Supporting Information for

Efficient synthesis of 2-aryl-2H-indazoles by base-catalyzed benzyl C–H deprotonation and cyclization

Guo-Qing Jin, Wen-Xia Gao, Yun-Bing Zhou,* Miao-Chang Liu* and Hua-Yue Wu

^aCollege of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, People's Republic of China

Table of Contents

1.	General information	
2.	General procedure for the preparation of unsymmetrica	al
	azoxybenzenesS2	
3.	General experimental procedure	
4.	Characterization of products in details	
5.	¹ H, ¹³ C and ¹⁹ F NMR spectra of productsS15	

1. General information

All reagents and solvents were purchased from TCI, Sigma-Aldrich, Alfa Aesar, Acros and Meryer. All reactions were conducted using standard Schlenk techniques. Column chromatography was performed using EM silica gel 60 (300–400 mesh). ¹H NMR and ¹³C NMR spectra were measured on Bruker AVANCE spectrometer (400 MHz or 500 MHz for ¹H, 125 MHz for ¹³C), using DMSO-d₆ or CDCl₃ as the solvent with tetramethylsilane (TMS) as the internal standard at room temperature. Chemical shifts were reported in ppm. ¹H NMR spectra were referenced to CDCl₃ (7.26 ppm) or DMSO-d₆ (2.50 ppm), and ¹³C-NMR spectra were referenced to CDCl₃ (77.0 ppm) or DMSO-d₆ (39.5 ppm). Peak multiplicities were designated by the following abbreviations: s, singlet; d, doublet; t, triplet; m, multiplet. Chemical shifts are given in δ relative to TMS, the coupling constants J are given in Hz. Analysis of crude reaction mixture was done on the Varian 4000 GC/MS and Agilent 7890A/5975C. High-resolution mass spectra were recorded on a micrOTOF-Q II 10410 mass spectrometer. Unless otherwise noted, all reagents and solvents were obtained commercially and used without further purification.

2. General procedure for the preparation of unsymmetrical azoxybenzenes

A 50 mL Schlenk tube equipped with a stir bar was charged with substituted o-toluidine (30.0 mmol), nitrosobenzene (32.0 mmol), CuCl (6.0 mmol), pyridine (15.0 mmol) and toluene (30 mL). The reaction mixture was stirred at 80 °C for 24 h under O₂. After the reaction completed, the solvent was then removed under reduced pressure. The residue was then purified by flash chromatography on silica gel to provide the unsymmetrical azoxybenzenes.

3. General experimental procedure

A 25 mL Schlenk tube equipped with a stir bar was charged with 1 (0.3 mmol), CH₃OK (0.06 mmol) and DMF (2 mL). The reaction mixture was stirred at 90 °C for 8 h under N₂. After the reaction completed, water (20.0 mL) was added, and the reaction solution was extracted by 50.0 mL of ethyl acetate in three times, then concentrated with ethyl acetate layer under reduced pressure. The residue was then purified by flash chromatography on silica gel to provide the product **2**.

4. Characterization of products in details

2-phenyl-2H-indazole (2a)^[1]

White solid (57 mg, 98% yield); EtOAc/PE = 1/15. ¹H NMR (500 MHz, CDCl₃) δ 8.33 (s, 1H), 7.87-7.85 (m, 2H), 7.80-7.78 (m, 1H), 7.67-7.65 (m, 1H), 7.48-7.45 (m, 2H), 7.36-7.29 (m, 2H), 7.10-7.07 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 149.8, 140.6, 129.6, 127.9, 126.8, 122.8, 122.5, 121.1, 120.4, 120.3, 118.0. **2-(4-chlorophenyl)-2H-indazole (2b)**^[1]

White solid (60 mg, 88% yield); EtOAc/PE = 1/15. ¹H NMR (400 MHz, CDCl₃) δ 8.27 (s, 1H), 7.79-7.74 (m, 3H), 7.64-7.62 (m, 1H), 7.44-7.40 (m, 2H), 7.32-7.28 (m, 1H), 7.10-7.06 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 149.9, 139.0, 133.5, 129.6, 127.1, 122.9, 122.7, 121.9, 120.4, 120.2, 117.9.

2-(3-chlorophenyl)-2H-indazole (2c)^[1]

White solid (46 mg, 67% yield); EtOAc/PE = 1/15. ¹H NMR (400 MHz, CDCl₃) δ 8.40 (s, 1H), 7.98 (s, 1H), 7.80-7.77 (m, 2H), 7.71-7.69 (m, 1H), 7.48-7.44 (m, 1H), 7.38-7.32 (m, 2H), 7.15-7.13 (m,1H); ¹³C NMR (125 MHz, CDCl₃) δ 150.0, 141.5, 135.5, 130.6, 127.9, 127.2, 122.9, 122.8, 121.3, 120.4, 120.3, 118.8, 118.0. **2-(2-chlorophenyl)-2H-indazole (2d)**^[1]

Yellow oil (49 mg, 72% yield); EtOAc/PE = 1/15. ¹H NMR (400 MHz, CDCl₃) δ 8.39 (s, 1H), 7.87-7.73 (m, 3H), 7.63-7.61 (m, 1H), 7.50-7.38 (m, 3H), 7.21-7.17 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 149.4, 138.6, 130.6, 129.9, 128.9, 128.5, 127.6, 126.9, 125.1, 122.4, 122.0, 120.5, 117.9.

2-(3-bromophenyl)-2H-indazole (2e)^[2]

White solid (57 mg, 70% yield); EtOAc/PE = 1/15. ¹H NMR (400 MHz, CDCl₃) δ 8.35 (s, 1H), 8.11 (s, 1H), 7.81-7.75 (m, 2H), 7.68-7.66 (m, 1H), 7.51-7.49 (m, 1H), 7.37-7.30 (m, 2H), 7.13-7.09 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 150.0, 141.5, 130.8, 127.2, 124.1, 123.2, 122.9, 122.8, 120.4, 120.3, 119.2, 118.0.

2-(5-fluoro-2-methylphenyl)-2H-indazole (2f)

Yellow oil (64 mg, 95% yield); EtOAc/PE = 1/15. ¹H NMR (400 MHz, CDCl₃) δ 8.08 (s, 1H), 7.80-7.78 (m, 1H), 7.73-7.71 (m, 1H), 7.36-7.28 (m, 2H), 7.21-7.07 (m, 3H), 2.21 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 160.8 (d, J = 245.0), 149.4, 140.9 (d, J = 8.8Hz), 132.4 (d, J = 8.8Hz), 129.4 (d, J = 3.8Hz), 126.7, 124.2, 122.4, 122.1, 120.4, 118.0, 116.1 (d, J = 21.3Hz), 114.0 (d, J = 23.8), 17.4. ¹⁹F NMR (470 MHz, CDCl₃) δ -115.7 (s, 1F). HRMS (ESI): calculated for C₁₄H₁₁FN₂Na [M+Na]⁺ 249.0804, found 249.0800.

2-(p-tolyl)-2H-indazole (2g)^[3]

White solid (57 mg, 91% yield); EtOAc/PE = 1/15. ¹H NMR (400 MHz, CDCl₃) δ 8.30 (s, 1H), 7.80-7.73 (m, 3H), 7.67-7.65 (m, 1H), 7.32-7.25 (m, 3H), 7.10-7.06 (m, 1H), 2.38 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 149.7, 138.3, 137.9, 130.1, 126.7, 122.8, 122.3, 120.8, 120.4, 120.3, 117.9, 21.0.

2-(m-tolyl)-2H-indazole (2h)^[2]

Yellow oil (57 mg, 92% yield); EtOAc/PE = 1/15. ¹H NMR (400 MHz, CDCl₃) δ 8.34 (s, 1H), 7.80-7.78 (m, 1H), 7.74 (s, 1H), 7.68-7.61 (m, 2H), 7.38-7.29 (m, 2H), 7.18-7.16 (m, 1H), 7.11-7.07 (m,1H), 2.43 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 149.8, 140.5, 139.7, 129.3, 128.7, 126.8, 122.8, 122.4, 121.8, 120.4, 120.3, 118.0, 117.9, 21.4.

2-(o-tolyl)-2H-indazole (2i)^[2]

White solid (59 mg, 94% yield); EtOAc/PE = 1/15. ¹H NMR (400 MHz, CDCl₃) δ 8.08 (s, 1H), 7.81-7.79 (m, 1H), 7.74-7.72 (m, 1H), 7.43-7.30 (m, 5H), 7.15-7.11 (m, 1H), 2.23 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 149.3, 140.4, 134.0, 131.3, 129.2, 126.6, 126.5, 126.4, 124.3, 122.2, 122.0, 120.3, 117.9, 17.9.

2-(2,5-dimethylphenyl)-2H-indazole (2j)^[4]

White solid (58 mg, 87% yield); EtOAc/PE = 1/15. ¹H NMR (400 MHz, CDCl₃) δ 8.05 (s, 1H), 7.81-7.78 (m, 1H), 7.72-7.70 (m, 1H), 7.34-7.30 (m, 1H), 7.25-7.16 (m, 3H), 7.13-7.10 (m, 1H), 2.36 (s, 3H), 2.18 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ

149.3, 140.2, 136.5, 131.1, 130.5, 129.9, 127.2, 126.3, 124.3, 122.1, 122.0, 120.3, 117.9, 20.8, 17.5.

2-(4-methoxyphenyl)-2H-indazole (2k)^[1]

Yellow solid (58 mg, 87% yield); EtOAc/PE = 1/10. ¹H NMR (400 MHz, CDCl₃) δ 8.29 (s, 1H), 7.79-7.77 (m, 3H), 7.69-7.67 (m, 1H), 7.33-7.29 (m, 1H), 7.12-7.08 (m, 1H), 7.02-7.00 (m, 2H), 3.84 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 159.3, 149.6, 134.1, 126.6, 122.7, 122.4, 122.2, 120.3, 120.2, 117.8, 114.7, 55.6.

4-(2H-indazol-2-yl)-N,N-dimethylaniline (2l)^[5]

Yellow solid (64 mg, 90% yield); EtOAc/PE = 1/10. ¹H NMR (400 MHz, CDCl₃) δ 8.26 (s, 1H), 7.79-7.77 (m, 1H), 7.73-7.67 (m, 3H), 7.31-7.27 (m, 1H), 7.10-7.07 (m, 1H), 6.80-6.77 (m, 2H), 2.99 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 150.1, 149.4, 130.7, 126.1, 122.7, 122.1, 121.9, 120.1, 119.9, 117.6, 112.6, 40.6.

2-(4-(trifluoromethyl)phenyl)-2H-indazole (2m)^[3]

White solid (38 mg, 49% yield); EtOAc/PE = 1/15. ¹H NMR (500 MHz, CDCl₃) δ 8.46 (s, 1H), 8.07-8.05 (m, 2H), 7.80-7.77 (m, 3H), 7.72-7.70 (m, 1H), 7.36-7.33 (m, 1H), 7.15-7.12 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 150.2, 143.0, 129.9, 129.6, 127.5, 126.8 (q, J = 3.8Hz),124.9, 123.1, 122.7, 120.8, 120.5, 120.4, 118.1. ¹⁹F NMR (470 MHz, CDCl₃) δ -62.4 (s, 1F).

7-chloro-2-phenyl-2H-indazole (2n)^[1]

White oil (64 mg, 94% yield); EtOAc/PE = 1/15. ¹H NMR (400 MHz, CDCl₃) δ 8.37 (s, 1H), 7.87-7.85 (m, 2H), 7.57-7.55 (m, 1H), 7.48-7.44 (m, 2H), 7.38-7.30 (m, 2H),

7.00-6.96 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 147.3, 140.2, 129.5, 128.3, 126.1, 124.0, 123.2, 122.7, 121.7, 121.3, 119.3.

6-iodo-2-phenyl-2H-indazole (2o)

White solid (84 mg, 88% yield); mp 97.3-97.4 °C; EtOAc/PE = 1/15. ¹H NMR (400 MHz, CDCl₃) δ 8.34 (s, 1H), 8.22 (s, 1H), 7.86-7.84 (m, 2H), 7.53-7.49 (m, 2H), 7.45-7.38 (m, 2H), 7.34-7.32 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 150.9, 140.2, 131.2, 129.6, 128.2, 127.2, 121.8, 121.5, 121.0, 120.9, 92.3. HRMS (ESI): calculated for C₁₃H₉IN₂Na [M+Na]⁺ 342.9708, found 342.9734.

5-bromo-2-phenyl-2H-indazole (2p)^[1]

White solid (75 mg, 92% yield); EtOAc/PE = 1/15. ¹H NMR (400 MHz, CDCl₃) δ 8.29 (s, 1H), 7.86-7.82 (m, 3H), 7.67-7.64 (m, 1H), 7.52-7.48 (m, 2H), 7.41-7.34 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 148.1, 140.2, 130.5, 129.6, 128.2, 123.9, 122.5, 120.9, 119.8, 119.7, 116.0.

6-fluoro-2-phenyl-2H-indazole (2q)^[1]

Yellow solid (60 mg, 95% yield); EtOAc/PE = 1/15. ¹H NMR (400 MHz, CDCl₃) δ 8.34 (s, 1H), 7.85-7.83 (m, 2H), 7.65-7.62 (m, 1H), 7.51-7.47 (m, 2H), 7.39-7.35 (m, 2H), 6.93-6.88 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 162.1 (d, J = 242.5Hz), 149.7 (d, J = 12.5Hz), 140.3, 129.6, 128.0, 122.3 (d, J = 10.0Hz), 120.9, 120.8, 120.1, 114.3 (d, J = 28.8Hz), 101.0 (d, J = 23.8Hz). ¹⁹F NMR (470 MHz, CDCl₃) δ -112.9 (s, 1F).

6-methyl-2-phenyl-2H-indazole (2r)^[6]

White solid (56 mg, 90% yield); EtOAc/PE = 1/15. ¹H NMR (400 MHz, CDCl₃) δ 8.25 (s, 1H), 7.84-7.82 (m, 2H), 7.54-7.52 (m, 2H), 7.47-7.43 (m, 2H), 7.34-7.30 (m,

1H), 6.93-6.91 (m, 1H), 2.44 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 150.5, 140.6, 136.7, 129.5, 127.6, 125.5, 121.3, 120.8, 120.2, 119.9, 116.3, 22.3.

5,7-dimethyl-2-phenyl-2H-indazole (2s)^[7]

Yellow solid (65 mg, 98% yield); EtOAc/PE = 1/15. ¹H NMR (400 MHz, CDCl₃) δ 8.18 (s, 1H), 7.86-7.84 (m, 2H), 7.48-7.44 (m, 2H), 7.35-7.31 (m, 1H), 7.22 (s, 1H), 6.90 (s, 1H), 2.64 (s, 3H), 2.36 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 149.3, 140.9, 132.1, 129.5, 128.8, 127.7, 127.5, 123.0, 121.0, 119.6, 115.8, 21.8, 17.0. 5 methany 2 phanyl 2U indexels (2t)^[1]

5-methoxy-2-phenyl-2H-indazole (2t)^[1]

White solid (64 mg, 95% yield); EtOAc/PE = 1/10. ¹H NMR (400 MHz, CDCl₃) δ 8.20 (s, 1H), 7.84-7.82 (m, 2H), 7.69-7.67 (m, 1H), 7.49-7.45 (m, 2H), 7.35-7.32 (m, 1H), 7.04-7.01 (m, 1H), 6.84-6.83 (m, 1H), 3.81 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 155.6, 146.8, 140.6, 129.5, 127.5, 122.8, 122.1, 120.5, 119.3, 119.2, 96.4, 55.3.

2-phenyl-4-(trifluoromethyl)-2H-indazole (2u)

White solid (77 mg, 98% yield); mp 84.1-84.4 °C; EtOAc/PE = 1/15. ¹H NMR (400 MHz, CDCl₃) δ 8.52 (s, 1H), 7.97-7.89 (m, 3H), 7.53-7.49 (m, 2H), 7.44-7.32 (m, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 149.7, 140.2, 129.6, 128.5, 124.2 (q, J = 270.0Hz), 125.3, 122.5 (q, J = 33.8Hz), 122.2, 121.2, 120.8 (q, J = 3.8Hz), 119.9, 118.1. ¹⁹F NMR (470 MHz, CDCl₃) δ -62.6 (s, 1F). HRMS (ESI): calculated for C₁₄H₉F₃N₂Na [M+Na]⁺ 285.0616, found 285.0622.

2-phenyl-2H-benzo[g]indazole (2v)^[8]

Yellow solid (61 mg, 83% yield); EtOAc/PE = 1/15. ¹H NMR (400 MHz, CDCl₃) δ 8.71-8.69 (m, 1H), 8.34 (s, 1H), 7.94-7.92 (m, 2H), 7.82-7.79 (m, 1H), 7.62-7.49 (m, 5H), 7.39-7.34 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 147.6, 140.7, 132.8, 129.5, 128.4, 127.3, 127.0, 126.7, 125.8, 124.6, 122.7, 121.1, 120.5, 120.1, 118.3. **2-phenyl-2H-pyrazolo[3,4-b]pyridine (2w)**^[9]

White solid (55 mg, 94% yield); EtOAc/PE = 1/2. ¹H NMR (400 MHz, CDCl₃) δ 8.74-8.73 (m, 1H), 8.44 (s, 1H), 8.09-8.06 (m, 1H), 7.98-7.96 (m, 2H), 7.54-7.50 (m, 2H), 7.43-7.39 (m, 1H), 7.08-7.05 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 158.9, 152.4, 140.2, 129.9, 129.6, 128.4, 120.9, 120.0, 118.5, 115.0.

2,3-diphenyl-2H-indazole (2x)^[10]

White solid (75 mg, 92% yield); EtOAc/PE = 1/15. ¹H NMR (500 MHz, CDCl₃) δ 7.81-7.80 (m, 1H), 7.71-7.69 (m, 1H), 7.44-7.42 (m, 2H), 7.36-7.33 (m, 9H), 7.14-7.11 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 149.1, 140.3, 135.4, 130.0, 129.7, 129.0, 128.8, 128.3, 128.2, 127.0, 126.1, 122.5, 121.8, 120.5, 117.8. **3-methyl-2-phenyl-2H-indazole (2y)**^[11]

Yellow solid (32 mg, 52% yield); EtOAc/PE = 1/15. ¹H NMR (400 MHz, CDCl₃) δ 7.73-7.71 (m, 1H), 7.63-7.61 (m, 1H), 7.58-7.51 (m, 4H), 7.49-7.45 (m, 1H), 7.33-7.30 (m, 1H), 7.09-7.06 (m, 1H), 2.64 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 148.7, 140.0, 131.9, 129.2, 128.6, 126.8, 125.8, 121.7, 120.9, 120.0, 117.6, 11.1. **7-ethyl-3-methyl-2-phenyl-2H-indazole (2z)**^[7]

White solid (63 mg, 89% yield); EtOAc/PE = 1/15. ¹H NMR (400 MHz, CDCl₃) δ 7.57-7.51 (m, 4H), 7.47-7.45 (m, 2H), 7.12-7.10 (m, 1H), 7.05-7.01 (m, 1H), 3.09 (q, 2H, J = 7.6Hz), 2.61 (s, 3H), 1.41 (t, 3H, J = 7.6Hz); ¹³C NMR (125 MHz, CDCl₃) δ 148.3, 140.2, 133.7, 132.0, 129.2, 128.5, 126.0, 123.6, 121.6, 121.3, 117.4, 24.3, 13.9, 11.1.

7-methoxy-2-phenyl-2H-indazole (2aa)^[12]

colorless oil (65 mg, 97% yield); EtOAc/PE = 1/10. ¹H NMR (400 MHz, CDCl₃) δ 8.30 (s, 1H), 7.90-7.88 (m, 2H), 7.46-7.42 (m, 2H), 7.34-7.30 (m, 1H), 7.23-7.21 (m, 1H), 7.00-6.97 (m, 1H), 6.55-6.54 (m, 1H), 4.00 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 150.4, 143.4, 140.4, 129.4, 127.8, 124.4, 123.1, 121.0, 120.3, 112.4, 103.2, 55.5.

5-methoxy-2-(4-methoxyphenyl)-2H-indazole (2bb)^[13]

H₃C₀ CH

White solid (67 mg, 88% yield); EtOAc/PE = 1/10. ¹H NMR (400 MHz, DMSO-d₆) δ 8.78 (s, 1H), 7.96-7.94 (m, 2H), 7.63-7.61 (m, 1H), 7.13-7.11 (m, 2H), 7.01-6.97 (m, 2H), 3.83 (s, 3H), 3.80 (s, 3H); ¹³C NMR (125 MHz, DMSO-d₆) δ 158.5, 154.6, 145.5, 133.6, 122.4, 121.3, 121.2, 119.9, 118.7, 114.6, 96.9, 55.5, 55.1. **3** ablence **5** methods: **2** (4 methods: ablence **1** ablence **5** methods: **3** ablence **5** methods: **4** methods: **3** ablence **5** methods: **3** ablence **5** methods: **3** ablence **5** methods: **3** ablence

3-chloro-5-methoxy-2-(4-methoxyphenyl)-2H-indazole (2cc)^[13]

White solid (59 mg, 68% total yield); EtOAc/PE = 1/10. ¹H NMR (500 MHz, CDCl₃) δ 7.60-7.56 (m, 3H), 7.05-7.02 (m, 3H), 6.75-6.74 (m, 1H), 3.87 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) & 159.9, 155.8, 145.2, 131.7, 126.9, 122.7, 119.6, 119.5, 118.1,

114.2, 94.7, 55.6, 55.5.

2-(3-methoxyphenyl)-2H-indazole (2dd)^[1]

Colorless oil (61 mg, 91% yield); EtOAc/PE = 1/10. ¹H NMR (500 MHz, CDCl₃) δ 8.32 (s, 1H), 7.79-7.77 (m, 1H), 7.66-7.64 (m, 1H), 7.50-7.49 (m, 1H), 7.39-7.28 (m, 3H), 7.09-7.06 (m, 1H), 6.90-6.88 (m, 1H), 3.84 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 160.6, 149.7, 141.7,130.3, 126.9, 122.8, 122.5, 120.6, 120.5, 117.9, 113.9, 112.9, 106.8, 55.6.

(3-bromophenyl)(2-(3-methoxyphenyl)-2H-indazol-3-yl)methanone (2ee)

White solid (84 mg, 69% total yield); EtOAc/PE = 1/10. ¹H NMR (400 MHz, CDCl₃) δ 7.90-7.88 (m, 2H), 7.74-7.72 (m, 1H), 7.67-7.65 (m, 1H), 7.48-7.46 (m, 1H), 7.41-7.38 (m, 1H), 7.30-7.21 (m, 3H), 7.11 (s, 1H), 7.02-7.00 (m, 1H), 6.92-6.90 (m, 1H), 3.80 (m, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 184.4, 160.1, 148.6, 141.3, 139.5, 136.2, 132.5, 131.8, 130.2, 129.8, 128.2, 127.3, 125.6, 124.3, 122.8, 120.4, 118.7, 118.0, 115.3, 111.2, 55.6.

(E) -2-(phenyldiazenyl)benzoic acid (3a)

White solid (7mg, 10% yield); mp 175.6-176.2 °C; EtOAc/PE = 1/2. ¹H NMR (500 MHz, DMSO-d₆) δ 10.66 (s, 1H), 7.94-7.93 (m, 2H), 7.77-7.75 (m, 1H), 7.63-7.60 (m, 1H), 7.53-7.50 (m, 2H), 7.38-7.37 (m, 1H), 7.27-7.20 (m, 2H). ¹³C NMR (125 MHz,

DMSO-d₆) δ 160.2, 146.6, 137.6, 132.5, 129.0. 124.8, 123.4, 121.8, 118.9, 118.1, 112.6. HRMS (ESI): calculated for C₁₃H₁₀N₂O₂Na [M+Na]⁺ 249.0640, found 249.0646.

2-phenyl-3-(4-(trifluoromethyl)phenyl)-2H-indazole (A)^[14]

White solid (94 mg, 93% total yield); EtOAc/PE = 1/15. ¹H NMR (400 MHz, CDCl₃) δ 7.89-7.87 (m, 1H), 7.75-7.72 (m, 1H), 7.70-7.68 (m, 2H), 7.52-7.50 (m, 2H), 7.47-7.41 (m, 6H), 7.24-7.20 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 149.1, 139.9, 133.6, 133.5, 130.1 (q, J = 32.5Hz), 129.9, 129.3, 128.7, 127.2, 126.1, 125.8 (q, J = 3.8Hz), 125.0, 123.3, 122.9, 122.0, 119.9, 118.1.

3-(4-chlorophenyl)-7-methoxy-2-phenyl-2H-indazole (B)^[15]

White solid (80 mg, 80% total yield); EtOAc/PE = 1/10. ¹H NMR (400 MHz, CDCl₃) δ 7.41-7.32 (m, 7H), 7.26-7.20 (m, 3H), 7.06-7.02 (m, 1H), 6.62-6.60 (m, 1H), 4.03 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 150.5, 142.6, 139.9, 134.3, 134.2, 130.8, 129.1, 129.0, 128.5, 128.4, 126.2, 123.6, 123.3, 111.9, 103.4, 55.5. **4-(7-methoxy-2-phenyl-2H-indazol-3-yl)benzonitrile (C)**^[15]

White solid (79 mg, 81% total yield); EtOAc/PE = 1/10. ¹H NMR (400 MHz, CDCl₃) δ 7.66-7.64 (m, 2H), 7.45-7.40 (m, 7H), 7.26-7.24 (m, 1H), 7.13-7.10 (m, 1H), 6.66-6.65 (m, 1H), 4.05 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 150.6, 142.6, 139.6, 134.5, 133.2, 132.4, 130.0, 129.2, 128.8, 126.2, 124.5, 123.4, 118.4, 111.6, 111.4, 103.6, 55.6.

3-chloro-2-(4-hydroxyphenyl)-2H-indazol-5-ol (D)^[13]

White solid (42 mg, 54% total yield); EtOAc/PE = 1/2. ¹H NMR (400 MHz, DMSO-d₆) δ 10.04 (s, 1H), 9.62 (s, 1H), 7.58-7.56 (m, 1H), 7.48-7.47 (m, 2H), 7.02-6.95 (m, 3H), 6.73 (s, 1H); ¹³C NMR (125 MHz, DMSO-d₆) δ 163.2, 158.1, 149.1, 134.9, 132.2, 127.4, 124.7, 124.5, 121.0, 120.7, 102.3.

(3-hydroxyphenyl)(2-(3-methoxyphenyl)-2H-indazol-3-yl)methanone (E)^[16]

White solid (59 mg, 57% total yield); EtOAc/PE = 1/3. ¹H NMR (500 MHz, DMSO-d₆) δ 9.90 (s, 1H), 7.91-7.90 (m, 1H), 7.46-7.31 (m, 4H), 7.28-7.17 (m, 4H), 7.11-7.03 (m, 3H), 3.79 (s, 3H); ¹³C NMR (125 MHz, DMSO-d₆) δ 185.5, 159.5,

157.5, 147.7, 141.1, 138.5, 132.2, 129.9, 127.1, 125.0, 123.3, 120.9, 120.5, 120.2, 118.2, 117.7, 115.5, 114.7, 111.1, 55.5.

Reference:

[1] N. E. Genung, L. W and G. E. Aspnes, Org. Lett., 2014, 16, 3114-3117.

[2] R. Zhang, Z. Liu, Q. Peng, Y. Zhou, L. Xu and X. Pan, *Org. Biomol. Chem.*, 2018, 16, 1816

[3] M. R. Kumar, A. Park, N. Park and S. Lee, Org. Lett., 2011, 13, 3542-3545.

[4] A. Murugan, K. R. Gorantla, B. S. Mallik and D. S. Sharada, *Org. Biomol. Chem.*, 2018, **16**, 5113.

[5] T. V. Nykaza, T. S. Harrison, A. Ghosh, R. A. Putnik and A. T. Radosevich, *J. Am. Chem. Soc.*, 2017, 139, **20**, 6839–6842.

[6] G. Bogonda, H. Y. Kim and K. Oh, Org. Lett., 2018, 20, 2711–2715.

[7] X. Yi and C. Xi, Tetrahedron., 2017, 73, 1311-1316.

[8] A. Li, P. J. Kindelin and D. A. Klumpp, Org. Lett., 2006, 8, 1233-1236.

[9] Grandberg and I. I, Zhurnal Obshchei Khimii., 1961, 31, 2307-10.

[10] X. Geng and C. Wang, Org. Lett., 2015, 17, 2434–2437.

[11] J. Son, H. Kim, Y. Baek, K. Um, G. H. Ko, G. U. Han, S. H. Han, K. Lee and P.H. Lee, *Adv. Synth. Catal.*, 2018, **360**, 4354-4361.

[12] S. Vidyacharan, B. T. Ramanjaneyulu, S. Jang and D. Kim, *ChemSusChem.*, 2019, **12**, 2581-2586.

[13] M. D. Angelis, F. Stossi, K. A. Carlson, B. S. Katzenellenbogen and J. A, Katzenellenbogen. J. Med. Chem., 2005, 48, 1132-1144.

[14] J. R. Hummel and J. A. Ellman, J. Am. Chem. Soc., 2015, 137, 490-498.

[15] S. A. Ohnmacht, A. J. Culshaw and M. F. Greaney, *Org. Lett.*, 2010, **12**, 224-226.

[16] Steffan, R. John and M. E. Martin, PCT Int. Appl., 2006050006, 11 May 2006.

5. ¹H, ¹³C and ¹⁹F NMR spectra of products

12.0 11.0 10.0 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0.0 -1.0 fl (ppm)

¹³C 500MHz, CDCl₃

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 $_{f1 \ (ppm)}$

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

8464 8.069 8.069 8.052 7.84 7.774 7.774 7.7716 7.7347 7.609 7.5329 7.347 7.347 7.329 7.3329 7.119 7.3329 7.135 7.135 7.135

2m ¹H 500 MHz, CDCl₃

8.367 7.873 7.851 7.568 7.547 7.568 7.547 7.548 7.441 7.441 7.441 7.441 7.441 7.441 7.441 7.379 7.379 7.379 7.344 7.330 7.344 7.330 7.366 861 6.982 7.300 7.566 7.568 7.569 7.568 7.569 7.

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

(63.04) (61.10) (149.70) (149.60) (149.60) (149.60) (149.63) (120.63) (120.63) (122.32) (122.

-8.249 -7.820 -7.820 -7.543 -7.543 -7.543 -7.543 -7.545 -7.448 -7.448 -7.428 -7.339 -6.928 -6.928 -6.928 -2.435

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

