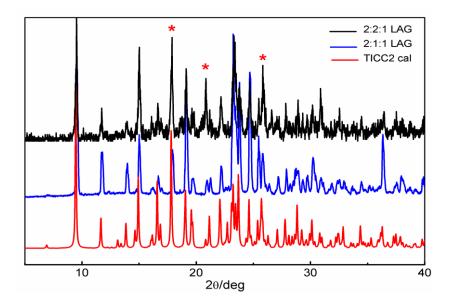


Figure S2. LAG results for the LEV-INA-CaCl₂ system. LAG of 2:2:1 ratio (black); LAG of 2:1:1 ratio (blue); simulated XRPD from single crystal (red). Some corresponding peaks of INA are marked with asterisks.

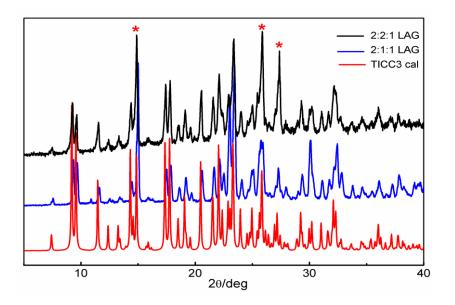


Figure S3. LAG results for the LEV-NA-CaCl₂ system. LAG of 2:2:1 ratio (black); LAG of 2:1:1 ratio (blue); simulated XRPD from single crystal (red). Some corresponding peaks of NA are marked with asterisks.

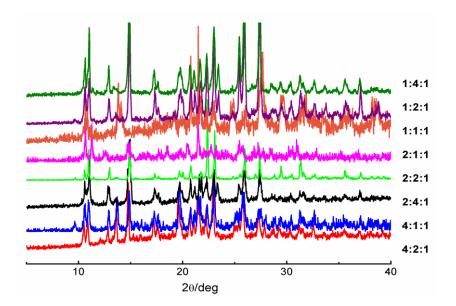


Figure S4. LAG results for the ETI-NA-CaCl₂ system.

To check all the possible cocrystal forms and to determine the most stable form, slurry experiments under different stoichiometries in methanol were conducted. There was not any new crystal form coming out. The slurry results are shown in Table S.1.

ratio	ETI+INA+ CaCl ₂	A+ CaCl ₂ LEV+INA+CaCl ₂ LEV+NA+CaCl ₂		ETI+NA+ CaCl ₂
1:1:1	TICC1+ICC4	TICC2	TICC3+ICC1	ICC3+ICC4
2:2:1	TICC1	TICC2	TICC3	ICC4+NA
2:1:1	TICC1	TICC2	TICC3+ICC1	ICC4
1:2:1	TICC1	TICC2	TICC3+ICC3	ICC3+ICC4
4:1:1	TICC1+ETI	TICC2+LEV	LEV	ICC4+ETI
4:2:1	TICC1+ETI	TICC2+LEV	ICC1+ICC3	ETI
1:4:1	INA	INA	NA	ICC3+NA
2:4:1	TICC1+INA	TICC2+INA	TICC3+NA	NA

Table S1. The results of slurry screening experiments for ternary systems.

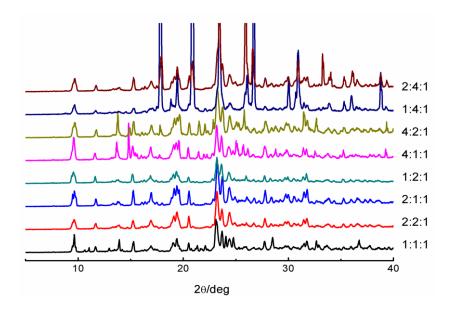


Figure S5. Slurry results for the ETI-INA-CaCl₂ system.

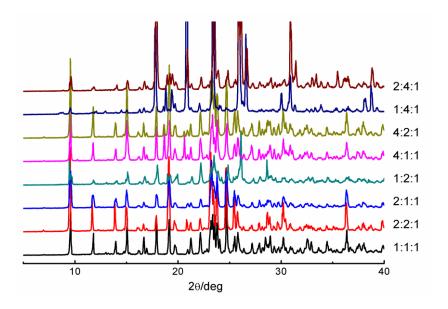


Figure S6. Slurry results for the LEV-INA-CaCl₂ system.

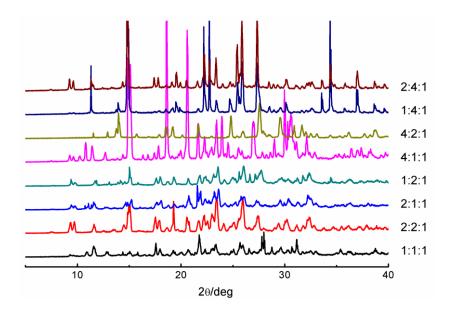


Figure S7. Slurry results for the LEV-NA-CaCl₂ system.

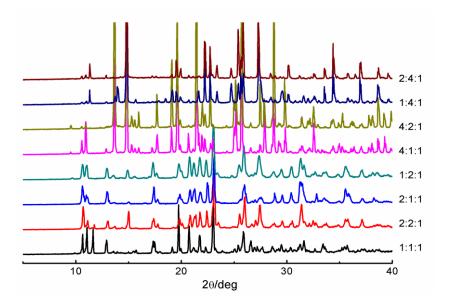


Figure S8. Slurry results for the ETI-NA-CaCl₂ system.

Structural characteristics

	TICC1	TICC2	TICC3
Chemical formula	$C_{22}H_{36}Cl_2N_6O_6Ca$	$C_{22}H_{36}CI_2N_6O_6Ca$	$C_{22}H_{36}CI_2N_6O_6Ca$
M _r , g*mol ⁻¹	591.55	591.55	591.55
Т / К	293(2)	293(2)	296(2)
Wavelength Å	ΜοΚα	ΜοΚα	ΜοΚα
Crystal system	Triclinic	Orthorhombic	Monoclinic

Space group	P-1	P 21 21 21	P 21
a /Å	7.968(2)	7.9303(11)	11.9243(5)
b /Å	12.170 (4)	15.1768(2)	8.0669(3)
c /Å	15.304(4)	23.7226(3)	15.4348(7)
α / °	87.17(2)	90	90
β / °	86.30 (2)	90	92.338(4)
γ/°	74.76(2)	90	90
V /ų	1428.0(7)	2855.17(7)	1483.46(11)
Z	2	4	2
ho / mg.cm ⁻³	1.376	1.376	1.324
μ / mm ⁻¹	0.453	0.453	0.436
Measd refins	3208	19720	11004
Indep refins	3208	5423	5624
Reflns with <u><i>l</i> > 2σ(<i>l</i>)</u>	2033	5133	4624
R indices [I>2σ(I)]	$R_1 = 0.0989,$	$R_1 = 0.0293,$	$R_1 = 0.0433,$
	$wR_2 = 0.2139$	$wR_2 = 0.0709$	$wR_2 = 0.0900$
R indices (all data)	$R_1 = 0.1544,$	R ₁ = 0.0317,	$R_1 = 0.0581$,
	$wR_2 = 0.2391$	$wR_2 = 0.0725$	$wR_2 = 0.0959$
Absolute structure		-0.028(19)	0.02(3)
parameter	-		

Data collection was performed on a Mar345 image plate using MoKa radiating generated by a Rigaku Ultra X 18S rotating anode equipped with Fox3D mirrors. Data integration and reduction was performed by CrysAlisPRO². Structures were solved by SHELXT³ and refined by full-matrix least-squares on F² using SHELXL2014/7⁴. All non-hydrogen atoms were refined anisotropically and hydrogen atoms were placed at calculated positions in riding mode, with temperature factors set at 1.2 times U_{eq} of the parent atoms, 1.5 for methyl and OH hydrogens. TICC1 was diffracted poorly and a resolution cut-off was imposed during structure refinement. Furthermore, TICC1 was found to be twinned and refinement was continued against HKLF5 formatted data (PLATON twinrotmat⁵). The ethyl moieties in TICC1 were found to be disordered as well as an amide group in TICC3, and were refined in two distinct parts.

CCDC 2025075-2025077 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures

Table S3. Hydrogen bond lengths/Å and angles/° for all TICCs.

D-H A	d (D-H)	d (H A)	d (DA)	∠DHA				
TICC1								

O4-H4A Cl2 ⁱ	0.82	2.42	3.048	134					
O4-H4BCl3 ⁱⁱ	0.82	2.26	3.062	165					
N20-H20B $^{}$ Cl2 i	0.86	2.47	3.250	151					
N40-H40A $^{\rm H}$ Cl2 $^{\rm i}$	0.86	2.57	3.352	151					
N40-H40B··Cl3 i	086	2.51	3.259	145					
N53-H53B…Cl3 ⁱⁱⁱ	0.86	2.62	3.420	155					
Symmetry coo	des: (i) x,-1-	+y,z; (ii) -1+x,-	1+y,z; (iii) -1+x	,y,z					
		TICC2							
O4-H4A Cl3	0.81	2.29	3.095	172					
O4-H4BCl2	0.81	2.26	3.065	176					
N20-H20ACl2	0.86	2.49	3.299	158					
N20-H20B Cl3 ⁱ	0.86	2.56	3.306	145					
N40-H40BCl2	086	2.46	3.229	149					
N59-H59BCl3 ⁱⁱ	0.86	2.50	3.308	157					
Symr	netry codes	s: (i) -1+x,y,z; (ii) 1+x,y,z						
TICC3									
N13-H13ACl2 ⁱ	0.86	2.67	3.443	151					
N13-H13BCl3 ⁱⁱ	0.86	2.52	3.273	146					
N25-H25BCl2 ⁱⁱ	0.86	2.50	3.261	148					
N36-H36ACl3 ⁱⁱⁱ	0.86	2.56	3.285	143					
N36-H36BCl2 iv	086	2.46	3.269	156					
037-H37ACl3 ⁱⁱ	0.78	2.23	2.991	169					
037-H37BCl2 ⁱⁱ	0.82	2.22	3.025	167					
Symmetry codes: (i) -1+x,-1+y,z; (ii) -1+x,y,z; (iii) x,1+y,z; (iV) x,-1+y,z									

Solid-state reaction scheme and phase diagrams for all TICCs

The reaction scheme and ternary solid-state phase diagram is shown in the main text for the LEV-INA-CaCl₂ system. LAG results are shown here.

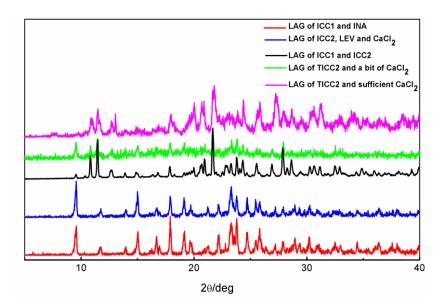


Figure S9. LAG results for the LEV-INA-CaCl₂ system using different starting materials and compositions.

The same experiments were applied for the ETI-INA-CaCl₂ and LEV-NA-CaCl₂ systems to investigate the solid-state thermodynamics. The XRPD experimental results, graphic scheme and the ternary phase diagrams are shown in the following.

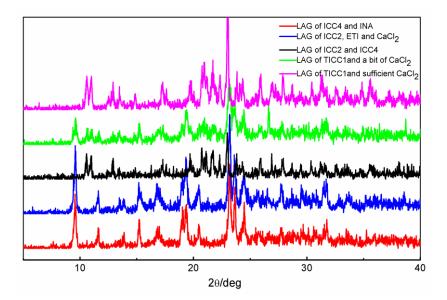


Figure S10. LAG results for the ETI-INA-CaCl₂ system using different starting materials and compositions.

Scheme S1. Graphic representation of reaction scheme for the ETI-INA-CaCl₂ system in the solid-state.

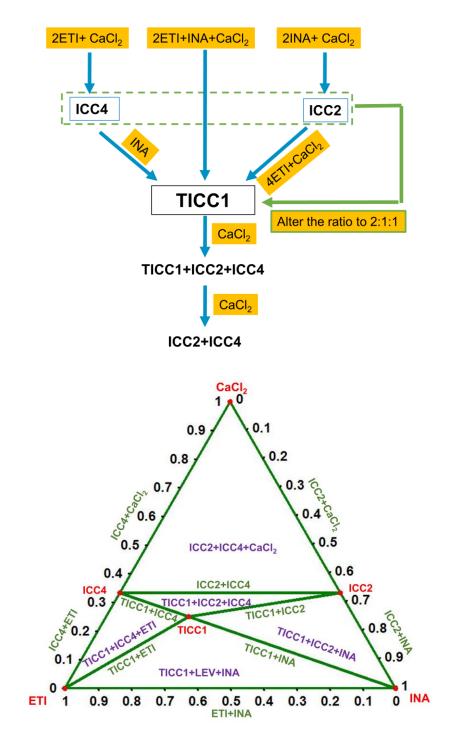


Figure S11. Ternary solid-state phase diagram for the ETI-INA-CaCl₂ system. Pure phases are indicated in black, mixtures of two phases in green and mixtures of three phases in purple.

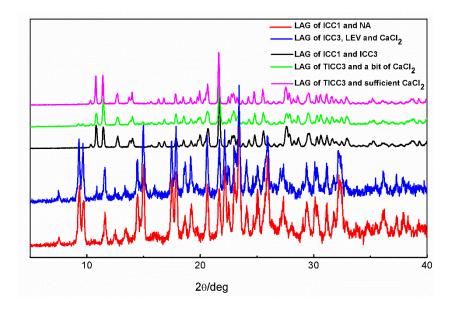
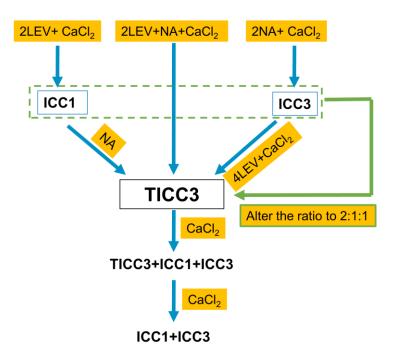



Figure S12. LAG results of the LEV-NA-CaCl₂ system using different starting materials and compositions.

Scheme S2. Graphic representation of the solid-state reaction scheme for the LEV-INA-CaCl2 system.

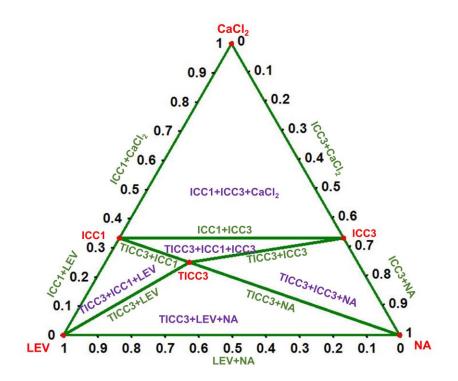
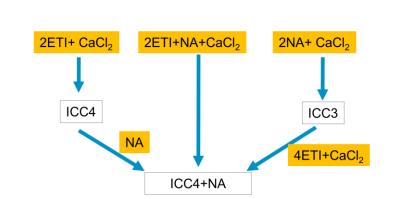



Figure S13. Ternary solid-state phase diagram for the LEV-NA-CaCl₂ system. Pure phases are indicated in black, mixtures of two phases in green and mixtures of three phases in purple.

Starting with a 2:1 ratio of ETI:CaCl₂ or NA:CaCl₂, the binary ionic cocrystals ICC4 or ICC3 are obtained respectively. No matter the stoichiometry of starting materials, a TICC cannot be formed. Grinding the mixture of ETI, CaCl₂ and ICC3 leads to the mixture of ICC4 and NA, which means ICC4 is more stable than ICC3 (Scheme S3).

Scheme S3. Graphic representation of the solid-state reaction scheme for the ETI-NA-CaCl₂ system. Thermal behavior of the TICCs

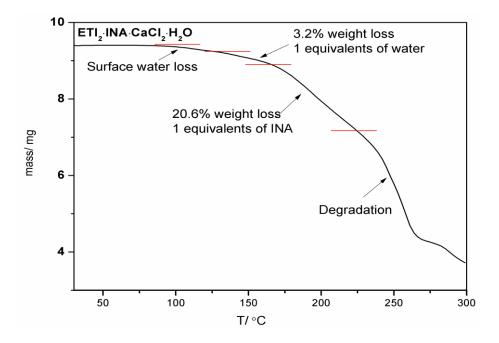


Figure S14. TGA of TICC1.

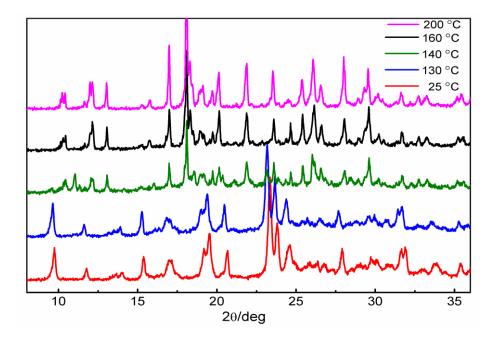


Figure S15. VT-XRPD of TICC1.

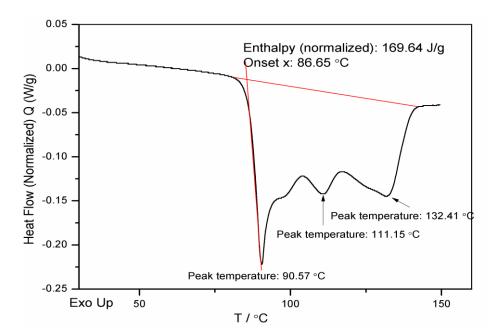


Figure S16. DSC of TICC1.

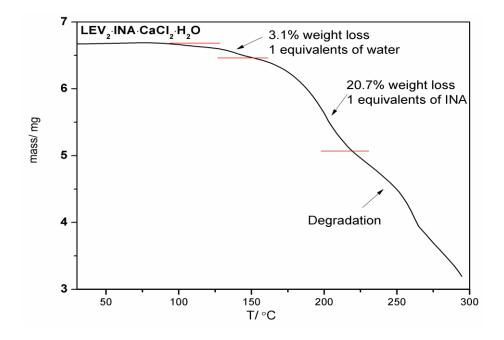


Figure S17. TGA of TICC2.

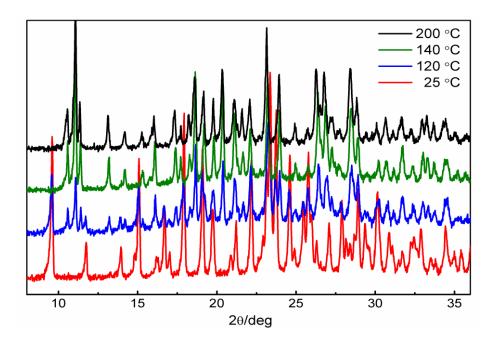


Figure S18. VT-XRPD of TICC2.

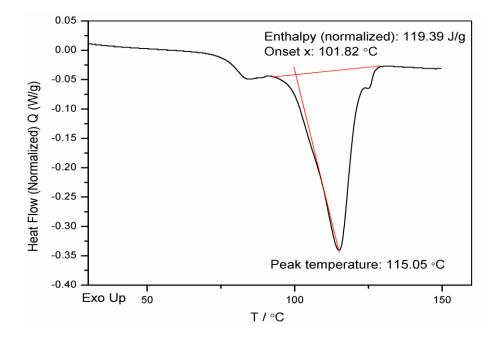


Figure S19. DSC of TICC2.

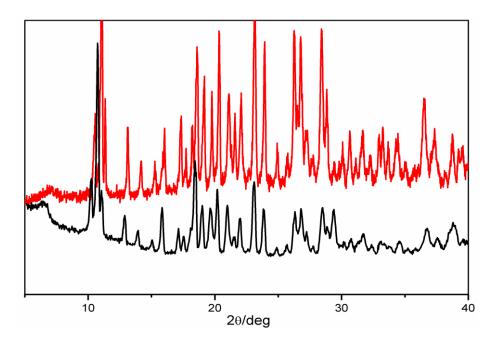


Figure S20. XRPD of TICC2 (red) and ICC1 (black) at 200 °C (different devices were used for both).

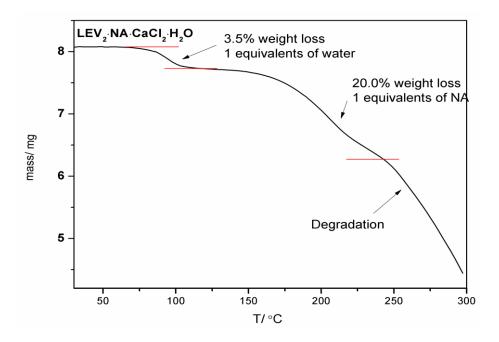


Figure S21. TGA of TICC3.

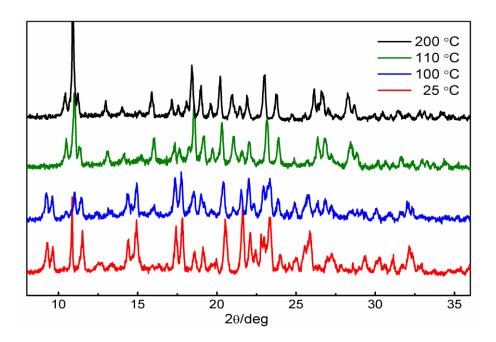


Figure S22. VT-XRPD of TICC3.

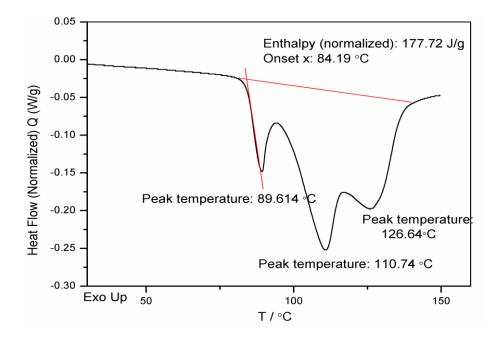


Figure S23. DSC of TICC3.

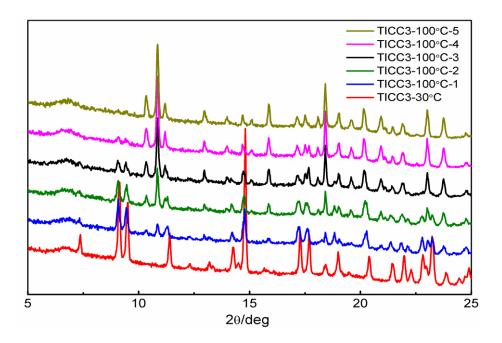


Figure S24. Isothermal hold of TICC3 at 100°C, illustrating the decomposition of the TICC in a binary anhydrous ICC and NA at 100 °C.

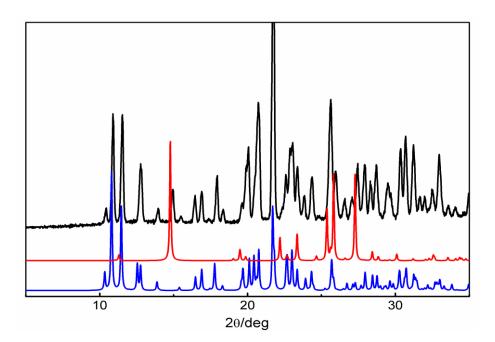


Figure S25. XRPD result of the powder recovered after having kept TICC3 for a prolonged period at 100 °C (see Figure S24). Recovered TICC3 under ambient conditions (black), simulated ICC1 (blue) and NA (red).

Solution behavior of TICCs

Solvent	LEV+CaCl 2 (2:1)	INA+ CaCl ₂ (2:1)	NA+ CaCl ₂ (2:1)	ETI+CaCl ₂ (2:1)	ETI+INA+CaCl 2 (2:1:1)	LEV+INA+C aCl ₂ (2:1:1)	LEV+NA+CaCl 2 (2:1:1)
Water	ICC1+LEV	INA	ICC3	ICC4+ETI	ICC4	TICC2	ICC1+NA
Methanol	ICC1+LEV	ICC2+INA	ICC3+NA	ICC4+ETI	TICC1	TICC2	TICC3+ICC1
Ethanol	ICC1+LEV	ICC2+INA	ICC3	ICC4+ETI	TICC1	TICC2	TICC3+ICC1
Acetone	ICC1+LEV	ICC2+INA	ICC3+NA	ICC4+ETI	TICC1+ ICC4	TICC2	TICC3
Isopropanol	ICC1+LEV	ICC2+INA	ICC3	ICC4+ETI	TICC1+ ICC4	TICC2+ICC1	TICC3+ICC1
Chloroform	ICC1+LEV	INA	ICC3+NA	ICC4+ETI	TICC1+ ICC4	TICC2+LEV	TICC3+NA
Dichloromethane	ICC1+LEV	INA	ICC3+NA	ICC4+ETI	TICC1+ ICC4	TICC2+LEV	TICC3+ICC1
Acetonitrile	ICC1+LEV	ICC2+INA	ICC3+NA	ICC4+ETI	TICC1+ ICC4	TICC2+ICC1	TICC3
Ethyl acetate	ICC1+LEV	ICC2+INA	ICC3	ICC4+ETI	ICC4	TICC2+ICC1	TICC3+ICC1
Toluene	ICC1+LEV	ICC2+INA	ICC3+NA	ICC4+ETI	ICC4	ICC1+LEV	ICC1+LEV+NA
Hexane	ICC1+LEV	INA	ICC3+NA	ICC4+ETI	ICC4	ICC1+LEV	ICC1+LEV+NA
pH 1.2 HCl	ICC1	INA	ICC3	ICC4+ETI	ICC4	TICC2	ICC1

Table S4. Slurry results in different solvents for binary and ternary systems

CaCl₂ could crystallize out especially in some non-polar solvents, but we could not identify it by XRPD as its diffraction is always overlapping with organic compounds; We also encountered some polymorphic transitions in some cases for INA and ETI.

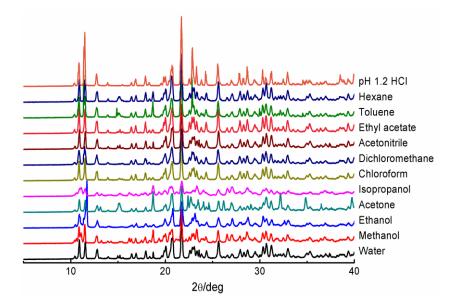


Figure S26. XRPD results of slurry experiments for the LEV-CaCl₂ system.

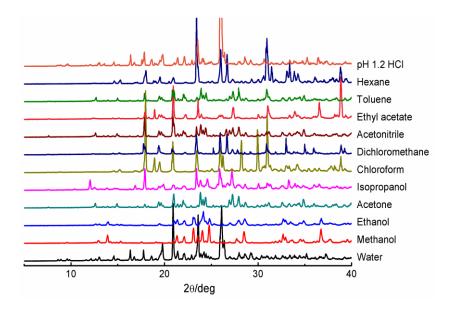


Figure S27. XRPD results of slurry experiments for the INA-CaCl₂ system.

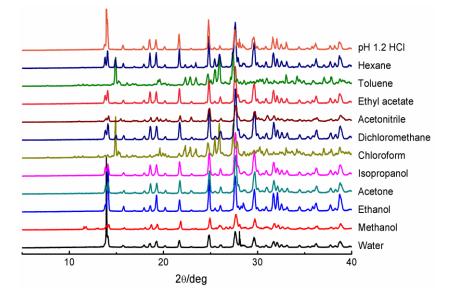


Figure S28. XRPD results of slurry experiments for the NA-CaCl₂ system.

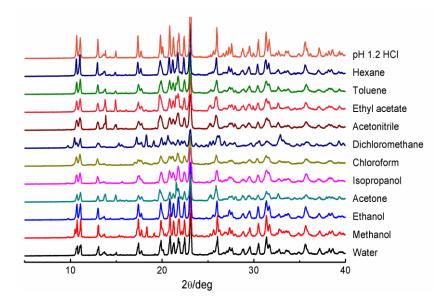


Figure S29. XRPD results of slurry experiments for the ETI-CaCl₂ system.

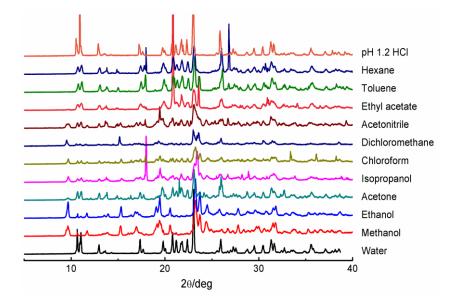


Figure S30. XRPD results of slurry experiments for the ETI-INA-CaCl₂ system.

Figure S31. XRPD results of slurry experiments for the LEV-INA-CaCl₂ system.

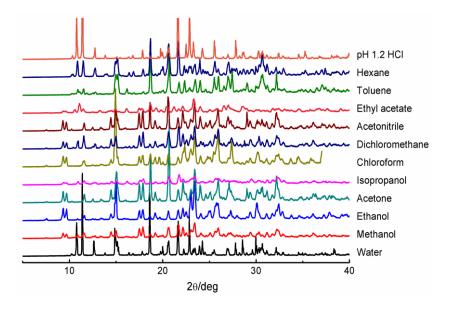


Figure S32. XRPD results of slurry experiments for the LEV-NA-CaCl₂ system.

Table S5. The solubility of parent compounds in different systems for different solvents at 25 $^{\circ}\text{C}$ (wt%)

Calvant	Solvent ETI LEV INA		ICC1	ICC3	TIC	C1	TIC	CC2	TIC	C3			
Solvent	EII	LEV	INA	NA -	NA	LEV	NA	ETI	INA	LEV	INA	LEV	NA
water		51.22	10.04	43.96		45.77			40.55	14.54			
methanol	35.05	41.87	19.27				26.59	9.54	29.72	10.66			
ethanol	15.53	20.21	8.59	11.10		10.96	6.48	2.32	6.60	2.37			
acetone		5.77	3.68	4.52		2.79			7.41	2.66	5.92	2.12	
acetonitrile		7.87		2.33							7.33	2.63	
pH 1.2 HCI		53.69	12.72	44.20	42.71	49.95			37.21	13.35			

The blanks are the incongruent systems for which we did not perform measurements.

Experimental XRPD of binary ionic cocrystals vs calculated one

from single crystal

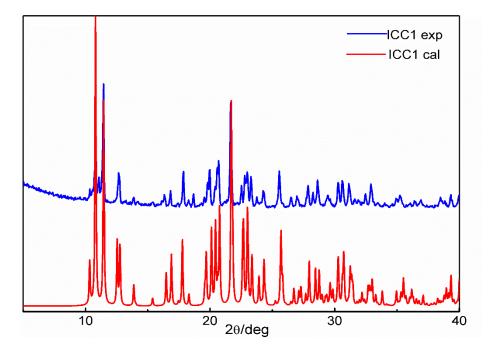


Figure S33. XRPD for ICC1. The blue one is the grinding result and the red one is the simulated one from single crystal (CCDC1894095)

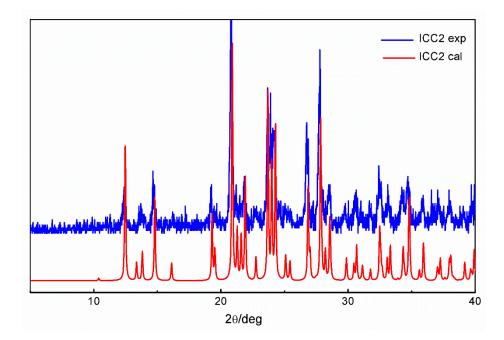


Figure S34. XRPD for ICC2. The blue one is the grinding result and the red one is the simulated one from single crystal (CCDC 1280990).

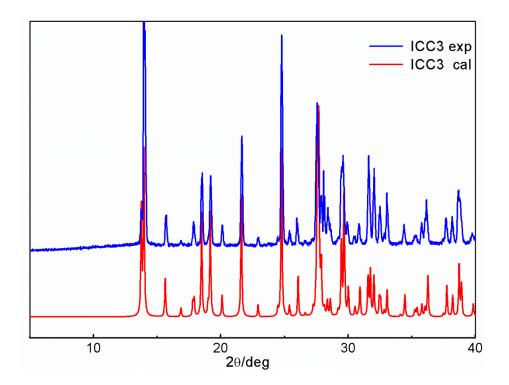


Figure S35. XRPD for ICC3. The blue one is the grinding result and the red one is the simulated one from single crystal (CCDC 949647).

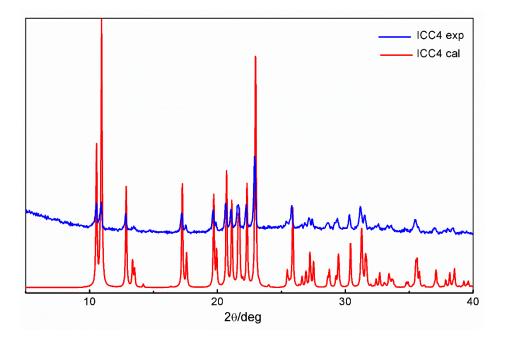


Figure S36. XRPD for ICC4. The blue one is the grinding result and the red one is the simulated one from single crystal (CCDC1894096)

References

1. C. Herman, V. Vermylen, B. Norberg, J. Wouters and T. Leyssens, Acta Crystallogr B Struct Sci Cryst Eng Mater, 2013, 69, 371-378.

2. chrysalis: Rigaku OD (2018). *CrysAlis PRO* Software system. Rigaku Corporation, Oxford, UK.

3. SHELXT: Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.

- 4. SHELXL: Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- 5. PLATON: Spek, A. L. (2009). Acta Cryst. D65, 148-155.