Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2020

Electronic Supporting Information for

Highly Sensitive Detection of Cobalt Through Fluorescence Changes in β-Cyclodextrin-Bimane Complexes

Apurba Pramanik,<sup>a</sup> Sara Amer,<sup>a</sup> Flavio Grynzspan\*<sup>a</sup> and Mindy Levine\*<sup>a</sup>

### **TABLE OF CONTENTS**

| Materials and Methods                                                                                   |      |
|---------------------------------------------------------------------------------------------------------|------|
| Experimental Procedures                                                                                 | S5   |
| Experimental Procedures for the Synthesis of Bimane 1                                                   | S5   |
| Experimental Procedure for UV-Visible Absorbance Spectrometry                                           | S6   |
| Experimental Procedure for Fluorescence Spectroscopy                                                    | S7   |
| Experimental Procedure for Paper-Based Studies                                                          | S8   |
| Experimental Procedure for <sup>1</sup> H NMR Titration Studies                                         | S9   |
| Experimental Procedure for Solid-State FTIR Spectroscopy                                                | .S10 |
| Experimental Procedure for Limit of Detection Experiments                                               | .S11 |
| Experimental Procedure for Relative Quantum Yield Experiments                                           | .S12 |
| Experimental Procedure for ICP-MS Water Analysis                                                        | .S13 |
| Experimental Procedure for Determination of Binding Constants via Supramolecular.org                    | .S14 |
| Summary Tables                                                                                          | S15  |
| Summary Tables that Illustrate the Binding of Bimane in β-Cyclodextrin                                  | .S15 |
| Summary Tables that Illustrate the Interaction of a Variety of Metal Salts with Bimane                  | .S17 |
| Summary Tables that Illustrate the Interaction of Cobalt (II) Chloride with Bimane                      | .S19 |
| Summary Tables that Illustrate the Interaction of Cobalt (II) Acetate with Bimane                       | .S21 |
| Summary Tables Showing the Interaction of Different Metal Salts with a Bimane: Cyclode: Complex         |      |
| Summary Tables that Demonstrate the Interaction of Cobalt (II) Acetate with a Bim Cyclodextrin Complex  |      |
| Summary Tables that Illustrate the Interaction of Cobalt (II) Chloride with a Bimane: Cyclode: Complex. |      |
| Summary Tables Illustrating Experiments in Tap Water                                                    | .S30 |
| Summary Tables for Limit of Detection Studies                                                           | .S33 |
| Summary Tables for Solid-State Experiments                                                              | .S34 |
| Summary Tables for <sup>1</sup> H NMR Titration Studies                                                 | .835 |
| Summary Tables for Relative Quantum Yield Experiments                                                   | .836 |
| Summary Table for ICP-MS Analysis                                                                       | .S37 |
| Summary Table for Binding Constants Determined via Supramolecular.org                                   | .S38 |
| Summary Tables for Metal Competition Studies to Determine Cobalt Selectivity                            | .839 |
| Summary Figures                                                                                         | S40  |
| Summary Figures for the Synthesis of Bimane 1                                                           | .S40 |
| Summary Figures that Illustrate the Binding of Bimane in $\beta$ -Cyclodextrin                          | .S41 |
| Summary Figures that Illustrate the Interaction of a Variety of Metal Salts with Bimane                 | .S44 |

| Summary Figures that Illustrate the Interaction of Cobalt (II) Chloride with Bimane                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------|
| Summary Figures that Illustrate the Interaction of Cobalt (II) Acetate with Bimane                                                       |
| Summary Figures that Illustrate the Interaction of a Variety of Metal Salts with a Bimane:<br>Cyclodextrin Complex                       |
| Summary Figures that Illustrate the Interaction of Increasing Concentrations of Cobalt (II) Chloride with a Bimane: Cyclodextrin Complex |
| Summary Figures that Illustrate the Interaction of Increasing Concentrations of Cobalt (II) Acetate with a Bimane: Cyclodextrin Complex  |
| Summary Figures Illustrating Experiments in Tap Water                                                                                    |
| Summary Figures Illustrating Solid-State FTIR Spectroscopy Results                                                                       |
| Summary Figures Illustrating the Appearance of Functionalized Paper Strips Under UV-Light<br>Irradiation                                 |
| Summary Figures Illustrating Changes in Solution Color in the Presence of Various Metal<br>Additives                                     |
| Summary Figures for Limit of Detection Studies                                                                                           |
| Summary Figures for <sup>1</sup> H NMR Titration Studies                                                                                 |
| Summary Figures for Relative Quantum Yield Studies                                                                                       |
| Summary Figures for Metal Competition Studies to Determine Cobalt Selectivity                                                            |
| References                                                                                                                               |

#### MATERIALS AND METHODS

All chemicals, including  $\beta$ -cyclodextrin, were purchased from commercial suppliers and used without further purification. All UV/Visible absorption spectra were recorded on a Varian Cary 50 Bio UV-Visible Spectrophotometer. Fluorescence spectra were recorded on a Varian Cary Eclipse Fluorescence Spectrophotometer. All FTIR spectra were obtained using KBr pellets and were recorded on a Perkin Elmer Spectrum One FT-IR spectrometer with KBr pellets. <sup>1</sup>H NMR spectra were obtained using a Bruker Avance III spectrophotometer operating at 400 MHz. All fluorescence spectra were integrated vs. wavenumber on the X-axis using OriginPro 2020. All curve fitting was done using OriginPro curve fitting options for both linear and non-linear curve fitting.

#### **EXPERIMENTAL PROCEDURES**

Experimental Procedures for the Synthesis of Bimane 1

syn-Bimane 1 was synthesized following the standard, solvent-free procedure reported by Neogi et. al.<sup>1</sup> In brief, we first synthesized 3,4-dimethyl-4-chloro-2-pyrazolin-5-one using solvent-free conditions.<sup>1,2</sup> Then 3,4-dimethyl-4-chloro-2-pyrazolin-5-one (0.2 g, 1.36 mmol, 1.0 equiv.) was melted via gentle heating and added to a scintillation vial containing K<sub>2</sub>CO<sub>3</sub>·1.5 H<sub>2</sub>O (0.945 mg, 5.71 mmol, 4.2 equiv.). The two components were rapidly mixed with a spatula at room temperature, and the progress of the reaction was monitored by TLC. The reaction reached completion after 15 minutes. After that, dichloromethane was added to the reaction mixture in five portions (ca. 15 mL each portion) and the combined organic extract was evaporated under reduced pressure. The reaction mixture was purified by column chromatography eluting with hexane/ethyl acetate (1:3). The desired 9,10-dioxa-syn-(*Me,Me*)bimane was isolated in 70% yield. <sup>1</sup>H NMR (D<sub>2</sub>O, 400 MHz):  $\delta = 1.77$  (s, 3 H), 2.35 (s, 3 H) ppm. LC-MS: m/z calcd for C<sub>10</sub>H<sub>13</sub>N<sub>2</sub>O<sub>2</sub>: 193.09 [MH+]; found: 193.10.



Figure S1. Schematic representation of the bimane synthesis

#### Experimental Procedures for UV-Vis Absorption Spectrometry

UV-Vis absorption spectroscopy was used in a number of situations: (a) to study the formation of an inclusion complex between bimane and  $\beta$ -cyclodextrin; (b) to investigate the detection of metal ions using bimane; and (c) to investigate the detection of metal ions using the complex formed between bimane and  $\beta$ -cyclodextrin. Procedures for each of these situations are detailed below.

#### (a) Formation of the inclusion complex between bimane and $\beta$ -cyclodextrin

The formation of inclusion complex between bimane and  $\beta$ -cyclodextrin was investigated by measuring the UV-visible absorption spectra of bimane (200 - 700 nm) in aqueous solution at a concentration of 5.0 x 10<sup>-2</sup> mM. The concentration of  $\beta$ -cyclodextrin in the aqueous solution varied from 0 mM  $\beta$ -cyclodextrin to 6.9 x 10<sup>-3</sup> mM  $\beta$ -cyclodextrin.

#### (b) Investigation of the detection of metal ions using bimane

Ten metal chloride salts were investigated for their ability to induce changes in the UV-visible absorbance spectra of bimane: BaCl<sub>2</sub>, CaCl<sub>2</sub>, CoCl<sub>2</sub>, CuCl<sub>2</sub>, HgCl<sub>2</sub>, MgCl<sub>2</sub>, MnCl<sub>2</sub>, NiCl<sub>2</sub>, SnCl<sub>2</sub>, and ZnCl<sub>2</sub>. These experiments were conducted in double distilled water, with the bimane concentration held constant at  $5.0 \times 10^{-2}$  mM and  $6.16 \times 10^{-3}$  mM solutions of the various metal salts added. Because of the limited aqueous solubility of SnCl<sub>2</sub> and ZnCl<sub>2</sub>, saturated solutions of the metal chloride salts were made and then filtered to remove insoluble particles. This filtered, saturated solution was used for further experimentation and analysis.

Further experimentation included the use of various concentrations of  $CoCl_2$  in the presence of a constant bimane concentration of 5.0 x  $10^{-2}$  mM. The concentration of  $CoCl_2$  in these experiments ranged from 0 mM  $CoCl_2$  (negative control) to 3.5 x  $10^{-4}$  mM  $CoCl_2$ .

Additional experimentation included using the same concentration range of cobalt salts but with an acetate counterion  $(Co(OAc)_2)$  instead of chloride. The concentration of bimane was held constant at 5.0 x 10<sup>-2</sup> mM and the concentration of  $Co(OAc)_2$  ranged from 0 mM  $Co(OAc)_2$  (negative control) to 3.5 x 10<sup>-4</sup> mM  $Co(OAc)_2$ .

#### (c) Investigation of the detection of metal ions using the bimane - $\beta$ -cyclodextrin complex

We followed the procedures described in part (b) but replaced the bimane fluorophore with the bimanecyclodextrin complex. Concentrations of each component were identical to those listed in part (b), above.

#### *Experimental Procedure for Fluorescence Spectroscopy*

Fluorescence spectroscopy was used to investigate a variety of situations: (a) the formation of an inclusion complex between bimane and  $\beta$ -cyclodextrin; (b) the detection of metal salts via changes in the fluorescence emission of bimane; and (c) the detection of metal salts via changes in the fluorescence emission of the bimane: cyclodextrin complex. In all cases, the excitation of bimane occurred at 385 nm, and the excitation and emission slit widths were 2.5 nm and 5.0 nm, respectively. The procedures used in each of these situations are discussed in detail below:

#### (a) Complex formation between bimane and $\beta$ -cyclodextrin

The concentration of bimane was held constant at  $5.0 \times 10^{-2}$  mM, and the concentration of  $\beta$ -cyclodextrin was varied from 0 mM  $\beta$ -cyclodextrin to  $6.90 \times 10^{-3}$  mM  $\beta$ -cyclodextrin. The fluorescence emission of the bimane in each case was recorded (excitation at 385 nm). Changes in the fluorescence emission of bimane were quantified by integrating the fluorescence emission vs. wavenumber on the X-axis (using OriginPro 2020), and the data were plotted using Benesi-Hildebrand and Stern-Volmer plots to determine binding and quenching constants, respectively.

#### (b) Metal ion detection using changes in bimane fluorescence emission

The concentration of bimane was held constant at  $5.0 \times 10^{-2}$  mM, and a variety of metal (II) chloride salts were added ([MCl<sub>2</sub>] =  $6.16 \times 10^{-3}$  mM). The ten metal salts investigated were: BaCl<sub>2</sub>, CaCl<sub>2</sub>, CoCl<sub>2</sub>, CuCl<sub>2</sub>, HgCl<sub>2</sub>, MgCl<sub>2</sub>, MgCl<sub>2</sub>, MnCl<sub>2</sub>, SnCl<sub>2</sub>, and ZnCl<sub>2</sub>. Because of the limited aqueous solubility of SnCl<sub>2</sub> and ZnCl<sub>2</sub>, saturated solutions of the metal chloride salts were made and then filtered to remove precipitates. This filtered, saturated solution was used for further experimentation and analysis. Changes in the fluorescence emission of bimane under these conditions were quantified by integrating the fluorescence emission vs. wavenumber on the X-axis using OriginPro 2020, and the data were plotted using Benesi-Hildebrand and Stern-Volmer plots to determine binding and quenching constants, respectively.

Increasing concentrations of cobalt (II) chloride were also monitored using fluorescence spectroscopy, with the concentration of bimane held constant at  $5.0 \times 10^{-2}$  mM. The concentration of CoCl<sub>2</sub> in these experiments ranged from 0 mM CoCl<sub>2</sub> (negative control) to  $3.5 \times 10^{-4}$  mM CoCl<sub>2</sub>. Additional experimentation included using the same concentration range of cobalt salts but with a counterion of acetate (Co(OAc)<sub>2</sub>) instead of chloride. The concentration of bimane was held constant at  $5.0 \times 10^{-2}$  mM and the concentration of Co(OAc)<sub>2</sub> ranged from 0 mM Co(OAc)<sub>2</sub> (negative control) to  $3.5 \times 10^{-4}$  mM Co(OAc)<sub>2</sub>. In all cases, changes in the fluorescence emission of bimane under these conditions were quantified by integrating the fluorescence emission vs. wavenumber on the X-axis using OriginPro 2020, and the data were plotted using Benesi-Hildebrand and Stern-Volmer plots to determine binding and quenching constants, respectively.

The initial list of experiments was performed in double distilled water. A comparison of the results obtained in double distilled water to those obtained in unpurified tap water was also performed.

#### (c) Metal ion detection using changes in the fluorescence emission of the bimane- $\beta$ -cyclodextrin complex

We followed the procedures described in part (b) but replaced the bimane fluorophore with the bimanecyclodextrin complex. Concentrations of each component were identical to those listed in part (b), see above.

#### Experimental Procedure for Paper-Based Studies

Whatman #1 filter papers with dimensions of 5 cm x 0.75 cm were coated with a solution of bimane ([bimane] =  $5.0 \times 10^{-2} \text{ mM}$ ) and the complex of bimane in  $\beta$ -cyclodextrin ([complex] =  $5.65 \times 10^{-2} \text{ mM} \beta$ -cyclodextrin and  $5.0 \times 10^{-2} \text{ mM}$  bimane ) by submerging the filter papers in solution for 30 minutes at room temperature. After thirty minutes, the papers were carefully removed from the solution using tweezers and were then placed on a Petri dish and allowed to dry overnight in an open-air environment. After that, 200  $\mu$ L of an 0.1 M solution of a cobalt (II) salt (either CoCl<sub>2</sub> or Co(OAc)<sub>2</sub>) were added and the paper was allowed to dry for 45 minutes at room temperature on the bench top. The dried papers were then visualized under a long wave TLC lamp (365 nm excitation) and the results of these studies are reported herein.

#### Experimental Procedure for <sup>1</sup>H NMR Titration Studies

15 mg of  $\beta$ -cyclodextrin and 15 mg of bimane **1** were each dissolved in 700  $\mu$ L D<sub>2</sub>O, and their <sup>1</sup>H NMR spectra were recorded. For the preparation of the  $\beta$ -cyclodextrin: bimane complex, 15 mg of a solid-state mixture (1:1 molar ratio  $\beta$ -cyclodextrin and bimane) was dissolved in 700  $\mu$ L D<sub>2</sub>O. For preparation of the bimane: cobalt complex, a 15 mg sample of a 1:1 molar ratio of the two components was dissolved in 700  $\mu$ L D<sub>2</sub>O. For preparation of the cobalt: bimane:  $\beta$ -cyclodextrin ternary mixture 15 mg of a 1:1:1 mixture of the three components was dissolved in 700  $\mu$ L D<sub>2</sub>O. All mixtures were vortexed for one hour in an Eppendorf tube prior to <sup>1</sup>H NMR analysis, and the resulting mixture was transferred to an <sup>1</sup>H NMR tube and analyzed.

#### Experimental Procedure for Solid-State FTIR Spectroscopy

A small amount of all samples (equimolar ratios for all mixtures) were ground by hand with a mortar and pestle for approximately 15 minutes. The resulting solid-state mixture was mixed with KBr salt and pellets were formed using the hydraulic pressure apparatus. To measure the solid-state FTIR spectra of the samples, first a background correction scan was conducted using a KBr pellet (without the sample). Following that, pellets made with the sample were placed in the FTIR spectrometer and the spectra were acquired. All data were saved as ASCII files and using Microsoft Excel software. fitted

#### **Experimental Procedure for Limit of Detection Experiments**

#### For Bimane

- 1. 100 μL of Bimane solution (0.1 mg/mL) in water was measured into a 15 mL glass vial. 2.40 mL Water were added. The vial was capped and left to stabilize for 48 hours.
- 2. The solution was transferred to a quartz cuvette and then excited at 385 nm and the fluorescence emission spectra was recorded from 400 to 700 nm. Each fluorescence measurement was repeated six times
- 3.  $5.0 \ \mu\text{L}$  of the analyte solution CoCl<sub>2</sub> 0.1(M) in water was added to the cuvette and stirred thoroughly to ensure homogeneity. The solution was excited at the same wavelength (385 nm) and the emission was measured between 400 nm and 700 nm. Six repeat measurements were taken.
- 4. Step 2 was repeated four times for total addition volumes of 10 μL, 15 μL, 20 μL, and 25 μL of the analyte solution (CoCl<sub>2</sub>). In all cases, the solution was excited at the same wavelength (385 nm) and the emission spectra from 400 to 700 nm was recorded six times.

For the Bimane-Cyclodextrin Complex

- 1. 100  $\mu$ L of Bimane solution (0.1 mg/mL) in water was measured into a 15 mL glass vial. 2.00 mL of a 10 mM  $\beta$ -CD in water and 0.40 mL water were added. The vial was capped and left to stabilize for 48 hours.
- 2. The solution was transferred to a quartz cuvette and then excited at 385 nm and the fluorescence emission spectra was recorded from 400 to 700 nm. Each fluorescence measurement was repeated six times
- 3.  $5.0 \ \mu\text{L}$  of the analyte solution CoCl<sub>2</sub> (0.1(M) in water was added to the cuvette and stirred thoroughly to ensure homogeneity. The solution was excited at the same wavelength (385 nm) and the emission was measured between 400 nm and 700 nm. Six repeat measurements were taken.
- 4. Step 2 was repeated four times for total addition volumes of 10 μL, 15 μL, 20 μL, and 25 μL of the analyte solution (CoCl<sub>2</sub>). In all cases, the solution was excited at the same wavelength (385 nm) and the emission spectra from 400 to 700 nm was recorded six times.

For each case, a graph was plotted with integrated emission (vs. wavenumber) on the Y-axis and concentration of cobalt (II) chloride (in mM) on the X-axis, and an equation for the straight line was determined. The limit of the blank ( $LOD_{blank}$ ) was defined according to the following equation:

$$LOD_{blank} = m_{blank} + 3(SD_{blank})$$

(Eq. S1)

where  $m_{blank}$  is the mean of the blank integrations and  $SD_{blank}$  is the standard deviation of those measurements.

The  $LOD_{blank}$  was then entered into the equation determined from the plot of integrated emission vs concentration of cobalt (II) chloride, and the corresponding X-value was calculated. This value is the limit of detection of the analyte in mM in the system.

The limit of quantification of the blank ( $LOQ_{blank}$ ) was calculated in a similar manner to the LOD. The limit of quantification of the blank is defined according to the following equation:

$$LOQ_{blank} = m_{blank} - 10(SD_{blank}).$$
(Eq. S2)

This value is then entered as the y-value from the derived equation, and the corresponding x-value was calculated. This is the value of the limit of quantification (LOQ) of the analyte for the system in mM.

#### Experimental Procedure for Relative Quantum Yield Experiments

The fluorescence spectra for calculating the quantum yield of bimane 1 and bimane 1 in a complex with  $\beta$ cyclodextrin in water were recorded using a Varian Cary Eclipse fluorescence spectrophotometer equipped with a 10 mm pathlength quartz cuvette. The excitation slit width was 2.5 nm, the emission slit width was 2.5 nm, and the scan rate was 120 nm/min.

Quantum yields were calculated using the single point relative quantum yield method, according to Equation S3, below:<sup>3</sup>

(S3) 
$$\phi_{F(x)} = (\frac{n_x}{n_s})^2 (\frac{A_s}{A_x}) (\frac{I_{f(x)}}{I_{f(s)}}) \phi_{F(s)}$$

where  $\phi_F$  represents the fluorescence quantum yield, A represents the absorbance value,  $I_f$  represents the integration of the fluorescence band, and n represents the solvent refractive index. The subscripts s and x refer to the standard and unknown sample, respectively. In this work, the fluorescence quantum yield standards were solutions of 1,4-bis(5-phenyloxazol-2-yl)benzene (POPOP) in cyclohexane, with a reported relative quantum yield of 0.97.<sup>4</sup>

#### Experimental Procedure for ICP-MS Water Analysis

#### **Standard solution preparation**

In order to conduct these experiments, we prepared a 100 ppm standard solution for ICP-MS experiments, which contained Al, Ag, As, B, Ba, Be, Bi, Ca, Cd, Cs, Co, Cr, Cu, Fe, In, K, Li, Mg, Mn, Mo, Na, Ni, Nb, Pb, Rb, Sb, Se, Sr, Ti, Tl, V, U, Zn in 5% HNO<sub>3</sub> in water. We diluted this standard to 0.5 ppm, 1.0 ppm, and 5.0 ppm standard solutions for instrument standardization purposes.

#### Sample preparation:

For sample analysis, we prepared a solution of 1% HNO<sub>3</sub> in double distilled water and 1% HNO<sub>3</sub> in tap water separately and left each solution to sit for three hours. After the three hours, the solutions were filtered using 0.22  $\mu$ m syringe filters and 10 mL of the filtrate solutions were used for the ICP-MS measurements.

We standardized the instrument with 0.5 ppm, 1.0 ppm and 5.0 ppm standard solutions in HNO<sub>3</sub>. After that, we used the previously prepared 10 mL samples of 1% HNO<sub>3</sub> solution in double distilled water and 1% HNO<sub>3</sub> solution in tap water for metal detection. The data were recorded with Spectro Arcos (AMETEK, materials analysis division) spectrometer.

#### Experimental Procedure for Determination of Binding Constants via Supramolecular.org

Data was entered into BindFit, a program of Supramolecular.org, and was fit to a 1:1 binding complex using the UV algorithm fitter. All binding constants were determined using both integrated fluorescence emission values and intensity of the emission signal at various wavelengths, and the results are summarized in tabular format (*vide infra*).

#### SUMMARY TABLES

SUMMARY TABLES THAT ILLUSTRATE THE BINDING OF BIMANE IN β-CYCLODEXTRIN

Table S1. Changes in the integrated fluorescence emission of bimane in the presence of increasing concentrations of  $\beta$ -cyclodextrin<sup>a</sup>

| [β-CD]                     | Integrated fluorescence emission <sup>b</sup> |
|----------------------------|-----------------------------------------------|
| 0.00 mM                    | $1.00 \pm 0.0012$                             |
| 6.27 x 10 <sup>-4</sup> mM | $0.96 \pm 0.0014$                             |
| 1.26 x 10 <sup>-3</sup> mM | $0.93 \pm 0.0014$                             |
| 1.88 x 10 <sup>-3</sup> mM | $0.89 \pm 0.0007$                             |
| 2.51 x 10 <sup>-3</sup> mM | $0.86 \pm 0.0007$                             |
| 3.14 x 10 <sup>-3</sup> mM | $0.84 \pm 0.0007$                             |
| 3.76 x 10 <sup>-3</sup> mM | $0.81 \pm 0.0010$                             |
| 4.39 x 10 <sup>-3</sup> mM | $0.78 \pm 0.0001$                             |
| 5.02 x 10 <sup>-3</sup> mM | $0.76 \pm 0.0009$                             |
| 5.64 x 10 <sup>-3</sup> mM | $0.73 \pm 0.0003$                             |
| 6.27 x 10 <sup>-3</sup> mM | $0.71 \pm 0.0006$                             |
| 6.90 x 10 <sup>-3</sup> mM | $0.69 \pm 0.0001$                             |

<sup>a</sup> Bimane concentration was held constant at 5.0 x 10<sup>-2</sup> mM. All reported results represent an average of at least two trials.

<sup>b</sup> Integrated fluorescence emission was normalized so that the highest integration value was set to 1.

**Table S2**. Percent decreases in the intensity of peaks at 230 nm, 255 nm, and 390 nm in the UV-visible absorption spectrum of bimane as a function of increasing concentrations of  $\beta$ -cyclodextrin<sup>a</sup>

| [β-CD]                     | 230 nm            | 255 nm            | 390 nm            |
|----------------------------|-------------------|-------------------|-------------------|
| 0.00 mM                    | 0%                | 0%                | 0%                |
| 6.27 x 10 <sup>-4</sup> mM | $6.0 \pm 0.02\%$  | 6.1 ± 0.10%       | $5.6 \pm 0.03\%$  |
| 1.18 x 10 <sup>-3</sup> mM | $10.5 \pm 0.08\%$ | $11.2 \pm 0.34\%$ | $10.8 \pm 0.12\%$ |
| 1.67 x 10 <sup>-3</sup> mM | $14.8 \pm 0.07\%$ | 15.7 ± 0.33%      | $15.5 \pm 0.02\%$ |
| 2.11 x 10 <sup>-3</sup> mM | 18.8 ± 0.28%      | $19.6 \pm 0.08\%$ | $19.5 \pm 0.11\%$ |
| 2.51 x 10 <sup>-3</sup> mM | $22.2 \pm 0.21\%$ | $23.2 \pm 0.29\%$ | $23.0 \pm 0.05\%$ |
| 2.87 x 10 <sup>-3</sup> mM | 25.3 ± 0.01%      | 26.2 ± 0.59%      | $26.4 \pm 0.00\%$ |
| 3.19 x 10 <sup>-3</sup> mM | $28.3 \pm 0.08\%$ | $29.5 \pm 0.23\%$ | $29.5 \pm 0.06\%$ |
| 3.48 x 10 <sup>-3</sup> mM | $30.7 \pm 0.03\%$ | $32.2 \pm 0.29\%$ | $32.3 \pm 0.00\%$ |
| 3.75 x 10 <sup>-3</sup> mM | 32.9 ± 0.15       | $34.4 \pm 0.25$   | $34.6 \pm 0.08\%$ |
| 3.99 x 10 <sup>-3</sup> mM | $35.2 \pm 0.11$   | $36.9 \pm 0.19$   | 37.1 ± 0.04%      |

| 4.21 x 10 <sup>-3</sup> mM | $37.4\pm0.02$ | $39.0 \pm 0.24$ | $39.4 \pm 0.02\%$ |
|----------------------------|---------------|-----------------|-------------------|
|                            |               |                 |                   |

<sup>a</sup> Percent decreases were calculated according to the following equation:

Percent decrease = [(absorbance intensity of bimane at 0 mM of  $\beta$ -cyclodextrin) – (absorbance intensity of bimane at the specified  $\beta$ -cyclodextrin concentration)] / (absorbance intensity of bimane at 0 mM  $\beta$ -cyclodextrin) \*100%

**Table S3.** Measurements of the binding constant of bimane in  $\beta$ -cyclodextrin (as determined via Benesi-Hildebrand plots) as well as the Stern-Volmer quenching constants<sup>a</sup>

| Log(K <sub>a</sub> ) K <sub>a</sub> |                                        | Stern-Volmer quenching constant        |  |  |
|-------------------------------------|----------------------------------------|----------------------------------------|--|--|
| $5.81 \pm 0.03$                     | 6.50 x 10 <sup>5</sup> M <sup>-1</sup> | 6.48 x 10 <sup>5</sup> M <sup>-1</sup> |  |  |

<sup>a</sup> All results represent an average of at least two trials.

# SUMMARY TABLES THAT ILLUSTRATE THE INTERACTION OF A VARIETY OF METAL SALTS WITH BIMANE

| Table S4. Summary of the fluorescence integration changes from treating a solution of bimane 1 with a |  |
|-------------------------------------------------------------------------------------------------------|--|
| variety of metal chloride salts <sup>a</sup>                                                          |  |

| Metal (II) chloride | Normalized fluorescence integration |  |
|---------------------|-------------------------------------|--|
| none                | $1.00 \pm 0.0000$                   |  |
| Ba <sup>2+</sup>    | 0.96 ± 0.0025                       |  |
| Ca <sup>2+</sup>    | 0.97 ± 0.0021                       |  |
| Co <sup>2+</sup>    | 0.62 ± 0.0010                       |  |
| Cu <sup>2+</sup>    | 0.85 ± 0.0012                       |  |
| Hg <sup>2+</sup>    | 0.95 ± 0.0010                       |  |
| Mg <sup>2+</sup>    | 0.96 ± 0.0009                       |  |
| Mn <sup>2+</sup>    | $0.94 \pm 0.0008$                   |  |
| Ni <sup>2+</sup>    | 0.84 ± 0.0001                       |  |
| Sn <sup>2+</sup>    | 0.77 ± 0.0002                       |  |
| Zn <sup>2+</sup>    | $0.80 \pm 0.0004$                   |  |

<sup>a</sup> [Bimane] =  $5.0 \times 10^{-2}$  mM; [metal salt] =  $6.16 \times 10^{-3}$  mM; all metal salts had chloride as a counterion; all reported results represent an average of three trials.

**Table S5.** Summary of the UV-visible spectral changes from treating a solution of bimane **1** with a variety of metal chloride salts<sup>a</sup>

| Metal            | Percent change at 390 nm <sup>b</sup> | Intensity changes at 510 nm <sup>c</sup> |
|------------------|---------------------------------------|------------------------------------------|
| none             | 0.00%                                 | $1.00 \pm 0.00$                          |
| Ba <sup>2+</sup> | 6.23 ± 0.12%                          | $2.24 \pm 0.81$                          |
| Ca <sup>2+</sup> | 5.81 ± 0.05%                          | 0.51 ± 0.28                              |
| Co <sup>2+</sup> | $5.46 \pm 0.07\%$                     | 490.15 ± 1.74                            |
| Cu <sup>2+</sup> | $4.28 \pm 0.28\%$                     | 61.68 ± 11.72                            |
| Hg <sup>2+</sup> | $5.69 \pm 0.09\%$                     | $-0.56 \pm 0.43$                         |
| Mg <sup>2+</sup> | $6.64 \pm 0.14\%$                     | $1.63 \pm 0.73$                          |
| Mn <sup>2+</sup> | $5.99 \pm 0.03\%$                     | 3.30 ± 1.71                              |
| Ni <sup>2+</sup> | $-7.65 \pm 0.08\%$                    | 6.72 ± 3.38                              |
| Sn <sup>2+</sup> | $-21.39 \pm 0.83\%$                   | 287.59 ± 7.27                            |
| Zn <sup>2+</sup> | $-26.90 \pm 1.14\%$                   | 289.20 ± 9.10                            |

<sup>a</sup> [Bimane] =  $5.0 \times 10^{-2}$  mM; [metal salt] =  $6.16 \times 10^{-3}$  mM; all metal salts had chloride as a counterion; all reported results represent an average of three trials.

<sup>b</sup> Percent change was measured according to the following equation:

Percent change = (absorbance intensity in the absence of metal) – (absorbance intensity in the presence of metal) / (absorbance intensity in the absence of metal) \* 100%

<sup>c</sup> For these results, the intensity of the UV-visible absorption peak at 510 nm in the presence of a metal chloride salt was divided by the intensity of the UV-visible absorption peak at 510 nm in the absence of a metal chloride salt

SUMMARY TABLES THAT ILLUSTRATE THE INTERACTION OF COBALT (II) CHLORIDE WITH BIMANE

| Table S6. Changes in th     | e integrated fluore                      | escence emission | of bimane in | n the presenc | e of increasing |
|-----------------------------|------------------------------------------|------------------|--------------|---------------|-----------------|
| concentrations of cobalt (I | <ol> <li>chloride<sup>a</sup></li> </ol> |                  |              |               |                 |

| [CoCl <sub>2</sub> ]       | Integrated fluorescence emission <sup>b</sup> |  |
|----------------------------|-----------------------------------------------|--|
| 0.00 mM                    | $1.00 \pm 0.0012$                             |  |
| 3.23 x 10 <sup>-5</sup> mM | $0.78 \pm 0.0011$                             |  |
| 6.25 x 10 <sup>-5</sup> mM | $0.62 \pm 0.0007$                             |  |
| 9.10 x 10 <sup>-5</sup> mM | $0.52 \pm 0.0003$                             |  |
| 1.18 x 10 <sup>-4</sup> mM | $0.44 \pm 0.0000$                             |  |
| 1.43 x 10 <sup>-4</sup> mM | $0.38 \pm 0.0001$                             |  |
| 1.67 x 10 <sup>-4</sup> mM | $0.34 \pm 0.0004$                             |  |
| 1.88 x 10 <sup>-4</sup> mM | $0.30 \pm 0.0002$                             |  |
| 2.10 x 10 <sup>-4</sup> mM | $0.27 \pm 0.0004$                             |  |
| 2.31 x 10 <sup>-4</sup> mM | $0.25 \pm 0.0001$                             |  |
| 2.51 x 10 <sup>-4</sup> mM | $0.23 \pm 0.0003$                             |  |
| 2.71 x 10 <sup>-4</sup> mM | $0.21 \pm 0.0000$                             |  |
| 2.92 x 10 <sup>-4</sup> mM | $0.19 \pm 0.0006$                             |  |
| 3.12 x 10 <sup>-4</sup> mM | $0.18 \pm 0.0005$                             |  |
| 3.31 x 10 <sup>-4</sup> mM | $0.18 \pm 0.0001$                             |  |
| 3.51 x 10 <sup>-4</sup> mM | $0.17 \pm 0.0004$                             |  |

<sup>a</sup> Bimane concentration was held constant at 5.0 x 10<sup>-2</sup> mM. All reported results represent an average of at least two trials.

<sup>b</sup> Integrated fluorescence emission was normalized so that the highest integration value was set to 1.

|                                                                                      | visible absorption spectra of bimane at higher concentrations of cobalt (II) chloride <sup>a</sup> |                     |                     |                    |                                 |  |
|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------|---------------------|--------------------|---------------------------------|--|
| [CoCl <sub>2</sub> ] % Change at % Change at % Change at 390 Intensity/ Initial inte |                                                                                                    |                     |                     |                    | Intensity/ Initial intensity at |  |
|                                                                                      |                                                                                                    | 230 nm <sup>b</sup> | 255 nm <sup>b</sup> | nm <sup>b</sup>    | 510 nm <sup>c</sup>             |  |
|                                                                                      | 0.00 mM 0.00%                                                                                      |                     | 0.00%               | 0.00%              | 1.00                            |  |
|                                                                                      | 3.23 x 10 <sup>-5</sup> mM                                                                         | $0.01 \pm 0.004\%$  | $0.02 \pm 0.001\%$  | $0.02 \pm 0.005\%$ | $11.84 \pm 0.06$                |  |

 $0.04 \pm 0.002\%$ 

 $0.06 \pm 0.002\%$ 

 $0.08 \pm 0.000\%$ 

 $0.10 \pm 0.001\%$ 

 $0.12 \pm 0.001\%$ 

 $22.60 \pm 0.25$ 

 $33.11 \pm 0.31$ 

 $42.42 \pm 0.94$ 

 $51.16\pm0.85$ 

 $59.46 \pm 1.04$ 

**Table S7.** Summary of how the changes in cobalt chloride concentration lead to changes in the UV-visible absorption spectra of bimane at higher concentrations of cobalt (II) chloride<sup>a</sup>

 $0.04 \pm 0.001\%$ 

 $0.05 \pm 0.001\%$ 

 $0.07 \pm 0.001\%$ 

 $0.09 \pm 0.001\%$ 

 $0.11 \pm 0.001\%$ 

6.25 x 10<sup>-5</sup> mM

9.10 x 10<sup>-5</sup> mM

1.18 x 10<sup>-4</sup> mM

1.43 x 10<sup>-4</sup> mM

1.67 x 10<sup>-4</sup> mM

 $0.03 \pm 0.003\%$ 

 $0.05 \pm 0.000\%$ 

 $0.06 \pm 0.002\%$ 

 $0.08 \pm 0.004\%$ 

 $0.09 \pm 0.001\%$ 

| 1.88 x 10 <sup>-4</sup> mM | $0.11 \pm 0.001\%$ | $0.13 \pm 0.000\%$ | $0.14 \pm 0.000\%$ | 67.18 ± 1.25      |
|----------------------------|--------------------|--------------------|--------------------|-------------------|
| 2.10 x 10 <sup>-4</sup> mM | $0.13 \pm 0.005\%$ | $0.14 \pm 0.001\%$ | $0.15 \pm 0.001\%$ | $75.27 \pm 1.33$  |
| 2.31 x 10 <sup>-4</sup> mM | $0.15 \pm 0.000\%$ | $0.16 \pm 0.002\%$ | $0.17 \pm 0.001\%$ | 82.54 ± 1.84      |
| 2.51 x 10 <sup>-4</sup> mM | $0.16 \pm 0.003\%$ | $0.17 \pm 0.002\%$ | $0.19 \pm 0.001\%$ | 89.64 ± 1.76      |
| 2.71 x 10 <sup>-4</sup> mM | $0.18 \pm 0.003\%$ | $0.19 \pm 0.001\%$ | $0.21 \pm 0.001\%$ | $95.78 \pm 2.01$  |
| 2.92 x 10 <sup>-4</sup> mM | $0.19 \pm 0.002\%$ | $0.20 \pm 0.000\%$ | $0.22 \pm 0.001\%$ | $102.05 \pm 1.79$ |
| 3.12 x 10 <sup>-4</sup> mM | $0.20 \pm 0.001\%$ | $0.22 \pm 0.001\%$ | $0.23 \pm 0.001\%$ | $107.85 \pm 2.02$ |
| 3.31 x 10 <sup>-4</sup> mM | $0.21 \pm 0.003\%$ | $0.23 \pm 0.000\%$ | $0.25 \pm 0.000\%$ | $113.41 \pm 1.94$ |
| 3.51 x 10 <sup>-4</sup> mM | $0.23 \pm 0.003\%$ | $0.25 \pm 0.002\%$ | $0.26 \pm 0.000\%$ | $118.66 \pm 2.32$ |

<sup>b</sup> Percent change was measured according to the following equation:

Percent change = (absorbance intensity in the absence of metal) – (absorbance intensity in the presence of metal) / (absorbance intensity in the absence of metal) \* 100%

<sup>c</sup> For these results, the intensity of the UV-visible absorption peak at 510 nm at a specified concentration of cobalt (II) chloride was divided by the intensity of the UV-visible absorption peak at 510 nm in the absence of cobalt (II) chloride

**Table S8.** Measurements of the binding constant of cobalt (II) chloride with bimane (as determined via Benesi-Hildebrand plots) as well as the Stern-Volmer quenching constants<sup>a</sup>

| Log(K <sub>a</sub> ) | Ka                                     | Stern-Volmer quenching constant |
|----------------------|----------------------------------------|---------------------------------|
| 7.11 ±0.01           | 1.29 x 10 <sup>7</sup> M <sup>-1</sup> | 1.18 x 10 <sup>7</sup>          |

<sup>a</sup> All results represent an average of at least two trials.

SUMMARY TABLES THAT ILLUSTRATE THE INTERACTION OF COBALT (II) ACETATE WITH BIMANE

| Table S9. Changes     | in the    | integrated           | fluorescence | emission | of | bimane | in | the | presence | of | increasing |
|-----------------------|-----------|----------------------|--------------|----------|----|--------|----|-----|----------|----|------------|
| concentrations of cob | oalt (II) | acetate <sup>a</sup> |              |          |    |        |    |     |          |    |            |

| [Co(OAc) <sub>2</sub> ]    | Integrated fluorescence emission <sup>b</sup> |
|----------------------------|-----------------------------------------------|
| 0.00 mM                    | $1.00 \pm 0.0001$                             |
| 1.64 x 10 <sup>-5</sup> mM | $0.86 \pm 0.0007$                             |
| 3.23 x 10 <sup>-5</sup> mM | $0.75 \pm 0.0010$                             |
| 4.76 x 10 <sup>-5</sup> mM | $0.67 \pm 0.0004$                             |
| 6.25 x 10 <sup>-5</sup> mM | $0.60 \pm 0.0011$                             |
| 7.70 x 10 <sup>-5</sup> mM | $0.55 \pm 0.0002$                             |
| 9.10 x 10 <sup>-5</sup> mM | $0.50 \pm 0.0011$                             |
| 1.05 x 10 <sup>-4</sup> mM | $0.46 \pm 0.0005$                             |
| 1.18 x 10 <sup>-4</sup> mM | $0.43 \pm 0.0006$                             |
| 1.31 x 10 <sup>-4</sup> mM | $0.40 \pm 0.0003$                             |
| 1.43 x 10 <sup>-4</sup> mM | $0.37 \pm 0.0009$                             |
| 1.55 x 10 <sup>-4</sup> mM | $0.35 \pm 0.0003$                             |
| 1.67 x 10 <sup>-4</sup> mM | $0.33 \pm 0.0006$                             |

<sup>a</sup> Bimane concentration was held constant at 5.0 x 10<sup>-2</sup> mM. All reported results represent an average of at least two trials.

<sup>b</sup> Integrated fluorescence emission was normalized so that the highest integration value was set to 1.

**Table S10.** Changes in the UV-visible absorption spectrum of bimane in the presence of increasing concentrations of cobalt (II) acetate<sup>a</sup>

| [Co(OAc) <sub>2</sub> ]    | 230 nm <sup>b</sup> | 255 nm <sup>b</sup> | 390 nm <sup>b</sup> | 510 nm <sup>c</sup> |
|----------------------------|---------------------|---------------------|---------------------|---------------------|
| 0.00 mM                    | 0.0%                | 0.0%                | 0.0%                | $1.0 \pm 0.0$       |
| 1.64 x 10 <sup>-5</sup> mM | 0.4 ± 0.23%         | $1.4 \pm 0.04\%$    | $1.5 \pm 0.02\%$    | $29.0 \pm 3.2$      |
| 3.23 x 10 <sup>-5</sup> mM | 0.2 ± 0.34%         | 2.7 ± 0.12%         | $2.7 \pm 0.14\%$    | $56.9 \pm 6.3$      |
| 4.76 x 10 <sup>-5</sup> mM | 0.7 ± 0.59%         | 4.1 ± 0.08%         | $4.1 \pm 0.00\%$    | 84.5 ± 9.2          |
| 6.25 x 10 <sup>-5</sup> mM | $0.6 \pm 0.37\%$    | 5.3 ± 0.06%         | 5.3 ± 0.15%         | $111.0 \pm 12.1$    |
| 7.70 x 10 <sup>-5</sup> mM | 0.7 ± 0.19%         | 6.7 ± 0.06%         | 6.4 ± 0.11%         | $137.3 \pm 14.9$    |
| 9.10 x 10 <sup>-5</sup> mM | $0.7 \pm 0.27\%$    | $7.9 \pm 0.03\%$    | $7.7 \pm 0.08\%$    | $163.4 \pm 17.7$    |
| 1.05 x 10 <sup>-4</sup> mM | 0.8 ± 0.38%         | 8.9 ± 0.17%         | 8.3 ± 0.75%         | $192.6 \pm 27.5$    |
| 1.18 x 10 <sup>-4</sup> mM | 0.8 ± 0.23%         | $10.3 \pm 0.06\%$   | $10.0 \pm 0.10\%$   | $212.2 \pm 23.9$    |
| 1.31 x 10 <sup>-4</sup> mM | $1.3 \pm 0.27\%$    | $11.3 \pm 1.08\%$   | $11.1 \pm 0.02\%$   | $236.8 \pm 25.7$    |
| 1.43 x 10 <sup>-4</sup> mM | $0.9 \pm 0.36\%$    | $12.5 \pm 0.05\%$   | $12.2 \pm 0.07\%$   | $259.5 \pm 29.0$    |

| 1.55 x 10 <sup>-4</sup> mM | $0.9 \pm 0.11\%$ | $13.5 \pm 0.16\%$ | $13.1 \pm 0.00\%$ | $282.5 \pm 31.7$ |
|----------------------------|------------------|-------------------|-------------------|------------------|
| 1.67 x 10 <sup>-4</sup> mM | $0.7 \pm 0.42\%$ | $14.6 \pm 0.04\%$ | $14.1 \pm 0.00\%$ | $304.5 \pm 33.7$ |

<sup>b</sup> Percent decrease was calculated by subtracting the integrated fluorescence emission of bimane at 0 mM of cobalt (II) chloride by the integrated fluorescence emission of bimane at the specified concentration of cobalt (II) chloride and multiplying that value by 100%

<sup>c</sup> For these results, the intensity of the UV-visible absorption peak at 510 nm at a specified concentration of cobalt (II) chloride was divided by the intensity of the UV-visible absorption peak at 510 nm in the absence of cobalt (II) chloride

**Table S11.** Measurements of the binding constant of cobalt (II) acetate with bimane (as determined via Benesi-Hildebrand plots) as well as the Stern-Volmer quenching constants<sup>a</sup>

| Log(K <sub>a</sub> ) | K <sub>a</sub>                         | Stern-Volmer quenching constant        |
|----------------------|----------------------------------------|----------------------------------------|
| $7.00 \pm 0.01$      | 9.95 x 10 <sup>6</sup> M <sup>-1</sup> | 1.23 x 10 <sup>7</sup> M <sup>-1</sup> |

<sup>a</sup> All results represent an average of at least two trials.

# SUMMARY TABLES SHOWING THE INTERACTION OF DIFFERENT METAL SALTS WITH A BIMANE: $\beta$ -CYCLODEXTRIN COMPLEX

| <b>Table S12.</b> Summary of the fluorescence integration changes from treating a solution of bimane 1 with a |
|---------------------------------------------------------------------------------------------------------------|
| variety of metal chloride salts <sup>a</sup>                                                                  |

| Metal            | Normalized fluorescence integration |
|------------------|-------------------------------------|
| none             | $1.00 \pm 0.000$                    |
| Ba <sup>2+</sup> | $0.95 \pm 0.0002$                   |
| Ca <sup>2+</sup> | $0.94 \pm 0.0001$                   |
| Co <sup>2+</sup> | $0.53 \pm 0.0011$                   |
| Cu <sup>2+</sup> | $0.83 \pm 0.0031$                   |
| Hg <sup>2+</sup> | $0.92 \pm 0.0002$                   |
| Mg <sup>2+</sup> | $0.94 \pm 0.0003$                   |
| Mn <sup>2+</sup> | $0.92 \pm 0.0003$                   |
| Ni <sup>2+</sup> | $0.82 \pm 0.0013$                   |
| Sn <sup>2+</sup> | $0.75 \pm 0.0009$                   |
| Zn <sup>2+</sup> | $0.78 \pm 0.0003$                   |

 $a [Bimane] = 5.0 \times 10^{-2} \text{ mM}; [metal salt] = 6.16 \times 10^{-3} \text{ mM}; all metal salts had chloride as a counterion; all reported results represent an average of three trials.$ 

**Table S13.** Summary of the UV-visible spectral changes from treating a solution of bimane **1** with a variety of metal salts<sup>a</sup>

| Metal              | Percent change at 390 nm <sup>b</sup> | Intensity/ Initial Intensity at 510 nm <sup>c</sup> |
|--------------------|---------------------------------------|-----------------------------------------------------|
| none               | 0.00%                                 | 1.00                                                |
| $Ba^{2+}$          | 6.87 ± 0.00%                          | 0.75 ± 0.000                                        |
| Ca <sup>2+</sup>   | $7.17 \pm 0.00\%$                     | $0.80 \pm 0.000$                                    |
| Co <sup>2+</sup>   | $-3.39 \pm 0.62\%$                    | 9.36 ± 0.058                                        |
| Cu <sup>2+</sup>   | 5.00 ± 1.76%                          | $1.00 \pm 0.206$                                    |
| $\mathrm{Hg}^{2+}$ | $2.68 \pm 0.00\%$                     | $1.14 \pm 0.000$                                    |
| $Mg^{2+}$          | 3.83 ± 0.00%                          | $1.34 \pm 0.000$                                    |
| $Mn^{2+}$          | 5.91 ± 0.19%                          | 0.91 ± 0.060                                        |
| Ni <sup>2+</sup>   | $-24.48 \pm 0.04\%$                   | $0.90 \pm 0.037$                                    |
| $\mathrm{Sn}^{2+}$ | -35.73 ±1.19%                         | 3.97 ± 0.206                                        |
| $Zn^{2+}$          | $-24.42 \pm 0.45\%$                   | $3.04 \pm 0.082$                                    |

<sup>a</sup> [Bimane] =  $5.0 \times 10^{-2}$  mM; [metal salt] =  $6.16 \times 10^{-3}$  mM; all metal salts had chloride as a counterion; all reported results represent an average of three trials.

<sup>b</sup> Percent change was measured according to the following equation:

Percent change = (absorbance intensity in the absence of metal) – (absorbance intensity in the presence of metal) / (absorbance intensity in the absence of metal) \* 100%

<sup>c</sup> For these results, the intensity of the UV-visible absorption peak at 510 nm in the presence of a metal chloride salt was divided by the intensity of the UV-visible absorption peak at 510 nm in the absence of a metal chloride salt

## SUMMARY TABLES THAT DEMONSTRATE THE INTERACTION OF COBALT (II) ACETATE WITH A BIMANE-β-CYCLODEXTRIN COMPLEX

| Table S14. Summary of the UV-visible spectral changes from treating a solution of bimane 1 with cobalt |
|--------------------------------------------------------------------------------------------------------|
| (II) acetate <sup>a</sup>                                                                              |

| [Co(OAc) <sub>2</sub> ]    | 230 nm <sup>b</sup> | 255 nm <sup>b</sup> | 390 nm <sup>b</sup> | 510 nm <sup>c</sup> |
|----------------------------|---------------------|---------------------|---------------------|---------------------|
| 0.00 mM                    | 0.00%               | 0.00%               | 0.00%               | 1.00                |
| 1.64 x 10 <sup>-5</sup> mM | $1.50 \pm 0.18\%$   | $1.87 \pm 0.14\%$   | $1.96 \pm 0.62\%$   | $6.12 \pm 0.79$     |
| 3.23 x 10 <sup>-5</sup> mM | $3.19 \pm 0.21\%$   | $3.66 \pm 0.20\%$   | $3.47 \pm 0.54\%$   | $11.26 \pm 1.47$    |
| 4.76 x 10 <sup>-5</sup> mM | $4.77 \pm 0.14\%$   | $5.35 \pm 0.07\%$   | $5.09 \pm 0.30\%$   | $16.09 \pm 1.99$    |
| 6.25 x 10 <sup>-5</sup> mM | $6.52 \pm 0.20\%$   | $6.95 \pm 0.06\%$   | $6.52 \pm 0.46\%$   | $20.80 \pm 2.66$    |
| 7.70 x 10 <sup>-5</sup> mM | $7.80 \pm 0.30\%$   | 8.37 ± 0.02%        | $7.80 \pm 0.42\%$   | $25.41 \pm 3.16$    |
| 9.10 x 10 <sup>-5</sup> mM | $9.37 \pm 0.02\%$   | $10.00 \pm 0.11\%$  | $9.09 \pm 0.42\%$   | $29.68 \pm 3.61$    |
| 1.05 x 10 <sup>-4</sup> mM | $10.80 \pm 0.15\%$  | $11.37 \pm 0.07\%$  | $10.36 \pm 0.54\%$  | $34.02 \pm 4.18$    |
| 1.18 x 10 <sup>-4</sup> mM | $12.03 \pm 0.10\%$  | $12.65 \pm 0.13\%$  | $11.58 \pm 0.57\%$  | $38.65 \pm 4.14$    |
| 1.31 x 10 <sup>-4</sup> mM | $13.44 \pm 0.16\%$  | $13.99 \pm 0.00\%$  | $12.48 \pm 0.12\%$  | $42.23 \pm 5.20$    |
| 1.43 x 10 <sup>-4</sup> mM | $14.56 \pm 0.10\%$  | $15.13 \pm 0.11\%$  | $13.74 \pm 0.31\%$  | $46.01 \pm 5.67$    |
| 1.55 x 10 <sup>-4</sup> mM | $15.57 \pm 0.02\%$  | $16.32 \pm 0.04\%$  | $14.87 \pm 0.36\%$  | $49.85 \pm 6.26$    |
| 1.67 x 10 <sup>-4</sup> mM | 16.68 ±0.04%        | $17.51 \pm 0.02\%$  | $15.77 \pm 0.21\%$  | $53.42 \pm 6.71$    |
|                            |                     |                     |                     |                     |

<sup>a</sup> Bimane concentration was held constant at  $5.0 \times 10^{-2}$  mM. All reported results represent an average of at least two trials.

<sup>b</sup> Percent change was measured according to the following equation:

Percent change = (absorbance intensity in the absence of metal) – (absorbance intensity in the presence of metal) / (absorbance intensity in the absence of metal) \* 100%

<sup>c</sup> For these results, the intensity of the UV-visible absorption peak at 510 nm at a specified concentration of cobalt (II) chloride was divided by the intensity of the UV-visible absorption peak at 510 nm in the absence of cobalt (II) chloride

**Table S15.** Changes in the integrated fluorescence emission of the bimane- $\beta$ -cyclodextrin complex in the presence of increasing concentrations of cobalt (II) acetate<sup>a</sup>

| [Co(OAc) <sub>2</sub> ]    | Integrated fluorescence emission <sup>b</sup> |
|----------------------------|-----------------------------------------------|
| 0.00 mM                    | $1.00 \pm 0.0004$                             |
| 1.64 x 10 <sup>-5</sup> mM | $0.84 \pm 0.0012$                             |
| 3.23 x 10 <sup>-5</sup> mM | $0.72 \pm 0.0002$                             |
| 4.76 x 10 <sup>-5</sup> mM | $0.63 \pm 0.0003$                             |
| 6.25 x 10 <sup>-5</sup> mM | $0.56 \pm 0.0001$                             |
| 7.70 x 10 <sup>-5</sup> mM | $0.50 \pm 0.0025$                             |
| 9.10 x 10 <sup>-5</sup> mM | $0.45 \pm 0.0002$                             |

| 1.05 x 10 <sup>-4</sup> mM | $0.41 \pm 0.0002$ |
|----------------------------|-------------------|
| 1.18 x 10 <sup>-4</sup> mM | $0.38 \pm 0.0000$ |
| 1.31 x 10 <sup>-4</sup> mM | $0.35 \pm 0.0001$ |
| 1.43 x 10 <sup>-4</sup> mM | $0.32 \pm 0.0007$ |
| 1.55 x 10 <sup>-4</sup> mM | $0.30 \pm 0.0002$ |
| 1.67 x 10 <sup>-4</sup> mM | $0.28 \pm 0.0007$ |
|                            |                   |

<sup>b</sup> Integrated fluorescence emission was normalized so that the highest integration value was set to 1.

<sup>c</sup> Percent decrease was calculated by subtracting the integrated fluorescence emission of bimane at 0 mM of cobalt (II) acetate by the integrated fluorescence emission of the bimane- $\beta$ -cyclodextrin complex at the specified concentration of cobalt (II) acetate and multiplying that value by 100%

**Table S16.** Measurements of the binding constant of cobalt (II) acetate with the bimane- $\beta$ -cyclodextrin complex (as determined via Benesi-Hildebrand plots) as well as the Stern-Volmer quenching constants<sup>a</sup>

| Log(K           | .a)  | K <sub>a</sub>                         | Stern-Volmer quenching constant |
|-----------------|------|----------------------------------------|---------------------------------|
| $7.05 \pm 0.00$ | 0045 | 1.13 x 10 <sup>7</sup> M <sup>-1</sup> | 1.72 x 10 <sup>7</sup> M        |

<sup>a</sup> All results represent an average of at least two trials.

## SUMMARY TABLES THAT ILLUSTRATE THE INTERACTION OF COBALT (II) CHLORIDE WITH THE BIMANE-β-CYCLODEXTRIN COMPLEX

**Table S17.** Changes in the integrated fluorescence emission of the bimane- $\beta$ -cyclodextrin complex in the presence of increasing concentrations of cobalt (II) chloride<sup>a</sup>

| [CoCl <sub>2</sub> ]       | Integrated fluorescence emission <sup>b</sup> |
|----------------------------|-----------------------------------------------|
| 0.00 mM                    | $1.00 \pm 0.001$                              |
| 3.23 x 10 <sup>-5</sup> mM | $0.73 \pm 0.000$                              |
| 6.25 x 10 <sup>-5</sup> mM | $0.57 \pm 0.001$                              |
| 9.10 x 10 <sup>-5</sup> mM | $0.47 \pm 0.001$                              |
| 1.18 x 10 <sup>-4</sup> mM | $0.39 \pm 0.002$                              |
| 1.43 x 10 <sup>-4</sup> mM | $0.34 \pm 0.001$                              |
| 1.67 x 10 <sup>-4</sup> mM | $0.30 \pm 0.002$                              |
| 1.88 x 10 <sup>-4</sup> mM | $0.26 \pm 0.000$                              |
| 2.10 x 10 <sup>-4</sup> mM | $0.24 \pm 0.002$                              |
| 2.31 x 10 <sup>-4</sup> mM | $0.21 \pm 0.000$                              |
| 2.51 x 10 <sup>-4</sup> mM | $0.19 \pm 0.001$                              |
| 2.71 x 10 <sup>-4</sup> mM | $0.18 \pm 0.000$                              |
| 2.92 x 10 <sup>-4</sup> mM | $0.17 \pm 0.001$                              |
| 3.12 x 10 <sup>-4</sup> mM | $0.16 \pm 0.001$                              |

<sup>a</sup> Bimane concentration was held constant at 5.0 x 10<sup>-2</sup> mM. All reported results represent an average of at least two trials.

<sup>b</sup> Integrated fluorescence emission was normalized so that the highest integration value was set to 1.

**Table S18.** Changes in the UV-visible absorption spectrum of the bimane- $\beta$ -cyclodextrin complex in the presence of increasing concentrations of cobalt (II) chloride<sup>a</sup>

| [CoCl <sub>2</sub> ]       | % Change at 230 nm <sup>b</sup> | % Change at 255 nm <sup>b</sup> | % Change at 390 nm <sup>b</sup> | Intensity/ Initial intensity at 510 nm <sup>c</sup> |
|----------------------------|---------------------------------|---------------------------------|---------------------------------|-----------------------------------------------------|
| 0.00 mM                    | 0.00%                           | 0.00%                           | 0.00%                           | 1.00                                                |
| 3.23 x 10 <sup>-5</sup> mM | $3.34 \pm 0.00\%$               | $3.66 \pm 0.20\%$               | $3.47 \pm 0.54\%$               | $11.26 \pm 1.47$                                    |
| 6.25 x 10 <sup>-5</sup> mM | $6.38 \pm 0.00\%$               | $6.95 \pm 0.06\%$               | $6.52 \pm 0.46\%$               | $20.80 \pm 2.66$                                    |
| 9.10 x 10 <sup>-5</sup> mM | $9.36 \pm 0.00\%$               | $10.00 \pm 0.11\%$              | $9.09 \pm 0.42\%$               | $29.68 \pm 3.61$                                    |
| 1.18 x 10 <sup>-4</sup> mM | $11.96 \pm 0.00\%$              | $12.65 \pm 0.13\%$              | $11.58 \pm 0.57\%$              | 38.65 ± 4.14                                        |
| 1.43 x 10 <sup>-4</sup> mM | $14.63 \pm 0.00\%$              | $15.13 \pm 0.11\%$              | $13.74 \pm 0.31\%$              | 46.01 ± 5.67                                        |
| 1.67 x 10 <sup>-4</sup> mM | $16.66 \pm 0.00\%$              | $17.51 \pm 0.02\%$              | $15.77 \pm 0.21\%$              | $53.42 \pm 6.71$                                    |
| 1.88 x 10 <sup>-4</sup> mM | $18.90 \pm 0.00\%$              | $19.73 \pm 0.02\%$              | $17.83 \pm 0.25\%$              | $60.56 \pm 7.62$                                    |
| 2.10 x 10 <sup>-4</sup> mM | $20.72 \pm 0.00\%$              | $21.89 \pm 0.08\%$              | $19.62 \pm 0.31\%$              | $66.98 \pm 8.27$                                    |

| 2.31 x 10 <sup>-4</sup> mM | $22.92 \pm 0.00\%$ | $23.95 \pm 0.07\%$ | $21.67 \pm 0.23\%$ | $73.33 \pm 9.11$  |
|----------------------------|--------------------|--------------------|--------------------|-------------------|
| 2.51 x 10 <sup>-4</sup> mM | $24.70 \pm 0.00\%$ | $25.67 \pm 0.02\%$ | $23.16 \pm 0.15\%$ | $79.01 \pm 9.77$  |
| 2.71 x 10 <sup>-4</sup> mM | $26.14 \pm 0.00\%$ | $27.37 \pm 0.08\%$ | $24.76 \pm 0.36\%$ | 84.61 ± 10.52     |
| 2.92 x 10 <sup>-4</sup> mM | $25.58 \pm 0.00\%$ | $27.09 \pm 0.03\%$ | $24.44 \pm 0.31\%$ | $90.60 \pm 11.18$ |
| 3.12 x 10 <sup>-4</sup> mM | $26.57 \pm 0.00\%$ | $28.19 \pm 0.03\%$ | $25.57 \pm 0.17\%$ | 95.77 ± 11.64     |

<sup>b</sup> Percent change was measured according to the following equation:

Percent change = (absorbance intensity in the absence of metal) – (absorbance intensity in the presence of metal) / (absorbance intensity in the absence of metal) \* 100%

<sup>c</sup> For these results, the intensity of the UV-visible absorption peak at 510 nm at a specified concentration of cobalt (II) chloride was divided by the intensity of the UV-visible absorption peak at 510 nm in the absence of cobalt (II) chloride

**Table S19.** Measurements of the binding constant of cobalt (II) chloride with the bimane- $\beta$ -cyclodextrin complex (as determined via Benesi-Hildebrand plots) as well as the Stern-Volmer quenching constants<sup>a</sup>

| Log(K <sub>a</sub> ) | Ka                                     | Stern-Volmer quenching constant |
|----------------------|----------------------------------------|---------------------------------|
| $7.04 \pm 0.01$      | 1.08 x 10 <sup>7</sup> M <sup>-1</sup> | 1.43 x 10 <sup>7</sup> M        |

<sup>a</sup> All results represent an average of at least two trials.

### Information that shows the upper limit of concentration for CoCl<sub>2</sub> using the bimane-β-cyclodextrin complex:

**Table S19.** Summary of how the changes in cobalt (II) chloride concentration lead to changes in the fluorescence emission spectra of the bimane- $\beta$ -cyclodextrin complex and eventual leveling off of the signal above 2.71 x 10<sup>-4</sup> mM of CoCl<sub>2</sub>

| [CoCl <sub>2</sub> ]       | Integrated fluorescence emission <sup>b</sup> |
|----------------------------|-----------------------------------------------|
| 0.00 mM                    | $1.00 \pm 0.00$                               |
| 3.23 x 10 <sup>-5</sup> mM | 0.73 ± 0.0003                                 |
| 6.25 x 10 <sup>-5</sup> mM | $0.57 \pm 0.0009$                             |
| 9.10 x 10 <sup>-5</sup> mM | 0.47 ± 0.0012                                 |
| 1.18 x 10 <sup>-4</sup> mM | $0.39 \pm 0.0017$                             |
| 1.43 x 10 <sup>-4</sup> mM | 0.34 ± 0.0013                                 |
| 1.67 x 10 <sup>-4</sup> mM | 0.30 ± 0.0017                                 |
| 1.88 x 10 <sup>-4</sup> mM | $0.26 \pm 0.0000$                             |
| 2.10 x 10 <sup>-4</sup> mM | $0.24 \pm 0.0017$                             |
| 2.31 x 10 <sup>-4</sup> mM | 0.21 ± 0.0000                                 |
| 2.51 x 10 <sup>-4</sup> mM | 0.19 ± 0.0012                                 |
| 2.71 x 10 <sup>-4</sup> mM | $0.18 \pm 0.0005$                             |

| 2.92 x 10 <sup>-4</sup> mM | $0.17 \pm 0.0007$ |
|----------------------------|-------------------|
| 3.12 x 10 <sup>-4</sup> mM | $0.16 \pm 0.0009$ |

<sup>b</sup> Integrated fluorescence emission was normalized so that the highest integration value was set to 1.

**Table S20.** Summary of how the changes in cobalt chloride concentration lead to changes in the UV-visible absorption spectra of the bimane- $\beta$ -cyclodextrin complex and eventual leveling off of the signal above 2.71 x 10<sup>-4</sup> mM of CoCl<sub>2</sub><sup>a</sup>

| [CoCl <sub>2</sub> ]       | % Change at 230 nm <sup>b</sup> | % Change at 255 nm <sup>b</sup> | % Change at 390<br>nm <sup>b</sup> | Intensity/ Initial intensity at 510 nm <sup>c</sup> |
|----------------------------|---------------------------------|---------------------------------|------------------------------------|-----------------------------------------------------|
| 0.00 mM                    | 0.00%                           | 0.00%                           | 0.00%                              | 1.00%                                               |
| 3.23 x 10 <sup>-5</sup> mM | $3.19 \pm 0.22\%$               | $3.66 \pm 0.20\%$               | $3.47 \pm 0.54\%$                  | $11.26 \pm 1.47\%$                                  |
| 6.25 x 10 <sup>-5</sup> mM | $6.52 \pm 0.20\%$               | $6.95\pm0.06\%$                 | $6.52 \pm 0.46\%$                  | $20.80 \pm 2.66\%$                                  |
| 9.10 x 10 <sup>-5</sup> mM | $9.37 \pm 0.02\%$               | $10.00 \pm 0.11\%$              | $9.09\pm0.42\%$                    | $29.68 \pm 3.61\%$                                  |
| 1.18 x 10 <sup>-4</sup> mM | $12.03 \pm 0.10\%$              | $12.65 \pm 0.13\%$              | $11.58 \pm 0.57\%$                 | $38.65 \pm 4.14\%$                                  |
| 1.43 x 10 <sup>-4</sup> mM | $14.56 \pm 0.10\%$              | $15.13 \pm 0.11\%$              | $13.74 \pm 0.31\%$                 | 46.01 ± 5.67%                                       |
| 1.67 x 10 <sup>-4</sup> mM | $16.68 \pm 0.04\%$              | $17.51 \pm 0.02\%$              | $15.77 \pm 0.21\%$                 | $53.42 \pm 6.71\%$                                  |
| 1.88 x 10 <sup>-4</sup> mM | $18.94 \pm 0.06\%$              | $19.73 \pm 0.02\%$              | $17.83 \pm 0.25\%$                 | $60.56 \pm 7.62\%$                                  |
| 2.10 x 10 <sup>-4</sup> mM | $20.93 \pm 0.29\%$              | $21.89\pm0.08\%$                | $19.62 \pm 0.31\%$                 | $66.98 \pm 8.27\%$                                  |
| 2.31 x 10 <sup>-4</sup> mM | $22.94 \pm 0.03\%$              | $23.95 \pm 0.07\%$              | $21.67 \pm 0.23\%$                 | 73.33 ± 9.11%                                       |
| 2.51 x 10 <sup>-4</sup> mM | $24.52 \pm 0.26\%$              | $25.67 \pm 0.02\%$              | $23.16 \pm 0.15\%$                 | $79.01 \pm 9.77\%$                                  |
| 2.71 x 10 <sup>-4</sup> mM | $26.23 \pm 0.13\%$              | $27.37\pm0.08\%$                | $24.76 \pm 0.36\%$                 | 84.61 ± 10.52%                                      |
| 2.92 x 10 <sup>-4</sup> mM | 25.45 ± 0.18%                   | $27.09 \pm 0.03\%$              | $24.44 \pm 0.31\%$                 | 90.60 ± 11.18%                                      |
| 3.12 x 10 <sup>-4</sup> mM | $26.59 \pm 0.02\%$              | $28.19 \pm 0.03\%$              | $25.57 \pm 0.17\%$                 | 95.77 ± 11.64%                                      |

<sup>a</sup> Bimane concentration was held constant at 5.0 x 10<sup>-2</sup> mM. All reported results represent an average of at least two trials.

<sup>b</sup> Percent change was measured according to the following equation:

Percent change = (absorbance intensity in the absence of metal) – (absorbance intensity in the presence of metal) / (absorbance intensity in the absence of metal) \* 100%

<sup>c</sup> For these results, the intensity of the UV-visible absorption peak at 510 nm at a specified concentration of cobalt (II) chloride was divided by the intensity of the UV-visible absorption peak at 510 nm in the absence of cobalt (II) chloride

#### SUMMARY TABLES ILLUSTRATING EXPERIMENTS IN TAP WATER

Bimane response to cobalt (II) chloride in tap water

**Table S21.** Changes in the integrated fluorescence emission of bimane in the presence of increasing concentrations of cobalt (II) chloride in tap water<sup>a</sup>

| [CoCl <sub>2</sub> ]       | Integrated fluorescence emission <sup>b</sup> |
|----------------------------|-----------------------------------------------|
| 0.00 mM                    | $1.00 \pm 0.001$                              |
| 1.64 x 10 <sup>-5</sup> mM | $0.87 \pm 0.002$                              |
| 3.23 x 10 <sup>-5</sup> mM | $0.76 \pm 0.002$                              |
| 4.76 x 10 <sup>-5</sup> mM | $0.68 \pm 0.001$                              |
| 6.25 x 10 <sup>-5</sup> mM | $0.61 \pm 0.001$                              |
| 7.70 x 10 <sup>-5</sup> mM | $0.56 \pm 0.000$                              |
| 9.10 x 10 <sup>-5</sup> mM | $0.50 \pm 0.000$                              |
| 1.05 x 10 <sup>-4</sup> mM | $0.46 \pm 0.000$                              |
| 1.18 x 10 <sup>-4</sup> mM | 0.43 ± 0.000                                  |
| 1.31 x 10 <sup>-4</sup> mM | $0.40 \pm 0.000$                              |
| 1.43 x 10 <sup>-4</sup> mM | $0.37 \pm 0.000$                              |
| 1.55 x 10 <sup>-4</sup> mM | $0.34 \pm 0.000$                              |
| 1.67 x 10 <sup>-4</sup> mM | $0.32 \pm 0.000$                              |

<sup>a</sup> Bimane concentration was held constant at 5.0 x 10<sup>-2</sup> mM. All reported results represent an average of at least two trials.

<sup>b</sup> Integrated fluorescence emission was normalized so that the highest integration value was set to 1.

**Table S22.** Changes in the UV-visible absorption spectrum of bimane in the presence of increasing concentrations of cobalt (II) chloride in tap water<sup>a</sup>

| [CoCl <sub>2</sub> ]       | 230 nm <sup>b</sup> | 255 nm <sup>b</sup> | 390 nm <sup>b</sup> |
|----------------------------|---------------------|---------------------|---------------------|
| 0.00 mM                    | 0.00%               | 0.00%               | 0.00%               |
| 1.64 x 10 <sup>-5</sup> mM | $-0.61 \pm 0.41\%$  | 0.01 ± 0.05%        | 0.11 ± 0.15%        |
| 3.23 x 10 <sup>-5</sup> mM | $-0.46 \pm 0.16\%$  | $0.53 \pm 0.01\%$   | $0.67 \pm 0.21\%$   |
| 4.76 x 10 <sup>-5</sup> mM | $-0.14 \pm 0.50\%$  | 0.94 ± 0.10%        | $0.74 \pm 0.32\%$   |
| 6.25 x 10 <sup>-5</sup> mM | $-0.26 \pm 0.82\%$  | $1.49 \pm 0.17\%$   | $0.94 \pm 0.15\%$   |
| 7.70 x 10 <sup>-5</sup> mM | $0.74 \pm 0.21\%$   | 2.13 ± 0.15%        | $1.68 \pm 0.04\%$   |
| 9.10 x 10 <sup>-5</sup> mM | $1.88 \pm 0.61\%$   | 2.98 ± 0.21%        | $2.19 \pm 0.67\%$   |
| 1.05 x 10 <sup>-4</sup> mM | $2.27 \pm 0.16\%$   | 3.85 ± 0.17%        | $2.65 \pm 0.86\%$   |
| 1.18 x 10 <sup>-4</sup> mM | 3.21 ± 0.17%        | 4.85 ± 0.23%        | $3.62 \pm 0.56\%$   |
| 1.31 x 10 <sup>-4</sup> mM | $4.49 \pm 0.71\%$   | $6.00 \pm 0.09\%$   | $4.19 \pm 0.27\%$   |

| 1.43 x 10 <sup>-4</sup> mM | $5.32 \pm 0.92\%$ | $6.88 \pm 0.12\%$ | $5.01 \pm 0.30\%$ |
|----------------------------|-------------------|-------------------|-------------------|
| 1.55 x 10 <sup>-4</sup> mM | 6.81 ± 0.16%      | $8.37 \pm 0.07\%$ | $5.92 \pm 0.42\%$ |
| 1.67 x 10 <sup>-4</sup> mM | $8.43 \pm 0.45\%$ | $9.72 \pm 0.08\%$ | $7.48 \pm 0.15\%$ |

<sup>b</sup> Percent change was measured according to the following equation:

Percent change = (absorbance intensity in the absence of metal) – (absorbance intensity in the presence of metal) / (absorbance intensity in the absence of metal) \* 100%

*Response of the bimane:*  $\beta$ *- cyclodextrin complex to cobalt (II) chloride in tap water* 

**Table S23.** Changes in the integrated fluorescence emission of the bimane:  $\beta$ -cyclodextrin complex in the presence of increasing concentrations of cobalt (II) chloride in tap water<sup>a</sup>

| [CoCl <sub>2</sub> ]       | Integrated fluorescence emission <sup>b</sup> |
|----------------------------|-----------------------------------------------|
| 0.00 mM                    | $1.00 \pm 0.001$                              |
| 1.64 x 10 <sup>-5</sup> mM | $0.83 \pm 0.001$                              |
| 3.23 x 10 <sup>-5</sup> mM | $0.71 \pm 0.000$                              |
| 4.76 x 10 <sup>-5</sup> mM | $0.62 \pm 0.000$                              |
| 6.25 x 10 <sup>-5</sup> mM | $0.55 \pm 0.000$                              |
| 7.70 x 10 <sup>-5</sup> mM | $0.48 \pm 0.000$                              |
| 9.10 x 10 <sup>-5</sup> mM | $0.44 \pm 0.000$                              |
| 1.05 x 10 <sup>-4</sup> mM | $0.40 \pm 0.00$                               |
| 1.18 x 10 <sup>-4</sup> mM | $0.36 \pm 0.001$                              |
| 1.31 x 10 <sup>-4</sup> mM | $0.33 \pm 0.000$                              |
| 1.43 x 10 <sup>-4</sup> mM | $0.31 \pm 0.000$                              |
| 1.55 x 10 <sup>-4</sup> mM | $0.29 \pm 0.000$                              |
| 1.67 x 10 <sup>-4</sup> mM | $0.27 \pm 0.000$                              |

<sup>a</sup> Bimane concentration was held constant at  $5.0 \times 10^{-2}$  mM. All reported results represent an average of at least two trials.

<sup>b</sup> Integrated fluorescence emission was normalized so that the highest integration value was set to 1.

**Table S24.** Changes in the UV-visible absorption spectrum of the bimane:  $\beta$ -cyclodextrin complex in the presence of increasing concentrations of cobalt (II) chloride in tap water<sup>a</sup>

| [CoCl <sub>2</sub> ]       | 230 nm <sup>b</sup> | 255 nm <sup>b</sup> | 390 nm <sup>b</sup> |
|----------------------------|---------------------|---------------------|---------------------|
| 0.00 mM                    | 0.00%               | 0.00%               | 0.00%               |
| 1.64 x 10 <sup>-5</sup> mM | $-1.04 \pm 0.93\%$  | $1.34 \pm 3.44\%$   | 1.02 ± 1.19%        |
| 3.23 x 10 <sup>-5</sup> mM | 0.16 ± 1.93%        | 3.67 ± 3.93%        | 4.31 ± 2.73%        |
| 4.76 x 10 <sup>-5</sup> mM | $0.97 \pm 0.85\%$   | 4.50 ± 2.52%        | 3.57 ± 1.02%        |

| 6.25 x 10 <sup>-5</sup> mM | $1.50 \pm 0.67\%$ | 5.96 ± 2.01%       | $5.02 \pm 0.63\%$  |
|----------------------------|-------------------|--------------------|--------------------|
| 7.70 x 10 <sup>-5</sup> mM | 1.57 ± 1.08%      | 6.28 ± 2.74%       | 4.67 ± 1.30%       |
| 9.10 x 10 <sup>-5</sup> mM | $1.99 \pm 0.74\%$ | $7.07 \pm 2.43\%$  | $5.36 \pm 0.60\%$  |
| 1.05 x 10 <sup>-4</sup> mM | $3.22 \pm 0.74\%$ | 8.35 ± 2.53%       | 5.81 ± 1.67%       |
| 1.18 x 10 <sup>-4</sup> mM | 3.49 ± 1.44%      | 8.99 ± 3.00%       | 6.43 ± 1.29%       |
| 1.31 x 10 <sup>-4</sup> mM | 5.41 ± 0.84%      | $11.22 \pm 2.73\%$ | 9.67 ± 3.17%       |
| 1.43 x 10 <sup>-4</sup> mM | 5.91 ± 1.21%      | $12.42 \pm 3.08\%$ | $10.62 \pm 4.06\%$ |
| 1.55 x 10 <sup>-4</sup> mM | $6.36 \pm 0.85\%$ | $13.60 \pm 1.90\%$ | $11.32 \pm 0.45\%$ |
| 1.67 x 10 <sup>-4</sup> mM | $7.21 \pm 1.01\%$ | $14.30 \pm 2.62\%$ | $12.53 \pm 0.63\%$ |

<sup>b</sup> Percent change was measured according to the following equation:

Percent change = (absorbance intensity in the absence of metal) – (absorbance intensity in the presence of metal) / (absorbance intensity in the absence of metal) \* 100%

#### SUMMARY TABLE FOR LIMIT OF DETECTION STUDIES

**Table S25.** Table summarizing the limit of detection and limit of quantification for cobalt (II) chloride in double distilled water using changes in the bimane fluorescence emission as well as changes in the emission of the bimane:  $\beta$ -cyclodextrin complex<sup>a</sup>

|                         | Bimane                     | Bimane: β-Cyclodextrin Complex |
|-------------------------|----------------------------|--------------------------------|
| Limit of Detection      | $0.88 \pm 0.02 \text{ nM}$ | $0.60 \pm 0.05 \text{ nM}$     |
| Limit of Quantification | $1.32 \pm 0.08 \text{ nM}$ | $1.00 \pm 0.15 \text{ nM}$     |
| Linear Equation         | y = (-7E10)x + (1E6)       | y = (-8E10)x + (1E6)           |
| R <sup>2</sup> value    | 0.9922                     | 0.9896                         |

<sup>a</sup> Limits of detection and limits of quantification were calculated following the procedures detailed above (*vide supra*)

**Table S26.** Table summarizing the limit of detection and limit of quantification for cobalt (II) chloride in tap water using changes in the bimane fluorescence emission as well as changes in the emission of the bimane:  $\beta$ -cyclodextrin complex<sup>a</sup>

|                         | Bimane               | Bimane: β-Cyclodextrin Complex |
|-------------------------|----------------------|--------------------------------|
| Limit of Detection      | $1.50 \pm 0.01$      | $0.99 \pm 0.004$               |
| Limit of Quantification | $1.72 \pm 0.02$      | $1.04 \pm 0.015$               |
| Linear Equation         | y = (-8E10)x + (1E6) | y = (-1E11)x + (1E6)           |
| R <sup>2</sup> value    | 0.9832               | 0.9957                         |

<sup>a</sup> Limits of detection and limits of quantification were calculated following the procedures detailed above (*vide supra*)

#### SUMMARY TABLES FOR SOLID-STATE DETECTION

**Table S27.** Changes in quantitative image values upon exposure of solid-state sensors to cobalt (II) chloride<sup>a</sup>

|                                                     | $\Delta$ saturation | $\Delta$ luminescence | $\Delta$ blue |
|-----------------------------------------------------|---------------------|-----------------------|---------------|
| Filter paper coated in 1:<br>β-cyclodextrin complex | $13.3 \pm 0.8$      | $32.5 \pm 0.7$        | 75.6 ± 0.7    |
| Filter paper coated in compound 1                   | 0.3 ± 0.1           | $26.5 \pm 0.4$        | 56.1 ± 0.6    |
| % improvement in complex <sup>b</sup>               | 4333%               | 22.6%                 | 34.8%         |

<sup>a</sup>  $\Delta$  values in all cases were calculated as the absolute value of the difference between the value obtained from the filter paper exposed to cobalt (II) chloride and the value obtained from the filter paper that had not been exposed to cobalt (II) chloride. All values represent an average of 10 data points taken randomly from the images and quantified using Microsoft Paint.

<sup>b</sup> % improvement in complex was calculated according to the following equation:

(Response<sub>complex</sub> - Response<sub>bimane</sub>)/ Response<sub>bimane</sub> x 100%,

where  $Response_{bimane}$  refers to the quantitative response in the presence of bimane 1 alone and  $Response_{complex}$  refers to the quantitative response determined using the bimane 1- $\beta$ -cyclodextrin complex.

SUMMARY TABLES FOR <sup>1</sup>H NMR TITRATION STUDIES



Figure S2. Illustration of the structures of bimane 1 and  $\beta$ -cyclodextrin with the protons investigated clearly delineated

**Table S28.** <sup>1</sup>H NMR chemical shifts of  $\beta$ -cyclodextrin protons without bimane ("free") and in the presence of bimane in a 1:1 molar ratio ("in complex") in D<sub>2</sub>O<sup>a</sup>

| Proton | Free β-cyclodextrin | β-cyclodextrin in | Δδ (ppm) |
|--------|---------------------|-------------------|----------|
|        | (ppm)               | complex (ppm)     |          |
| H1     | 5.118               | 5.120             | 0.002    |
| H2     | 3.701               | 3.703             | 0.002    |
| H3     | 4.009               | 3.998             | -0.011   |
| H4     | 3.624               | 3.628             | 0.004    |
| Н5     | 3.898               | 3.890             | -0.008   |
| H6ab   | 3.921               | 3.922             | 0.001    |

<sup>a</sup> Values were measured on a 400 MHz NMR spectrometer using D<sub>2</sub>O as a solvent

**Table S29.** <sup>1</sup>H NMR chemical shifts of bimane protons without  $\beta$ -cyclodextrin ("free") in the presence of a 1:1 molar ratio of  $\beta$ -cyclodextrin ("in complex") in D<sub>2</sub>O<sup>a</sup>

| Proton                        | Free bimane (ppm) | Bimane in complex (ppm) | $\Delta\delta$ (ppm) |
|-------------------------------|-------------------|-------------------------|----------------------|
| <sup>β'</sup> CH <sub>3</sub> | 2.352             | 2.363                   | 0.011                |
| γCH <sub>3</sub>              | 1.769             | 1.778                   | 0.011                |

<sup>a</sup> Values were measured on a 400 MHz NMR spectrometer using D<sub>2</sub>O as a solvent

**Table S30.** <sup>1</sup>H NMR chemical shifts of bimane protons without any additives ("free") and in the presence of a mixture of  $\beta$ -cyclodextrin and cobalt (II) chloride (1:1:1 molar ratio) in D<sub>2</sub>O ("in complex")<sup>a</sup>

| Proton                        | Free bimane (ppm) | Bimane in complex with cobalt (II) chloride (ppm) | Δδ (ppm) |
|-------------------------------|-------------------|---------------------------------------------------|----------|
| <sup>β</sup> 'CH <sub>3</sub> | 2.352             | 1.627                                             | -0.725   |
| γCH <sub>3</sub>              | 1.769             | 1.042                                             | -0.727   |

<sup>a</sup> Values were measured on a 400 MHz NMR spectrometer using D<sub>2</sub>O as a solvent

**Table S31.** <sup>1</sup>H NMR chemical shifts of bimane protons without any additives ("free") and in the presence of cobalt (II) chloride (1:1 molar ratio) in  $D_2O^a$ 

| Proton                        | Free bimane (ppm) | Bimane with cobalt (II) | $\Delta\delta$ (ppm) |
|-------------------------------|-------------------|-------------------------|----------------------|
|                               |                   | chloride (ppm)          |                      |
| <sup>β'</sup> CH <sub>3</sub> | 2.352             | 2.066                   | -0.286               |
| <sup>ү</sup> СН <sub>3</sub>  | 1.769             | 1.483                   | -0.286               |

<sup>a</sup> Values were measured on a 400 MHz NMR spectrometer using D<sub>2</sub>O as a solvent

### Summary Tables for Relative Quantum Yield Experiments

| Solvent                | Experimental conditions              | Relative quantum yield |
|------------------------|--------------------------------------|------------------------|
| 100% dioxane           | $[1] = 10 \ \mu M$                   | 0.83                   |
| 72% dioxane: 28% water | $[1] = 10 \ \mu M$                   | 0.84                   |
| 100% water             | $[1] = 10 \ \mu M$                   | 0.486                  |
| 100% water             | <b>1</b> in complex with $\beta$ -CD | 0.493                  |

Table S32. Relative quantum yield of compound 1 measured under a variety of experimental conditions<sup>a</sup>

<sup>a</sup> All relative quantum yields were measured relative to the standard POPOP (1, 4-bis(5-phenyloxazole-2-yl)benzene) and displayed good agreement with literature-reported values<sup>5</sup>
### Summary Table for ICP-MS Water Analysis

**Table S33.** ICP-MS Analytical Results for the Metal Ion Content in Double Distilled Water and Tap Water, with concentration results reported in ppm units.

| Metals | Double distilled water (DDW) | Tap Water |
|--------|------------------------------|-----------|
| Ag     | <0.003                       | <0.003    |
| Al     | <0.021                       | <0.044    |
| As     | <0.007                       | <0.007    |
| Ba     | <0.000                       | <0.030    |
| Be     | <0.000                       | <0.000    |
| Са     | <0.040                       | >21.037   |
| Cd     | <0.001                       | <0.001    |
| Со     | <0.001                       | <0.001    |
| Cr     | <0.000                       | <0.000    |
| Cu     | <0.002                       | <0.002    |
| Fe     | <0.001                       | <0.001    |
| In     | <0.046                       | <0.046    |
| Li     | <0.004                       | 0.006     |
| Mg     | <0.000                       | >22.690   |
| Mn     | <0.000                       | <0.000    |
| Мо     | <0.009                       | <0.002    |
| Na     | <0.044                       | >48.820   |
| Ni     | <0.002                       | <0.002    |
| Pb     | <0.009                       | <0.009    |
| Sb     | 0.033                        | <0.019    |
| Se     | <0.023                       | <0.023    |
| Sr     | <0.000                       | <0.609    |
| Ti     | <0.000                       | <0.000    |
| Tl     | <0.004                       | <0.004    |
| U      | <0.103                       | <0.103    |
| V      | <0.001                       | <0.001    |
| Zn     | 0.003                        | 0.067     |

### Summary Table for Binding Constants Determined via Supramolecular.org

| Host                           | Guest                | Binding constant via                               | Binding constant via                                |
|--------------------------------|----------------------|----------------------------------------------------|-----------------------------------------------------|
|                                |                      | fluorescence integration                           | fluorescence intensity                              |
| 1                              | β-cyclodextrin       | 2.2 x 10 <sup>4</sup> M <sup>-1</sup> (8.6% error) | 2.2 x 10 <sup>4</sup> M <sup>-1</sup> (3.75% error) |
| 1                              | cobalt (II) chloride | 2.0 x 10 <sup>4</sup> M <sup>-1</sup> (19% error)  | 2.0 x 10 <sup>4</sup> M <sup>-1</sup> (8.1% error)  |
| <b>1</b> : $\beta$ -CD complex | cobalt (II) chloride | 2.0 x 10 <sup>4</sup> M <sup>-1</sup> (23% error)  | 2.0 x 10 <sup>4</sup> M <sup>-1</sup> (9.8% error)  |

Table S34. Summary of binding constants obtained via fitting to a BindFit 1:1 complex<sup>a</sup>

<sup>a</sup> All data was determined using the BindFit tab on supramolecular.org, using the 1:1 UV data algorithm, with constants determined using both fluorescence integration values as well as fluorescence intensity values at 4 wavelengths throughout the emission spectra.

#### Summary Tables for Metal Competition Studies to Determine Cobalt Selectivity

**Table S35.** Changes in the fluorescence emission of bimane 1 and of a bimane:  $\beta$ -cyclodextrin complex upon introduction of cobalt (II) chloride in the presence and absence of other metal additives<sup>a</sup>

| Metal Cation<br>Identity | Fluorescence Response of Bimane | Fluorescence Response of Bimane: β-<br>Cyclodextrin Complex |
|--------------------------|---------------------------------|-------------------------------------------------------------|
| No metal                 | $100.0 \pm 0.0$ %               | $100.0 \pm 0.0\%$                                           |
| Ba (II) and Co (II)      | 62.1 ± 0.1 %                    | $54.6 \pm 0.0\%$                                            |
| Ca (II) and Co (II)      | $62.3 \pm 0.1$ %                | $56.0 \pm 0.1\%$                                            |
| Co (II)                  | $61.5 \pm 0.1$ %                | $54.8 \pm 0.1\%$                                            |
| Cu (II) and Co (II)      | $54.9 \pm 0.1$ %                | $50.1 \pm 0.1\%$                                            |
| Hg (II) and Co (II)      | $61.4 \pm 0.0$ %                | $53.4 \pm 0.0\%$                                            |
| Mg (II) and Co (II)      | $62.9 \pm 0.0$ %                | $55.3\pm0.0\%$                                              |
| Mn (II) and Co (II)      | $62.4 \pm 0.1$ %                | $54.6\pm0.1\%$                                              |
| Ni (II) and Co (II)      | $58.5 \pm 0.1$ %                | $52.4 \pm 0.1\%$                                            |
| Sn (II) and Co (II)      | 52.7 ± 0.3 %                    | $48.3 \pm 0.1\%$                                            |
| Zn (II) and Co (II)      | $53.2 \pm 0.0$ %                | $47.5 \pm 0.1\%$                                            |

<sup>a</sup> Values are measured as percentages of normalized integrated emission, with the maximum integrated emission set to 100%. Results reported herein represent the average of at least two trials.

**Table S36.** Summary of the UV-visible spectral changes of bimane 1 and of a bimane:  $\beta$ -cyclodextrin complex upon introduction of cobalt (II) chloride in the presence and absence of other metal additives<sup>a</sup>

| Metal               | Intensity Changes of Bimane | Intensity Changes of a Bimane: β-<br>Cyclodextrin Complex |
|---------------------|-----------------------------|-----------------------------------------------------------|
| none                | $1.1 \pm 0.1$               | $1.0 \pm 0.0$                                             |
| Ba (II) and Co (II) | $220.3 \pm 10.6$            | 7.7 ± 0.2                                                 |
| Ca (II) and Co (II) | $231.3 \pm 4.4$             | 6.1 ± 0.2                                                 |
| Co (II)             | $226.3 \pm 2.9$             | 6.7 ± 0.2                                                 |
| Cu (II) and Co (II) | $275.7 \pm 0.0$             | 6.4 ± 0.2                                                 |
| Hg (II) and Co (II) | $189.8 \pm 0.8$             | 7.9 ± 0.2                                                 |
| Mg (II) and Co (II) | $199.6 \pm 1.0$             | $7.0 \pm 0.2$                                             |
| Mn (II) and Co (II) | $176.9 \pm 4.3$             | 6.6 ± 0.2                                                 |
| Ni (II) and Co (II) | $206.0 \pm 6.2$             | 6.5 ± 0.2                                                 |
| Sn (II) and Co (II) | $177.3 \pm 0.4$             | 6.1 ± 0.2                                                 |
| Zn (II) and Co (II) | 201.3 ± 2.6                 | 6.1 ± 0.2                                                 |

<sup>a</sup> [Bimane] =  $5.0 \times 10^{-2}$  mM; [metal salt] =  $6.16 \times 10^{-3}$  mM; all metal salts had chloride as a counterion; all reported results represent an average of three trials.

<sup>b</sup> The intensity of the UV-visible absorption peak at 510 nm in the presence of a metal chloride salt was divided by the intensity of the UV-visible absorption peak at 510 nm in the absence of a metal chloride salt

### **SUMMARY FIGURES**

SUMMARY FIGURES FOR THE SYNTHESIS OF BIMANE 1



Figure S3. Results of the mass spectral analysis of the structure of bimane 1.



Figure S4. <sup>1</sup>H NMR spectra of *syn*-(Me,Me)bimane (D<sub>2</sub>O, 400 MHz)



**Figure S5.** Changes in the bimane fluorescence emission as a function of increasing concentration of  $\beta$ -cyclodextrin. [Bimane] = 5.0 x 10<sup>-2</sup> mM.



**Figure S6.** Summary of how changes in the concentration of  $\beta$ -cyclodextrin lead to a decrease in the fluorescence emission of bimane. [1] = 5.0 x 10<sup>-2</sup> mM;  $\lambda_{\text{excitation}} = 385$  nm.



Figure S7. Changes in the bimane UV-visible absorption spectrum as a function of increasing concentration of  $\beta$ -cyclodextrin. [Bimane] = 5.0 x 10<sup>-2</sup> mM.



**Figure S8.** Benesi-Hildebrand plot illustrating the linear relationship between  $1/[\beta$ -CD] on the X-axis and the change in fluorescence signal of the bimane ( $I_0/(I_0-I)$  on the Y-axis. Equation: y = a + b\*x; a = 1.19974; b = 1.49E-6;  $R^2 = 0.99943$ . [Bimane] = 5.0 x 10<sup>-2</sup> mM.



**Figure S9**. Stern-Volmer plot illustrating the linear relationship between [ $\beta$ -CD] on the X-axis and the ratio of initial emission divided by observed emission (*Io/I*) on the Y-axis. Equation: y = a + b\*x; a = 0.99811; b = 648998;  $R^2 = 0.9994$ . [Bimane] = 5.0 x 10<sup>-2</sup> mM.



**Figure S10.** Summary of the changes in bimane fluorescence emission on going from 0 mM of  $\beta$ -cyclodextrin to 6.90 x 10<sup>-3</sup> mM of  $\beta$ -cyclodextrin. [Bimane] = 5.0 x 10<sup>-2</sup> mM.



**Figure S11.** Normalized integrated emission of bimane in the presence of increasing concentrations of  $\beta$ -cyclodextrin, fit to a single exponential decay curve. [Bimane] = 5.0 x 10<sup>-2</sup> mM. Equation: y = A1\*exp(-x/t1)+B; y0 = 544722; A1 = 1101727; t1 = 0.01123; R<sup>2</sup> = 0.99989

## SUMMARY FIGURES THAT ILLUSTRATE THE INTERACTION OF A VARIETY OF METAL SALTS WITH BIMANE



**Figure S12.** Summary of the fluorescence integration results from treating a solution of bimane 1 with a variety of metal chloride salts. [Bimane] =  $5.0 \times 10^{-2} \text{ mM}$ ; [metal salt] =  $6.16 \times 10^{-3} \text{ mM}$ . All reported results represent an average of three trials.



**Figure S13.** Summary of the UV-visible spectral changes from treating a solution of bimane 1 with a variety of metal chloride salts. [Bimane] =  $5.0 \times 10^{-2} \text{ mM}$ ; [metal salt] =  $6.16 \times 10^{-3} \text{ mM}$ . All reported results represent an average of three trials.



**Figure S14.** Zoomed-in view of the UV-visible spectral changes between 480 nm and 600 nm that occur from treating a solution of bimane 1 with a variety of metal chloride salts. [Bimane] =  $5.0 \times 10^{-2} \text{ mM}$ ; [metal salt] =  $6.16 \times 10^{-3} \text{ mM}$ . All reported results represent an average of three trials.

SUMMARY FIGURES THAT ILLUSTRATE THE INTERACTION OF COBALT (II) CHLORIDE WITH BIMANE



**Figure S15.** Normalized fluorescence spectra showing changes in the fluorescence emission of bimane as a function of changing concentrations of cobalt (II) chloride. [Bimane] =  $5.0 \times 10^{-2}$  mM.



**Figure S16.** Summary of the changes in the bimane fluorescence emission spectra on going from 0 mM of cobalt (II) chloride to  $3.31 \times 10^{-4}$  mM of cobalt (II) chloride. [Bimane] =  $5.0 \times 10^{-2}$  mM



**Figure S17.** Normalized integrated emission of bimane in the presence of increasing concentrations of cobalt (II) chloride, fit to a single exponential decay curve. [Bimane] =  $5.0 \times 10^{-2}$  mM. Equation: y = A1\*exp(-x/t1)+B; y0 = 299576; A1 = 1369368; t1 = 1.025E-4; R<sup>2</sup> = 0.9999



**Figure S18.** UV-visible absorption spectra showing changes in the absorbance of bimane as a function of increasing concentrations of cobalt (II) chloride. [Bimane] =  $5.0 \times 10^{-2}$  mM.



**Figure S19.** Summary of the changes in the bimane absorbance spectra on going from 0 mM of cobalt (II) chloride to  $3.31 \times 10^{-4}$  mM of cobalt (II) chloride. [Bimane] =  $5.0 \times 10^{-2}$  mM



**Figure S20.** Benesi-Hildebrand plot illustrating the linear relationship between  $1/[CoCl_2]$  on the X-axis and the change in fluorescence signal of the bimane ( $I_0/(I_0-I)$  on the Y-axis. Equation:  $y = a + b^*x$ ; a = 0.62491; b = 1.32547E-7;  $R^2 = 0.99702$ . [Bimane] = 5.0 x 10<sup>-2</sup> mM.



**Figure S21**. Stern-Volmer plot illustrating the linear relationship between  $[CoCl_2]$  on the X-axis and the ratio of initial emission divided by observed emission (*Io/I*) on the Y-axis. Equation: y = a + b\*x; a = 0.90578; b = 1.18113E7;  $R^2 = 0.99398$ . [Bimane] = 5.0 x 10<sup>-2</sup> mM.

SUMMARY FIGURES THAT ILLUSTRATE THE INTERACTION OF COBALT (II) ACETATE WITH BIMANE



Figure S22. Changes in the bimane fluorescence emission as a function of increasing concentration of cobalt (II) acetate. [Bimane] =  $5.0 \times 10^{-2} \text{ mM}$ .



**Figure S23.** Summary of the changes in bimane fluorescence emission on going from 0 mM of cobalt (II) acetate to  $1.67 \times 10^{-4}$  mM of cobalt (II) acetate. [Bimane] =  $5.0 \times 10^{-2}$  mM.



**Figure S24.** Normalized integrated emission of bimane in the presence of increasing concentrations of cobalt (II) acetate, fit to a single exponential decay curve. [Bimane] =  $5.0 \times 10^{-2}$  mM. Equation: y = A1\*exp(-x/t1)+B; y0 = 358996; A1 = 1308012; t1 = 8.9459E-5; R<sup>2</sup> = 0.99964



**Figure S25.** UV-visible absorption spectra showing changes in the absorbance of bimane as a function of increasing concentrations of cobalt (II) acetate. [Bimane] =  $5.0 \times 10^{-2} \text{ mM}$ .



**Figure S26.** Summary of the changes in the bimane absorbance spectrum on going from 0 mM of cobalt (II) acetate to  $1.67 \times 10^{-4}$  mM of cobalt (II) acetate. [Bimane] =  $5.0 \times 10^{-2}$  mM



**Figure S27.** Benesi-Hildebrand plot illustrating the linear relationship between  $1/[Co(OAc)_2]$  on the X-axis and the change in fluorescence signal of the bimane  $(I_o/(I_o-I)$  on the Y-axis. Equation: y = a + b\*x; a = 0.88169; b = 1.01449E-7;  $R^2 = 0.99999$ . [Bimane] = 5.0 x 10<sup>-2</sup> mM.



**Figure S28**. Stern-Volmer plot illustrating the linear relationship between  $[Co(OAc)_2]$  on the X-axis and the ratio of initial emission divided by observed emission (*Io/I*) on the Y-axis. Equation: y = a + b\*x; a = 0.93267; b = 1.22494E7;  $R^2 = 0.99646$ . [Bimane] = 5.0 x 10<sup>-2</sup> mM.

SUMMARY FIGURES THAT ILLUSTRATE THE INTERACTION OF A VARIETY OF METAL SALTS WITH A BIMANE:β- CYCLODEXTRIN COMPLEX



**Figure S29.** Summary of the fluorescence integration results from treating a solution of bimane 1 with a variety of metal chloride salts. [Bimane] =  $5.0 \times 10^{-2} \text{ mM}$ ; [metal salt] =  $6.16 \times 10^{-3} \text{ mM}$ . All reported results represent an average of three trials.



**Figure S30.** Summary of the UV-visible spectral changes from treating a solution of bimane 1 with a variety of metal chloride salts. [Bimane] =  $5.0 \times 10^{-2} \text{ mM}$ ; [metal salt] =  $6.16 \times 10^{-3} \text{ mM}$ . All reported results represent an average of three trials.



**Figure S31.** Zoomed-in view of the UV-visible spectral changes between 480 nm and 600 nm that occur from treating a solution of bimane 1 with a variety of metal chloride salts. [Bimane] =  $5.0 \times 10^{-2} \text{ mM}$ ; [metal salt] =  $6.16 \times 10^{-3} \text{ mM}$ . All reported results represent an average of three trials.

SUMMARY FIGURES THAT ILLUSTRATE THE INTERACTION OF INCREASING CONCENTRATIONS OF COBALT (II) CHLORIDE WITH A BIMANE-β-CYCLODEXTRIN COMPLEX



**Figure S32.** Normalized fluorescence spectra showing changes in the fluorescence emission of the bimane- $\beta$ -cyclodextrin complex with increasing concentrations of cobalt (II) chloride. [Bimane] = 5.0 x 10<sup>-2</sup> mM.



**Figure S33.** Summary of the changes in the bimane- $\beta$ -cyclodextrin complex's fluorescence emission spectra on going from 0 mM of cobalt (II) chloride to 3.31 x 10<sup>-4</sup> mM of cobalt (II) chloride. [Bimane] = 5.0 x 10<sup>-2</sup> mM



**Figure S34.** Normalized integrated emission of the bimane- $\beta$ -cyclodextrin complex in the presence of increasing concentrations of cobalt (II) chloride, fit to a single exponential decay curve. [Bimane] = 5.0 x 10<sup>-2</sup> mM. Equation: y = A1\*exp(-x/t1)+B; y0 = 226160; A1 = 923507; t1 = 8.29584E-5; R<sup>2</sup> = 0.99962.



**Figure S35.** UV-visible absorption spectra showing changes in the absorbance of the bimane- $\beta$ -cyclodextrin complex at increasing concentrations of cobalt (II) chloride. [Bimane] = 5.0 x 10<sup>-2</sup> mM.



**Figure S36.** Summary of the changes in the bimane- $\beta$ -cyclodextrin complex's absorbance spectra on going from 0 mM of cobalt (II) chloride to 3.31 x 10<sup>-4</sup> mM of cobalt (II) chloride. [Bimane] = 5.0 x 10<sup>-2</sup> mM



**Figure S37.** Benesi-Hildebrand plot illustrating the linear relationship between  $1/[CoCl_2]$  on the X-axis and the change in fluorescence signal of the bimane- $\beta$ -cyclodextrin complex ( $I_0/(I_0-I)$  on the Y-axis. Equation:  $y = a + b^*x$ ; a = 0.85062; b = 9.38673E-8;  $R^2 = 0.99988$ . [Bimane] = 5.0 x 10<sup>-2</sup> mM.



**Figure S38**. Stern-Volmer plot illustrating the linear relationship between  $[CoCl_2]$  on the X-axis and the ratio of initial emission divided by observed emission (*Io/I*) for the bimane- $\beta$ -cyclodextrin complex on the Y-axis. Equation:  $y = a + b^*x$ ; a = 0.90546; b = 1.41813E7;  $R^2 = 0.99465$ . [Bimane] = 5.0 x 10<sup>-2</sup> mM.

SUMMARY FIGURES THAT ILLUSTRATE THE INTERACTION OF INCREASING CONCENTRATIONS OF COBALT (II) ACETATE WITH A BIMANE-β-CYCLODEXTRIN COMPLEX



**Figure S39.** Changes in the bimane- $\beta$ -cyclodextrin complex fluorescence emission as a function of increasing concentration of cobalt (II) acetate. [Bimane] = 5.0 x 10<sup>-2</sup> mM.



**Figure S40.** Summary of the changes in bimane- $\beta$ -cyclodextrin complex fluorescence emission on going from 0 mM of cobalt (II) acetate to 1.67 x 10<sup>-4</sup> mM of cobalt (II) acetate. [Bimane] = 5.0 x 10<sup>-2</sup> mM.



**Figure S41.** Normalized integrated emission of the bimane- $\beta$ -cyclodextrin complex in the presence of increasing concentrations of cobalt (II) acetate, fit to a single exponential decay curve. [Bimane] = 5.0 x 10<sup>-2</sup> mM. Equation: y = A1\*exp(-x/t1)+B; y0 = 210333; A1 = 914383; t1 = 8.11467E-5; R<sup>2</sup> = 0.9996.



**Figure S42.** UV-visible absorption spectra showing changes in the absorbance of the bimane- $\beta$ -cyclodextrin complex as a function of increasing concentrations of cobalt (II) acetate. [Bimane] =  $5.0 \times 10^{-2}$  mM.



**Figure S43.** Summary of the changes in the bimane- $\beta$ -cyclodextrin complex absorbance spectrum on going from 0 mM of cobalt (II) acetate to 1.67 x 10<sup>-4</sup> mM of cobalt (II) acetate. [Bimane] = 5.0 x 10<sup>-2</sup> mM



**Figure S44.** Benesi-Hildebrand plot illustrating the linear relationship between  $1/[Co(OAc)_2]$  on the X-axis and the change in fluorescence signal of the bimane- $\beta$ -cyclodextrin complex ( $I_0/(I_0-I)$  on the Y-axis. Equation: y = a + b\*x; a = 0.86075; b = 8.81923E-8;  $R^2 = 0.99998$ . [Bimane] = 5.0 x 10<sup>-2</sup> mM.



**Figure S45**. Stern-Volmer plot illustrating the linear relationship between  $[Co(OAc)_2]$  on the X-axis and the ratio of initial emission divided by observed emission (*Io/I*) for the bimane- $\beta$ -cyclodextrin complex on the Y-axis. Equation:  $y = a + b^*x$ ; a = 0.89005; b = 1.52145E7;  $R^2 = 0.99404$ . [Bimane] = 5.0 x 10<sup>-2</sup> mM.

### SUMMARY FIGURES ILLUSTRATING EXPERIMENTS IN TAP WATER

Bimane response to cobalt (II) chloride in tap water



Figure S46. Changes in the bimane fluorescence emission as a function of increasing concentration of cobalt chloride in tap water. [Bimane] =  $5.0 \times 10^{-2} \text{ mM}$ .



**Figure S47.** Summary of the changes in the bimane fluorescence emission as a function of increasing concentration of cobalt chloride in tap water. [Bimane] =  $5.0 \times 10^{-2} \text{ mM}$ .



**Figure S48.** Normalized integrated emission of bimane in the presence of increasing concentrations of cobalt chloride in tap water, fit to a single exponential decay curve. [Bimane] =  $5.0 \times 10^{-2}$  mM. Equation:  $y = A1^* \exp(-x/t1) + B$ ; y0 = 265558; A1 = 1290590; t1 = 1.00174E-4;  $R^2 = 0.99974$ .



**Figure S49.** UV-visible absorption spectra showing changes in the absorbance of bimane as a function of increasing concentrations of cobalt chloride in tap water. [Bimane] =  $5.0 \times 10^{-2} \text{ mM}$ .



**Figure S50.** Summary of the changes in the bimane absorbance spectrum on going from 0 mM of cobalt chloride to  $1.67 \times 10^{-4}$  mM of cobalt chloride in tap water. [Bimane] =  $5.0 \times 10^{-2}$  mM

*Response of the bimane:*  $\beta$ *- cyclodextrin complex to cobalt (II) chloride in tap water* 



**Figure S51.** Changes in the fluorescence emission of the bimane:  $\beta$ -cyclodextrin complex as a function of increasing concentration of cobalt chloride in tap water. [Bimane] = 5.0 x 10<sup>-2</sup> mM.



**Figure S52.** Summary of the changes in the fluorescence emission of the bimane:  $\beta$ -cyclodextrin complex as a function of increasing concentration of cobalt chloride in tap water. [Bimane] = 5.0 x 10<sup>-2</sup> mM.



**Figure S53.** Normalized integrated emission of the bimane:  $\beta$ -cyclodextrin complex in the presence of increasing concentrations of cobalt chloride in tap water, fit to a single exponential decay curve. [Bimane] = 5.0 x 10<sup>-2</sup> mM. Equation: y = A1\*exp(-x/t1)+B; y0 = 193736; A1 = 883429; t1 = 7.80091E-5; R<sup>2</sup> = 0.99963.



**Figure S54.** UV-visible absorption spectra showing changes in the absorbance of the bimane:  $\beta$ -cyclodextrin complex as a function of increasing concentrations of cobalt chloride in tap water. [Bimane] =  $5.0 \times 10^{-2} \text{ mM}$ .



**Figure S55.** Summary of the changes in the absorbance of the bimane:  $\beta$ -cyclodextrin complex on going from 0 mM of cobalt chloride to 1.67 x 10<sup>-4</sup> mM of cobalt chloride in tap water. [Bimane] = 5.0 x 10<sup>-2</sup> mM



**Figure S56.** Illustration of solid-state FTIR spectroscopy results for a  $\beta$ -cyclodextrin sample, a bimane sample the complex of bimane in  $\beta$ -cyclodextrin, and the samples after the addition of cobalt (II) chloride to the bimane:  $\beta$ -cyclodextrin complex and to bimane alone

# SUMMARY FIGURES ILLUSTRATING THE APPEARANCE OF FUNCTIONALIZED PAPER STRIPS UNDER UV-LIGHT IRRADIATION.



**Figure S57.** Illustration of how functionalized paper changes its appearance under UV-light irradiation in the presence of cobalt (II) chloride. (a) Both papers are functionalized with a 50.0  $\mu$ M solution of bimane; (b) the left paper is functionalized with a 50.0  $\mu$ M solution of bimane and the right paper is functionalized with the same concentration of bimane but was subsequently exposed to a 200  $\mu$ L of 0.1 M solution of cobalt (II) chloride; (c) both papers are functionalized with a solution of the bimane:  $\beta$ -cyclodextrin (50.0  $\mu$ M bimane in 56.5  $\mu$ M  $\beta$ -cyclodextrin) complex; (d) the left paper is functionalized with a solution of the same concentration of the right paper is functionalized with a solution of the solution of the bimane:  $\beta$ -cyclodextrin complex and the right paper is functionalized with the same concentration of complex but was subsequently exposed to a 200  $\mu$ L of 0.1 M solution of complex but was subsequently exposed to a 200  $\mu$ L of 0.1 M solution of the bimane:  $\beta$ -cyclodextrin complex and the right paper is functionalized with the same concentration of complex but was subsequently exposed to a 200  $\mu$ L of 0.1 M solution of cobalt (II) chloride

# SUMMARY FIGURES ILLUSTRATING CHANGES IN SOLUTION COLOR IN THE PRESENCE OF VARIOUS METAL ADDITIVES



**Figure S58.** Illustration of the colorimetric and fluorometric responses of solutions to the presence of cobalt (II) chloride. (A) A photograph of 0.5 mL of various metal salts (0.1 M) in water under ambient lighting conditions; (B) a photograph of 1 mL of the bimane solutions (50.0  $\mu$ M) in the presence of metal additives (200  $\mu$ L of 0.1 M) under ambient lighting conditions, as well as a photograph of the same solutions under 365 nm ultraviolet light irradiation; (C) a photograph of 1 mL of the bimane:  $\beta$ -cyclodextrin complex (50.0  $\mu$ M bimane in 56.5  $\mu$ M  $\beta$ -CD) in the presence of various metal additives (200  $\mu$ L of 0.1 M) under ambient lighting conditions under 365 nm ultraviolet light irradiation; (C) a photograph of 1 mL of the bimane:  $\beta$ -cyclodextrin complex (50.0  $\mu$ M bimane in 56.5  $\mu$ M  $\beta$ -CD) in the presence of various metal additives (200  $\mu$ L of 0.1 M) under ambient lighting conditions, as well as a photograph of the same solutions under 365 nm ultraviolet light irradiation;

#### SUMMARY FIGURES FOR LIMIT OF DETECTION STUDIES



**Figure S59.** Calibration curve summarizing the relationship between the concentration of cobalt (II) chloride in double distilled water on the X-axis and integrated emission of bimane on the Y-axis.  $Y = (-7E10)x + (1E6); R^2 = 0.9922.$ 



**Figure S60.** Calibration curve summarizing the relationship between the concentration of cobalt (II) chloride in double distilled water on the X-axis and integrated emission of the bimane:  $\beta$ -cyclodextrin complex on the Y-axis. Y = (-8E10)x + (1E6); R<sup>2</sup> = 0.9896.



Figure S61. Calibration curve summarizing the relationship between the concentration of cobalt (II) chloride in tap water on the X-axis and integrated emission of bimane on the Y-axis. Y = (-8E10)x + (1E6);  $R^2 = 0.9832$ .



**Figure S62.** Calibration curve summarizing the relationship between the concentration of cobalt (II) chloride in tap water on the X-axis and integrated emission of the bimane:  $\beta$ -cyclodextrin complex on the Y-axis. Y = (-1E11)x + (1E6); R<sup>2</sup> = 0.9957.

### SUMMARY FIGURES FOR <sup>1</sup>H NMR TITRATION STUDIES



**Figure S63.** Illustration of <sup>1</sup>H NMR spectroscopy results for a  $\beta$ -cyclodextrin sample, a bimane sample, the complex of bimane in  $\beta$ -cyclodextrin, and the samples after the addition of cobalt (II) chloride to the bimane:  $\beta$ -cyclodextrin complex and to bimane alone

Summary Figures for Relative Quantum Yield Studies



Figure S64. UV-Visible absorption spectrum of bimane 1 in water used for relative quantum yield calculations



Figure S65. Fluorescence emission spectrum of bimane 1 in water used for relative quantum yield calculations



Figure S66. UV-Visible absorption spectrum of bimane 1 in a complex with  $\beta$ -cyclodextrin in water used for relative quantum yield calculations



Figure S67. Fluorescence emission spectrum of bimane 1 in a complex with  $\beta$ -cyclodextrin in water used for relative quantum yield calculations

Summary Figures for Metal Competition Studies to Determine Cobalt Selectivity



Figure S67. UV-visible spectra of bimane 1 in the presence of cobalt (II) chloride as well as cobalt (II) chloride mixed with other metals



**Figure S68.** Fluorescence emission spectra of bimane 1 in the presence of cobalt (II) chloride as well as cobalt (II) chloride mixed with other metals



Figure S69. UV-visible spectra of a complex of bimane 1 with  $\beta$ -cyclodextrin in the presence of cobalt (II) chloride as well as cobalt (II) chloride mixed with other metals



Figure S70. Fluorescence emission spectra a complex of bimane 1 with  $\beta$ -cyclodextrin in the presence of cobalt (II) chloride as well as cobalt (II) chloride mixed with other metals

#### REFERENCES

- 1 I. Neogi, P. J. Das, F. Grynszpan, Synlett, 2018, 29, 1043-1046.
- 2 E. M. Kosower, B. Pazhenchevsky, J. Am. Chem. Soc., 1980, 102, 4983-4993.

<sup>3</sup> Lakowicz, J. Principles of Fluorescence Spectroscopy, Third edition.; Springer: New york USA, 2006.

<sup>4</sup> Brouwer, A. M. Standards for Photoluminescence Quantum Yield Measurements in Solution (IUPAC Technical Report). *Pure Appl. Chem.* **2011**, *83* (12), 2213–2228.

<sup>5</sup> Kosower, E. M.; Giniger, R.; Radkowsky, A.; Hebel, D.; Shusterman, A. J. Phys. Chem. **1986**, *90*, 5552-5557.