Supporting information

An AIE probe for imaging mitochondria SO₂-induce stress and its level in heat stroke

Xiaopeng Yang^a, Jun Tang^a, Di Zhang^{*b}, Xiaojing Han^a, Jianfei Liu^a, Jinsa Li^a, Yufen Zhao^{a, c}, Yong Ye^{*a}

^a Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou

450001, China

^b Institute of Agricultural Quality Standards and Testing Technology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China

^c Institute Drug Discovery Technology, Ningbo University, Ningbo 315211, Zhejiang, China

*Corresponding author; Email: yeyong03@tsinghua.org.cn (Yong Ye), pandy811@163.com (Di Zhang)

Contents

Instruments, Materials, Cell Culture and	Synthesis ·····S2-
S3 NMR and HR-MS of probe MITO-	
ТРЕ	······S4-S5
UV-vis, Fluorescence, and cell	
imaging	······85-S13

Experimental part

1. Instruments

¹H NMR and ¹³C NMR spectra were taken on the Bruker DTX-400 spectrometer in CDCl₃ with TMS as internal standard. Mass spectral determination were performed with a Q-Exactive HR-MS spectroscopy (Thermo). Fluorescence spectra performed HITACHI F-4600 measurements were on а fluorescence spectrophotometer, the excitation and emission wavelength band passes were both set at 5 nm, excitation voltage was 700 V, scan range: 450 – 700 nm. Absorption spectra were recorded using a Lambda 35 UV/VIS spectrometer, PerkinElmer precisely. Fluorescence imaging and co-localization experiment were acquired on a LEICA TCS SP8 laser scanning confocal microscope.

2. Materials

All chemicals reagents were used as received from commercial sources without further purification. Solvents for chemical synthesis and analysis were purified according to standard procedures. The solutions of anions and amino acid were prepared from corresponding salts including: NaHSO₃, NaF, NaCl, NaBr, NaI, NaHCO₃, NaCO₃, NaAcO, Cys, Hcy, GSH, NaNO₃, NaNO₂, NaClO, H₂O₂, TBHP, ·OH, ONOO⁻, O- 2, ¹O₂, NO, Na₂S, NaHS, Na₂SO₄, Na₂S₂O₃, Na₃PO₄, NaN₃, KSCN were prepared according to reported literature.

3. Optical Studies

Stock solutions of **MITO-TPE** (1 mM) was prepared in DMSO. For optical study, 3.0 mL **MITO-TPE** (10 μ M) in PBS buffer (10 mM, pH 7.4) solution was prepared in a bottle. The UV and fluorescent spectra were recorded excitation with 405 nm at 37 °C. All spectra were obtained in a quartz cuvette (path length 1 cm).

4. Cell Culture and Imaging

MCF-7 cells were cultured in RPMI-1640 supplemented with 10% fetal bovine serum, at 37 °C, in 5% CO₂. For fluorescence imaging, probe MITO-TPE (10 μ M) was added to MCF-7 cells and incubated at 37 °C for 30 min in 5% CO₂. Then, the living cells were washed with PBS buffer (pH 7.4) for three times. Next, the cells were treated with Na₂SO₃ (100 μ M) solution for another 30 min in 5%CO₂ and then washed three times with PBS buffer. To observe the subcellular distributions of the probe, the MCF-7 cells were treated with a mitochondrial staining probe (500 nM) for 30 min. Then the cells continue to incubate with Na₂SO₃ (100 μ M) for another 30 min. The media was removed and the cells were washed three times with PBS buffer (pH 7.4). Cells were imaged using Leica TCS SP8 laser scanning confocal microscope.

5. Zebrafish Culture and Imaging

Wildtype zebrafish were obtained from the Nanjing Eze-Rinka Biotechnology Co., Ltd. Zebrafishes were fed in E3 embryo media (15 mM NaCl, 0.5 mM KCl, 1 mM MgSO₄, 1 mM CaCl₂, 0.15 mM KH₂PO₄, 0.05 mM Na₂HPO₄, 0.7 mM NaHCO₃, 10-5% methylene blue; pH 7.5) at 28 °C. The 5-day-old zebrafish were incubated with

probe (10 μ M) for 0.5 h, and then imaged after washing by PBS buffer, as the control group. As the negative control group. Zebrafish were pretreated with probe for 0.5 h, subsequently incubated with Na₂SO₃ (100 μ M) for 0.5 h, and then imaged after washing by PBS buffer. As the experimental group, pretreated probe (10 μ M) Zebrafish incubated with Na₂SO₃ (100 μ M) and then treated with FA (200 μ M)... Zebrafish were imaged using Leica TCS SP8 confocal microscope.

5. Synthesis.

Compound M3 and M4 were synthesized according to the reported literature.^{1, 2}

Synthesis of **MITO-TPE**: in a 50 mL round bottom flask, compound **M4** (460.0 mg 1 mmol) and 4-(Diethylamino) salicylaldehyde (193.2 mg 1 mmol) were dissolved in 5 mL of 98% H₂SO₄ and reacted at 90 °C for 12 hours. After the reaction was completed, it was poured into 50 mL of ice water and 1 mL of perchloric acid was added to produce a solid. The crude product was obtained by suction filtration. Column chromatography (MeOH/DCM=1/20) gave 150.0 mg of a purple solid with a yield of 20.9%.¹H NMR (CDCl₃, 400 MHz): δ = 8.58 (d, *J* = 8.08 Hz, 1H), 7.88 (d, *J* = 8.76 Hz, 3H), 7.66 (d, *J* = 8.08 Hz, 1H), 7.26 (m, 3H), 7.15 (m, 3H), 7.06 (m, 2H), 6.92 (m, 5H), 6.48 (d, *J* = 8.76 Hz, 2H), 6.44 (d, *J* = 8.80 Hz, 2H), 3.68 (m, 4H), 2.91 (s, 12H), 1.35 (t, *J* = 7.00 Hz 6H), ppm;¹³C NMR (CDCl₃, 100 MHz): δ = 166.6, 159.4, 156.4, 153.5, 149.5, 149.3, 148.9, 145.5, 144.3, 135.1, 133.0, 133.0, 132.9, 132.8, 131.7, 131.2, 131.1, 128.1, 127.3, 126.3, 125.7, 118.8, 118.2, 111.5, 111.1, 109.1, 95.8, 45.5, 40.3, 40.3, 31.6 Mp: 191.0 °C-192.0 °C. HR-MS: m/z calcd for [C₄₃H₄₄N₃O]⁺ = 618.3479, Found:618.3472.

Scheme S1. Synthetic route of probe MITO-TPE.

- M. Kang, X. Gu, R. T. K. Kwok, C. W. T. Leung, J. W. Y. Lam, F. Li and B. Z. Tang, *Chem. Commun.*, 2016, **52**, 5957-5960.
- 2. E. Wang, E. Zhao, Y. Hong, J. W. Y. Lam and B. Z. Tang, J. Mater. Chem. B,

2014, **2**, 2013-2019.

Supporting figures

Figure S1. ¹H NMR spectra of MITO-TPE in CDCl₃.

Figure S2. ¹³C NMR spectra of MITO-TPE in CDCl₃.

Figure S3. HR-MS spectra of MITO-TPE.

Figure S4. (a) Emission spectra of MITO-TPE-SO₂ in DMSO–water mixtures with different water fractions (fw). (b) Plot of the relative intensity of MITO-TPE-SO₂ versus the water fraction in DMSO–H₂O mixtures.

Figure S5. The UV-vis absorption spectra in the PBS buffer (10 mM, pH=7.4).

Figure S6. The fluorescence emission intensity of probe **MITO-TPE** (10 μ M) upon treatment with NaHSO₃ (100 μ M) under 490 nm excitation in the PBS buffer (10 mM, pH=7.4).

Figure S7. Linear plot of the fluorescence emission intensity against NaHSO₃ concentrations.

Figure S8. The fluorescence emission intensity of probe **MITO-TPE** (10 μ M) upon treatment with NaHSO₃ (100 μ M) with the progress of time in the PBS buffer (10 mM, pH=7.4).

Figure S9. The UV-vis spectra of probe **MITO-TPE** (10 μ M) with NaHSO₃ (100 μ M) and other various anions (F⁻, Cl⁻, Br⁻, I⁻, AcO⁻, HCO₃⁻, CO₃²⁻, GSH, Hcy, Cys, NO₃⁻, NO₂⁻, NO, HNO, ONOO⁻, O₂⁻, H₂O₂, ClO⁻, TBHP, ·OH, ¹O₂, S²⁻, HS⁻, SO₄²⁻, S₂O₃²⁻, PO₄³⁻, N₃⁻, SCN⁻) (100 μ M) in the PBS buffer (10 mM, pH=7.4).

Figure S10. The fluorescence emission intensity of **MITO-TPE** (10 μ M) upon the addition of various ions (F⁻, Cl⁻, Br⁻, I⁻, AcO⁻, HCO₃⁻, CO₃²⁻, GSH, Hcy, Cys, NO₃⁻, NO₂⁻, NO, HNO, ONOO⁻, O₂⁻, H₂O₂, ClO⁻, TBHP, ·OH, ¹O₂, S²⁻, HS⁻, SO₄²⁻, S₂O₃²⁻, PO₄³⁻, N₃⁻, SCN⁻) (100 μ M) in the presence of NaHSO₃ (100 μ M) in the PBS buffer (10 mM, pH=7.4).

Figure S11. The fluorescence emission intensity of MITO-TPE (10 μ M) in solution of different pH value (1-12).

Figure S12. The fluorescence emission intensity of MITO-TPE (10 μ M) in solution of different temperature.

Figure S13. HR-MS spectra of MITO-TPE in the presence of NaHSO₃.

Figure S14. Cytotoxicity assay. MCF-7 cells were treated with different concentrations of probe **MITO-TPE**.

Figure S15. Fluorescence images of probe **MITO-TPE** respond to Na₂SO₃ with in MCF-7 cells. (a) Cells treated with probe **MITO-TPE** (10 μ M) only. (b) Cells incubated with probe **MITO-TPE** (10 μ M) and then treated with Na₂SO₃ (100 μ M). (c) Probe-pretreated **MITO-TPE** (10 μ M) cells incubated with Na₂SO₃ (100 μ M) and then treated with FA (200 μ M). (d) Relative optical density of the respect wells. (λ_{ex} = 405 nm, emission: 425-485 nm, Scale bar: 20 μ m).

Figure S16. Time-dependent confocal images of exogenous HSO– 3 in MCF-7 cells. Relative optical density of the respect wells. ($\lambda_{ex} = 405$ nm, emission: 425-485 nm, Scale bar: 20 µm).

Figure S17. Fluorescence images of **MITO-TPE** colocalized to the mitochondria in MCF-7 cell. (a) **MITO-TPE** (10 μ M), Channel 1 (green) (b) Mito-Tracker Red (100 nM), Channel 2 (red). (c) The merged pattern of a and b. (Channel 1: $\lambda_{ex} = 405$ nm, emission 425-485 nm, channel 2: $\lambda_{ex} = 552$ nm, emission 560-620 nm, Scale bar: 10 μ m).

Scheme S2. Proposed reaction mechanism of HE towards O_2^{-} .

Figure S18. (a) Fluorescence images of MCF-7 cells incubated with **HE** (10 μ M) at different temperatures (37, 39, 41, 43 and 45 °C). (g) Relative optical density of the respect wells. ($\lambda_{ex} = 488$ nm, emission: 575-635 nm, Scale bar: 20 μ m).

Figure S19. Fluorescence images of probe **MITO-TPE** respond to Na₂SO₃ in zebrafish. (a) Treated with probe MITO-TPE (10 μ M) only. (b) Incubated with probe **MITO-TPE** (10 μ M) and then treated with Na₂SO₃ (100 μ M). (c) Zebrafish pretreated with **MITO-TPE** (10 μ M), then incubated with Na₂SO₃ (100 μ M), and last treated with FA (200 μ M). (d) Relative optical density of the respect wells. ($\lambda_{ex} = 405$ nm, emission: 425-485 nm, Scale bar: 200 μ m).