Bi(OAc)₃/Chiral Phosphoric Acid Catalyzed Enantioselective Allylation of Seven-Membered Cyclic Imines Dibenzo[*b*,*f*][1,4] oxazepines

Liu Cai, Yu-Liang Pan, Li Chen, Jin-Pei Cheng and Xin Li*

State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071(P. R. China).

Supporting Information

Contents

1. General information	3
2. Optimization of reaction conditions	4
3. General procedure for the the synthesis of 3a , 5 , 7 , 10 and	ł 11 6
4. Analytical data	
5. References	20
6. NMR and HPLC spectra	21

1. General information

.

Chemicals reagents and solvents were purchased from commercial suppliers and used without further purification. ¹H NMR and ¹³C NMR spectra were recorded on Brucker-400 (400 MHz for ¹H, 100MHz for ¹³C)spectrometer, ¹⁹F NMR were recorded on a Varian NMR 400 spectrometer. The chemical shifts are reported in ppm from tetramethylsilane (TMS) with the solvent resonance as the internal standard. The following abbreviations were used to designate chemical shift mutiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet. All first-order splitting patterns were assigned on the basis of the appearance of the multiplet. Splitting patterns that could not be easily interpreted are designated as multiplet (m). HPLC analysis was performed using Chiralcel columns purchased. Mass spectra were obtained using electrospray ionization (ESI) mass spectrometer. ESI-MS studies on catalytic complex were conducted on Thermo LTQ XL. Seven-Membered Cyclic Imines (**1a-1r**) were prepared according to the reference.¹ Allylboronates (**2a-2d**) were obtained following the reported procedure.²

2. Optimization of reaction conditions

Table S1. Optimization of the catalysts

^a The reaction was carried out with **1a** (0.1 mmol), **2a** (0.12 mmol), CPA (0.03 equiv), lewis acid (0.03 equiv) and solvent (1.0 mL) at rt. ^b Isolated yield. ^c Determined by HPLC analysis.

Table S2. Optimization of the solvents and lewis acids

2	Bi(OAc) ₃	12	Toluene	98	90.5:9.5
3	Bi(OAc) ₃	12	EA	98	92.5:7.5
4	Bi(OAc) ₃	12	MTBE	33	90:10
5	Bi(OAc) ₃	12	THF	55	58.5:41. 5
6	Bi(OAc) ₃	12	DCE	97	89.5:10. 5
7	Bi(OAc) ₃	12	1,4-Dioxane	96	70.5:29. 5
8	Bi(OAc) ₃	12	Cyclohexane	84	58.5:41. 5
9	BiCl ₃	12	CH_2Cl_2	65	0
10	BiBr ₃	12	CH ₂ Cl ₂	46	0
11	Bi(OTf)3	12	CH ₂ Cl ₂	98	0
12	Bi(OH) ₃	12	CH ₂ Cl ₂	46	61.5:38. 5
13	AgOAc	12	CH_2Cl_2	98	56:44

^aThe reaction was carried out with **1a** (0.1 mmol), **2a** (0.12 mmol), CPA (0.03 equiv), lewis acid (0.03 equiv) and solvent (1.0 mL) at rt. ^bIsolated yield. ^cDetermined by HPLC analysis.

N N 1a	+ B(Pin) (S)-C2, Bi(O) CH ₂ Cl ₂ , r	Ac) ₃ t.		,О `ОН ?rзСеН2
Entry ^a	Additive (20 mg)	Time (h)	Yield $(\%)^b$	$er (3a)^c$
1	3Å Ms	12	98	91:9
2	4Å Ms	12	97	60:40
3	5Å Ms	12	66	75.5:24.5
4	NaBARF	12	93	59.5:40.5
5	Ethylene glycol	12	82	72:28
6^{d}	-	12	98	83.5:16.5
7°	-	12	97	90.5:9.5
8^{f}	-	12	98	90:10
9 ^g	-	12	98	95:5
$10^{\rm h}$	-	12	98	95.5:4.5

 Table S3. Optimization of the additive, catalyst loading and solvent volume.

^a The reaction was carried out with **1a** (0.1 mmol), **2a** (0.1 mmol), CPA (0.03 equiv), lewis acid (0.03 equiv) and CH₂Cl₂ (1.0 mL) at rt. ^b Isolated yield. ^c Determined by HPLC analysis. ^d 2 mol% catalyst loading. ^e 5 mol% catalyst loading. ^fCPA/lewis acid = 2:1. ^gCH₂Cl₂ = 2 ml. ^hCH₂Cl₂ = 3 ml.

3. General procedure for the the synthesis of 3a, 5, 7, 10 and 11.

To an oven-dried reaction tube under nitrogen atmosphere, chiral phosphoric acid (*S*)-**C2** (0.003 mmol, 2.2 mg), Bi(OAc)₃ (0.003 mmol, 1.2 mg) were dissolved in anhydrous CH_2Cl_2 (3 mL). Then the corresponding **1a** (0.1 mmol, 19.5 mg) and **2a** (0.12 mmol, 22.5 uL) were added. The mixture was stirred at rt for 12 h. The reaction mixture was purified directly by flash chromatography on silica gel PE/EA (20/1 to 15/1) to give the product **3a**.

To a stirred solution of compound **3a** (50.0 mg, 0.21 mmol, 87% *ee*) in dry THF (2.0 mL), BH₃·SMe₂ (0.5 M in THF, 50 uL, 0.63 mmol) was added at 0 °C. The mixture was warmed to room temperature and stirred for 5 h. H₂O₂ (30%, 1.1 mL) and NaOAc (20%, 1.4 mL) were added in order at 0 °C. And the resulting mixture was stirred for 3 h at room temperature. The aqueous layer was extracted with EtOAc (5 mL× 3), and the combined organic layers were dried over anhydrous Na₂SO₄. After filtered and evaporation, the crude mixture was purified by silica gel column chromatography PE/EA (2/1 to 1/1) to give compound **4** as colourless oil (30.0 mg, 59% yield, 93.5:6.5 er).

To a stirred solution of compound **4** (67.1 mg, 0.26 mmol) and Ph_3P (89.2 mg, 0.34 mmol) in DCM (2 mL) at 0 °C was added a solution of DIAD (63.1 mg, 0.31 mmol) in DCM (2 mL). The resulting mixture was warmed to room temperature slowly, and then stirred overnight. The reaction was quenched with EtOH (1 mL) and concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography PE/EA (20/1 to 15/1) to afford compound **5** as colourless oil (57.0 mg, 85% yield, 93.5:6.5 er).

Arcylolchlorid (38.8 uL, 0.48 mmol, 91% *ee*) was dissolved in dry DCM (2 mL), compound **3a** (92.6 mg, 0.4 mmol) and triehylamine (66.7 uL, 0.48 mmol) was added. After 2 hours, 2 ml of H₂O was added to the reaction mixture. Organic layer was washed with water (2×10 mL) and the remained organic layer was dried over anhydrate Na₂SO₄, evaporated under reduced pressure to provide compound **6** as white solid (114.0 mg, 98% yield).

A mixture of compound **6** (45.0 mg, 0.15 mmol) and Grubbs 2nd (12.7 mg, 0.015 mmol) in THF (3.0 mL) was stirred at 40 °C for 0.5 h. After cooling to room temperature, the crude mixture was directly purified by silica gel column chromatography PE/EA (20/1 to 15/1) to give white solid 7 (38.0

mg, 96% yield, 94:6 er).

To a stirred solution of compound **3a** (57.0 mg, 0.24 mmol, 91% *ee*) in DMF (2.0 mL), NaH (60% in oil, 19.2 mg, 0.48 mmol) was added at 0 °C. The resulting mixture was warmed to room temperature, after stirring for 30 min, allylbromide (41.5 μ L, 0.48 mmol) was added. The resulting mixture continued to stir for 5 h untill disappearance of **3a** monitored by TLC. The crude mixture was directly purified by silica gel column chromatography PE/EA (20/1 to 15/1) to give compound **8** as colourless oil (64.6 mg, 97% yield, 95.5:4.5 er).

A mixture of compound **8** (37.5 mg, 0.135 mmol) and Grubbs 2nd (11.5 mg, 0.013 mmol) in THF (3.0 mL) was stirred at 40 °C for 0.5 h. After cooling to room temperature, the crude mixture was directly purified by silica gel column chromatography PE/EA (20/1 to 15/1) to give white solid **9** (33.0 mg, 98% yield).

The obtained compound **9** (33.0 mg, 0.132 mmol) was dissolved in EA (5 mL), then 10% Pd/C (5 mg) was added, the reaction was carried out overnight in hydrogen atmosphere, the Pd/C was suction filtered, and concentrated under reduced pressure, the crude mixture was directly purified by silica gel column chromatography PE/EA (20/1 to 15/1) to give compound **10** as colourless oil (32.5 mg, 98% yield, 94.5:5.5 er).

The compound **3a** (32.4 mg, 0.136 mmol, 91% *ee*) was dissolved in EA (5 mL), then 10% Pd/C (5 mg) was added, the reaction was carried out overnight in hydrogen atmosphere, the Pd/C was suction filtered, and concentrated under reduced pressure, the crude mixture was directly purified by silica gel column chromatography PE/EA (20/1 to 15/1) to give compound 11 as colourless oil (31.5 mg, 97% yield, 95:5 er).

4. Proposed Reaction Mechanism.

On the basis of the experiment results and our previous work,^{3a,b} plausible transition-state model was proposed. Firstly, one molecule of chiral phosphoric acids combined with $Bi(OAc)_3$ to form complex A, and the following allyl transfering from boron to bismuth atom by transmetalation process to form intermediate B, and a molecule of AcO-B(Pin) was lost. Then the seven-membered cyclic imines combined with intermediate B by H-bond interaction in C, and allyl bismuth attacked into C=N bond from *Re* face to form product **3a**.

5. Analytical data

Compound 3a: (*R*)-11-allyl-10,11-dihydrodibenzo[*b*,*f*][1,4]oxazepine colourless oil, 23.3 mg (98% of total yield), er = 95.5:4.5, $[\alpha]_D^{2.5} = -1.0$ (c = 0.40, CH₂Cl₂); HPLC condition: chiralpak ADH, 210 nm, 1 mL/min, hexane/i-PrOH = 19/1, t_{major} = 8.9 min, t_{minor} = 8.4 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.32 - 7.24 (m, 1H), 7.23 - 7.16 (m, 2H), 7.16 - 7.07 (m, 2H), 6.92 - 6.83 (m, 1H), 6.74 - 6.67 (m, 1H), 6.59 (dd, *J* = 7.9, 1.1 Hz, 1H), 6.05 - 5.67 (m, 1H), 5.33 - 5.05 (m, 2H), 4.67 (dd, *J* = 9.2, 5.5 Hz, 1H), 4.04 (s, 1H), 2.98 - 2.64 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 156.3, 143.1, 136.7, 134.1, 132.6, 127.9, 125.6, 123.4, 123.2, 120.7, 120.0, 118.00, 117.60, 117.5, 54.4, 37.8.

HRMS (ESI) calcd for C₁₆H₁₆NO (M+H)⁺: 238.1226, found: 238.1225.

Compound 3b: (*R*)-11-allyl-6-chloro-10,11-dihydrodibenzo[*b*,*f*][1,4]oxazepine colourless oil, 26.4 mg (97% of total yield), er = 90.5:9.5, $[\alpha]_D^{2.5}$ = -1.7, (c = 1.30, CH₂Cl₂); HPLC condition: chiralpak ADH, 210 nm, 1 mL/min, hexane/i-PrOH = 40/1, t_{major} = 9.9 min, t_{minor} = 9.6 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.38 - 7.19 (m, 2H), 7.11 - 6.97 (m, 2H), 6.88 (t, *J* = 7.6 Hz, 1H), 6.70 (t, *J* = 7.6 Hz, 1H), 6.56 (d, *J* = 7.9 Hz, 1H), 5.85 (td, *J* = 16.8, 8.5 Hz, 1H), 5.20 (m, 2H), 4.72 (dd, *J* = 8.8, 5.9 Hz, 1H), 3.59 (br, 1H), 2.93 - 2.67 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 153.0, 143.0, 137.7, 135.8 134.7, 129.6, 126.5, 125.0, 124.9, 122.5, 119.0, 118.7, 118.3, 55.0, 38.5.

HRMS (ESI) calcd for $C_{16}H_{15}CINO (M+H)^+: 272.0837$, found: 272.0836.

Compound 3c: (*R*)-11-allyl-7-chloro-10,11-dihydrodibenzo[*b*,*f*][1,4]oxazepine

colourless oil, 24.0 mg (89% of total yield), er = 95.5:4.5; $[\alpha]_D^{2.5}$ = -2.8, (c = 0.25, CH₂Cl₂); HPLC condition: chiralpak ADH, 210 nm, 1 mL/min, hexane/i-PrOH = 19/1, t_{major} = 11.3 min, t_{minor} = 9.9 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.44 - 7.37 (m, 1H), 7.32 - 7.21 (m, 4H), 6.95 (dd, *J* = 8.5, 2.4 Hz, 1H), 6.61 (d, *J* = 8.5 Hz, 1H), 6.05 - 5.88 (m, 1H), 5.37 - 5.28 (m, 2H), 4.74 (dd, *J* = 9.2, 5.6 Hz, 1H), 3.91 (br, 1H), 3.02 - 2.81 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 156.9, 144.2, 136.5, 134.8, 133.4, 129.1, 126.7, 124.6, 124.3, 122.8, 121.8, 121.0, 119.3, 118.7, 55.4, 38.7.

HRMS (ESI) calcd for C₁₆H₁₅ClNO (M+H)⁺: 272.0837, found: 272.0835.

Compound 3d: (*R*)-11-allyl-7-methyl-10,11-dihydrodibenzo[*b*,*f*][1,4]oxazepine

colourless oil, 21.4 mg, (85% of total yield), er = 93.5:6.5; $[\alpha]_D^{2.5}$ = -1.8, (c = 1.25, CH₂Cl₂); HPLC condition: chiralpak IC, 210 nm, 1 mL/min, hexane/i-PrOH = 19/1, t_{major} = 6.4 min, t_{minor} = 5.6 min.+

¹**H NMR** (400 MHz, CDCl₃) δ 7.36 - 7.27 (m, 1H), 7.23 (dd, *J* = 7.9, 0.9 Hz, 2H), 7.15 (t, *J* = 7.4 Hz, 1H), 7.05 (d, *J* = 8.1 Hz, 1H), 6.55 (dd, *J* = 8.1, 1.8 Hz, 1H), 6.45 (d, *J* = 1.4 Hz, 1H), 6.05 - 5.75 (m, 1H), 5.32 - 5.13 (m, 2H), 4.71 (dd, *J* = 9.2, 5.5 Hz, 1H), 3.83 (br, 1H), 2.98 - 2.64 (m, 2H), 2.25 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 157.5, 142.2, 137.3, 135.2, 134.0, 133.7, 128.9, 126.6, 124.2, 121.5, 120.9, 119.8, 119.0, 118.4, 55.4, 38.8, 20.6.

HRMS (ESI) calcd for C₁₇H₁₈NO (M+H)⁺: 252.1388, found: 252.1385.

Compound 3e: (*R*)-11-allyl-8-fluoro-10,11-dihydrodibenzo[*b*,*f*][1,4]oxazepine colourless oil, 20.0 mg (78% of total yield), er=94.5:5.5; $[\alpha]_D^{2.5} = 5.3$, (c = 1.20, CH₂Cl₂); HPLC condition: chiralpak ADH, 210 nm, 1 mL/min, hexane/i-PrOH = 19/1, t_{major} = 10.3 min, t_{minor} = 8.8 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.30 - 7.24 (m, 1H), 7.19 - 7.14 (m, 2H), 7.11 (td, J = 7.5, 1.1 Hz, 1H), 7.02 (dd, J = 8.8, 5.7 Hz, 1H), 6.36 - 6.29 (m, 1H), 6.24 (dd, J = 10.2, 2.9 Hz, 1H), 5.92 - 5.79 (m, 1H), 5.28 - 5.10 (m, 2H), 4.66 (dd, J = 9.2, 5.6 Hz, 1H), 4.01 (br, 1H), 2.96 - 2.63 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 159.61 (d, *J* = 240.1 Hz), 157.5, 140.1 (d, *J* = 2.4 Hz), 139.0 (d, *J* = 10.9 Hz), 134.9, 133.5, 129.2, 126.6, 124.6, 122.6 (d, *J* = 10.1 Hz), 120.9, 118.7, 104.8 (d, *J* = 23.1 Hz), 104.3 (d, *J* = 26.4 Hz), 54.9, 38.8.

¹⁹F NMR (376 MHz, CDCl₃) δ -119.4.

HRMS (ESI) calcd for C₁₆H₁₅FNO (M+H)⁺: 256.1132, found: 256.1130.

Compound 3f: (R)-11-allyl-8-chloro-10,11-dihydrodibenzo[b,f][1,4]oxazepine

colourless oil, 26.7 mg (98% of total yield), er=94.5:5.5, $[\alpha]_D^{2.5} = 5.5$, (c = 1.00, CH₂Cl₂); HPLC condition: chiralpak ADH, 210 nm, 1 mL/min, hexane/i-PrOH = 19/1, t_{major} = 13.6 min, t_{minor} = 10.5 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.55 - 7.48 (m, 1H), 7.44 - 7.33 (m, 3H), 7.25 (d, *J* = 8.5 Hz, 1H), 6.85 (dd, *J* = 8.5, 2.5 Hz, 1H), 6.78 (d, *J* = 2.4 Hz, 1H), 6.23 - 5.98 (m, 1H), 5.57 - 5.36 (m, 2H), 4.95 - 4.72 (m, 1H), 4.31 (br, 1H), 3.23 - 2.80 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 157.1, 142.6, 138.9, 134.8, 133.4, 129.3, 129.2, 126.6, 124.6, 122.8, 121.0, 118.7, 118.4, 117.6, 55.2, 38.8.

HRMS (ESI) calcd for C₁₆H₁₅ClNO (M+H)⁺: 272.0837, found: 272.0835.

Compound 3g: (*R*)-11-allyl-8-bromo-10,11-dihydrodibenzo[*b*,*f*][1,4]oxazepine colourless oil, 31.0 mg (98% of total yield), er=90:10; $[\alpha]_{D}^{2.5} = -2.5$, (c = 1.40, CH₂Cl₂); HPLC

condition: chiralpak ADH, 210 nm, 1 mL/min, hexane/i-PrOH = 19/1, t_{major} = 15.1 min, t_{minor} = 11.7 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.31 - 7.21 (m, 1H), 7.20 - 7.05 (m, 3H), 6.95 (d, J = 8.5 Hz, 1H), 6.74 (dd, J = 8.5, 2.3 Hz, 1H), 6.68 (d, J = 2.3 Hz, 1H), 5.93 - 5.73 (m, 1H), 5.25 - 5.11 (m, 2H), 4.63 (dd, J = 9.2, 5.5 Hz, 1H), 4.02 (br, 1H), 2.94 - 2.66 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 157.1, 143.1, 139.31, 134.8, 133.4, 129.2, 126.6, 124.6, 123.2, 121.4, 120.9, 120.5, 118.7, 116.8, 55.2, 38.8.

HRMS (ESI) calcd for C₁₆H₁₅BrNO (M+H)⁺: 316.0337, found: 316.0337.

Compound 3h: (*R*)-11-allyl-8-methyl-10,11-dihydrodibenzo[*b*,*f*][1,4]oxazepine colourless oil, 21.5 mg (82% of total yield), er=95:5; $[\alpha]_D^{2.5} = -21.6$, (c = 0.90, CH₂Cl₂); HPLC condition: chiralpak IC, 210 nm, 1 mL/min, hexane/i-PrOH = 19/1, t_{major} = 6.4 min, t_{minor} = 8.3 min. ¹**H NMR** (400 MHz, CDCl₃) δ 7.32 - 7.24 (m, 1H), 7.19 (d, J = 7.9 Hz, 2H), 7.11 (td, J = 7.5, 1.1 Hz, 1H), 6.97 (d, J = 1.3 Hz, 1H), 6.71 (dd, J = 8.0, 1.4 Hz, 1H), 6.52 (d, J = 8.0 Hz, 1H), 6.00 - 5.73 (m, 1H), 5.33 - 5.08 (m, 2H), 4.63 (dd, J = 9.1, 5.6 Hz, 1H), 3.80 (br, 1H), 2.96 - 2.66 (m, 2H), 2.27 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 157.2, 144.3, 135.2, 134.9, 133.5, 129.1, 128.8, 126.8, 124.9, 124.1, 122.1, 121.0, 119.0, 118.4, 55.8, 38.9, 20.3.

HRMS (ESI) calcd for C₁₇H₁₈NO (M+H)⁺: 252.1388, found: 252.1386.

Compound 3i: (*R*)-11-allyl-8-(tert-butyl)-10,11-dihydrodibenzo[*b*,*f*][1,4]oxazepine colourless oil, 25.4 mg (87% of total yield), er = 83:17, $[\alpha]_D^{2.5}$ = -8.0, (c = 1.25, CH₂Cl₂); HPLC condition: chiralpak ADH, 210 nm, 1 mL/min, hexane/i-PrOH = 19/1, t_{major} = 6.0 min, t_{minor} = 9.5

min. **¹H NMR** (400 MHz, CDCl₃) δ 7.19 - 7.13 (m, 1H), 7.08 (d, *J* = 7.1 Hz, 2H), 7.03 - 6.92 (m, 2H), 6.63 (dd, *J* = 8.4, 2.1 Hz, 1H), 6.49 (d, *J* = 2.1 Hz, 1H), 6.04 - 5.63 (m, 1H), 5.38 - 4.82 (m, 2H), 4.60 (dd, *J*

= 9.2, 5.4 Hz, 1H), 3.62 (br, 1H), 2.95 - 2.30 (m, 2H), 1.16 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 157.6, 147.4, 142.2, 136.8, 135.2, 133.6, 128.9, 126.6, 124.2, 121.2, 121.0, 118.5, 116.4, 115.8, 55.2, 38.8, 34.1, 31.4.

HRMS (ESI) calcd for C₂₀H₂₄NO (M+H)⁺: 294.1852, found: 294.1858.

Compound 3j: (*R*)-11-allyl-3-methyl-10,11-dihydrodibenzo[*b*,*f*][1,4]oxazepine colourless oil, 20.7 mg (82% of total yield), er = 94.5:5.5, $[\alpha]_D^{2.5} = -1.2$, (c = 0.90, CH₂Cl₂); HPLC condition: chiralpak ADH, 210 nm, 1 mL/min, hexane/i-PrOH = 19/1, t_{major} = 10.2 min, t_{minor} = 12.5 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.11 - 6.98 (m, 3H), 6.94 - 6.78 (m, 2H), 6.72 - 6.62 (m, 1H), 6.55 (dd, *J* = 7.9, 1.4 Hz, 1H), 5.96 - 5.75 (m, 1H), 5.26 - 5.04 (m, 2H), 4.61 (dd, *J* = 9.2, 5.5 Hz, 1H), 3.89 (br, 1H), 2.89 - 2.65 (m, 2H), 2.32 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 157.1, 144.3, 139.1, 137.5, 135.2, 130.5, 126.4, 126.0, 124.9, 124.4, 121.7, 121.5, 119.0, 118.7, 118.4, 55.2, 39.0, 21.0.

HRMS (ESI) calcd for C₁₇H₁₈NO (M+H)⁺: 252.1388, found: 252.1385.

Compound 3k: (*R*)-11-allyl-2-methyl-10,11-dihydrodibenzo[*b*,*f*][1,4]oxazepine

colourless oil, 21.0 mg (84% of total yield), er = 91:9; $[\alpha]_D^{2.5}$ = 3.4, (c = 1.05, CH₂Cl₂); HPLC condition: chiralpak ODH, 210 nm, 1 mL/min, hexane/i-PrOH = 19/1, t_{major} = 6.0 min, t_{minor} = 6.5 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.10 - 7.00 (m, 3H), 6.97 (s, 1H), 6.84 (td, *J* = 7.8, 1.5 Hz, 1H), 6.67 (td, *J* = 7.8, 1.5 Hz, 1H), 6.55 (dd, *J* = 7.9, 1.5 Hz, 1H), 5.98 - 5.70 (m, 1H), 5.30 - 5.04 (m, 2H), 4.60 (dd, *J* = 9.2, 5.5 Hz, 1H), 4.00 (br, 1H), 2.94 - 2.67 (m, 2H), 2.31 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 155.2, 144.3, 137.8, 135.2, 133.8, 133.2, 129.3, 127.2, 124.3, 121.7, 120.7, 119.0, 118.6, 118.4, 55.4, 38.8, 20.9.

HRMS (ESI) calcd for C₁₇H₁₈NO (M+H)⁺: 252.1388, found: 252.1385.

Compound 31: (*R*)-11-allyl-1,3-dimethyl-10,11-dihydrodibenzo[*b*,*f*][1,4]oxazepine colourless oil, 26.0 mg (98% of total yield), er = 90:10; $[\alpha]_D^{2.5}$ = -3.4, (c = 1.20, CH₂Cl₂); HPLC condition: chiralpak ADH, 210 nm, 1 mL/min, hexane/i-PrOH = 19/1, t_{major} = 6.6 min, t_{minor} = 12.8 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.06 (dd, J = 7.9, 1.3 Hz, 1H), 6.88 - 6.80 (m, 2H), 6.75 (s, 1H), 6.64 (td, J = 7.9, 1.5 Hz, 1H), 6.53 (dd, J = 7.9, 1.4 Hz, 1H), 5.79 (ddt, J = 17.0, 10.1, 7.3 Hz, 1H), 5.16 - 4.92 (m, 2H), 4.36 (dd, J = 8.1, 7.0 Hz, 1H), 3.05 - 2.76 (m, 2H), 2.28 (d, J = 12.0 Hz, 6H). ¹³**C NMR** (101 MHz, CDCl₃) δ 157.3, 143.3, 138.3, 137.4, 135.5, 135.1, 129.0, 127.1, 124.4, 121.6, 119.8, 118.4, 118.1, 117.6, 53.8, 40.5, 20.9, 19.9.

HRMS (ESI) calcd for C₁₈H₂₀NO (M+H)⁺: 266.1545, found: 266.1542.

Compound 3m: (*R*)-11-allyl-2-(trifluoromethyl)-10,11-dihydrodibenzo[*b*,*f*][1,4]oxazepine colourless oil, 29.3 mg (96% of total yield), er = 95.5:4.5; $[\alpha]_D^{2.5} = -3.4$, (c = 1.60, CH₂Cl₂); HPLC condition: chiralpak ADH, 210 nm, 1 mL/min, hexane/i-PrOH = 19/1, t_{major} = 7.9 min, t_{minor} = 8.5 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.52 (d, J = 8.3 Hz, 1H), 7.41 (s, 1H), 7.29 - 7.21 (m, 1H), 7.09 (d, J = 8.0 Hz, 1H), 6.92 - 6.83 (m, 1H), 6.72 (dd, J = 10.6, 4.7 Hz, 1H), 6.58 (d, J = 7.9 Hz, 1H), 5.84 (ddt, J = 17.4, 9.5, 7.1 Hz, 1H), 5.29 - 5.04 (m, 2H), 4.63 (dd, J = 8.7, 6.0 Hz, 1H), 3.99 (br, 1H), 2.86 - 2.63 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 159.5, 143.8, 137.1, 134.4, 134.0, 126.2 (dd, J = 7.6, 3.8 Hz), 126.1 (q, J = 32.7 Hz), 125.4, 124.8, 124.3 (q, J = 3.6 Hz), 122.7, 121.6 (d, J = 3.0 Hz), 119.7, 119.1, 55.7, 38.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -64.3.

HRMS (ESI) calcd for C₁₇H₁₅F₃NO (M+H)⁺: 306.1106, found: 306.1096.

Compound 3n: (*R*)-11-allyl-2-chloro-10,11-dihydrodibenzo[*b*,*f*][1,4]oxazepine colourless oil, 23.1 mg (85% of total yield), er = 95:5; $[\alpha]_D^{2.5} = 9.4$, (c = 1.18, CH₂Cl₂); HPLC condition: chiralpak ADH, 210 nm, 1 mL/min, hexane/i-PrOH = 19/1, t_{major} = 7.7 min, t_{minor} = 7.4 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.38 - 7.27 (m, 2H), 7.09 - 6.99 (m, 2H), 6.93 - 6.85 (m, 1H), 6.74 - 6.66 (m, 1H), 6.56 (dd, *J* = 8.0, 1.4 Hz, 1H), 5.93 - 5.79 (m, 1H), 5.30 - 5.10 (m, 2H), 4.72 (dd, *J* = 9.2, 5.6 Hz, 1H), 3.82 (br, 1H), 2.97 - 2.68 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 153.0, 143.0, 137.8, 135.9, 134.7, 129.6, 126.5, 125.1, 124.9, 124.8, 122.5, 118.9, 118.8, 118.2, 54.9, 38.5.

HRMS (ESI) calcd for C₁₆H₁₅ClNO (M+H)⁺: 272.0842, found: 272.0835.

Compound 3o: (*R*)-11-allyl-2-fluoro-10,11-dihydrodibenzo[*b*,*f*][1,4]oxazepine

colourless oil, 20.1 mg (79% of total yield), er = 90.5:9.5; $[\alpha]_D^{2.5}$ = -4.0 (c = 1.00, CH₂Cl₂); HPLC condition: chiralpak ADH, 210 nm, 1 mL/min, hexane/i-PrOH = 19/1, t_{major} = 8.6 min, t_{minor} = 9.3 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.15 - 7.04 (m, 2H), 6.94 - 6.85 (m, 2H), 6.80 (td, *J* = 8.4, 2.6 Hz, 1H), 6.70 (td, *J* = 8.0, 1.5 Hz, 1H), 6.57 (dd, *J* = 7.9, 1.5 Hz, 1H), 5.96 - 5.60 (m, 1H), 5.28 - 5.00 (m, 2H), 4.60 (dd, *J* = 9.2, 5.6 Hz, 1H), 3.99 (br, 1H), 2.97 - 2.55 (m, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ 162.4 (d, *J* = 247.0 Hz), 158.0 (d, *J* = 11.0 Hz), 143.8, 137.5, 134.8, 129.7, 127.6 (d, *J* = 9.6 Hz), 124.7, 121.7, 119.3, 118.8, 118.7, 110.9 (d, *J* = 21.0 Hz), 108.8 (d, *J* = 23.1 Hz), 55.1, 38.9.

¹⁹F NMR (376 MHz, CDCl₃) δ -112.9.

HRMS (ESI) calcd for C₁₆H₁₅FNO (M+H)⁺: 256.1138, found: 256.1133.

Compound 3p: (*R*)-7-allyl-7,8-dihydrobenzo[*b*]naphtho[2,1-*f*][1,4]oxazepine colourless oil, 24.5 mg (85% of total yield), er = 94.5:5.5; $[\alpha]_D^{2.5} = 27.4$, (c = 1.20, CH₂Cl₂); HPLC condition: chiralpak IC, 210 nm, 1 mL/min, hexane/i-PrOH = 19/1, t_{major} = 12.8 min, t_{minor} = 6.3 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.48 (d, J = 8.4 Hz, 1H), 7.82 (d, J = 8.1 Hz, 1H), 7.57 (dd, J = 15.9, 8.5 Hz, 2H), 7.49 (t, J = 7.5 Hz, 1H), 7.37 - 7.27 (m, 2H), 6.88 (t, J = 7.6 Hz, 1H), 6.74 (t, J = 7.6 Hz, 1H), 6.61 (d, J = 7.9 Hz, 1H), 6.02 - 5.75 (m, 1H), 5.32 - 5.10 (m, 2H), 4.79 (dd, J = 8.8, 5.7 Hz, 1H), 4.11 (br, 1H), 3.05 - 2.74 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 152.3, 144.3, 138.2, 135.2, 134.2, 128.5, 127.6, 127.4, 126.3, 124.7, 124.6, 123.8, 122.1, 121.8, 119.2, 119.0, 118.6, 56.0, 39.3.

HRMS (ESI) calcd for C₂₀H₁₈NO (M+H)⁺: 288.1383, found: 288.1383.

Compound 3q: (*R*)-12-allyl-12,13-dihydrobenzo[*b*]naphtho[2,3-*f*][1,4]oxazepine colourless oil, 27.9 mg (97% of total yield), er = 95:5; $[\alpha]_D^{2.5} = 93.2$, (c = 1.45, CH₂Cl₂); HPLC condition: chiralpak IC, 210 nm, 1 mL/min, hexane/i-PrOH = 19/1, t_{major} = 9.3 min, t_{minor} = 18.9 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.96 (d, *J* = 8.6 Hz, 1H), 7.83 (d, *J* = 8.0 Hz, 1H), 7.76 (d, *J* = 8.8 Hz, 1H), 7.58 - 7.49 (m, 1H), 7.46 - 7.33 (m, 2H), 7.16 (dd, *J* = 8.0, 1.4 Hz, 1H), 6.90 (td, *J* = 7.7, 1.4 Hz, 1H), 6.75 (td, *J* = 7.7, 1.5 Hz, 1H), 6.64 (dd, *J* = 7.9, 1.5 Hz, 1H), 6.04 - 5.60 (m, 1H), 5.28 - 4.86 (m, 3H), 3.14 - 2.97 (m, 1H), 2.93 - 2.79 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 154.3, 144.3, 137.2, 135.3, 131.0, 130.8, 129.4, 128.9, 126.8, 125.9, 124.5, 124.4, 122.2, 121.9, 121.4, 119.5, 119.2, 118.0, 53.3, 40.4.

HRMS (ESI) calcd for C₂₀H₁₈NO (M+H)⁺: 288.1383, found: 288.1384.

Compound 3r: (*R*)-11-allyl-10,11-dihydrodibenzo[*b*,*f*][1,4]thiazepine

colourless oil, 17.5 mg (69% of total yield), er = 88.5:11.5, $[\alpha]_D^{2.5}$ = -21.6, (c = 0.90, CH₂Cl₂); HPLC condition: chiralpak ADH, 210 nm, 1 mL/min, hexane/i-PrOH = 19/1, t_{major} = 7.0 min, t_{minor} = 8.7 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.58 - 7.47 (m, 1H), 7.35 - 7.19 (m, 3H), 7.14 (dd, *J* = 7.8, 1.4 Hz, 1H), 6.92 - 6.84 (m, 1H), 6.61 - 6.49 (m, 1H), 6.35 (dd, *J* = 8.1, 0.9 Hz, 1H), 6.01 - 5.86 (m, 2H), 5.35 - 5.15 (m, 2H), 3.80 (br, 1H), 2.91 - 2.74 (m, 1H), 2.73 - 2.56 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 146.6, 144.6, 136.3, 135.1, 132.0, 131.9, 128.7, 128.2, 128.1, 124.8, 118.5, 118.5, 117.8, 116.3, 53.9, 38.0.

HRMS (ESI) calcd for C₁₆H₁₆NS (M+H)⁺: 254.1003, found: 254.0097.

Compound 3s: (*R*)-11-(2-methylenebut-3-en-1-yl)-10,11-dihydrodibenzo[*b*,*f*][1,4]oxazepine colourless oil, 20.5 mg (78% of total yield), er = 87:13, $[\alpha]_D^{2.5} = -6.2$, (c = 1.00, CH₂Cl₂); HPLC condition: chiralpak ADH, 210 nm, 1 mL/min, hexane/i-PrOH = 19/1, t_{major} = 9.2 min, t_{minor} = 6.9 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.39 - 6.91 (m, 10H), 6.75 (t, *J* = 7.5 Hz, 1H), 6.59 (t, *J* = 7.6 Hz, 1H), 6.42 (d, *J* = 7.9 Hz, 1H), 5.31 (s, 1H), 5.06 (s, 1H), 4.43 (dd, *J* = 9.3, 5.3 Hz, 1H), 3.34 - 3.04 (m, 2H). ¹³**C NMR** (101 MHz, CDCl₃) δ 157.2, 143.9, 142.9, 138.2, 137.3, 133.7, 124.4, 124.3, 121.8, 121.7, 121.1, 119.3, 119.2, 119.1, 118.8, 114.3, 55.2, 36.8.

HRMS (ESI) calcd for C₁₈H₁₈NO (M+H)⁺: 264.1388, found: 264.1382.

Compound 3t: (*R*)-11-(2-phenylallyl)-10,11-dihydrodibenzo[*b*,*f*][1,4]oxazepine colourless oil, 15.8 mg (50% of total yield), er = 92:8; $[\alpha]_D^{2.5}$ = -4.5, (c = 0.40, CH₂Cl₂); HPLC condition: chiralpak ADH, 210 nm, 1 mL/min, hexane/i-PrOH = 19/1, t_{major} = 12.6 min, t_{minor} = 8.3 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.34 (d, J = 7.1 Hz, 2H), 7.30 - 7.13 (m, 4H), 7.09 (d, J = 7.8 Hz, 1H), 7.00 (t, J = 7.9 Hz, 3H), 6.75 (t, J = 7.5 Hz, 1H), 6.59 (t, J = 7.6 Hz, 1H), 6.42 (d, J = 7.9 Hz, 1H), 5.31 (s, 1H), 5.06 (s, 1H), 4.43 (dd, J = 9.3, 5.3 Hz, 1H), 3.41 - 3.03 (m, 2H).

HRMS (ESI) calcd for C₂₂H₂₀NO (M+H)⁺: 314.1539, found: 314.1541.

Compound 3u: (*R*)-11-(2-methylallyl)-10,11-dihydrodibenzo[*b*,*f*][1,4]oxazepine colourless oil, 24.6 mg (98% of total yield), er = 77:23; $[\alpha]_D^{2.5} = -1.4$, (c = 1.15, CH₂Cl₂); HPLC condition: chiralpak ADH, 210 nm, 1 mL/min, hexane/i-PrOH = 19/1, t_{major} = 8.1 min, t_{minor} = 7.1 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.34 - 7.06 (m, 6H), 6.87 (t, *J* = 7.6 Hz, 1H), 6.70 (t, *J* = 7.6 Hz, 1H), 6.59 (d, *J* = 7.9 Hz, 1H), 5.03 - 4.79 (m, 3H), 2.93 - 2.56 (m, 2H), 1.83 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 157.5, 144.1, 142.2, 138.0, 134.0, 128.9, 126.1, 124.4, 124.3, 121.7, 121.0, 119.0, 118.5, 114.3, 52.5, 42.3, 22.1.

HRMS (ESI) calcd for C₁₇H₁₈NO (M+H)⁺: 252.1383, found: 252.1381.

Compound 4: (*R*)-3-(10,11-dihydrodibenzo[*b*,*f*][1,4]oxazepin-11-yl)propan-1-ol colourless oil, 30.0 mg (59% of yield), er = 93.5:6.5, $[\alpha]_{D}^{2.5} = 5.4$, (c = 1.80, CH₂Cl₂); HPLC condition: chiralpak ADH, 210 nm, 1 mL/min, hexane/i-PrOH = 1/4, t_{major} = 9.4 min, t_{minor} = 8.9 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.32 - 7.03 (m, 5H), 6.94 - 6.83 (m, 1H), 6.76 - 6.65 (m, 1H), 6.61 (dd, *J* = 7.9, 1.1 Hz, 1H), 4.45 (t, *J* = 7.4 Hz, 1H), 3.71 (t, *J* = 6.4 Hz, 2H), 2.95 (s, 2H), 2.28 - 2.07 (m, 2H), 1.83 - 1.55 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 157.2, 144.0, 137.4, 134.0, 128.9, 127.2, 124.5, 124.3, 121.8, 121.1, 119.1, 118.8, 62.7, 57.2, 31.5, 30.0.

HRMS (ESI) calcd for C₁₆H₁₈NO₂ (M+H)⁺: 256.1332, found: 256.1332.

Compound 5: (*R*)-1,2,3,13b-tetrahydrodibenzo[*b*,*f*]pyrrolo[1,2-*d*][1,4]oxazepine colourless oil, 57.0 mg (85% of yield), er = 93.5:6.5, $[\alpha]_{D}^{2.5}$ = -76.5, (c = 0.25, CH₂Cl₂); HPLC condition: chiralpak IC, 210 nm, 1 mL/min, hexane/i-PrOH = 40/1, t_{major} = 5.7 min, t_{minor} = 5.3 min. ¹**H NMR** (400 MHz, CDCl₃) δ 7.42 - 7.28 (m, 3H), 7.28 - 7.21 (m, 2H), 7.06 (td, J = 8.1, 1.5 Hz, 1H), 6.70 (dd, J = 10.9, 4.2 Hz, 1H), 6.60 (d, J = 7.9 Hz, 1H), 5.65 (t, J = 7.0 Hz, 1H), 3.62 - 3.51 (m, 1H), 3.45 (td, J = 8.4, 5.3 Hz, 1H), 2.58 - 2.46 (m, 1H), 2.41 (td, J = 12.4, 6.4 Hz, 1H), 2.32 - 2.09 (m, 2H). ¹³**C NMR** (101 MHz, CDCl₃) δ 158.3, 144.2, 139.8, 133.4, 129.0, 125.2, 124.6, 124.5, 121.2, 120.6, 116.7, 114.8, 57.6, 50.0, 29.2, 23.4.

HRMS (ESI) calcd for C₁₆H₁₆NO (M+H)⁺: 238.1226, found: 238.1229.

Compound 6: (*R*)-1-(11-allyldibenzo[*b*,*f*][1,4]oxazepin-10(11H)-yl)prop-2-en-1-one white solid, 114.0 mg (98% of yield), er = 95.5:4.5, $[\alpha]_D^{2.5}$ = -308.8, (c = 0.25, CH₂Cl₂); HPLC condition: chiralpak ADH, 210 nm, 1 mL/min, hexane/i-PrOH = 1/19, t_{major} = 12.5 min, t_{minor} = 17.7 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.32 - 7.00 (m, 7H), 6.94 (t, *J* = 7.2 Hz, 1H), 6.32 (dd, *J* = 16.7, 1.6 Hz, 1H), 6.19 - 6.02 (m, 2H), 5.79 - 5.64 (m, 1H), 5.50 (dd, *J* = 10.3, 1.5 Hz, 1H), 5.01 (d, *J* = 10.2 Hz, 1H), 4.90 (d, *J* = 17.2 Hz, 1H), 2.34 (dt, *J* = 15.2, 4.9 Hz, 1H), 2.21 - 2.05 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 165.4, 153.3, 153.1, 131.0, 130.4, 129.7, 129.5, 128.7, 128.4, 128.2, 123.9, 123.0, 121.6, 120.9, 117.8, 55.6, 41.0.

HRMS (ESI) calcd for C₁₉H₁₈NO₂ (M+H)⁺: 292.1332, found: 292.1338.

Compound 7: (*R*)-1,14b-dihydro-4H-dibenzo[*b*,*f*]pyrido[1,2-*d*][1,4]oxazepin-4-one white solid, 38.0 mg (96% of yield), er = 94:6, $[\alpha]_D^{2.5} = -52.0$, (c = 0.65, CH₂Cl₂); HPLC condition: chiralpak ADH, 210 nm, 1 mL/min, hexane/i-PrOH = 3/2, t_{major} = 5.3 min, t_{minor} = 6.1 min. ¹H NMR (400 MHz, CDCl₃) δ 7.50 (dd, *J* = 8.0, 1.5 Hz, 1H), 7.33 - 7.00 (m, 7H), 6.88 - 6.75 (m, 1H), 6.06 (dd, *J* = 9.9, 2.3 Hz, 1H), 5.47 (dd, *J* = 6.2, 2.6 Hz, 1H), 3.14 - 3.05 (m, 1H), 3.03 - 2.93 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 163.1, 156.1, 150.0, 138.7, 131.2, 130.0, 129.5, 129.0, 127.2, 126.4, 126.2, 123.5, 122.5, 121.2, 121.1, 56.7, 26.9.

HRMS (ESI) calcd for C₁₇H₁₄NO₂ (M+H)⁺: 264.1019, found: 264.1018.

Compound 8: (R)-10,11-diallyl-10,11-dihydrodibenzo[b,f][1,4]oxazepine

colourless oil, 64.6 mg (97% of yield), er = 95.5:4.5, $[\alpha]_D^{2.5}$ = -108.3, (c = 0.65, CH₂Cl₂); HPLC condition: chiralpak ADH, 210 nm, 1 mL/min, hexane/i-PrOH = 1/200, t_{major} = 8.9 min, t_{minor} = 8.6 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.31 - 6.93 (m, 6H), 6.90 - 6.78 (m, 2H), 6.02 - 5.84 (m, 1H), 5.73 (ddt, J = 17.2, 10.1, 7.1 Hz, 1H), 5.30 - 5.10 (m, 2H), 5.06 - 4.93 (m, 2H), 4.02 (t, J = 7.7 Hz, 1H), 3.87 - 3.80 (m, 2H), 2.87 (t, J = 7.2 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 156.7, 147.6, 138.8, 135.7, 135.2, 132.1, 129.3, 128.8, 124.2, 123.3, 122.0, 121.4, 120.7, 120.7, 116.8, 116.5, 64.6, 58.0, 38.8.

HRMS (ESI) calcd for C₁₉H₂₀NO (M+H)⁺: 278.1539, found: 278.1544.

Compound 10: (*R*)-1,3,4,14b-tetrahydro-2H-dibenzo[*b*,*f*]pyrido[1,2-*d*][1,4]oxazepine colourless oil, 32.5 mg (98% of yield), er = 94.5:5.5, $[\alpha]_D^{2.5} = -347.2$, (c = 0.50, CH₂Cl₂); HPLC condition: chiralpak ADH, 210 nm, 1 mL/min, hexane/i-PrOH = 40/1, t_{major} = 4.7 min, t_{minor} = 5.1 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.33 - 7.00 (m, 7H), 6.87 (t, *J* = 7.4 Hz, 1H), 4.03 (d, *J* = 10.1 Hz, 1H), 3.71 - 3.36 (m, 1H), 3.23 - 2.87 (m, 1H), 2.08 - 1.58 (m, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 155.5, 152.8, 143.0, 132.2, 128.6, 126.9, 124.3, 123.2, 120.7, 119.8, 119.5, 119.3, 64.2, 51.7, 36.3, 24.9, 24.2.

HRMS (ESI) calcd for C₁₇H₁₈NO (M+H)⁺: 252.1388, found: 252.1386.

Compound 11: (*R*)-1,3,4,14b-tetrahydro-2H-dibenzo[*b*,*f*]pyrido[1,2-*d*][1,4]oxazepine colourless oil, 31.5 mg (97% of yield), er = 95:5, $[\alpha]_D^{2.5} = 22.2$, (c = 0.65, CH₂Cl₂); HPLC condition: chiralpak ADH, 210 nm, 1 mL/min, hexane/i-PrOH = 1/19, t_{major} = 9.8 min, t_{minor} = 8.3 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.32 - 7.07 (m, 5H), 6.89 (t, *J* = 7.5 Hz, 1H), 6.70 (t, *J* = 7.5 Hz, 1H), 6.59 (d, *J* = 7.9 Hz, 1H), 4.49 (t, *J* = 7.3 Hz, 1H), 3.90 (br, 1H), 2.20 - 1.95 (m, 2H), 1.63 - 1.35 (m, 2H), 1.01 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 157.3, 143.9, 137.7, 134.3, 128.7, 127.0, 124.4, 124.2, 121.7, 121.1, 118.8, 118.5, 56.8, 36.9, 20.1, 14.0.

HRMS (ESI) calcd for C₁₆H₁₈NO (M+H)⁺: 240.1388, found: 240.1387

6. References

(a) Y. -Y. Ren, Y. -Q. Wang, S. Liu and K. Pan, *ChemCatChem*, 2014, **6**, 2985. (b) S. Debasmita,
 K. Tanpreet, S. Neetu, P. S. Udai and Anuj, S. *Asian J. Org. Chem.*, 2016, **5**, 82. (c) L. D. Munck,
 V. Sukowski, C. Vila, M. C. Muñoz, J. R. Pedro, *Org. Chem. Front.*, 2017, **4**, 1624.

2 (a) P. Zhang, I. A. Roundtree and J. P. Morken, *Org. Lett.*, 2012, **14**, 1416. (b) S. Niyomchon, D. Audisio, M. Luparia and N. Maulide, *Org. Lett.*, 2013, **15**, 2318. (c) N. Miralles, R. Alam, K. J. Szabó and E. Fernández. *Angew. Chem. Int. Ed.*, 2016, **55**, 4303.

3 (a) J. Wang, Q. X. Zhang, B. Y. Zhou, C. Yang, X. Li and J. -P. Cheng, *iScience*, 2019, 16, 511.
(b) Y. -L. Pan, H. -L. Zheng, J. Wang, C. Yang, X. Li and J. -P. Cheng, *ACS. Catal.*, 2020, 10, 8069.

7. NMR and HPLC spectra

 $\begin{array}{c} 7.743\\ 7.743\\ 7.743\\ 7.743\\ 7.743\\ 7.743\\ 7.743\\ 7.723$ 7.723 7.723 7.723 7.7232 7.723

ann an tha ann an tha ann an Arland an an Arland an

1		- 10 - 11 - 11 - 11 - 11 - 11 - 11 - 11					A. 10 - 1									1 0 01 0	1 2 1 2 1		1
50	130	110	90	80	70	60	50	40	30	20	10	0	-20	-40	-60	-80	-100	-120	-140
											fl	(ppm)						

90 80 70 60 50 40 30 20 10 0 fl (ppm)

 $\begin{array}{c} 7.7.2\\ 7.$

 $\begin{array}{c} 7.7, 18\\ 7.7, 7.7, 16\\$

PeakTable

Ľ	Detector A Ch1 210nm									
	Peak#	Ret. Time	Area	Height	Area %	Height %				
	1	8.304	2408413	225413	50.144	51.754				
	2	8.740	2394579	210131	49.856	48.246				
	Total		4802992	435543	100.000	100.000				

		PeakTable						
Detector A Ch1 210nm								
Peak#	Ret. Time	Area	Height	Area %	Height %			
1	8.422	509823	47470	4.453	4.922			
2	8.886	10938884	917054	95.547	95.078			
Total		11448707	964524	100.000	100.000			

1 Det.A Ch1/210nm

Peak#

2

Total

10.767 89.233

100.000

PeakTable Detector A Ch1 210nm Area % 9.719 Height Height % Ret. Time Area 1382968 112613 9.553 9.942 12846082 933327 90.281

1045940

100.000

PeakTable Detector A Ch1 210nm Height % 49.136 Peak# Ret. Time Area Height Area % 9.993 1619143 122876 49.999 11.461 1619211 127198 50.001 50.864 2 100.000 Total 3238354 100.000 250074

PeakTable Detector A Ch1 210nm Height % 4.324 95.676 100.000 Area % Ret. Time 9.854 Height 31390 694640 Area 395564 8398991 Peak# 4.498 95.502 1 2 11.260 Total 8794555 726030 100.000

PeakTable

			1 curring		
Detector A	Ch1 210nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	5.619	15262193	1493054	49.260	50.974
2	6.457	15720963	1435971	50.740	49.026
Total		30983156	2929025	100.000	100.000

1 Det.A Ch1/210nm

			PeakTable		
Detector A	Ch1 210nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	5.600	603092	69923	6.327	7.262
2	6.430	8928452	892953	93.673	92.738
Total		9531544	962876	100.000	100.000

PeakTable

Dete	Detector A Ch1 210nm								
Pe	ak#	Ret. Time	Area	Height	Area %	Height %			
	1	8.787	2915340	255488	50.148	53.736			
	2	10.285	2898086	219961	49.852	46.264			
	Total		5813426	475449	100.000	100.000			

 PeakTable

 Detector A Ch1 210nm

 Peak#
 Ret. Time
 Area
 Height
 Area %
 Height %

 1
 8.825
 398882
 36359
 5.389
 6.594

 2
 10.342
 7002388
 515028
 94.611
 93.406

 Total
 7401271
 551387
 100.000
 100.000

PeakTable Detector A Ch1 210nm Height % 54.062 45.938 100.000 Ret. Time 10.401 Height 860855 731492 Area % 49.696 Area 12224446 12374079 Peak# 13.419 50.304 2 Total 24598525 1592347 100.000

			PeakTa	able	
etector A (Ch1 210nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	10.468	656125	49012	5.503	6.897
2	13.565	11266849	661613	94.497	93.103
Total		11922973	710625	100.000	100.000

 PeakTable

 Detector A Ch1 210nm
 Area
 Height
 Area %
 Height %

 1
 11.687
 7260088
 499556
 49.930
 56.867

 2
 15.164
 7280358
 378902
 50.070
 43.133

 Total
 14540446
 878457
 100.000
 100.000

Detector A (Ch1 210nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	11.692	1235918	87557	9.833	12.934
2	15.128	11332608	589403	90.167	87.066
Total		12568526	676960	100.000	100.000

PeakTable

Detector A Cn1 210nm									
Peak#	Ret. Time	Area	Height	Area %	Height %				
1	6.843	9942544	957866	50.912	58.290				
2	9.242	9586170	685409	49.088	41.710				
Total		19528714	1643275	100.000	100.000				

			PeakTabl	e	
Detector A	Ch1 210nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	6.845	13074830	1205740	94.835	95.491
2	9.225	712163	56934	5.165	4.509
Total		13786993	1262674	100.000	100.000

1 Det.A CITI/2 TOTIII

 PeakTable

 Detector A Ch1 210nm
 Area
 Height
 Area %
 Height %

 1
 6.072
 6520581
 717229
 51.237
 60.483

 2
 9.606
 6205802
 468605
 48.763
 39.517

 Total
 12726383
 1185834
 100.000
 100.000

				I can I aoic					
Detector A Ch1 210nm									
	Peak#	Ret. Time	Area	Height	Area %	Height %			
	1	6.031	3909278	438842	83.174	87.722			
	2	9.489	790842	61421	16.826	12.278			
	Total		4700121	500263	100.000	100.000			

PeakTable

Detector A Ch1 210nm								
Peak#	Ret. Time	Area	Height	Area %	Height %			
1	10.185	8676237	648887	94.577	95.065			
2	12.468	497539	33681	5.423	4.935			
Total		9173775	682568	100.000	100.000			

 PeakTable

 Detector A Ch1 210nm
 Area
 Height
 Area %
 Height %

 1
 5.997
 2335831
 223694
 50.913
 52.608

 2
 6.494
 2252018
 201517
 49.087
 47.392

 Total
 4587850
 425211
 100.000
 100.000

Detector A Ch1 210nm									
Peak#	Ret. Time	Area	Height	Area %	Height %				
1	5.990	5117390	485861	91.160	91.396				
2	6.487	496218	45738	8.840	8.604				
Total		5613608	531599	100.000	100.000				

PeakTable

	1 cax 1 able						
Detector A Ch1 210nm							
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	6.643	5520094	579661	49.502	63.422		
2	13.097	5631263	334318	50.498	36.578		
Total		11151357	913979	100.000	100.000		

	1 vali i dolo								
Detector A Ch1 210nm									
Peak#	Ret. Time	Area	Height	Area %	Height %				
1	6.607	9856298	1011178	90.169	93.744				
2	12.847	1074595	67480	9.831	6.256				
Total		10930893	1078658	100.000	100.000				

PeakTable Detector A Ch1 210nm Height % 51.795 48.205 Peak# Ret. Time Area Height Area % 374582 348619 4027197 50.017 7.920 8.516 4024483 49.983 2 Total 8051681 723200 100.000 100.000

1 Det.A Ch1/210nm

PeakTable Detector A Ch1 210nm Ret. Time 7.926 8.517 Height 697127 31885 Area % 95.612 4.388 Height % 95.626 4.374 Peak# Area 7636598 350473 1 2 Total 7987072 729011 100.000 100.000

1 Det.A Ch1/210nm

PeakTable

Peak#	Ret. Time	Area	Height	Area %	Height %
1	7.412	5578607	572212	50.100	51.4
2	7.705	5556302	539854	49.900	48.5
Total		11134908	1112066	100.000	100.0

PeakTable

		I Cak I able						
Detector A Ch1 210nm								
Peak#	Ret. Time	Area	Height	Area %	Height %			
1	7.441	466851	51699	4.978	5.740			
2	7.736	8911365	848912	95.022	94.260			
Total		9378217	900611	100.000	100.000			

 PeakTable

 PeakK Chi 210nm

 Peak#
 Ret. Time
 Area
 Height
 Area %
 Height %

 1
 8.326
 7646776
 692652
 50.285
 51.775

 2
 9.053
 7560116
 645156
 49.715
 48.225

 Total
 15206892
 1337808
 100.000
 100.000

	1 cux 1 usic							
Detector A Ch1 210nm								
Peak#	Ret. Time	Area	Height	Area %	Height %			
1	8.550	11718840	1005940	90.408	90.511			
2	9.316	1243267	105465	9.592	9.489			
Total		12962108	1111405	100.000	100.000			

PeakTable

Detector A	Ch1 210nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	6.334	5287354	530409	49.712	65.425
2	12.902	5348653	280307	50.288	34.575
Total		10636007	810716	100.000	100.000

1 Det.A Ch1/210nm

	I cak I able							
Detector A (Detector A Ch1 210nm							
Peak#	Ret. Time	Area	Height	Area %	Height %			
1	6.323	919034	94777	5.587	10.572			
2	12.795	15531808	801687	94.413	89.428			
Total		16450841	896464	100.000	100.000			

 PeakTable

 Detector A Ch1 210nm
 Peak#
 Ret. Time
 Area
 Height
 Area %
 Height %

 1
 9.333
 2434014
 175168
 50.198
 65.672

 2
 18.981
 2414819
 91563
 49.802
 34.328

 Total
 4848833
 266731
 100.000
 100.000

PeakTable

		TeakTable							
]	Detector A Ch1 210nm								
ſ	Peak#	Ret. Time	Area	Height	Area %	Height %			
Ī	1	9.296	387622	27289	5.001	8.938			
ſ	2	18.939	7363266	278040	94.999	91.062			
	Total		7750888	305329	100.000	100.000			

PeakTable

Detector A (Detector A Ch1 210nm								
Peak#	Ret. Time	Area	Height	Area %	Height %				
1	7.006	2207361	241495	88.636	89.941				
2	8.653	282992	27009	11.364	10.059				
Total		2490354	268504	100.000	100.000				

etector A (Ch1 210nm		PeakTable		
Peak#	Ret. Time	Area	Height	Area %	Height %
1	6.846	7383444	777320	50.237	57.045
2	9.236	7313645	585336	49.763	42.955
Total		14697089	1362656	100.000	100.000

PeakTable

Detector A (Ch1 210nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	6.850	1777131	188030	12.853	16.561
2	9.237	12049238	947371	87.147	83.439
Total		13826370	1135401	100.000	100.000

 PeakTable

 Detector A Ch1 210nm

 Peak#
 Ret. Time
 Area
 Height
 Area %
 Height %

 1
 8.254
 3040336
 270641
 50.168
 59.289

 2
 12.531
 3019932
 185840
 49.832
 40.711

 Total
 6060268
 456482
 100.000
 100.000

D1.	T-LI	1
Peak	Tabl	le

		I cak I able							
Detector A	tector A Ch1 210nm								
Peak#	Ret. Time	Area	Height	Area %	Height %				
1	8.273	503981	45431	8.206	11.703				
2	12.568	5637315	342766	91.794	88.297				
Total		6141296	388197	100.000	100.000				

 Detector A Ch1 210nm

 Peak#
 Ret. Time

 1
 7.070

 2
 8.053
 PeakTable Height 724454 638519 1362973 Area % 49.243 50.757 100.000 Area 6985966 7200876 14186843 Height % 53.152 46.848 Total 100.000

	PeakTable								
Detector A Ch1 210nm									
Peak#	Ret. Time	Area	Height	Area %	Height %				
1	7.075	1258964	133160	23.176	26.622				
2	8.077	4173200	367024	76.824	73.378				
Total		5432163	500184	100.000	100.000				

PeakTable

Detector A (Ch1 210nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	8.962	4460266	334344	49.693	51.421
2	9.465	4515409	315860	50.307	48.579
Total		8975675	650203	100.000	100.000

1 Det.A Ch1/210nm

PeakTable

	1 WHILI WOLF					
Detector A	Ch1 210nm					
Peak#	Ret. Time	Area	Height	Area %	Height %	
1	8.897	424693	32872	6.496	7.115	
2	9.384	6112839	429118	93.504	92.885	
Total		6537532	461990	100.000	100.000	

 PeakTable

 Detector A Ch1 210nm
 Peak#
 Ret. Time
 Area
 Height
 Area %
 Height %

 1
 5.342
 8354752
 980976
 49.570
 50.832

 2
 5.650
 8499755
 948849
 50.430
 49.168

 Total
 16854507
 1929825
 100.000
 100.000

			PeakTable					
Detector A (Detector A Ch1 210nm							
Peak#	Ret. Time	Area	Height	Area %	Height %			
1	5.334	361509	46912	6.397	7.177			
2	5.655	5289947	606735	93.603	92.823			
Total		5651456	653648	100.000	100.000			

 PeakTable

 Detector A Ch1 210nm

 Peak#
 Ret. Time
 Area
 Height
 Area %
 Height %

 1
 12.526
 9287647
 497537
 49.238
 57.239

 2
 17.757
 9575015
 371688
 50.762
 42.761

 Total
 18862662
 869225
 100.000
 100.000

PeakTable

			T COULT	wore -		
Detector A Ch1 210nm						
Peak#	Ret. Time	Area	Height	Area %	Height %	
1	12.515	14687217	780249	95.609	96.495	
2	17.740	674591	28343	4.391	3.505	
Total		15361808	808592	100.000	100.000	

1 Det.A Ch1/210nm

 PeakTable

 Detector A Ch1 210nm

 Peak#
 Ret. Time
 Area
 Height
 Area %
 Height %

 1
 5.325
 2207401
 264936
 50.718
 54.646

 2
 6.072
 2144883
 219889
 49.282
 45.354

 Total
 4352284
 484824
 100.000
 100.000

PeakTable

Detector A (Detector A Ch1 210nm						
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	5.333	9931311	1094267	93.968	94.009		
2	6.085	637484	69735	6.032	5.991		
Total		10568795	1164003	100.000	100.000		

PeakTable

Detector A	Ch1 210nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	8.563	314932	37466	4.311	4.714
2	8.877	6990628	757381	95.689	95.286
Total		7305560	794846	100.000	100.000

1 Det.A Ch1/210nm

PeakTable

.....

ataatan A (Ch1 210mm		1 0 0 0 0	10010	
Peak#	Ret Time	Area	Height	Area %	Height %
1	4.731	1924542	243851	50.269	50.826
2	5.098	1903975	235925	49.731	49.174
Total		3828517	479776	100.000	100.000

1 Det.A Ch1/210nm

PeakTable

			I Cak I abic				
Detector A (Detector A Ch1 210nm						
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	4.730	4142392	545595	94.568	94.408		
2	5.096	237929	32317	5.432	5.592		
Total		4380321	577912	100.000	100.000		

Detector A (Ch1 210nm		Peal		
Peak#	Ret. Time	Area	Height	Area %	Height %
1	8.317	7057649	636134	49.768	53.549
2	9.782	7123371	551814	50.232	46.451
Total		14181020	1187948	100.000	100.000

			PeakTal	ble	
Detector A (Ch1 210nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	8.336	101005	9713	4.850	5.861
2	9.800	1981749	156001	95.150	94.139
Total		2082754	165714	100.000	100.000