Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2020

Supporting Information for:

A practical base mediated synthesis of 1,2,4-triazoles enabled by

deamination annulation strategy

Chunyan Zhang,* Zuyu Liang, Xiaofei Jia, Maorong Wang, Guoying Zhang* and Mao-Lin Hu*

*E-mail: zhanggy@qust.edu.cn

CONTENTS

- **1** General experimental details and materials
- 2 Optimization of the reaction conditions
- **3** General procedure for the synthesis of 1,2,4-triazoles
- 4 Experimental characterization data for products
- **5** Application
- 6 Mechanistic studies
- 7 Reference
- 8 Copies for ¹H NMR ¹³C NMR and ¹⁹F NMR

1. General experiment details and materials

Experimental: All non-aqueous reactions and manipulations were using standard Schlenk techniques. All solvents before use were dried and degassed by standard methods and stored under nitrogen atmosphere. All reactions were monitored by TLC with silica gel-coated plates. NMR spectra were recorded on BRUKER Avence III 400 or 500 MHz spectrometers. Chemical shifts were reported in parts per million (ppm) down field from TMS with the solvent resonance as the internal standard. Coupling constants (*J*) were reported in Hz and referred to apparent peak multiplications. High resolution mass spectra (HRMS) were recorded on Bruker MicroTOF-QII mass (ESI). GC analysis were performed on Agilent 7890 with OV-225 column or Hp-5 column. GC-MS analysis were performed with Agilent 7890A/5975C GC-MS system.

2. Optimization of the reaction conditions

Using a nitrogen-filled glove box, an oven-dried pressure tube (38 mL volume) was charged with a magnetic stirring bar, base, benzonitrile (1a), phenyl hydrazine (2a) and solvents. Then the seal tube was closed tightly with a teflon cap, removed from the glove box and immersed into a pre-heated oil bath (design temperature). After design time the reaction was cooled to room temperture, quenched with half-saturated brine (0.1 mL) and was dried over Na₂SO₄. A small aliquot of the organic phase was analyzed by GC and GC-MS to monitor product formation, respectively. Purification of the remainder by column chromatography on silica gel gave the corresponding product 1,3,5-triphenyl-1*H*-1,2,4-triazole (3a) (petroleum ether/ethyl acetate = 10/1) in the reported yield.

Entry	Parameter
Table S1	Solvent screening
Table S2	Base screening
Table S3	Screening the loading of base
Table S4	Substrate 1a and 2a ratio screening
Table S5	Reaction temperature screening
Table S6	Reaction time screening
Table S7	Reaction system experiments

2 Ph ─ ═N + 1a	H Ph ^{-N} NH ₂ 2a	<i>t</i> -BuOK (1.0 equiv) solvent (2.0 mL) 120 °C, 10 min	Ph N-N Ph N 3a	-Ph
Entry	Solvent			3a [%]
1	benzene			12
2	toluene			38
3	xylene			42
4	THF			63
5	2-MeTHF			62
7	diglyme			61
8	1,4-dioxane			84
9	anisole			56
10	CH ₃ OH			0
11	CH ₃ CH ₂ OH			0
12	<i>i</i> -BuOH			<5
13	t-BuOH			32
14	t-AmOH			41
15	DMF			<5
16	DMAc			11
17	DMSO			8
18	CH ₃ CN			0
19	CH ₃ NO ₂			0
20	DCM			0
21	DCE			0
22	CH ₃ CH ₂ C(C	D)OCH ₂ CH ₃		<5
23	CHCl ₃			0
24				66

Table S1. Solvent screening ^a

^{*a*} Reaction conditions: **1a** (0.5 mmol), **2a** (1.0 mmol), *t*-BuOK (1.0 eqiuv), solvent (2.0 mL), 120 °C, N₂, 10 min. Yield of **3a** determined by GC-analysis using *n*-dodecane as internal standard.

2 Ph──═N + 1a	H Ph ^{-N} NH ₂ 2a	<i>base</i> 1,4-dioxane (2.0 mL) 120 °C, 10 min	Ph N-N Ph N Bh N N Ph
Entry	Base (1	.0 equiv)	3a [%]
1	t-B	BuOK	84
2	t-B	uONa	25
3	t-B	BuOLi	9
4	KH	IMDS	81
5	Nał	HMDS	15
6	LiH	IMDS	0
7	K	ЮН	<5
8	Ν	aOH	0
9	L	iOH	0
10	K	₂ CO ₃	0
11	Na ₂ CO ₃		0
12	Li ₂ CO ₃		0
13	KHCO ₃		0
14	K ₃ PO ₄		0
15	K_2HPO_4		0
16	KH ₂ PO ₄		0
17	КН		72
18	NaH		10
19	NEt ₃		0
20	Γ	DBU	0
21	Ру	ydine	0
22	K	NH ₂	73
23			0

Table S2. Base screening ^a

^{*a*} Reaction conditions: **1a** (0.5 mmol), **2a** (1.0 mmol), base (1.0 equiv), 1,4-dioxane (2.0 mL), 120 °C, N₂, 10 min. Yield of **3a** determined by GC-analysis using *n*-dodecane as internal standard.

2 Ph──═N + 1a	H t-BuOK Ph 1,4-dioxane (2.0 mL) 2a 120 °C, 10 min	Ph N-N Ph N Bh N N Ph N N Ph N N N N Ph N N N N N N N
Entry	t-BuOK (equiv)	3a [%]
1	<i>t</i> -BuOK (2.0)	70
2	<i>t</i> -BuOK (1.6)	76
3	<i>t</i> -BuOK (1.4)	80
4	<i>t</i> -BuOK (1.2)	83
5	<i>t</i> -BuOK (1.0)	84
6	<i>t</i> -BuOK (0.9)	83
7	<i>t</i> -BuOK (0.8)	85
8	<i>t</i> -BuOK (0.7)	84
9	<i>t</i> -BuOK (0.6)	84
10	<i>t</i> -BuOK (0.5)	83
11	<i>t</i> -BuOK (0.4)	83
12	<i>t</i> -BuOK (0.3)	82
13	<i>t</i> -BuOK (0.2)	82
14	<i>t</i> -BuOK (0.15)	62
15	<i>t</i> -BuOK (0.1)	43
16	<i>t</i> -BuOK (0.05)	21
17		0

Table S3. Screening the loading of base ^a

^{*a*} Reaction conditions: **1a** (0.5 mmol), **2a** (1.0 mmol), *t*-BuOK (x eqiuv), 1,4-dioxane (2.0 mL), 120 °C, N₂, 10 min. Yield of **3a** determined by GC-analysis using *n*-dodecane as internal standard.

2 Ph— — N 1a	+ Ph ^{- N} NH ₂ 2a	<i>t</i> -BuOK 1,4-dioxane (2 mL) 120 °C, 10 min	Ph N-N Ph N N Ph 3a
Entry	1a (mmol)	2a (mmol)	3a (%)
1	0.5	0.5	32
2	0.5	0.6	51
3	0.5	0.7	63
4	0.5	0.8	74
5	0.5	0.9	80
6	0.5	1.0	82
7	0.6	1.0	86
8	0.7	1.0	88
9	0.8	1.0	91
10	0.9	1.0	95
11	1.0	1.0	99 (95) ^b
12	1.1	1.0	98
13	1.3	1.0	97
14	1.5	1.0	98
15	2.0	1.0	97

Table S4: Substrate 1a and 2a ratio screening^{*a*}

^{*a*} Reaction conditions: **1a** (x mmol), **2a** (x mmol), *t*-BuOK (0.2 mmol), 1,4-dioxane (2.0 mL), 120 °C, N₂, 10 min. Yield of **3a** determined by GC-analysis using *n*-dodecane as internal standard. ^{*b*} Isolated yield.

2 Ph—☴N + 1a	H t-BuOK Ph 1,4-dioxane (2 m 2a T, 10 min	Ph N-N Ph N-Ph Bh N N Ph N N Ph N N Ph N N N Ph N N N N
Entry	Temperature (°C)	3a [%]
1	rt	7
2	30	10
3	40	16
4	50	24
5	60	53
6	70	77
7	80	90
8	90	91
9	100	95
10	110	96
11	120	99
12	130	98
13	140	82
14	150	67

Table S5. Reaction temperature screening ^a

^{*a*} Reaction conditions: **1a** (1.0 mmol), **2a** (1.0 mmol), *t*-BuOK (0.2 mmol), 1,4-dioxane (2.0 mL), N₂, 10 min. Yield of **3a** determined by GC-analysis using *n*-dodecane as internal standard.

2 Ph──═N + 1a	H t-BuOK (0.2 equiv) N 1,4-dioxane (2.0 mL) 2a 120 °C, t	Ph N-N-Ph Ph N 3a
Entry	Time (min)	3a [%]
1	0	0
2	5	66
3	10	99
4	20	99
5	1h	96
6	15 h	98

^{*a*} Reaction conditions: **1a** (1.0 mmol), **2a** (1.0 mmol), *t*-BuOK (0.2 mmol), 1,4-dioxane (2.0 mL), N₂, 120 °C. Yield of **3a** determined by GC-analysis using *n*-dodecane as internal standard.

Table S7. Reaction system experiments ^a

	2 Ph—☴N + 1a	$\frac{H}{2a} = \frac{t-B}{1,4-1}$	uOK (0.2 equiv) dioxane (2.0 mL) 120 °C, 10 min	Ph
Entry	Reaction system	1	Additive (equiv)	3 a [%]
1	air	closed	-	17
2	O_2	closed	-	0
3	N_2	closed	-	99
4	air	Open, reflux	-	0
5	O_2	Open, reflux	-	0
б	N_2	Open, reflux	-	96
7	N_2	closed	H ₂ O (0.1 mmol)	61
8	N_2	closed	H ₂ O (0.2 mmol)	31
9	N_2	closed	H ₂ O (1.0 mmol)	<5

^{*a*} Reaction conditions: **1a** (1.0 mmol), **2a** (1.0 mmol), *t*-BuOK (0.2 mmol), 1,4-dioxane (2.0 mL), 120 °C, 10 min. Yield of **3a** determined by GC-analysis using *n*-dodecane as internal standard.

3. General procedure for the synthesis of 1,2,4-triazoles

3.1 The synthesis of 1,2,4-triazoles from various nitriles and hydrazines :

$$2 R = N + \frac{H}{N} \frac{t-BuOK (20 \text{ mol}\%)}{1,4-\text{dioxane } (2 \text{ mL})} \xrightarrow{Ph}_{R} \frac{N-N}{N-R}$$

Using a nitrogen-filled glove box, an oven-dried pressure tube (38 mL volume) was charged with a magnetic stirring bar, *t*-BuOK (22 mg, 20 mol%, 0.2 mmol), nitriles (1.0 mmol), hydrazines (1.0 mmol) and 1,4-dioxane (2.0 mL). Then the seal tube was closed tightly with a teflon cap, removed from the glove box and immersed into a pre-heated oil bath (120 °C). After design time the reaction was cooled, quenched with half-saturated brine (0.1 mL) and was dried over Na₂SO₄. A small aliquot of the organic phase was analyzed by GC and GC-MS to monitor product formation, respectively. Purification of the remainder by column chromatography on silica gel (petroleum ether/ethyl acetate = 100/1 - 1/4, DCM 2%) gave the corresponding products **3** or **4** in the reported yields.

3.2 The synthesis of 1,2,4-triazoles from nitriles and various hydrazines hydrochloride:

$$2 \text{ Ph} = \mathbb{N} + \mathbb{R}^{\mathsf{N}} \mathbb{N}_{2} + \mathbb{CI} \xrightarrow{t-\operatorname{BuOK}(20 \text{ mol}\%)} 1,4-\operatorname{dioxane}(2 \text{ mL}) \xrightarrow{\mathsf{R}} \mathbb{N}^{\mathsf{N}} \mathbb{P}_{\mathsf{N}} \xrightarrow{\mathsf{Ph}} \mathbb{P}_{\mathsf{N}}$$

Using a nitrogen-filled glove box, an oven-dried pressure tube (38 mL volume) was charged with a magnetic stirring bar, base, *t*-BuOK (22 mg, 20 mol%, 0.2 mmol), nitriles (1.0 mmol), hydrazine hydrochlorides (**2b**, **2c**, **2d**, **2h**, **2i**, **2k**, **2m**, **2o**, **2p**, **2r**, **2s**) and 1,4-dioxane (2 mL). Then the seal tube was closed tightly with a teflon cap, removed from the glove box and immersed into a pre-heated oil bath (120 °C). After design time the reaction was cooled, quenched with half-saturated brine (0.1 mL) and was dried over Na₂SO₄. A small aliquot of the organic phase was analyzed by GC and GC-MS to monitor product formation, respectively. Purification of the remainder by column chromatography on silica gel (petroleum ether/ethyl acetate = 100/1 - 1/4, DCM 2%) gave the corresponding products **3** or **4** in the reported yields.

3.3 Tandem annulation:

Under N₂ atmosphere, a solution of NaH (29 mg, 1.2 mmol) in DMSO (1.0 mL) was added hydrazines (1.2 mmol). After 10 min of stirring at room temperature, the mixture of reaction was added drop wise nitriles (1.0 mmol) in DMSO (1.0 mL) and stirred overnight. Then the reaction was quenched with H₂O (2.0 ml), and extracted with DCM (4 X 3 mL). After dried with anhydrous Na₂SO₄, the combined extract was evaporated under reduced pressure to give the intermediate 7. Then using a nitrogen-filled glove box, an oven-dried pressure tube (38 mL volume) was charged with a magnetic stirring bar, nitriles (0.5 mmol), intermediates 7 (0.5 mmol), t-BuOK (22 mg, 20 mol%, 0.2 mmol) and 1,4-dioxane (2.0 mL). Then the seal tube was closed tightly with a teflon cap, removed from the glove box and immersed into a pre-heated oil bath (120 °C). After design time the reaction was cooled, quenched with half-saturated brine (0.1 mL) and was dried over Na₂SO₄. A small aliquot of the organic phase was analyzed by GC and GC-MS to monitor product formation, respectively. Purification of the remainder by column chromatography on silica gel (petroleum ether/ethyl acetate = 100/1 - 1/4, DCM 2%) gave the corresponding products 8 in the reported yields.

4. Experimental characterization data for products

1,3,5-triphenyl-1*H***-1,2,4-triazole** (**3a**)^[1]:

The title compound was prepared according to the general procedure and purified by column chromatography to give a light yellow solid, 141.1 mg, 95% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.25 (d, *J* =

7.0 Hz, 2H), 7.57 (d, J = 7.0 Hz, 2H), 7.47 (t, J = 7.5 Hz, 2H), 7.45 – 7.40 (m, 7H), 7.37 (t, J = 7.5 Hz, 2H); ¹³**C NMR** (101 MHz, CDCl₃) δ 161.8, 154.6, 138.2, 130.6, 129.9, 129.3, 129.3, 128.9, 128.7, 128.5, 127.9, 126.5, 125.3.

1-phenyl-3,5-di-*p*-tolyl-1*H*-1,2,4-triazole (3b)^[2]:

The title compound was prepared according to the general procedure and purified by column chromatography to give a light yellow oil, 156.0 mg, 96% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, *J*

= 6.4 Hz, 2H), 7.37 – 7.27 (m, 7H), 7.17 (d, *J* = 8.4 Hz, 2H), 7.04 (d, *J* = 8.0 Hz, 2H), 2.29 (s, 3H), 2.24 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 162.0, 154.8, 140.2, 139.3, 138.5, 129.6, 129.3, 129.2, 128.9, 128.7, 128.1, 126.6, 125.5, 125.2, 21.5, 21.5.

1-phenyl-3,5-di-*m*-tolyl-1*H*-1,2,4-triazole (3c):

The title compound was prepared according to the general procedure and purified by column chromatography to give a light yellow oil, 152.8 mg, 94% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.98 (s,

1H), 7.95 (d, J = 7.6 Hz, 1H), 7.39 (s, 1H), 7.33 – 7.26 (m, 5H), 7.23 (d, J = 7.6 Hz, 1H), 7.13 – 7.05 (m, 4H), 2.31 (s, 3H), 2.20 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 162.1, 154.9, 138.7, 138.4, 138.2, 130.8, 130.7, 130.2, 129.7, 129.4, 128.8, 128.5, 128.4, 128.0, 127.2, 126.0, 125.5, 123.8, 21.4, 21.4; **HRMS** (ESI) calcd. for C₂₂H₂₀N₃ [M+H]:326.1657, found: 326.1656.

3,5-bis(2,4-dimethylphenyl)-1-phenyl-1*H*-1,2,4-triazole (3d):

The title compound was prepared according to the general procedure and purified by column chromatography to give a light yellow oil, 169.5 mg, 96% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.95

(d, J = 7.6 Hz, 1H), 7.28 – 7.16 (m, 5H), 7.14 – 7.11 (m, 1H), 7.01 (d, J = 9.2 Hz, 2H), 6.97 – 6.90 (m, 2H), 2.64 (s, 3H), 2.27 (s, 3H), 2.25 (s, 3H), 2.03 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 162.5, 153.7, 140.1, 138.7, 138.2, 137.3, 137.1, 132.1, 131.5, 130.2, 129.6, 129.1, 127.7, 127.2, 126.8, 126.6, 125.9, 123.4, 22.1, 21.4, 21.3, 19.8; HRMS (ESI) calcd. for C₂₄H₂₄N₃ [M+H]:354.1970, found: 354.1966.

3,5-di([1,1'-biphenyl]-4-yl)-1-phenyl-1*H*-1,2,4-triazole (3e):

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, 208.9 mg, 93% yield. ¹**H NMR** (500 MHz, CDCl₃) δ 8.33 (d,

J = 8.0 Hz, 2H), 7.72 (d, J = 8.0 Hz, 2H), 7.67 (dd, J = 11.0, 8.0 Hz, 4H), 7.60 (d, J = 8.0 Hz, 4H), 7.50 – 7.43 (m, 9H), 7.39 – 7.34 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 161.8, 154.6, 142.7, 142.1, 140.7, 140.0, 138.4, 129.8, 129.5, 129.4, 128.9, 128.8, 127.9, 127.5, 127.3, 127.2, 127.1, 126.8, 125.6; HRMS (ESI) calcd. for C₃₂H₂₄N₃ [M+H]:450.1970, found: 450.1974.

3,5-bis(4-methoxyphenyl)-1-phenyl-1*H*-1,2,4-triazole (3f)^[2]:

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, 144.6 mg, 81% yield. ¹H NMR (500 MHz,

CDCl₃) δ 8.16 (d, J = 9.0 Hz, 2H), 7.49 (d, J = 9.0 Hz, 2H), 7.43 (s, 5H), 6.98 (d, J = 9.0 Hz, 2H), 6.86 (d, J = 9.0 Hz, 2H), 3.86 (s, 3H), 3.82 (s, 3H); ¹³C NMR (101 MHz,

CDCl₃) δ 161.6, 160.8, 160.6, 154.5, 138.6, 130.5, 129.4, 128.7, 128.0, 125.5, 123.6, 120.4, 114.0, 55.32.

3,5-bis(3-chlorophenyl)-1-phenyl-1*H*-1,2,4-triazole (3g):

The title compound was prepared according to the general procedure and purified by column chromatography to give a light yellow oil, 115.0 mg, 63% yield. ¹H NMR (500 MHz, CDCl₃) δ

8.22 (s, 1H), 8.08 (s, 1H), 7.63 (s, 1H), 7.48 – 7.43 (m, 3H), 7.41 – 7.36 (m, 5H), 7.31 (d, J = 7.8 Hz, 1H), 7.25 – 7.20 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 160.9, 153.5, 137.9, 134.7, 132.4, 130.2, 129.9, 129.8, 129.6, 129.5, 129.4, 129.3, 129.2, 128.7, 127.8, 126.9, 126.7, 125.4, 124.7; **HRMS** (ESI) calcd. for C₂₀H₁₄Cl₂N₃ [M+H]: 366.0565, found: 366.0566.

3,5-bis(3-bromophenyl)-1-phenyl-1H-1,2,4-triazole (3h):

The title compound was prepared according to the general procedure and purified by column chromatography to give a yellow oil, 167.6 mg, 74% yield. ¹**H NMR** (400 MHz, CDCl₃) δ 8.43 (s,

1H), 8.18 (d, J = 8.0 Hz, 1H), 7.85 (s, 1H), 7.59 – 7.55 (m, 2H), 7.51 – 7.48 (m, 3H), 7.45 – 7.42 (m, 2H), 7.37 (dd, J = 15.6, 7.3 Hz, 2H), 7.22 (t, J = 8.0 Hz, 1H);¹³C NMR (101 MHz, CDCl₃) δ 160.8, 153.4, 137.8, 133.2, 132.6, 132.5, 132.0, 130.2, 130.1, 129.7, 129.6, 129.4, 127.4, 125.4, 125.1, 122.9, 122.8; **HRMS** (ESI) calcd. for C₂₀H₁₄Br₂N₃ [M+H]:453.9554, found: 453.9555.

1-phenyl-3,5-bis(4-(trifluoromethyl)phenyl)-1*H*-1,2,4-triazole (3i):

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, 88.9 mg, 41% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.35 (d, *J* = 8.0 Hz, 2H), 7.73 (d, *J* = 8.0 Hz, 2H), 7.69 (d, *J* = 8.0 Hz, 2H), 7.63 (d, *J* = 8.0 Hz, 2H), 7.49 (s, 3H), 7.42 (s, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 161.1, 153.8, 137.9, 134.0, 132.3, 132.0, 131.6, 131.3, 129.9, 129.7, 129.4, 126.9, 125.9, 125.6, 125.3, 124.9, 123.2, 122.7; ¹⁹F NMR (377 MHz, CDCl₃) δ -62.65, -62.98; HRMS (ESI) calcd. for C₂₂H₁₄F₆N₃ [M+H]:434.1092, found: 434.1094.

4,4'-(1-phenyl-1*H*-1,2,4-triazole-3,5-diyl)dianiline (3j):

The title compound was prepared according to the general procedure and purified by column chromatography to give a light yellow solid, 147.2 mg, 90% yield. ¹H NMR (500 MHz,

DMSO) δ 7.72 (d, J = 8.5 Hz, 2H), 7.54 – 7.42 (m, 3H), 7.39 (d, J = 7.0 Hz, 2H), 7.11 (d, J = 8.5 Hz, 2H), 6.60 (d, J = 8.5 Hz, 2H), 6.48 (d, J = 8.5 Hz, 2H), 5.53 (s, 2H), 5.37 (s, 2H); ¹³**C NMR** (101 MHz, DMSO) δ 161.5, 155.1, 150.8, 150.3, 139.2, 130.1, 129.9, 129.0, 127.6, 126.1, 118.7, 114.9, 114.1, 113.6; **HRMS** (ESI) calcd. for C₂₀H₁₈N₅ [M+H]:354.1970, found: 354.1966.

3,5-di(naphthalen-2-yl)-1-phenyl-1*H*-1,2,4-triazole (3k):

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, 170.8 mg, 86% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.84 (s,

1H), 8.41 (d, J = 8.5 Hz, 1H), 8.20 (s, 1H), 8.00 (d, J = 4.0 Hz, 1H), 7.97 (d, J = 8.5 Hz, 1H), 7.90 (s, 1H), 7.82 (dd, J = 12.5, 8.5 Hz, 3H), 7.59 (dd, J = 8.5, 1.5 Hz, 1H), 7.56 – 7.49 (m, 6H), 7.45 – 7.42 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 162.2, 155.0, 138.4, 134.1, 133.7, 133.5, 132.9, 129.5, 129.4, 129.0, 128.7, 128.50, 128.4, 128.2, 127.9, 127.8, 127.5, 126.8, 126.6, 126.4, 126.1, 125.6, 125.5, 125.4, 124.26. **HRMS** (ESI) calcd. for C₂₈H₂₀N₃ [M+H]:398.1657, found: 398.1660.

3,5-di(furan-2-yl)-1-phenyl-1*H***-1,2,4-triazole** (**3***l*)^[2]:

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, 110.8 mg, 80% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.47 (q, *J* = 20.0

Hz, 7H), 7.09 (d, J = 3.0 Hz, 1H), 6.53 – 6.47 (m, 2H), 6.38 (s, 1H); ¹³**C** NMR (101 MHz, CDCl₃) δ 155.4, 146.9, 145.8, 144.5, 143.5, 142.0, 137.7, 129.7, 129.4, 126.2, 113.2, 111.7, 111.6, 110.1.

1-phenyl-3,5-di(thiophen-2-yl)-1H-1,2,4-triazole (3m)^[2]:

The title compound was prepared according to the general procedure and purified by column chromatography to give a light yellow solid, 51.0 mg, 33% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, *J* =

3.6 Hz, 1H), 7.57 – 7.52 (m, 5H), 7.41 (m, 2H), 7.15 (dd, J = 5.2, 3.6 Hz, 1H), 7.12 (d, J = 2.8 Hz, 1H), 6.99 (dd, J = 5.2, 3.6 Hz, 1H); ¹³**C NMR** (101 MHz, CDCl₃) δ 158.2, 150.1, 137.7, 133.2, 130.0, 129.7, 129.3, 129.0, 128.9, 127.7, 127.6, 126.8, 126.8, 126.8, 126.8.

4,4'-(1-phenyl-1*H*-1,2,4-triazole-3,5-diyl)dipyridine (3n):

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, 124.2 mg, 83% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.73 (d, J

= 6.0 Hz, 2H), 8.65 (d, J = 6.0 Hz, 2H), 8.08 (d, J = 6.0 Hz, 2H), 7.55 – 7.49 (m, 3H), 7.45 – 7.39 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 160.3, 152.9, 150.4, 150.3, 137.8, 137.5, 134.9, 130.0, 129.9, 125.6, 122.6, 120.7, 100.0; **HRMS** (ESI) calcd. for C₁₈H₁₄N₅ [M+H]:300.1249, found: 300.1252.

Figure S1. ORTEP drawing of product 3n

3,3'-(1-phenyl-1*H***-1,2,4-triazole-3,5-diyl)dipyridine (30):**

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, 140.6 mg, 94% yield. ¹H NMR (500 MHz, CDCl₃) δ 9.44 (s,

1H), 8.77 (s, 1H), 8.65 (m, 2H), 8.47 (d, J = 8.0 Hz, 1H), 7.89 (d, J = 8.0 Hz, 1H), 7.49 - 7.46 (m, 3H), 7.43 - 7.38 (m, 3H), 7.32 (dd, J = 8.0, 5.0 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 160.1, 152.5, 151.0, 150.5, 149.5, 148.0, 137.6, 136.1, 133.9, 129.9, 129.7, 126.5, 125.5, 124.1, 123.5, 123.4; **HRMS** (ESI) calcd. for C₁₈H₁₄N₅ [M+H]:300.1249, found: 300.1252.

2,2'-(1-phenyl-1*H*-1,2,4-triazole-3,5-diyl)dipyridine (3p):

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, 124.1 mg, 83% yield. ¹**H NMR** (500 MHz, CDCl₃) δ 8.79 (d, *J* = 4.5

Hz, 1H), 8.48 (d, J = 4.5 Hz, 1H), 8.29 (d, J = 8.0 Hz, 1H), 8.08 (d, J = 8.0 Hz, 1H), 7.80 (dt, J = 14.0, 8.0 Hz, 2H), 7.47 (m, 2H), 7.44 – 7.39 (m, 3H), 7.37 – 7.32 (m, 1H), 7.30 (dd, J = 4.5, 3.0 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 161.4, 153.7, 150.1, 149.5, 149.3, 147.3, 138.9, 136.7, 136.6, 128.8, 125.7, 124.5, 124.4, 124.0, 122.0. HRMS (ESI) calcd. for C₁₈H₁₄N₅ [M+H]: 300.1249, found: 300.1250.

3,5-dibenzyl-1-phenyl-1*H*-1,2,4-triazole (3q):

The title compound was prepared according to the general procedure and purified by column chromatography to give a light yellow oil, 99.2 mg, 61% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.34 (m,

5H), 7.29 – 7.20 (m, 4H), 7.19 – 7.12 (m, 4H), 7.02 (d, *J* = 7.0 Hz, 2H), 4.06 (s, 4H); ¹³C NMR (126 MHz, CDCl₃) δ 162.9, 154.6, 138.2, 137.4, 136.1, 129.3, 129.0, 128.9, 128.7, 128.5, 128.4, 126.9, 126.5, 125.3, 34.8, 32.5; HRMS (ESI) calcd. for C₂₂H₂₀N₃ [M+H]:326.1657, found: 326.1659.

3,5-dibutyl-1-phenyl-1*H*-1,2,4-triazole (3r):

The title compound was prepared according to the general procedure and purified by column chromatography to give a white oil, 117.0 mg, 91% yield. ¹**H NMR** (500 MHz, CDCl₃) δ 7.53 – 7.34 (m,

5H), 2.80 - 2.65 (m, 4H), 1.74 (d, J = 7.5 Hz, 2H), 1.69 (t, J = 8.0 Hz, 2H), 1.41 (d, J = 7.5 Hz, 2H), 1.33 - 1.28 (m, 2H), 0.93 (t, J = 7.5 Hz, 3H), 0.85 (t, J = 7.5 Hz, 3H); ¹³C **NMR** (101 MHz, CDCl₃) δ 164.0, 156.2, 137.6, 129.3, 128.6, 125.1, 30.6, 30.0, 29.7, 28.1, 26.2, 22.5, 22.3, 13.8, 13.6; **HRMS** (ESI) calcd. for C₁₆H₂₄N₃ [M+H]:258.1970, found: 258.1973.

3,5-dicyclopropyl-1-phenyl-1*H*-1,2,4-triazole (3s):

The title compound was prepared according to the general procedure and purified by

column chromatography to give a white oil, 94.6 mg, 84% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.56 – 7.20 (m, 5H), 1.93 (dq, J = 8.4, 5.2 Hz, 1H), 1.86 – 1.74 (m, 1H), 1.11 – 1.06 (m, 2H), 0.96 – 0.83 (m, 6H); ¹³C NMR (101 MHz,

CDCl₃) δ 165.1, 157.5, 137.7, 129.3, 128.3, 124.8, 9.2, 8.9, 7.7, 7.6; **HRMS** (ESI) calcd. for C₁₆H₁₆N₃ [M+H]:226.1344, found: 226.1345.

3,5-dicyclohexyl-1-phenyl-1*H*-1,2,4-triazole (3t):

The title compound was prepared according to the general procedure and purified by column chromatography to give a white oil, 143.8 mg, 93% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.52 – 7.33 (m,

5H), 2.74 (m, 2H), 2.07 (d, J = 13.5 Hz, 2H), 1.79 (m, 6H), 1.68 (m, 4H), 1.58 (qd, J = 12.5, 3.0 Hz, 2H), 1.38 – 1.18 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 167.8, 159.9, 137.7, 129.3, 128.7, 125.5, 38.0, 35.4, 32.0, 31.8, 26.2, 26.0, 25.9, 25.5; HRMS (ESI) calcd. for C₂₀H₂₈N₃ [M+H]:310.2283, found: 310.2285.

3,5-diphenyl-1-(*m*-tolyl)-1*H*-1,2,4-triazole (4a)^[2]:

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, 144.7 mg, 93% yield. ¹**H NMR** (500 MHz, CDCl₃) δ 8.16 (d, *J* = 7.0 Hz, 2H), 7.49 (d, *J* = 7.0 Hz, 2H), 7.38 (m, 2H), 7.32 (m, 2H),

7.28 – 7.22 (m, 3H), 7.16 (m, 2H), 7.04 (d, J = 7.5 Hz, 1H), 2.29 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 161.9, 154.7, 139.7, 138.2, 130.8, 130.0, 129.7, 129.5, 129.1, 129.0, 128.6, 128.5, 128.0, 126.7, 126.1, 122.6, 21.4.

1-(2-ethylphenyl)-3,5-diphenyl-1*H***-1,2,4-triazole** (4b)^[3]:

The title compound was prepared according to the general procedure and purified by

column chromatography to give a light yellow oil, 154.5 mg, 95% yield. ¹**H NMR** (400 MHz, CDCl₃) δ 8.19 – 8.15 (m, 2H), 7.49 – 7.45 (m, 2H), 7.40 – 7.31 (m, 5H), 7.26 – 7.19 (m, 5H), 2.33 (q, *J* = 7.6 Hz, 2H), 0.96 (t, *J* = 7.6 Hz, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 161.8, 155.4, 141.1, 137.2,

130.9, 130.3, 129.9, 129.8, 129.4, 128.6, 128.5, 128.3, 127.8, 127.7, 127.1, 126.6, 24.1, 14.1.

1-(4-methoxyphenyl)-3,5-diphenyl-1*H***-1,2,4-triazole** (4c)^[3]:

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, 140.7 mg, 86% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.26 (d, *J* = 6.8 Hz, 2H), 7.60 (d, *J* = 8.0 Hz, 2H), 7.52 - 7.40 (m, 5H), 7.39 - 7.35 (m, 3H), 6.97 (d, *J* = 9.0 Hz, 2H), 3.88 (s, 3H);

¹³C NMR (101 MHz, CDCl₃) δ 161.7, 159.8, 154.7, 131.4, 130.8, 129.9, 129.4, 128.9, 128.6, 128.1, 126.9, 126.6, 114.6, 55.6.

1-(3-(tert-butoxy)phenyl)-3,5-diphenyl-1*H*-1,2,4-triazole (4d):

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, 129.2 mg, 70% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.24 (d, J = 7.0 Hz, 2H), 7.62 (d, J = 8.0 Hz, 1H), 7.57 (d, J = 7.0 Hz, 2H), 7.47 – 7.41 (m, 3H), 7.37 – 7.28

(m, 4H), 7.20 (t, J = 7.5 Hz, 1H), 7.09 (d, J = 8.5 Hz, 1H), 1.05 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 161.7, 156.4, 150.8, 132.4, 131.1, 130.2, 129.7, 129.2, 128.9, 128.6, 128.3, 128.2, 128.0, 126.6, 123.0, 122.9, 80.5, 28.6; **HRMS** (ESI) calcd. for C₂₄H₂₄N₃O [M+H]: 370.1919, found:370.1927.

1-(3-fluorophenyl)-3,5-diphenyl-1*H*-1,2,4-triazole (4e):

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, 137.1 mg, 87% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.23 (d, *J* = 9.0 Hz, 2H), 7.57 (d, *J* = 7.5 Hz, 2H), 7.50 – 7.42 (m, 4H), 7.42 – 7.35 (m, 3H), 7.26 – 7.17 (m,

2H), 7.13 (t, J = 8.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 162.70 (d, J = 248.7 Hz), 162.2, 154.9, 139.48 (d, J = 9.9 Hz), 130.7, 130.6, 130.5, 130.3, 129.6, 129.0, 128.8, 128.7, 128.6, 127.8, 126.7 120.98 (d, J = 3.3 Hz), 115.83 (d, J = 21.1 Hz), 112.94 (d, J = 24.8 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ -110.15; HRMS (ESI) calcd. for C₂₀H₁₅FN₃.[M+H]:316.1250, found: 316.1251.

1-(2-fluorophenyl)-3,5-diphenyl-1*H*-1,2,4-triazole (4f):

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, 99.3 mg, 63% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.24 (d, *J* = 7.0 Hz, 2H), 7.58 (d, *J* = 7.0 Hz, 3H), 7.49 – 7.40 (m, 5H), 7.37 – 7.30 (m, 3H), 7.20 (t, *J* =

9.0 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 162.5, 156.6 (d, J = 254.1 Hz), 156.4, 131.4 (d, J = 7.7 Hz), 130.6, 130.2, 129.6, 128.8, 128.7, 128.6, 128.5, 128.3, 128.2, 127.9, 127.7, 126.7, 125.1 (d, J = 4.1 Hz), 117.1 (d, J = 19.3 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ -120.35; **HRMS** (ESI) calcd. for C₂₀H₁₅FN₃.[M+H]:316.1250, found: 316.1253.

1-(4-chlorophenyl)-3,5-diphenyl-1*H***-1,2,4-triazole** (4g)^[2]:

The title compound was prepared according to the general procedure and purified by column chromatography to give a light yellow oil, 150.6 mg, 91% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.14 (d, *J* = 7.0 Hz, 2H), 7.46 (d, *J* = 7.0 Hz, 2H),

7.36 (m, 4H), 7.29 (m, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 162.2, 154.9, 136.8, 134.6, 130.6, 130.3, 129.6, 129.0, 128.7, 128.6, 127.9, 126.6, 126.5.

1-(3-chlorophenyl)-3,5-diphenyl-1*H*-1,2,4-triazole (4h)^[1]:

The title compound was prepared according to the general procedure and purified by column chromatography to give a light yellow oil, 130.8 mg, 79% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.14 (d, *J* = 7.0 Hz, 2H), 7.50 – 7.43 (m, 3H), 7.39

- 7.33 (m, 4H), 7.32 - 7.28 (m, 3H), 7.22 (t, J = 8.0 Hz, 1H), 7.15 (t, J = 6.5 Hz, 1H);
¹³C NMR (126 MHz, CDCl₃) δ 160.8, 153.5, 137.9, 133.3, 132.6, 132.5.2, 132.0, 130.3, 130.1, 129.7, 129.6, 129.5, 127.4, 125.5, 125.2, 122.9, 122.8.

1-(2-chlorophenyl)-3,5-diphenyl-1*H*-1,2,4-triazole (4i):

The title compound was prepared according to the general procedure and purified by column chromatography to give a light yellow solid, 84.6 mg, 51% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.26 – 8.23 (m, 2H), 7.57 – 7.50 (m, 4H), 7.48 – 7.42 (m, 5H), 7.37 (d, *J* = 7.0 Hz, 1H), 7.32 (t, *J* = 7.5 Hz, 2H);

¹³C NMR (101 MHz, CDCl₃) δ 162.3, 156.2, 136.4, 132.1, 131.2, 130.7, 130.6, 130.2, 129.6, 129.5, 128.7, 128.6, 128.1, 128.0, 127.7, 126.7; HRMS (ESI) calcd. for C₂₀H₁₅ClN₃ [M+H]: 332.0955, found: 332.0956.

1-(3,5-dichlorophenyl)-3,5-diphenyl-1*H*-1,2,4-triazole (4j):

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, 149.7 mg, 82% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.22 (d, *J* = 7.0 Hz, 2H), 7.57 (d, *J* = 7.0 Hz, 2H), 7.46 (m, 6H), 7.41 (t, *J* = 1.5 Hz, 1H), 7.36 (d, *J* = 1.5 Hz,

2H); ¹³C NMR (126 MHz, CDCl₃) δ 162.4, 155.0, 139.7, 135.6, 132.8, 132.2, 130.7,

130.3, 129.7, 129.1, 129.0, 128.9, 128.7, 128.6, 126.7, 123.6, 118.8, 112.5; **HRMS** (ESI) calcd. for C₂₀H₁₄Cl₂N₃ [M+H]: 366.0565, found: 366.0564.

1-(3-bromophenyl)-3,5-diphenyl-1*H*-1,2,4-triazole (4k)^[1]:

The title compound was prepared according to the general procedure and purified by column chromatography to give a light yellow oil, 125.6 mg, 67% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.15 (d, *J* = 7.0 Hz, 2H), 7.62 (s, 1H), 7.47 (m, 2H),

7.34-7.28 (m, 7H), 7.19 – 7.12 (m, 2H); ¹³C NMR (126 MHz, CDCl3) δ 161.1, 153.8, 138.3, 130.8, 129.4, 129.3, 128.5, 128.3, 128.0, 127.7, 127.6, 127.5, 127.3, 126.6, 125.6, 124.4, 122.8, 121.8.

3,5-diphenyl-1-(3-(trifluoromethyl)phenyl)-1*H*-1,2,4-triazole (4l):

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, 133.3 mg, 73% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.24 (d, *J* = 6.5 Hz, 2H), 7.78 (s, 1H), 7.66 (d, *J*

= 7.5 Hz, 1H), 7.59 – 7.51 (m, 4H), 7.50 – 7.43 (m, 4H), 7.39 - 7.36 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 162.4, 155.0, 138.7, 130.5, 130.4, 130.0, 129.7, 129.1, 128.9, 128.7, 128.2, 127.7, 126.7, 125.3 (d, J = 3.6 Hz), 122.2 (d, J = 3.9 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ -62.81; HRMS (ESI) calcd. for C₂₁H₁₅F₃N₃ [M+H]: 366.1218, found: 366.1218.

1-(naphthalen-1-yl)-3,5-diphenyl-1*H*-1,2,4-triazole (4m):

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, 161.4 mg, 93% yield. ¹**H NMR** (500 MHz, CDCl₃) δ 8.29 (d, *J* = 7.0 Hz, 2H), 8.01 (d, *J* = 8.0 Hz, 1H), 7.96 (d, *J* = 8.0 Hz, 1H), 7.62 (d, *J* = 8.5 Hz, 1H), 7.56 (t, *J* = 7.0 Hz, 1H),

7.52 – 7.43 (m, 8H), 7.29 (t, J = 7.5 Hz, 1H), 7.20 (t, J = 7.5 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 162.3, 156.5, 134.9, 134.4, 130.9, 130.4, 129.9, 129.8, 129.6, 128.7, 128.5, 128.4, 127.9, 127.6, 127.1, 126.8, 125.7, 125.3, 122.9; **HRMS** (ESI) calcd. for C₂₄H₁₈N₃ [M+H]: 348.1501, found: 348.1507.

2-(3,5-diphenyl-1*H***-1,2,4-triazol-1-yl)pyridine (4n)^[4]:**

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, 110.3 mg, 74% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.34 (d, *J* = 4.5 Hz, 1H), 8.17 (d, *J* = 7.5 Hz, 2H), 7.71 (t, *J* = 7.5 Hz, 1H), 7.49 (d, *J* = 7.0 Hz, 3H), 7.37 (t, *J* = 7.0 Hz, 2H),

7.32 (m, 2H), 7.27 (t, J = 7.0 Hz, 2H), 7.22 – 7.19 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 162.1, 155.6, 150.9, 148.9, 138.8, 130.6, 130.0, 129.6, 129.2, 128.6, 128.4, 126.8, 123.8, 119.3.

1-benzyl-3,5-diphenyl-1*H*-1,2,4-triazole (40)^[5]:

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, 135.3 mg, 87% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.19 (d, *J* = 7.5 Hz, 2H), 7.62 (d, *J* = 7.5 Hz, 2H), 7.50 – 7.42 (m, 5H), 7.40 (d, *J* = 7.0 Hz, 1H), 7.36 – 7.28 (m,

3H), 7.21 (d, J = 7.5 Hz, 2H), 5.46 (s, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 161.6, 156.2, 136.1, 131.1, 130.3, 129.0, 129.9, 129.8, 128.6, 128.7, 128.1, 128.0, 126.9, 126.5, 52.8.

1-(4-methoxybenzyl)-3,5-diphenyl-1*H*-1,2,4-triazole (4p)^[6]:

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, 143.3 mg, 84%

yield. ¹**H NMR** (500 MHz, CDCl₃) δ 8.18 (d, *J* = 7.0 Hz, 2H), 7.62 (d, *J* = 6.0 Hz, 2H), 7.44 (m, 6H), 7.15 (d, *J* = 8.5 Hz, 2H), 6.86 (d, *J* = 8.5 Hz, 2H), 5.38 (s, 2H), 3.78 (s, 3H); ¹³**C NMR** (126 MHz, CDCl₃) δ 161.5, 159.4, 155.9, 131.1, 130.2, 129.2, 128.9, 128.6, 128.5, 128.4, 128.1, 126.5, 114.3, 55.3, 52.4.

1-(3-fluorobenzyl)-3,5-diphenyl-1*H*-1,2,4-triazole (4q):

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, 120.1 mg, 73% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.19 (d, *J* = 7.0 Hz, 2H), 7.62 (d, *J* = 2.0 Hz, 2H),

7.50 – 7.39 (m, 6H), 7.29 (m, 1H), 7.16 – 7.05 (m, 3H), 5.52 (s, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 161.8, 159.8 (d, J = 247.0 Hz), 156.5, 130.9, 130.3, 129.8 (d, J = 7.7 Hz), 129.3, 128.9, 128.8, 128.7, 128.6, 127.8, 126.5, 124.6, 123.3 (d, J = 14.3 Hz), 115.5 (d, J = 20.9 Hz), 46.8; ¹⁹F NMR (377, MHz, CDCl₃) δ -118.25; HRMS (ESI) calcd. for C₂₁H₁₇FN₃ [M+H]:330.1407, found: 330.1411.

1-isopropyl-3,5-diphenyl-1*H*-1,2,4-triazole (4r)^[1]:

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, 126.3 mg, 96% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.20 (d, *J* = 7.5 Hz, 2H), 7.62 (d, *J* = 1.5 Hz, 2H), 7.54 – 7.48 (m, 3H), 7.44 (m, 2H), 7.38 (m, 1H), 4.67 (dt, *J* =

13.0, 6.5 Hz, 1H), 1.56 (s, 3H), 1.55 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 161.2, 154.7, 131.5, 130.0, 128.9, 128.9, 128.6, 128.5, 126.4, 50.7, 29.7, 22.9.

1-(tert-butyl)-3,5-diphenyl-1*H***-1,2,4-triazole** (4s)^[1]:

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, 128.9 mg, 93% yield. ¹H NMR (500 MHz,

CDCl₃) δ 8.30 (d, J = 7.0 Hz, 2H), 7.52 (m, 5H), 7.48 – 7.41 (m, 3H), 1.55 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 155.9, 153.3, 131.1, 130.4, 129.9, 128.8, 128.6, 127.1, 63.5, 30.7; HRMS (ESI) calcd. for C₁₈H₂₀N₃ [M+H]:278.1657, found: 278.1663.

1-cyclohexyl-3,5-diphenyl-1*H*-1,2,4-triazole (4t)^[7]:

The title compound was prepared according to the general procedure and purified by column chromatography to give a white oil, 131.9 mg, 87% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, *J* = 7.0 Hz, 2H), 7.56 – 7.52 (m, 2H), 7.47 – 7.42 (m, 3H), 7.37 – 7.32 (m, 2H), 7.30 (m, 1H), 4.16 - 4,11 (m, 1H),

2.05 (m, 2H), 1.93 – 1.87 (m, 2H), 1.85 – 1.78 (m, 2H), 1.22 (m, 4H); ¹³**C NMR** (101 MHz, CDCl₃) δ 161.0, 154.7, 131.5, 123.0, 129.0, 128.8, 128.5, 126.4, 58.1, 33.2, 29.7, 25.5, 25.0.

3,5-dicyclopropyl-1-isopropyl-1*H*-1,2,4-triazole (5a):

The title compound was prepared according to the general procedure and purified by column chromatography to give a white oil, 91.7 mg, 96% yield. ¹H NMR (400 MHz, CDCl₃) δ 4.53 (dt, *J* = 13.6, 6.4 Hz, 1H), 1.86 (m, 1H), 1.70 m, 1H),

1.40 (d, J = 6.4 Hz, 6H), 0.96 – 0.89 (m, 4H), 0.82 – 0.75 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 163.6, 155.5, 49.2, 22.3, 9.0, 7.4, 7.3, 6.2; **HRMS** (ESI) calcd. for C₁₁H₁₈N₃ [M+H]:192.1501, found: 192.1495.

1-(tert-butyl)-3,5-dicyclopropyl-1*H*-1,2,4-triazole (5b):

The title compound was prepared according to the general procedure and purified by column chromatography to give a white oil, 94.4 mg, 92% yield. ¹H NMR (500 MHz, CDCl₃) δ 2.03 – 1.86 (td, *J* = 8.0, 4.0 Hz, 1H), 1.80 (td, *J* = 8.0, 4.0 Hz, 1H), 1.58 (s, 9H), 1.01 (dd, *J* = 5.0, 2.5 Hz, 2H), 0.90

(dd, J = 8.0, 2.5 Hz, 2H), 0.82 - 0.62 (m, 4H); ¹³C NMR (126 MHz, CDCl₃) δ 161.2, 155.8, 58.7, 29.9, 9.3, 8.7, 8.6, 7.0; **HRMS** (ESI) calcd. for C₁₂H₂₀N₃ [M+H]:206.1657, found: 206.1653.

2-(3,5-dicyclopropyl-1*H*-1,2,4-triazol-1-yl)ethanol (5c):

The title compound was prepared according to the general procedure and purified by column chromatography to give a white oil, 86.9 mg, 90% yield. ¹H NMR (500 MHz, CDCl₃) δ 4.14 (t, J = 4.5 Hz, 2H), 3.93 (t, J = 4.5 Hz, 2H), 1.91 – 1.74 (m, 2H), 0.99 – 0.93 (m, 4H), 0.83 (m, 4H); ¹³C NMR

(126 MHz, CDCl₃) δ 164.3, 157.8, 61.0, 49.7, 8.9, 7.8, 7.6, 6.2; **HRMS** (ESI) calcd. for C₁₀H₁₆N₃O [M+H]:194.1293, found: 194.1287.

3,5-dibutyl-1-isopropyl-1*H*-1,2,4-triazole (5d):

The title compound was prepared according to the general procedure and purified by column chromatography to give a white oil, 101.6 mg, 91% yield. ¹H NMR (400 MHz, CDCl₃) δ 4.31 (q, J =

13.6, 6.4 Hz, 1H), 2.65 – 2.56 (m, 4H), 1.63 (q, J = 13.2, 4.0 Hz, 4H), 1.39 (d, J = 6.4 Hz, 6H), 1.32 (q, J = 15.2, 7.6 Hz, 4H), 0.86 (dt, J = 10.0, 7.6 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 163.1, 154.3, 49.2, 30.9, 30.2, 28.3, 25.7, 22.5, 22.4, 13.8, 13.7.; HRMS (ESI) calcd. for C₁₃H₂₆N₃ [M+H]:224.2127, found: 224.2124.

1-(tert-butyl)-3,5-dibutyl-1*H*-1,2,4-triazole (5e):

The title compound was prepared according to the general procedure and purified by column chromatography to give a white oil, 111.6 mg, 94% yield. ¹H NMR (500 MHz, CDCl₃) δ 3.14 – 3.06 (m,

2H), 2.80 – 2.69 (m, 2H), 1.79 (d, J = 7.5 Hz, 2H), 1.71 – 1.64 (m, 2H), 1.58 (s, 9H),

1.37 (dd, J = 15.0, 7.5 Hz, 2H), 1.27 (dd, J = 15.0, 7.5 Hz, 2H), 0.83 (dt, J = 22.0, 7.5 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 154.2, 152.9, 64.1, 30.6, 29.7, 28.8, 26.0, 25.0, 22.4, 22.0, 13.4, 13.3; **HRMS** (ESI) calcd. for C₁₄H₂₈N₃ [M+H]:238.2283, found: 238.2281.

3,5-diphenyl-1*H*-1,2,4-triazole (5f):

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, 98.4 mg, 89% yield. ¹**H NMR** (400 MHz, DMSO) δ 14.53 (s, 1H), 8.15

- 8.00 (m, 4H), 7.63 - 7.41 (m, 6H); ¹³C NMR (101 MHz, DMSO) δ 162.1, 155.5, 131.8, 130.7, 129.5, 129.4, 129.2, 127.7, 126.6, 126.3; HRMS (ESI) calcd. for C₁₄H₁₂N₃ [M+H]:222.1031, found: 222.1031.

2-(3,5-diphenyl-1*H*-1,2,4-triazol-1-yl)ethanol (5g):

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, 107.4 mg, 81% yield. ¹**H NMR** (500 MHz, CDCl₃) δ 8.10 (d, *J* = 6.5 Hz,

2H), 7.72 (d, *J* = 7.0 Hz, 2H), 7.49 – 7.38 (m, 6H), 4.35 – 4.26 (m, 2H), 4.12 – 4.05 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 160.8, 156.1, 130.5, 129.8, 129.7, 129.3, 128.8, 128.7, 126.8, 126.6, 61.2, 51.3; HRMS (ESI) calcd. for C₁₆H₁₆N₃O [M+H]: 266.1297, found: 266.1293.

5. Application

5.1 Gram scale experiments

Open system:

10 mmol Scale: Using a nitrogen-filled glove box, an oven-dried Schlenk tube (250 mL volume) was charged with a magnetic stirring bar, *t*-BuOK (2 mmol), **1a** (10 mmol), **2a** (10 mmol) and 1,4-dioxane (50 mL). The tube was sealed, taken out of the glove box and a reflux condenser was attached under argon stream. The mixture was heated to a gentle reflux for an hour under inert atmosphere in an open system at 120 °C (oil bath). After design time the reaction was cooled, quenched with half-saturated brine (1 mL) and was dried over Na₂SO₄. A small aliquot of the organic phase was analyzed by GC and GC-MS to monitor product formation, respectively. Then the corresponding reaction mixture was purified by flash column chromatography on a silica gel column (petroleum ether/ethyl acetate = 100/1 - 10/1, DCM 2%) to give the desired product **3a** in 95 % yield (1.41 g).

100 mmol Scale:

100 mmol Scale: Using a nitrogen-filled glove box, an oven-dried Schlenk tube (2.5 L volume) was charged with a magnetic stirring bar, *t*-BuOK (20 mmol), **1a** (100 mmol), **2a** (100 mmol) and 1,4-dioxane (0.5 L). The tube was sealed, taken out of the glove box and a reflux condenser was attached under argon stream. The mixture was heated to a gentle reflux for two hour under inert atmosphere in an open system at 120 °C (oil bath). After design time the reaction was cooled, quenched with half-saturated brine (5 mL) and was dried over Na₂SO₄. A small aliquot of the organic phase was analyzed by GC and GC-MS to monitor product formation, respectively. Then the corresponding reaction mixture was purified by flash column chromatography on a silica gel column (petroleum ether/ethyl acetate = 100/1 - 10/1, DCM 2%) to give the desired product **3a** in 94 % yield (13.99 g).

5.2 Synthesis of the mGlu5 receptor of 2-(3,5-bis(4-methoxyphenyl)-1H-1,2,4triazol-1-yl)-1-(4-(pyridin-2-yl)piperazin-1-yl)ethanone (6a)

Following our general procedure: In the glove box, a mixture of 4-MeOPhCN (27.0 mg, 0.2 mmol), NH₂NH₂·HCl (14.0 mg, 0.2 mmol), *t*-BuOK (150 mol%) and 1,4-dioxane (0.2 ml) was added into a dry glass tube with a magnetic stirring bar. After being stirred at 120 °C (oil bath) for 15 hours, the glass tube was cooled to room temperature. Subsequently, 2-chloro-1-(4-(pyridin-2-yl)piperazin-1-yl) ethan-1-one (120 mg, 0.5 mmol), K₂CO₃ (138 mg, 1.0 mmol), KI (50 mg, 0.3 mmol) and acetone (1.8 mL) were added. The reaction mixture was stirred at 60 °C (oil bath) for 24 hours. After the reaction was cooled to room temperture, the corresponding reaction mixture was purified by flash column chromatography on a silica gel column (pentane/ethyl ether = 10/1 - 2/1, DCM 5%) to give the desired product **6a** in 78 % yield (38 mg).

2-(3,5-bis(4-methoxyphenyl)-1H-1,2,4-triazol-1-yl)-1-(4-(pyridin-2-yl)piperazin-1yl)ethanone (6a)

The title compound was prepared according to the general procedure and purified by column chromatography to give the white solid, 38 mg, 78% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.12 (d, J = 4.0 Hz, 1H), 7.98 (d, J = 8.5 Hz, 2H), 7.63 (d, J = 8.5 Hz, 2H), 7.45 – 7.40 (m, 1H), 6.91 (d, J = 8.5 Hz, 2H), 6.85 (d, J = 8.5 Hz, 2H), 6.60 (m, 1H), 6.55 (d, J = 8.5 Hz, 1H), 4.94 (s, 2H), 3.75 (s, 6H), 3.74 (s, 6H), 3.71 – 3.66 (m, 2H), 3.55 (d, J = 5.0

Hz, 4H), 3.48 – 3.43 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 163.2, 159.0, 158.4, 158.2, 156.9, 154.3, 145.9, 135.8, 128.2, 125.6, 122.0, 118.5, 112.5, 112.3, 111.7, 105.5, 53.5, 53.4, 48.9, 43.4, 42.9, 42.5, 39.8; HRMS (ESI) calcd. for C₂₇H₂₉N₆O₃ [M+H]: 485.2301, found: 485.2296.

5.3SynthesisofthemGlu5receptorof2-(3,5-bis(4-fluorophenyl)-1H-1,2,4-triazol-1-yl)-1-(4-(6-chloro-2-methylpyrimidin-4-yl)piperazin-1-yl)ethan-1-one (6b)

Following our general procedure: In the glove box, a mixture of 4-FPhCN (24.2 mg, 0.2 mmol), NH₂NH₂·HCl (14.0 mg, 0.2 mmol), *t*-BuOK (150 mol%) and 1,4-dioxane (0.2 ml) was added into a dry glass tube with a magnetic stirring bar. After being stirred at 120 °C (oil bath) for 15 h, the glass tube was cooled to room temperature and added 2-chloro-1-(4-(6-chloro-2-methylpyrimidin-4-yl)piperazin-1-yl)ethan-1-one (145 mg, 0.5 mmol), K₂CO₃ (138 mg, 1.0 mmol), KI (50 mg, 0.3 mmol) and acetone (1.8 mL). The reaction mixture was stirred at 60 °C (oil bath) for 24 h. After the reaction was cooled to room temperture, the corresponding reaction mixture was purified by flash column chromatography on a silica gel column (pentane/ethyl ether = 10/1 - 2/1, DCM 5%) to give the desired product **6b** in 73 % yield.

2-(3,5-bis(4-fluorophenyl)-1H-1,2,4-triazol-1-yl)-1-(4-(6-chloro-2-methylpyrimidin -4-yl)piperazin-1-yl)ethan-1-one

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, 37.2 mg, 73% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.10 (dd, *J* = 8.6, 5.5 Hz, 2H), 7.79 (dd, *J* = 8.6,

5.3 Hz, 2H), 7.19 (t, J = 8.5 Hz, 2H), 7.10 (t, J = 8.6 Hz, 2H), 6.34 (s, 1H), 5.03 (s, 2H), 3.76 (dd, J = 14.5, 10.2 Hz, 4H), 3.65 (s, 4H), 2.49 (s, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 168.1, 165.0, 164.62 (d, J = 12.8 Hz), 162.8 (d, J = 52.5 Hz), 162.5, 160.9, 160.3, 156.4, 131.1 (d, J = 8.2 Hz), 128.4 (d, J = 7.8 Hz), 126.9, 123.8, 116.2 (d, J =21.9 Hz), 115.6 (d, J = 21.7 Hz), 115.7, 115.5, 98.6, 50.1, 44.8, 43.5, 43.3, 41.6, 25.9. HRMS (ESI) calcd. for C₂₅H₂₃ClF₂N₇O [M+H]:510.1621, found: 510.1620.

6. Mechanistic studies

6.1 Control experiments

	2 Ph - ==N + Ph ⁻ NH ₂ 1a 2a	<i>t</i> -BuOK (20 mol%) 1,4-dioxane (2 mL) 120 °C Ph N Ph N N Sa	Ph
Entry	Reaction condition	Addition	3a [%]
1	New seal tube		0
2	New seal tube, 98% t-BuOK		96
3	New seal tube, 99.99% t-BuOK		94
4	99.99% t-BuOK	18-crown-6 (0.2 equiv)	<5
5	99.99% t-BuOK	TEMPO (2 equiv)	95
6	99.99% t-BuOK	Ph ₂ C=CH ₂ (2 equiv)	92

Using a nitrogen-filled glove box, an oven-dried new pressure tube (38 mL volume) was charged with a magnetic stirring bar, PhCN (103 μ l, 1.0 mmol), PhNHNH₂ (99 μ l, 1.0 mmol), *t*-BuOK (20 mol%), addition (0.2 equiv or 2 equiv) and 1,4-dioxane (2.0 mL). Then the seal tube was closed tightly with a teflon cap, removed from the glove box and immersed into a pre-heated oil bath (120 °C). After 10 min the reaction was cooled, quenched with half-saturated brine (0.1 mL) and was dried over Na₂SO₄. A small aliquot of the organic phase was analyzed by GC or GC-MS to monitor products formation.

The product of **3a** (entry 3) was analyzed by ICP-MS to analysis and testing the transition metals species. However, the metals (Pd, Rh, Ru, Cu, Co, Ni) in the product **3a** was undetectable (< 0.1 ppm) by ICP-MS analysis.

6.2 ¹⁵N-Labeled experiments: PhC¹⁵N (1a-¹⁵N)

Using a nitrogen-filled glove box, an oven-dried new pressure tube (38 mL volume) was charged with a magnetic stirring bar, PhC¹⁵N (103 μ l, 1.0 mmol), PhNHNH₂ (99 μ l, 1.0 mmol), *t*-BuOK (22 mg, 20 mol%, 0.2 mmol) and 1,4-dioxane (2.0 mL). Then the seal tube was closed tightly with a teflon cap, removed from the glove box and immersed into a pre-heated oil bath (120 °C). After 10 min the reaction was cooled, quenched with half-saturated brine (0.1 mL) and was dried over Na₂SO₄. A small aliquot of the organic phase was analyzed by GC or GC-MS to monitor products formation. Then the corresponding reaction mixture was purified by flash column chromatography on a silica gel column (pentane/ethyl ether = 10/1 - 2/1, DCM 5%) to give the desired product **3a-¹⁵N** in 91 % yield.

1,3,5-triphenyl-1*H*-1,2,4-triazole (3a-¹⁵N):

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, 136.2 mg, 91% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.27 (d, J = 7.0 Hz, 2H), 7.59 (d, J = 7.0 Hz, 2H), 7.51 – 7.42 (m, 9H), 7.38 (m, 2H); ¹³C NMR (126

MHz, CDCl₃) δ 161.9, 154.8, 138.3, 130.7, 130.6, 130.0, 129.4, 128.8, 128.6, 128.1, 128.0, 127.9, 126.6, 125.5; **HRMS** (ESI) calcd. for C₂₀H₁₆N₂¹⁵N [M+H]:299.1315, found: 299.1312.

6.3 ¹⁵N-Labeled experiments:PMP-NH¹⁵NH₂ (4p-¹⁵N)

Using a nitrogen-filled glove box, an oven-dried new pressure tube (38 mL volume) was charged with a magnetic stirring bar, PhCN (51 µl, 0.5 mmol), PMPNH¹⁵NH₂·HCl (87.5 mg, 0.5 mmol), *t*-BuOK (67 mg, 120 mol%, 0.6 mmol) and 1,4-dioxane (2.0 mL). Then the seal tube was closed tightly with a teflon cap, removed from the glove box and immersed into a pre-heated oil bath (120 °C). After 15 hours the reaction was cooled, quenched with half-saturated brine (0.1 mL) and was dried over Na₂SO₄. A small aliquot of the organic phase was analyzed by GC or GC-MS to monitor products formation. Then the corresponding reaction mixture was purified by flash column chromatography on a silica gel column (pentane/ethyl ether = 10/1 - 2/1, DCM 5%) to give the desired product **4c-¹⁵N** in 85 % yield.

1-(4-methoxyphenyl)-3,5-diphenyl-1*H*-1,2,4-triazole (4c-¹⁵N):

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, 69.7 mg, 85% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.22 (d, *J* = 7.5 Hz, 2H), 7.56 (d, *J* = 7.0 Hz, 2H), 7.45 (m, 2H), 7.40 (m, 2H), 7.34 (m, 4H), 6.94 (d, *J* = 9.0 Hz, 2H), 3.85 (s, 3H);

¹³C NMR (126 MHz, CDCl₃) δ 161.7, 159.8, 154.7, 131.4, 130.8, 130.7, 129.9, 129.3, 128.9, 128.6, 128.1, 126.9, 126.6, 114.7, 55.6; HRMS (ESI) calcd. for C₂₁H₁₈N₂¹⁵NO [M+H]:329.1420, found: 329.1419.

6.4 Analyzed the gas of the reaction

Following our general procedure: In the glove box, a mixture of PhCN (1030 µl, 10 mmol), PhNHNH₂ (990 µl, 10 mmol), *t*-BuOK (20 mol%) 1,4-dioxane (10 ml) was added into a dry Schlenk tube with a magnetic stirring bar. The reaction mixture was stirred at 120 °C (oil bath) for 10 min. After the reaction finished, the glass tube was cooled to room temperature. A small aliquot of the gas was analyzed by GC to monitor NH₃ formation. The yield of NH₃ was obtained in 78%. Then, the gas was absorbed with a fresh solution of Zn(OH)₂ (1.0 mmol) in H₂O (5 mL). And the white cloudy solution of Zn(OH)₂ in H₂O gradually became a clear solution of [Zn(NH₃)₄](OH)₂. The yield of NH₃ was obtained in 78%.

6.5 Control experimment

$$2 \text{ Ph} \longrightarrow \mathbb{N} + \frac{H}{Ph} \xrightarrow{Ph} \frac{t - \text{BuOK} (20 \text{ mol}\%)}{1,4 - \text{dioxane} (2 \text{ ml})} \xrightarrow{Ph} \xrightarrow{N - N}_{Ph} \xrightarrow{N - N}_{Ph} Ph$$

$$1a \qquad 2 \qquad 120 \text{ °C, t} \qquad 3a$$

Using a nitrogen-filled glove box, an oven-dried new pressure tube (38 mL volume) was charged with a magnetic stirring bar, PhCN (103 μ l, 1.0 mmol), 1,2-diphenylhydrazine (184.2 mg, 1.0 mmol), *t*-BuOK (20 mol%), addition (0.2 equiv or 2 equiv) and 1,4-dioxane (2.0 mL). Then the seal tube was closed tightly with a teflon cap, removed from the glove box and immersed into a pre-heated oil bath (120 °C). After 10 min the reaction was cooled, quenched with half-saturated brine (0.1 mL) and was dried over Na₂SO₄. A small aliquot of the organic phase was analyzed by GC or GC-MS to monitor products formation. The desired compound **3a** was undetected.

6.6 Synthesis of 4-methyl-N'-phenylbenzimidohydrazide

Under N₂ atmosphere, a solution of NaH (29 mg, 1.2 mmol) in DMSO (1 mL) was added PhNHNH₂ (0.12 mL, 1.2 mmol). After 10 min of stirring at room temperature, the mixture of reaction was added dropwise 4-MePhCN (117 mg, 1mmol) in DMSO (1 mL) and stirred overnight. Then the reaction was quenched with H₂O (2 ml), and extracted with DCM (4X3 mL). After being dried with anhydrous Na₂SO₄, the combined extract was evaporated under reduced pressure to give a yellow solid (205 mg) in 91% yield.

4-methyl-N'-phenylbenzimidohydrazide

The title compound was prepared according to the general procedure and purified by column chromatography to give a yellow solid, 205 mg,

91% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.61 (d, J = 8.0 Hz, 2H), 7.21 – 7.12 (m, 4H), 7.00 (d, J = 8.0 Hz, 2H), 6.80 (t, J = 7.5 Hz, 1H), 5.86 (s, 1H), 4.69 (s, 2H), 2.32 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 151.4, 147.9, 139.9, 131.4, 129.2, 129.1, 125.8, 120.0, 114.4, 21.4.

Following our general procedure: In the glove box, a mixture of PMPCN (67 mg, 0.5 mmol), 4-methyl-N'-phenylbenzimidohydrazide (0.5 mmol, 113 mg), *t*-BuOK (20 mol%) and 1,4-dioxane (2 ml) was added into a dry glass tube with a magnetic stirring bar. The reaction mixture was stirred at 120 °C (oil bath) for 10 min. After the reaction finished, the glass tube was cooled to room temperature and the reaction was quenched with H₂O (0.1 ml). Then the corresponding reaction mixture was purified by flash column chromatography on a silica gel column petroleum ether/ethyl acetate (5/1, v/v) to give the desired product **8a** (141.6 mg, 83%).

5-(4-methoxyphenyl)-1-phenyl-3-(p-tolyl)-1H-1,2,4-triazole

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, 141.6 mg, 83% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.10 (d, J

= 8.0 Hz, 2H), 7.48 (d, J = 8.5 Hz, 2H), 7.42 (s, 5H), 7.25 (s, 2H), 6.86 (d, J = 8.5 Hz, 2H), 3.81 (s, 3H), 2.40 (s, 3H); ¹³**C NMR** (126 MHz, CDCl₃) δ 161.9, 160.8, 154.5, 139.3, 138.5, 134.0, 130.5, 129.4, 129.3, 128.0, 126.5, 125.5, 120.4, 114.7, 114.0, 55.3, 21.45; HRMS (ESI) calcd. for C₂₂H₂₀N₃O [M+H]: 342.1606, found: 342.1613.

7. Reference

- 1 Z. Chen, H. Li, W. Dong, M. Miao and H. Ren, Org. Let., 2016, 18, 1334.
- 2 M. M. Guru and T. Punniyamurthy, J. Org. Chem., 2012, 77, 5063.
- 3 L. Zhang, D. Tang, J. Gao, J. Wang, P. Wu, X. Meng and B. Chen, *Synthesis*, 2016, 22, 3924.
- 4 S. V. Kuberkar, Indian. J. Chem., 1991, **30B**, 78.
- 5 H. Wang, Y. Ren, K. Wang, Y. Man, Y. Xiang, N. Li and B. Tang, *Chem. Commun.*, 2017, **53**, 9644.
- 6 A. Habtamu, V. Siddaiah and R. B. Venkateswara, *RSC Adv.*, 2016, 6, 82289.
- 7 J. Kuang, B. Chen and S. Ma, Org. Chem. Front., 2014, 1, 186.

8. Copies for ¹H NMR and ¹³C NMR of the 1,2,4-triazoles.

3a-13C

S111

S145

