Experimental Section

A flexible TiO₂ nanofibrous membrane was fabricated according to our previous report (*Angew. Chem. Int. Ed.*, 2019, **58**, 18903). Next, sodium tungstate (0.49 g), thiourea (0.56 g), acetic acid (250 μ L) and deionized water (25 mL) were mixed under continuous stirring at room temperature for 4 h, and transferred to a Teflon-lined stainless-steel autoclave. The flexible TiO₂ nanofibrous membrane was immersed in this mixed solution, kept at 180 °C for 9 h, cooled naturally, washed with deionized water and absolute alcohol, and dried to obtain needle-constructed WO₃ nanoflowers fixed on the TiO₂ nanofibers. For P doing, triethyl phosphate (50 μ L) was added to the mixed solution, and all the following procedures were the same.

SEM was performed by Tescan VEGA3 microscope at 20 kV accelerating voltage. TEM was performed by JEOL JEM-2010 microscope at 120 kV accelerating voltage. XRD was performed by Bruker D8 Advance X-ray diffractometer with Cu K α radiation ($\lambda = 0.154$ nm). XPS was performed by ULVAC-PHI Quantera SXM spectrometer. Raman was performed by Renisaw inVia Reflex spectrometer ($\lambda = 532$ nm). ¹H NMR was performed by a Bruker Avance III HD spectrometer. UV-vis was performed by Hitachi U-3900 spectrophotometer.

The electrocatalytic NRR experiments were conducted in an H-type electrolysis cell, with a piece of WO₃@TiO₂ or P-WO₃@TiO₂ nanofibrous membrane (effective area: 0.5×0.5 cm²) used as the cathode, a platinum mesh used as the anode, a saturated

calomel electrode (SCE) used as the reference electrode. The two cells were filled with 120 mL of 0.1 M Na₂SO₄, and separated by a Nafion 212 membrane. The chronoamperometry curves were recorded by a Bio-Logic VSP electrochemical workstation. The NH₃ and N₂H₄ yields were determined by the indophenol blue method and the Watt and Chrisp method, respectively. The details could be found in our previous report (*Angew. Chem. Int. Ed.*, 2019, **58**, 18903).

The isotopic labelling experiment was conducted through electrolysis in the atmosphere of ${}^{15}N_2$ (Wuhan Newradar Special Gas Co., Ltd.) at -0.55 V vs. RHE for 12 h. The electrolyte was then collected, concentrated by distillation, and dissolved in dimethyl sulfoxide-D6 for ¹H NMR characterization. As a control, the standard ${}^{15}NH_4^+$ sample was also dissolved in dimethyl sulfoxide-D6 for ¹H NMR characterization.

Supplementary Figures

Figure S1. Statistics on the diameters of TiO_2 nanofibers.

Figure S2. (a) Low- and (b) high-magnification SEM images of nanoneedleconstructed WO₃ flowers fixed on TiO_2 nanofibrous membrane.

Figure S3. Digital images of (a) TiO_2 , (b) $WO_3@TiO_2$ and (c) P-WO_3@TiO_2 nanofibrous membranes showing their excellent robustness and flexibility.

Figure S4. High-resolution P 2p XPS spectrum of $P-WO_3@TiO_2$ nanofibrous membrane.

Figure S5. Raman spectra of WO_3 @Ti O_2 and P-WO_3@Ti O_2 nanofibrous membranes.

Figure S6. LSV curves of P-WO₃@TiO₂ nanofibrous membrane in N₂- and Arsaturated electrolytes.

Figure S7. (a) UV-vis spectra and (b) calibration curve of NH_3 solutions with different concentrations based on the indophenol blue method.

Figure S8. UV-vis spectra of the electrolytes after 2 h electrolysis in N₂ and Ar at -0.55 V vs. RHE (in the presence of P-WO₃@TiO₂ nanofibrous membrane).

Figure S9. Long-term chronoamperometry curve of $P-WO_3@TiO_2$ nanofibrous membrane at -0.55 V *vs*. RHE.

Figure S10. (a) Low- and (b) high-magnification SEM images of P-doped WO₃@TiO₂ nanofibrous membrane after 12 h electrolysis at -0.55 V vs. RHE.

Figure S11. (a) UV-vis spectra and (b) calibration curve of N_2H_4 solutions with different concentrations based on the Watt and Chrisp method.

Figure S12. UV-vis spectra of the electrolyte after 12 h electrolysis in N_2 at -0.55 V vs. RHE (in the presence of P-WO₃@TiO₂ nanofibrous membrane).

Figure S13. Recycling results of P-WO₃@TiO₂ nanofibrous membrane at -0.55 V vs. RHE.

Figure S14. ¹H NMR spectra of standard ¹⁵NH₄⁺ sample and ¹⁵N₂-saturated electrolyte after electrolysis at -0.55 V *vs*. RHE for 12 h.

Catalyst	Electrolyte	Testing method	$V_{\rm NH3}$	FE	Reference
P-doped WO ₃ @TiO ₂ nanofibrous membrane	0.1 M Na ₂ SO ₄	Indophenol blue method	6.54×10 ⁻¹⁰ mol s ⁻¹ cm ⁻²	17.5%	This work
Cu-doped TiO ₂ nanoparticles on carbon paper	0.5 M LiClO ₄	Indophenol blue method	21.31 µg h ⁻¹ mg ⁻¹	21.99%	Adv. Mater. 2020, 32 , 2000299
Mo-doped MnO ₂ nanoflowers on carbon cloth	0.1 M Na ₂ SO ₄	Indophenol blue method	36.6 µg h ⁻¹ mg ⁻¹	12.1%	Appl. Catal. B: Environ. 2020, 264 , 118525
Mo-doped SnS ₂ nanosheets on carbon cloth	0.5 M LiClO ₄	Indophenol blue method	41.3 $\mu g h^{-1} m g^{-1}$	20.8%	J. Mater. Chem. A 2020, 8 , 7117
Zr-doped TiO ₂ nanotubes on carbon paper	0.1 M KOH	Indophenol blue method	8.9 μg h ⁻¹ cm ⁻²	17.3%	Nat. Commun. 2019, 10, 2877
C-doped TiO ₂ nanoparticles on carbon paper	0.1 M LiClO ₄	Indophenol blue method	14.8 μg h ⁻¹ mg ⁻¹	17.8%	Angew. Chem. Int. Ed. 2019, 58 , 13101
V-doped TiO ₂ nanorods on carbon paper	0.5 M LiClO ₄	Indophenol blue method	17.73 µg h ⁻¹ mg ⁻¹	15.3%	Small Methods 2019, 3 , 1900356
Fe-doped TiO ₂ nanoparticles on carbon paper	0.5 M LiClO ₄	Indophenol blue method	25.47 µg h ⁻¹ mg ⁻¹	25.6%	Angew. Chem. Int. Ed. 2019, 58 , 18449
Fe doped W ₁₈ O ₄₉ nanowires on carbon paper	0.25 M LiClO ₄	Indophenol blue method	24.7 $\mu g h^{-1} m g^{-1}$	20.0%	Angew. Chem. Int. Ed. 2020, 59 , 7356
OV-rich TiO ₂ nanosheets on carbon paper	0.1 M HCl	Indophenol blue method	$3.0 \ \mu g \ h^{-1} \ m g^{-1}$	6.5%	Appl. Catal. B: Environ. 2019, 257, 117896
Fe-doped CeO ₂ nanosheets on carbon cloth	0.5 M LiClO ₄	Indophenol blue method	26.2 µg h ⁻¹ mg ⁻¹	14.7%	J. Mater. Chem. A 2020, 8 , 5865
B-doped MnO ₂ nanosheets on carbon cloth	0.5 M LiClO ₄	Indophenol blue method	54.2 $\mu g \ h^{-1} \ m g^{-1}$	16.8%	J. Mater. Chem. A 2020, 8 , 5200
B-doped VS ₂ nanosheets on carbon cloth	0.5 M LiClO ₄	Indophenol blue method	55.7 $\mu g h^{-1} m g^{-1}$	16.4%	J. Mater. Chem. A 2020, 8 , 16195
P-doped V ₂ O ₃ /C nanoneedles on carbon paper	0.1 M Na ₂ SO ₄	Indophenol blue method	12.6 µg h ⁻¹ mg ⁻¹	6.06%	<i>ChemNanoMat</i> 2020, 6 , 1315

and recently reported, heteroatom-doped transition metal electrocatalysts.