## Supporting Information

# Stereoselective Chemical Synthesis of $\alpha$ (2,8) octasialosides, the minimum structure of polysialic acids

Ryousuke Koinuma, Kazuki Tohda, Taku Aoyagi, and Hiroshi Tanaka.

Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-H101 Ookayama, Meguro, Tokyo, Japan

#### **Table of Contents**

| General Techniques | S-2  |
|--------------------|------|
| Synthetic method . | S-3  |
| Calculation        | S-17 |
| NMR Spectra        | S-22 |

**NMR spectra** were recorded on a JEOL Model ECP-400 (400 MHz for <sup>1</sup>H, 100 MHz for <sup>13</sup>C) or Bruker AVANCE III HD (400 MHz for <sup>1</sup>H, 100 MHz for <sup>13</sup>C) instrument in the indicated solvent. Chemical shifts are reported in units of parts per million (ppm) relative to the signal for internal tetramethylsilane (0 ppm for <sup>1</sup>H) for solutions in CDCl<sub>3</sub>. <sup>1</sup>H NMR spectral data are reported as follows: CDCl<sub>3</sub> (7.26 ppm) or CD<sub>3</sub>CN-d<sub>3</sub> (1.94 ppm) or D<sub>2</sub>O (internal aceton : 2.22 ppm). <sup>13</sup>C NMR spectral data are reported as follows: CDCl<sub>3</sub> (77.0 ppm), or CD<sub>3</sub>CN-d<sub>3</sub> (118.3 ppm) or D<sub>2</sub>O (internal aceton : 30.9 ppm). Multiplicities are reported by using the following abbreviations: s, singlet; br-s, broaded-singlet; d, doublet; br-d, broaded-doublet; dd, doublet of doublets; br-dd, broaded-doublet of doublets; t, triplet; dq, doublet of quartets; q, quartet, m, multiplet; and, *J*, coupling constants in Hertz.

**IR spectra** were recorded on a Perkin Elmer Spectrum One FT-IR spectrophotometer or JASCO FT/IR-4200 spectrophotometer. Only the strongest and/or structurally important absorption is reported as the IR data in cm<sup>-1</sup>.

Optical rotations were measured on a JASCO model P-1020 polarimeter.

All reactions were monitored by thin-layer chromatography carried out on 0.2 mm E. Merck silica gel plates (60F-254) with UV light, visualized by *p*-anisaldehyde solution, ceric sulfate or ethanolic phosphomolybdic acid.

**Column chromatography separations** were performed using silica gel (Merck silica gel 60, 0.063 – 0.200 mm). NH column chromatography separations were performed using silica gel (Fuji Silysia CHROMATOREX NH-DM1020). Flash column chromatography separations were performed using silica gel (KANTO, silica gel 60 N, spherical, neutral, 40-100μm).

High performance liquid chromatography (HPLC) for qualitative and quantitative analysis were performed on a Gilson 506C system using a SHODEX ODS column ( $4.6 \times 250$  mm).

**ESI-TOF Mass spectra** were measured with AppliedBioSystems Mariner TK-3500 Biospectrometry Workstation mass spectrometers and Waters LCT Premier<sup>™</sup> XE. HRMS(ESI-TOF) were calibrated with angiotensin I (SIGMA), bradykinin (SIGMA), and neurotensin (SIGMA) as an internal standard.

Gel permeation chromatography (GPC) for quantitative analysis were performed on a Japan Analytical Industry Model LC 605 (recycling preparative HPLC), with a Japan Analytical Industry Model RI-5 refractive index detector and a Japan Analytical Industry Model 301 ultra violet detector with polystylene gel column (JAIGEL1H, 20 mm x 600 mm) using chloroform as a solvent (3.50 mL/min).

Microwave-assisted syntheses were performed on CEM Discover<sup>®</sup> SP with 10 mL and 35 mL sealed reaction vessels.

Dry CH<sub>2</sub>Cl<sub>2</sub>, Et<sub>2</sub>O, MeCN, PhMe and THF were purified by GlassCountour. Dry EtCN was distilled from calcium hydride. Dry DMF was distilled from CaH<sub>2</sub>. *N*-iodosuccinimide was purified by recrystallization from dioxane-CCl<sub>4</sub> at 0 °C. *N*-bromosuccinimide was purified by recrystallization from water at 0 °C.

## Methyl (phenyl 5-amino-9-*O-tert*-butyldimethylsilyl-5-*N*,4-*O*-carbonyl-3,5-dideoxy-2-thio-D-*glycero*-β-D-*galacto*-2-nonulopyranosid)onate (12)

To a solution of methyl (phenyl 5-amino-5-*N*,4-*O*-carbonyl-3,5-dideoxy-2-thio-D-*glycero*- $\beta$ -D-*galacto*-2nonulopyranosid)onate (**11**) (52.1 mg, 0.130 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (1.30 mL, 10.0 mL/mmol) was added imidazole (17.7 mg, 0.261 mmol) and TBSCl (29.6 mg, 0.196 mmol) at 0 °C to room temperature. After being stirred at the same temperature for 1 h, the reaction mixture was poured into ethyl acetate and saturated aq. NH<sub>4</sub>Cl. The aqueous layer was extracted with two portions of ethyl acetate. The combined extract was washed with saturated aq. NH<sub>4</sub>Cl and brine, dried over MgSO<sub>4</sub>, filtered and evaporated in *vacuo*. The residue was purified by column chromatography on silica gel with 97:3 chloroform-methanol to give **12** (63.9 mg, 0.124 mmol, 95%).

 $[a]_{p}^{14}$  -181 (c 1.97, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.47-7.32 (m, 5H, aromatic), 6.12 (s, 1H, NH), 4.70 (ddd, 1H, H-4,  $J_{3ax.,4}$ ,  $J_{4,5}$  = 11.2 Hz,  $J_{3eq.,4}$  = 3.6 Hz), 4.44 (dd, 1H, H-6,  $J_{5,6}$  = 10.0 Hz,  $J_{6,7}$  = 6.4 Hz), 3.86 (dd, 1H, H-8,  $J_{7,8}$  = 4.0 Hz, J = 10.0 Hz), 3.77 (dd, H-7,  $J_{6,7}$  = 10.0 Hz,  $J_{7,8}$  = 5.6 Hz), 3.67-3.64 (m, 4H, H-9a, OMe), 3.56-3.55 (m, 1H, H-9b), 3.09 (d, 1H, OH, J = 4.8 Hz), 2.96 (d, 1H, OH, J = 4.0 Hz), 2.92 (dd, 1H, H-3eq,  $J_{3eq.,4}$  = 4.0 Hz  $J_{gem}$  = 12.8 Hz), 2.36 (t, 1H, H-3ax,  $J_{3ax.,4}$ ,  $J_{3eq.,3ax}$  = 12.8 Hz), 0.92 (s, 9H, Si-'Bu), 0.13 (s, 3H, Si-Me-a), 0.11 (s, 3H, Si-Me-b); <sup>13</sup>C NMR (100MHz, CDCl<sub>3</sub>)  $\delta$  178.2, 168.8, 168.3, 159.9, 159.8, 136.7, 136.4, 130.6, 130.1, 129.1, 129.09, 129.05, 129.0, 128.4, 128.3, 88.8, 87.6, 79.9, 78.2, 77.5, 77.4, 77.2, 76.8, 73.0, 72.7, 70.5, 70.0, 65.0, 64.0, 58.9, 57.7, 53.3, 52.9 37.0, 29.7, 25.9, 18.4, 18.3, -5.31, -5.36; IR (KBr) 3437, 3387, 2949, 2933, 2886, 2859, 1765, 1256, 1066, 1016, 834 (cm<sup>-1</sup>); HRMS (ESI-TOF) Calcd for C<sub>23</sub>H<sub>35</sub>NO<sub>8</sub>SSi [M+H]<sup>+</sup> 514.1932, found 514.1931.

# Methyl (phenyl 5-amino-8,9-di-*O-tert*-butyldimethylsilyl-5-*N*,4-*O*-carbonyl-3,5-dideoxy-2-thio-D-*glycero*-β-D-*galacto*-2-nonulopyranosid)onate (13)

To a solution of **12** (112 mg, 0.217 mmol) in Pyridine (1.80 mL, 8.50 mL/mmol) was added TBSOTf (80.0  $\mu$ L, 0.347 mmol) at 0 °C. After being stirred and warmed up to room temperature for 22 h, the reaction mixture was poured into ethyl acetate and saturated aq. NH<sub>4</sub>Cl. The aqueous layer was extracted with two portions of ethyl acetate. The combined extract was washed with saturated aq. NH<sub>4</sub>Cl and brine, dried over MgSO<sub>4</sub>, filtered, and evaporated in *vacuo*. The residue was purified by column chromatography on silica gel with 90:10 chloroform-methanol to give **13** (128 mg, 0.204 mmol, 94%).

[α] $_{D}$ <sup>16</sup> -88.8 (c 1.27, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.48-7.30 (m, 5H, aromatic), 5.08 (s, 1H, NH), 4.67 (dt, 1H, H-4,  $J_{3ax,.4}$ ,  $J_{4,5} = 3.9$  Hz,  $J_{3eq,.4} = 12.7$  Hz), 4.56 (dd, 1H, H-6,  $J_{5,6} = 9.8$  Hz,  $J_{6,7} = 3.9$  Hz), 3.87 (dd, 1H, H-7,  $J_{6,7} = 3.9$  Hz,  $J_{7,8} = 10.2$  Hz), 3.79-3.74 (m, 3H, H-8, H-9a, H-9b), 3.59 (s, 3H, OMe), 3.52 (t, 1H, H-5,  $J_{4,5}$ ,  $J_{5,6} = 10.8$  Hz), 2.85 (dd, 1H, H-3eq.,  $J_{3eq..4} = 3.9$  Hz  $J_{gem} = 13.2$  Hz), 2.33 (t, 1H, H-3ax.,  $J_{3ax,.4}$ ,  $J_{3eq..3ax} = 12.7$  Hz), 0.98 (s, 9H, Si-*t*Bu-a), 0.92 (s, 9H, Si-*t*Bu-b), 0.16 (s, 3H, Si-Me-a), 0.14 (s, 3H, Si-Me-b), 0.096 (s, 3H, Si-Me-c), 0.085 (s, 3H, Si-Me-d); <sup>13</sup>C NMR (100MHz, CDCl<sub>3</sub>) δ 168.3, 159.2, 136.6, 136.0, 130.0, 129.6, 129.2, 129.0, 89.0, 77.6, 77.5, 77.4, 77.2, 76.8, 74.7, 74.0, 73.5, 66.0,

59.2, 52.9, 36.9, 30.8, 26.5, 26.1, 26.0, 19.0, 18.6, 18.3, -3.90, -4.23, -4.27, -5.28, -5.35; **IR** (KBr) 3321, 2953, 2931, 2889, 2857, 1767, 1255, 834, 777 (cm<sup>-1</sup>); **HRMS** (ESI-TOF) Calcd for C<sub>29</sub>H<sub>49</sub>NO<sub>8</sub>SSi<sub>2</sub> [M+H]<sup>+</sup> 628.2795, found 628.2796.

### Methyl (phenyl 5-amino-8-*O-tert*-butyldimethylsilyl-5-*N*,4-*O*-carbonyl-3,5-dideoxy-2thio-D-*glycero*-β-D-*galacto*-2-nonulopyranosid)onate (14)

To a solution of **13** (93.6 mg, 0.149 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (3.00 mL, 20.0 mL/mmol) was added BF<sub>3</sub>  $\cdot$  OEt<sub>2</sub> (20.5 µL, 0.164 mmol) at -78 °C. After being stirred and warmed up to -35 °C for 4 h, the reaction mixture was poured into ethyl acetate and saturated aq. NaHCO<sub>3</sub>. The aqueous layer was extracted with two portions of ethyl acetate. The combined extract was washed with saturated aq. NaHCO<sub>3</sub> and brine, dried over MgSO<sub>4</sub>, filtered and evaporated in *vacuo*. The residue was purified by column chromatography on silica gel with 99:1 chloroform-methanol to give **14** (65.0 mg, 0.126 mmol, 85%).

[*α*] $_{D}^{29}$  -27.0 (c 0.192, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.44-7.33 (m, 5H, aromatic), 5.79 (s, 1H, NH), 4.71 (dt, 1H, H-4,  $J_{3ax,4}, J_{4,5} = 2.9$  Hz,  $J_{3eq,4} = 11.2$  Hz), 4.44 (dd, 1H, H-6,  $J_{5-6} = 9.8$  Hz,  $J_{6,7} = 2.4$  Hz), 3.82-3.80 (m, 2H, H-7, H-9a), 3.68-3.62 (m, 6H, H-5, H-8, H-9b, OMe), 3.52 (brs, 1H, OH) 2.87 (dd, 1H, H-3eq.,  $J_{3eq.4} = 3.9$  Hz  $J_{gem} = 13.7$  Hz), 2.77 (brs, 1H, OH) 2.33 (t, 1H, H-3ax.,  $J_{3ax,4}, J_{3eq.,3ax} = 13.2$  Hz), 0.92 (s, 9H, Si-'Bu), 0.14 (s, 3H, Si-Me-a), 0.13 (s, 3H, Si-Me-b); <sup>13</sup>C NMR (100MHz, CDCl<sub>3</sub>) δ 168.8, 160.1, 134.0, 130.1, 129.5, 129.3, 88.8, 75.2, 73.0, 72.7, 64.5, 58.6, 53.1, 36.7, 26.1, 18.3, -4.02, -4.22; IR (KBr) 3349, 3330, 2952, 2930, 2856, 1760, 1258, 1015 (cm<sup>-1</sup>); HRMS (ESI-TOF) Calcd for C<sub>23</sub>H<sub>36</sub>NO<sub>8</sub>SSi [M+H]<sup>+</sup> 514.1931, found 514.1931.

# Methyl (phenyl 5-amino-8-*O-tert*-butyldimethylsilyl-5-*N*,4-*O*-carbonyl-7-*O*,9-*O*-carbonyl-3,5-dideoxy-2-thio-D-*glycero*-β-D-*galacto*-2-nonulopyranosid)onate (15)

To a solution of **14** (94.1 mg, 0.183 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (7.34 mL, 40.0 mL/mmol) were added DMAP (47.0 mg, 0.385 mmol) and N,N'-Disuccinimidyl carbonate (49.3 mg, 0.193 mmol) at 0 °C. After being stirred at room temperature for 4 h, the reaction mixture was poured into ethyl acetate and saturated aq. H<sub>2</sub>O. The aqueous layer was extracted with two portions of ethyl acetate. The combined extract was washed with saturated aq. NH<sub>4</sub>Cl and brine, dried over MgSO<sub>4</sub>, filtered and evaporated in *vacuo*. The residue was purified by column chromatography on silica gel with 99:1 chloroform-methanol to give **15** (98.1 mg, 0.182 mmol, quant.).

[*α*] $_{0}$ <sup>17</sup> -227 (c 2.15, CHCl<sub>3</sub>); <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 7.43-7.26 (m, 5H, aromatic), 5.55 (s, 1H, NH), 4.81 (dt, 1H, H-4,  $J_{3ax,,4}$ ,  $J_{4,5}$  = 11.7 Hz,  $J_{3eq,,4}$  = 2.9 Hz), 4.39-4.36 (m, 2H, H-9a, H-7), 4.29 (dd, 1H, H-6,  $J_{5-6}$  = 9.8 Hz,  $J_{6,7}$  = 2.0 Hz), 3.82 (dt, 1H, H-9b,  $J_{9a,9b}$ ,  $J_{7,9b}$  = 2.9 Hz,  $J_{8,9b}$  = 12.2 Hz), 3.77 (s, 3H, OMe), 3.68 (dt, 1H, H-5,  $J_{6,5}$  = 11.2,  $J_{5,4}$  = 11.2 Hz), 3.57 (dt, 1H, H-8,  $J_{8,9a}$ ,  $J_{8,9b}$ ,  $J_{7-8}$  = 2.0,) 2.82 (dd, 1H, H-3eq.,  $J_{3eq,,4}$  = 3.9 Hz  $J_{gem}$  = 13.2 Hz), 2.36 (t, 1H, H-3ax.,  $J_{3ax,,4}$ ,  $J_{3eq,,3ax}$  = 13.2 Hz), 0.88 (s, 9H, Si-*t*Bu), 0.100 (s, 3H, Si-Me-a), 0.09 (s, 3H, Si-Me-b); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 168.2, 159.3, 147.6, 136.0, 130.4, 129.4, 129.0, 87.8, 82.5, 74.2, 71.4, 63.2, 57.4, 53.3, 36.4, 25.7, 18.0, -4.41, -4.54; **IR** (KBr) 2953, 2931, 2898, 2857, 1776, 1757, 1257, 1110 (cm<sup>-1</sup>); **HRMS** (ESI-TOF) Calcd for C<sub>24</sub>H<sub>33</sub>NO<sub>9</sub>SSi [M+H]<sup>+</sup> 540.1724,

### Methyl (phenyl 5-acetoamido-8-*O-tert*-butyldimethylsilyl-5-*N*,4-*O*-carbonyl-7-*O*,9-*O*-carbonyl-3,5dideoxy-2-thio-D-*glycero*-β-D-*galacto*-2-nonulopyranosid)onate (7)

To a solution of **15** (21.3 mg, 0.0395 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (1.19 mL, 30.0 mL/mmol) was added DIPEA (21.0  $\mu$ L, 0.119 mmol) at 0 °C. After being stirred and warmed up to room temperature for 0.5 h, the reaction mixture was poured into ethyl acetate and saturated aq. NaHCO<sub>3</sub>. The aqueous layer was extracted with two portions of ethyl acetate. The combined extract was washed with saturated aq. NaHCO<sub>3</sub> and brine, dried over MgSO<sub>4</sub>, filtered and evaporated in *vacuo*. The residue was purified by column chromatography on silica gel with 99:1 chloroform-methanol to give 7 (21.6 mg, 0.0371 mmol, 94%).

 $[α]_{0}^{29}$  -8.93 (c 0.106, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.42-7.23 (m, 5H, aromatic), 5.47 (d, 1H, H-7,  $J_{7,9'} = 0.96$  Hz), 4.81 (dt, 1H, H-4,  $J_{3ax,4}$ ,  $J_{4,5} = 12.7$  Hz,  $J_{3eq,4} = 3.4$  Hz), 4.59 (d, 1H, H-6,  $J_{5,6} = 9.8$  Hz), 4.33 (dd, 1H, H-9a,  $J_{8,9a} = 2.9$  Hz,  $J_{9a,9b} = 11.2$  Hz), 4.02 (dd, 1H, H-5,  $J_{4,5} = 10.8$  Hz,  $J_{5,6} = 10.8$  Hz), 3.84 (ddd, 1H, H-9b,  $J_{7,9b} = 0.96$  Hz,  $J_{8,9b} = 3.4$  Hz,  $J_{9a,9b} = 11.2$  Hz), 3.77-3.72 (m, 4H, H-8, OMe), 2.78 (dd, 1H. H-3eq.,  $J_{3eq,4} = 3.9$ ,  $J_{gem} = 13.2$  Hz), 2.54 (s, 3H, NAc), 2.29 (dd, 1H, H-3ax.,  $J_{3ax,4} = 13.2$  Hz,  $J_{gem} = 13.2$  Hz), 0.91 (s, 9H, Si-′Bu), 0.14 (s, 3H, Si-Me-b); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 171.6, 167.9, 153.4, 148.3, 136.2, 130.6, 129.5, 128.7, 87.3, 83.3, 75.3, 74.6, 71.3, 63.6, 59.3, 53.3, 35.0, 25.7, 25.0, 18.1, -4.45; IR (KBr) 2930, 2857, 1796, 1746, 1260, 1173, 1104(cm<sup>-1</sup>); HRMS (ESI-TOF) Calcd for C<sub>26</sub>H<sub>36</sub>NO<sub>10</sub>SSi [M+H]<sup>+</sup> 582.1819, found 582.1829.

# Methyl (octyl 5-acetoamido-8-*O-tert*-butyldimethylsilyl-5-*N*,4-*O*-carbonyl-7-*O*,9-*O*-carbonyl-3,5-d ideoxy-D-*glycero*-α-D-*galacto*-2-nonulopyranosid)onate (16)

A mixture of 8 (1.05 g, 1.80 mmol), octhanol (0.568 mL, 3.60 mmol) and pulverized activated MS-3A (3.60 g, 2.00 g/mmol) in dry CH<sub>2</sub>Cl<sub>2</sub> (36.0 mL, 20.0 mL/mmol) was stirred at room temperature for 1 h under argon to remove a trace amount of water. Then the reaction mixture was cooled to -78 °C. *N*-iodosuccinimide (810 mg, 3.60 mmol) and trifluoromethanesulfonic acid (0.160 mL, 1.80 mmol) were added to reaction mixture at -78 °C. After being stirred and warmed up to -45 °C for 5 h, the reaction mixture was neutralized with triethylamine and filtered through a pad of Celite. The filtrate mixture was poured into a mixture of saturated aq. NaHCO<sub>3</sub> and saturated aq. Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> with cooling. The aqueous layer was extracted with two portions of ethyl acetate. The combined extract was washed with saturated aq. NaHCO<sub>3</sub> and saturated aq. Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> and brine, dried over MgSO<sub>4</sub>, filtered and evaporated *in vacuo*. The residue was purified by column chromatography on silica gel with 97:3 toluene-acetone to give **16** (1.03 g, 1.71 mmol, 95%,  $\alpha$  only ).

 $[a]_{D}^{26}$  +1.30 (c 0.191, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  5.30 (d, 1H, H-7, J = 5.6 Hz), 4.40-4.32 (m, 3H, H-6, H-8, H-9a), 4.12-4.00 (m, 3H, H-4, H-5, H-9b), 3.83 (s, 3H, OMe), 3.64 (dt, 1H, OCH-a, J = 6.4 Hz,  $J_{gem}$  = 8.8 Hz), 3.32 (dt, 1H, OCH-b, J = 6.7 Hz,  $J_{gem}$  = 8.8 Hz), 2.87 (dd, 1H, 3-H<sub>eq</sub>,  $J_{3eq,.4}$  = 3.4 Hz,  $J_{gem}$  = 12.2 Hz), 2.20 (t, 1H, 3-H<sub>ax</sub>,  $J_{3ax,.4}$ ,  $J_{3eq,.3ax}$  = 12.8 Hz), 1.55 (m, 2H, octhanol-OCCH<sub>2</sub>), 1.30 (m, 10H, octhanol-OCCCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>), 0.90-0.86 (m, 12H, Si-<sup>*i*</sup>Bu, octhanol-OCCCCCCCCH<sub>3</sub>), 0.15 (s, 3H, Si-Me-a), 0.13

(s, 3H, Si-Me-b); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 172.1, 168.9, 153.8, 149.3, 99.7, 83.3, 75.8, 75.0, 69.9, 65.5, 62.9, 59.0, 53.2, 35.8, 32.0, 29.6, 29.4, 29.3, 26.0, 25.8, 25.0, 22.8, 18.0, 14.2, -4.50, -4.69; **IR** (KBr) 2930, 2857, 1798, 1748, 1304, 1173, 1104 (cm<sup>-1</sup>); **HRMS** (ESI-TOF) Calcd for C<sub>28</sub>H<sub>48</sub>NO<sub>11</sub>Si [M+H]<sup>+</sup> 602.3007, found 602.2997.

### Methyl (octyl 5-acetoamido-5-*N*,4-*O*-carbonyl-7-*O*,9-*O*-carbonyl-3,5-dideoxy-D-*glycero*-α-D-*galacto*-2nonulopyranosid)onate (8)

To a solution of **16** (551 mg, 0.920 mmol, 1.00 eq.) in tetrahydrofuran (46.0 mL, 50.0 mL/mmol) was added HF  $\cdot$  Py (9.20 mL, 8.00 mL/mmol) at 0 °C. After being stirred and warmed up to room temperature for 4.5 h, the reaction mixture was poured into ethyl acetate and saturated aq. NaHCO<sub>3</sub>. The aqueous layer was extracted with two portions of ethyl acetate. The combined extract was washed with saturated aq. NaHCO<sub>3</sub> and brine, dried over MgSO<sub>4</sub>, filtered and evaporated in *vacuo*. The residue was purified by column chromatography on silica gel with 97:3 chloroformate-methanol to give **8** (427 mg, 0.877 mmol, 96%).

[*a*] $p^{28}$  -2.89 (c 0.210, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 5.10 (dd, 1H, H-7, *J*<sub>6,7</sub> = 1.6 Hz, *J*<sub>7,8</sub> = 7.5 Hz), 4.52-4.48 (m, 2H, H-8, H-9a), 4.28 (dd, 1H, H-6, *J*<sub>6,7</sub> = 1.6 Hz, *J*<sub>5,6</sub> = 9.2 Hz), 4.21 (t, 1H, H-9b, *J* = 8.4 Hz × 2), 4.05 (t, 1H, H-5, *J*<sub>4,5</sub>, *J*<sub>5,6</sub> = 9.2 Hz), 3.92 (dt, 1H, H-4, *J*<sub>3eq.,4</sub> = 3.6 Hz, *J*<sub>3ax.,4</sub>, *J*<sub>4,5</sub> = 13.2 Hz), 3.87 (s, 3H, OMe), 3.69 (dt, 1H, OCH-a, *J* = 6.4 Hz, *J*<sub>gem</sub> = 8.8 Hz), 3.35 (d, 1H, OH, *J* = 4.5 Hz), 3.29 (dt, 1H, OCH-b, *J* = 6.7 Hz, *J*<sub>gem</sub> = 8.8 Hz), 2.97 (dd, 1H, H-3eq., *J*<sub>3eq.,4</sub> = 3.6 Hz, *J*<sub>gem</sub> = 12.2 Hz), 2.51 (s, 3H, Ac), 2.19 (dd, 1H, H-3ax., *J*<sub>gem</sub> = 12.4 Hz, *J*<sub>3ax.,4</sub> = 13.2 Hz), 1.54 (m, 2H, octhanol-OCCH<sub>2</sub>), 1.30 (m, 10H, octhanol-OCCCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>), 0.88 (m, 3H, octhanol-OCCCCCCCCH<sub>3</sub>); <sup>13</sup>C NMR (100MHz, CDCl<sub>3</sub>) δ 172.3, 169.2, 153.7, 148.9, 99.6, 81.2, 75.6, 74.3, 70.2, 65.5, 61.2, 58.5, 53.6, 35.9, 31.9, 29.5, 29.4, 29.3, 26.0, 24.9, 22.7, 14.2; IR (KBr) 3423, 2927, 2856, 1798, 1745, 1293, 1223, 1174, 1145, 1095, 1047 (cm<sup>-1</sup>); HRMS (ESI-TOF) Calcd for C<sub>22</sub>H<sub>34</sub>NO<sub>11</sub> [M+H]<sup>+</sup> 488.2132, found 488.2132.

# Methyl(octyl5-acetoamido-5-N,4-O-carbonyl-7-O,9-O-carbonyl-3,5-dideoxy-8-O-(methyl5-acetoamido-8-O-tert-butyldimethylsilyl-5-N,4-O-carbonyl-7-O,9-O-carbonyl-3,5-dideoxy-D-glycero-α-D-galacto-2-nonulopyranosylonate)-D-glycero-α-D-v-2-nonulopyranosid)onate (18)5-

A mixture of **8** (672 mg, 1.38 mmol), **7** (1.20 g, 2.07 mmol) and pulverized activated MS-3A (2.72 g, 2.00 g/mmol) in dry CH<sub>2</sub>Cl<sub>2</sub> (27.6 mL, 20.0 mL/mmol) was stirred at room temperature for 1 h under argon to remove a trace amount of water. Then the reaction mixture was cooled to -78 °C. *N*-iodosuccinimide (932 mg, 4.14 mmol) and trifluoromethanesulfonic acid (123  $\mu$ L, 1.38 mmol) were added to reaction mixture at -78 °C. After being stirred and warmed up to -65 °C for 13 h, the reaction mixture was neutralized with triethylamine and filtered through a pad of Celite. The filtrate mixture was poured into a mixture of saturated aq. NaHCO<sub>3</sub> and saturated aq. Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> with cooling. The aqueous layer was extracted with two portions of ethyl acetate. The combined extract was washed with saturated aq. NaHCO<sub>3</sub> and saturated aq. Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> and brine, dried over MgSO<sub>4</sub>, filtered and evaporated *in vacuo*. The residue was purified by column chromatography on silica gel with 90:10 toluene-acetone to **18** (1.12 g, 1.17 mmol, 86%,  $\alpha$  only).

 $[a]_{p}^{27}$  -4.05 (c 0.194, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  5.49 (d, 1H, J = 1.2 Hz), 5.20 (d, 1H, J = 6.0 Hz), 4.67-4.64 (m, 2H), 4.40-4.33 (m, 2H), 4.28-4.24 (m, 3H), 5.15-3.97 (m, 5H), 3.87 (s, 3H), 3.85 (s, 3H), 3.61 (dt, 1H, J = 6.4 Hz, J = 8.8 Hz), 3.31 (dt, 1H, J = 6.6 Hz, J = 8.7 Hz), 2.97 (dd, 1H, J = 3.4 Hz, J = 11.8 Hz), 2.92 (dd, 1H, J = 3.6 Hz, J = 12.1 Hz), 2.54 (s, 3H), 2.50 (s, 3H), 2.31 (t, 1H, J = 12.2 Hz×2), 2.14 (t, 1H, J = 12.3 Hz × 2), 1.59-1.54 (m, 2H), 1.24-1.21 (m, 10H), 0.92-0.86 (m, 12H), 0.14 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$ 172.4, 171.9, 168.2, 167.6, 153.60, 153.58, 149.2, 148.6, 99.8, 99.4, 82.6, 81.9, 76.24, 76.15, 74.8, 74.7, 70.4, 69.9, 66.3, 65.5, 62.5, 59.0, 58.6, 53.8, 53.4, 35.7, 34.7, 31.9, 29.5, 29.3, 29.2, 25.9, 25.7, 25.0, 24.9, 22.7, 17.9, 14.2, -4.43, -4.74; **IR** (KBr) 2954, 2931, 2857, 1799, 1748, 1290, 1174(cm<sup>-1</sup>); **HRMS** (ESI-TOF) Calcd for C<sub>42</sub>H<sub>62</sub>N<sub>2</sub>O<sub>21</sub>SiNa [M+Na]<sup>+</sup> 981.3532, found 981.3512.

## Methyl (octyl 5-amino-9-*O*-benzyl-5-*N*,4-*O*-carbonyl-3,5-dideoxy-8-*O*-(methyl 5-acetoamido-8-*O-tert*butyldimethylsilyl-5-*N*,4-*O*-carbonyl-7-*O*,9-*O*-carbonyl-3,5-dideoxy-D-*glycero*-α-D-*galacto*-2nonulopyranosylonate)-D-*glycero*-α-D-*galacto*-2-nonulopyranosid)onate (19)

A mixture of 7 (28.2 mg, 0.0554 mmol), 17 (48.0 mg, 0.0831 mmol) and pulverized activated MS-3A (111 mg, 2.00 g/mmol) in dry CH<sub>2</sub>Cl<sub>2</sub> (1.11 mL, 20.0 mL/mmol) was stirred at room temperature for 1 h under argon to remove a trace amount of water. Then the reaction mixture was cooled to -78 °C. *N*-iodosuccinimide (37.4 mg, 0.166 mmol) and trifluoromethanesulfonic acid (4.90  $\mu$ L, 0.0554 mmol) were added to reaction mixture at -78 °C. After being stirred and warmed up to -55 °C for 4 h, the reaction mixture was neutralized with triethylamine and filtered through a pad of Celite. The filtrate mixture was poured into a mixture of saturated aq. NaHCO<sub>3</sub> and saturated aq. Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> with cooling. The aqueous layer was extracted with two portions of ethyl acetate. The combined extract was washed with saturated aq. NaHCO<sub>3</sub> and saturated aq. Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> and brine, dried over MgSO<sub>4</sub>, filtered and evaporated *in vacuo*. The residue was purified by column chromatography on silica gel with 90:10 toluene-acetone to give **19** (28.3 mg, 0.0288 mmol, 52%,  $\alpha$  only).

[*α*] $_{D}^{17}$  -15.1 (c 1.43, CHCl<sub>3</sub>);<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 7.52-7.27 (m, 5H), 5.42 (s, 1H), 5.26 (d, 1H, *J* = 5.6 Hz), 4.38-4.35 (m, 1H), 4.31-4.23 (m, 3H), 4.10-4.01 (m, 5H), 3.91-3.78 (m, 12H), 3.62 (dt, 1H, *J* = 6.4 Hz, *J* = 8.8 Hz), 3.52 (t, 1H, *J* = 10.8 Hz), 3.20 (dt, 1H, *J* = 6.8 Hz, *J* = 9.2 Hz), 2.94-2.87 (m, 3H), 2.53 (s, 3H), 2.33 (dd, 1H, *J* = 12.4, *J* = 12.4 Hz), 2.04 (dd, 1H, *J* = 12.0 Hz), 1.52-1.48 (m, 2H), 1.31-1.25 (m, 10H), 0.89-0.86 (m, 12H), 0.14 (s, 3H), 0.13 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 172.4, 168.8 (<sup>3</sup>*J*<sub>C1,H-3ax</sub> = 5.0 Hz), 168.0 (<sup>3</sup>*J*<sub>C1,H-3ax</sub> = 5.0 Hz), 159.7, 153.7, 149.4, 137.7, 128.6, 128.0, 100.5, 100.3, 80.0, 77.4, 77.3, 76.3, 76.0, 75.9, 74.9, 73.7, 71.9, 70.6, 69.6, 65.4, 62.4, 58.6, 58.2, 53.7, 53.0, 37.5, 35.4, 31.9, 29.7, 29.5, 29.3, 26.1, 25.7, 25.1, 22.8, 17.9, 14.2, -4.37, -4.73; HRMS (ESI-TOF) Calcd for C<sub>46</sub>H<sub>68</sub>N<sub>2</sub>O<sub>19</sub>Si [M+H]<sup>+</sup> 981.4246, found 981.4246.

## Methyl (octyl 5-acetoamido-5-*N*,4-*O*-carbonyl-7-*O*,9-*O*-carbonyl-3,5-dideoxy-8-*O*-(methyl 5acetoamido-5-*N*,4-*O*-carbonyl-7-*O*,9-*O*-carbonyl-3,5-dideoxy-D-*glycero*-α-D-*galacto*-2nonulopyranosylonate)-D-*glycero*-α-D-*galacto*-2-nonulopyranosid)onate (20)

To a solution of 18 (1.10 g, 1.15 mmol) in tetrahydrofuran (57.5 mL, 50.0 mL/mmol) was added HF · Py (9.20

mL, 8.00 mL/mmol) at 0 °C. After being stirred and warmed up to room temperature for 2.5 h, the reaction mixture was poured into ethyl acetate and saturated aq. NaHCO<sub>3</sub>. The aqueous layer was extracted with two portions of ethyl acetate. The combined extract was washed with saturated aq. NaHCO<sub>3</sub> and brine, dried over MgSO<sub>4</sub>, filtered and evaporated in *vacuo*. The residue was purified by column chromatography on silica gel with 99:1 chloroformate-methanol to give **20** (958 mg, 1.13 mmol, 99%).

[*α*]<sub>D</sub><sup>25</sup> -19.7 (c 0.285, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 5.61 (s, 1H), 4.93-4.91 (m, 1H), 4.79 (dd, 1H, J = 1.6 Hz, J = 9.2 Hz), 4.45-4.21 (m, 9H), 4.12 (t, 1H, J = 10.0 Hz), 4.00-3.79 (m, 9H), 3.60 (dt, 1H, J = 6.4 Hz, J = 8.7 Hz), 3.36 (dt, 1H, J = 6.6 Hz, J = 8.7 Hz), 3.23 (d, 1H, J = 5.4 Hz), 2.98 (dd, 1H, J = 3.7 Hz, J = 11.9 Hz), 2.90 (dd, 1H, J = 3.9 Hz, J = 12.0 Hz), 2.53-2.51 (m, 7H), 2.07 (dd, 1H, J = 13.2 Hz), 1.55-1.53 (m, 2H), 1.40-1.22 (m, 10H), 0.90-0.86 (m, 3H); <sup>13</sup>C NMR (100MHz, CDCl<sub>3</sub>) δ 168.0, 167.7, 153.7, 153.5, 149.5, 148.3, 100.2, 99.8, 83.5, 80.1, 75.7, 75.6, 74.9, 74.3, 70.3, 69.4, 66.9, 65.4, 59.9, 59.1, 57.7, 54.3, 53.7, 35.6, 33.2, 31.9, 29.6, 29.4, 29.3, 26.0, 24.9, 22.8, 14.2; **IR** (KBr) 3457, 2954, 2928, 2856, 1797, 1744, 1292, 1227, 1174, 1144, 1096, 1045 (cm<sup>-1</sup>); **HRMS** (ESI-TOF) Calcd for C<sub>36</sub>H<sub>48</sub>N<sub>2</sub>O<sub>21</sub>Na [M+Na]<sup>+</sup> 867.2689, found 867.2647.

Methyl (octyl 5-acetoamido-5-*N*,4-*O*-carbonyl-7-*O*,9-*O*-carbonyl-3,5-dideoxy-8-*O*-(methyl 5acetoamido-5-*N*,4-*O*-carbonyl-7-*O*,9-*O*-carbonyl-3,5-dideoxy-8-*O*-(methyl 5-acetoamido-8-*O-tert*butyldimethylsilyl-5-*N*,4-*O*-carbonyl-7-*O*,9-*O*-carbonyl-3,5-dideoxy-D-*glycero*-α-D-*galacto*-2nonulopyranosylonate)-D-*glycero*-α-D-*galacto*-2-nonulopyranosylonate)-D-*glycero*-α-D-*galacto*-2nonulopyranosid)onate (21)

A mixture of 7 (1.52 g, 2.70 mmol), **20** (913 mg, 1.08 mmol) and pulverized activated MS-3A (2.16 g, 2.00 g/mmol) in dry CH<sub>2</sub>Cl<sub>2</sub> (21.6 mL, 20.0 mL/mmol) was stirred at room temperature for 1 h under argon to remove a trace amount of water. Then the reaction mixture was cooled to -78 °C. *N*-iodosuccinimide (1.20 g, 5.40 mmol) and trifluoromethanesulfonic acid (96.0  $\mu$ L, 1.08mmol) were added to reaction mixture at -78 °C. After being stirred at the same temperature for 5 h, the reaction mixture was neutralized with triethylamine and filtered through a pad of Celite. The filtrate mixture was poured into a mixture of saturated aq. NaHCO<sub>3</sub> and saturated aq. Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> with cooling. The aqueous layer was extracted with two portions of ethyl acetate. The combined extract was washed with saturated aq. NaHCO<sub>3</sub> and saturated aq. Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> and brine, dried over MgSO<sub>4</sub>, filtered and evaporated *in vacuo*. The residue was purified by column chromatography on silica gel with 95:5 toluene-acetone to give **21** (1.20 g, 0.912 mmol, 84%,  $\alpha$  only).

[*α*] $_{D}^{23}$  -11.9 (c 0.324, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 5.46 (d, 1H, *J* = 1.3 Hz), 5.40 (d, 1H, *J* = 2.2 Hz), 5.14 (d, 1H, *J* = 5.3 Hz), 4.73 (d, 1H, *J* = 1.6 Hz), 4.62-4.59 (m, 3H), 4.33-4.25 (m, 7H), 4.13-3.39 (m, 7H), 3.89 (s, 3H), 3.88 (s, 3H), 3.86 (s, 3H), 3.61 (dt, 1H, *J* = 6.5 Hz, *J* = 8.7 Hz), 3.31 (dt, 1H, *J* = 6.6 Hz, *J* = 8.6 Hz), 3.02 (dd, 1H, *J* = 3.6 Hz, *J* = 11.9 Hz), 2.94 (dd, 2H, *J* = 4.0 Hz, *J* = 12.4 Hz), 2.54 (s, 3H), 2.53 (s, 3H), 2.50 (s, 3H), 2.44 (t, 1H, *J* = 12.1 Hz × 2), 2.31 (t, 1H, *J* = 12.7 Hz×2), 2.14 (t, 1H, *J* = 12.2 Hz×2), 1.53-1.50 (m, 2H), 1.30-1.27 (m, 10H), 0.90-0.86 (m, 12H), 0.14 (s, 3H), 0.13 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 172.5, 172.4, 172.1, 168.2, 167.5, 167.2, 153.7, 153.6, 153.5, 149.0, 148.5, 100.1, 99.9, 99.4, 82.3, 82.0, 81.3, 77.5, 77.2, 76.8, 76.1, 75.9, 74.8, 76.2, 76.1, 76.0, 74.8, 74.4, 70.3, 70.2, 69.6, 66.1, 65.8, 65.5, 62.2, 59.0, 58.7, 58.5, 54.2, 54.0, 53.7,

35.6, 34.3, 33.9, 31.9, 29.6, 29.4, 29.2, 25.9, 25.7, 25.0, 22.7, 17.9, 14.2, -4.38, -4.72; **IR** (KBr) 2955, 2931, 2857, 1799, 1752, 1291, 1174, 1131, 1101, 1042 (cm<sup>-1</sup>); **HRMS** (ESI-TOF) Calcd for C<sub>56</sub>H<sub>81</sub>N<sub>4</sub>O<sub>31</sub>Si [M+NH<sub>4</sub>]<sup>+</sup> 1333.4702, found 1333.4654.

Methyl (octyl 5-acetoamido-5-*N*,4-*O*-carbonyl-7-*O*,9-*O*-carbonyl-3,5-dideoxy-8-*O*-(methyl 5acetoamido-5-*N*,4-*O*-carbonyl-7-*O*,9-*O*-carbonyl-3,5-dideoxy-8-*O*-(methyl 5-acetoamido-5-*N*,4-*O*carbonyl-7-*O*,9-*O*-carbonyl-3,5-dideoxy-D-*glycero*-α-D-*galacto*-2-nonulopyranosylonate)-D-*glycero*-α-D*galacto*-2-nonulopyranosylonate)-D-*glycero*-α-D-*galacto*-2-nonulopyranosid)onate (22)

To a solution of **21** (1.17 g, 0.889 mmol) in tetrahydrofuran (44.0 mL, 50.0 mL/mmol) was added HF•Py (7.10 mL, 8.00 mL/mmol) at 0 °C. After being stirred and warmed up to room temperature for 3 h, the reaction mixture was poured into ethyl acetate and saturated aq. NaHCO<sub>3</sub>. The aqueous layer was extracted with two portions of ethyl acetate. The combined extract was washed with saturated aq. NaHCO<sub>3</sub> and brine, dried over MgSO<sub>4</sub>, filtered and evaporated in *vacuo*. The residue was purified by column chromatography on silica gel with 97:3 chloroformate-methanol to give **22** (977 mg, 0.813 mmol, 91%).

[*a*] $_{p}$ <sup>26</sup> -11.5 (c 0.286, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 5.63 (d, 1H, *J* = 1.6 Hz), 5.47 (d, 1H, *J* = 1.3 Hz), 4.99-4.94 (m, 1H), 4.75 (d, 1H, *J* = 1.2 Hz), 4.72 (d, 1H, *J* = 6.4 Hz), 4.62 (dd, 1H, *J* = 2.8 Hz, *J* = 11.6 Hz), 4.45-4.40 (m, 1H), 4.35-3.60 (m, 23H), 3.62-3.58 (m, 1H), 3.33-3.26 (m, 2H), 3.07 (dd, 1H, *J* = 2.4 Hz, *J* =11.8 Hz), 2.93 (dt, 2H, *J* = 3.4 Hz×2, *J* = 12.2 Hz), 2.78 (t, 1H, *J* = 12.5 Hz×2), 2.54 (s, 3H), 2.52 (s, 3H), 2.51 (s, 3H), 2.21-2.14 (m, 2H), 1.55 (m, 2H), 1.30-1.27 (m, 10H), 0.88 (m, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 172.6, 172.4, 172.1,168.5, 168.0, 167.6, 153.9, 153.42, 153.36, 149.8, 148.5, 148.3, 100.5, 99.9, 98.9, 83.1, 81.8, 79.9, 77.4, 76.7, 76.4, 75.6, 74.8, 74.3, 70.9, 70.5, 67.7, 66.6, 65.9, 65.6, 59.9, 59.0, 58.9, 57.8, 54.4, 54.3, 53.7, 35.7, 35.0, 33.1, 31.9, 29.6, 29.4, 29.3, 26.0, 25.1, 24.8, 22.7, 14.2; **IR** (KBr) 3477, 2955, 2929, 2857, 1799, 1746, 1376, 1291, 1227, 1174, 1144, 1097, 1043 (cm<sup>-1</sup>); **HRMS** (ESI-TOF) Calcd for C<sub>50</sub>H<sub>64</sub>N<sub>3</sub>O<sub>31</sub> [M+H]<sup>+</sup> 1202.3524, found 1202.3524.

Methyl(octyl5-acetoamido-5-N,4-O-carbonyl-7-O,9-O-carbonyl-3,5-dideoxy-8-O-(methyl5-acetoamido-5-N,4-O-carbonyl-7-O,9-O-carbonyl-3,5-dideoxy-8-O-(methyl5-acetoamido-5-N,4-O-carbonyl-7-0,9-O-carbonyl-3,5-dideoxy-8-O-(methyl5-0,9-O-carbonyl-3,5-dideoxy-8-O-(methyl5-acetoamido-8-O-tert-butyldimethylsilyl-5-N,4-O-carbonyl-7-0,9-O-carbonyl-3,5-dideoxy-8-O-(methyl5-0,9-O-carbonyl-3,5-dideoxy-D-glycero-α-D-galacto-2-nonulopyranosylonate)-D-glycero-α-D-galacto-2-nonulopyranosylonate)-D-glycero-α-D-galacto-2-nonulopyranosylonate)-D-glycero-α-D-galacto-2-nonulopyranosid)onate (23)(23)

A mixture of **22** (977 mg, 0.813 mmol), 7 (1.40 g, 2.44 mmol) and pulverized activated MS-3A (1.60 g, 2.00 g/mmol) in dry CH<sub>2</sub>Cl<sub>2</sub> (16.0 mL, 20.0 mL/mmol) was stirred at room temperature for 1 h under argon to remove a trace amount of water. Then the reaction mixture was cooled to -78 °C. *N*-iodosuccinimide (1.10 g, 4.88 mmol) and trifluoromethanesulfonic acid (72.0  $\mu$ L, 0.813 mmol) were added to reaction mixture at -78 °C. After being stirred at the same temperature for 4 h, the reaction mixture was neutralized with triethylamine and filtered through a pad of Celite. The filtrate mixture was poured into a mixture of saturated aq. NaHCO<sub>3</sub> and

saturated aq. Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> with cooling. The aqueous layer was extracted with two portions of ethyl acetate. The combined extract was washed with saturated aq. NaHCO<sub>3</sub> and saturated aq. Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> and brine, dried over MgSO<sub>4</sub>, filtered and evaporated *in vacuo*. The residue was purified by column chromatography on silica gel with 95:5 toluene-acetone to give **23** (1.32 g, 0.789 mmol, 97%,  $\alpha$  only).

 $[a]_{p}^{26}$  -9.02 (c 0.201, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  5.45 (dd, 2H, J = 12.4 Hz, J = 2.8 Hz), 5.30 (s, 1H), 5.20 (d, 1H, J = 4.8 Hz), 4.78-4.74 (m, 2H), 4.66-4.63 (m, 2H), 4.51 (dd, 1H, J = 3.2 Hz, J = 5.7 Hz), 4.43-4.19 (m, 10H), 4.15-3.96 (m, 11H), 3.91 (s, 3H), 3.89 (s, 3H), 3.88 (s, 3H), 3.87 (s, 3H), 3.61 (dt, 1H, J = 6.4 Hz, J = 8.8 Hz), 3.28 (dt, 1H, J = 6.7 Hz, J = 8.6 Hz), 3.07 (dd, 1H, J = 4.0 Hz, J = 12 Hz), 2.99-2.92 (m, 3H), 2.54-2.51 (m, 13H), 2.32-2.23 (m, 2H), 2.14 (t, 1H, J = 12.8 Hz×2), 1.56-1.52 (m, 2H), 1.30-1.27 (m, 10H), 0.90-0.86 (m, 12H), 0.14 (s, 3H), 0.13 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  172.6, 172.54, 172.50, 172.1, 168.3 (<sup>3</sup> $J_{C1,H-3ax}$  = 6.9 Hz), 167.7 (<sup>3</sup> $J_{C1,H-3ax}$  = 4.6 Hz), 167.1 (<sup>3</sup> $J_{C1,H-3ax}$  = 6.1 Hz), 167.0 (<sup>3</sup> $J_{C1,H-3ax}$  = 6.1 Hz), 153.65, 153.56, 153.48, 149.2, 148.8, 148.3, 148.0, 100.1, 99.9, 99.8, 99.1, 82.6, 81.7, 81.6, 80.8, 77.4, 76.5, 76.3, 76.1, 74.7, 74.5, 74.3, 70.6, 70.0, 68.9, 66.2, 66.0, 65.6, 65.3, 62.4, 58.9, 58.7, 58.5, 54.3, 54.2, 54.0, 35.7, 34.1, 33.3, 31.8, 29.5, 29.3, 29.2, 25.9, 25.6, 24.9, 24.8, 22.7, 17.9, 14.2, -4.47, -4.75; **IR** (KBr) 2955, 2931, 2858, 1799, 1750, 1291, 1228, 1174, 1132, 1101, 1041 (cm<sup>-1</sup>); **HRMS** (ESI-TOF) Calcd for C<sub>70</sub>H<sub>96</sub>N<sub>5</sub>O<sub>41</sub>Si [M+NH<sub>4</sub>]<sup>+</sup> 1690.5358, found 1690.5350.

Methyl(octyl5-acetoamido-5-N,4-O-carbonyl-7-O,9-O-carbonyl-3,5-dideoxy-8-O-(methyl5-<br/>acetoamido-5-N,4-O-carbonyl-7-O,9-O-carbonyl-3,5-dideoxy-8-O-(methyl5-acetoamido-5-N,4-O-carbonyl-7-O,9-O-carbonyl-3,5-dideoxy-8-O-(methyl5-acetoamido-5-N,4-O-carbonyl-7-O,9-O-carbonyl-3,5-dideoxy-<br/>D-glycero- $\alpha$ -D-galacto-2-nonulopyranosylonate)-D-glycero- $\alpha$ -D-galacto

To a solution of **23** (945 mg, 0.565 mmol) in tetrahydrofuran (28.0 mL, 50.0 mL/mmol) was added HF•Py (4.50 mL, 8.00 mL/mmol) at 0 °C. After being stirred and warmed up to room temperature for 4 h, the reaction mixture was poured into ethyl acetate and saturated aq. NaHCO<sub>3</sub>. The aqueous layer was extracted with two portions of ethyl acetate. The combined extract was washed with saturated aq. NaHCO<sub>3</sub> and brine, dried over MgSO<sub>4</sub>, filtered and evaporated in *vacuo*. The residue was purified by column chromatography on silica gel with 97:3 chloroformate-methanol to give **24** (804 mg, 0.516 mmol, 91%).

[*α*] $p^{29}$  -27.0 (c 0.192, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 5.54 (d, 1H, *J* = 1.6 Hz), 5.44 (d, 1H, *J* = 1.2 Hz), 5.36 (d, 1H, *J* = 2.4 Hz), 4.81 (d, 1H, *J* = 8.0 Hz), 4.78-4.79 (m, 1H), 4.71 (d, 1H, *J* = 1.6 Hz), 4.67-4.62 (m, 2H), 4.56 (dd, 1H, *J* = 11.5 Hz, *J* = 4.4 Hz), 4.38-4.11 (m, 16H), 4.01-3.87 (m, 16H), 3.60 (dt, 1H, *J* = 6.4 Hz, *J* = 8.7 Hz), 3.41 (d, 1H, *J* = 4.9 Hz), 3.30 (dt, 1H, *J* = 6.6 Hz, *J* = 8.7 Hz), 3.03-2.93 (m, 4H), 2.56-2.52 (m, 13H), 2.37-2.32 (m, 2H), 2.13 (t, 1H, *J* = 12.8 Hz×2), 1.60-1.56 (m, 2H), 1.30-1.24 (m, 10H), 0.90-0.86 (m, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 172.74, 172.67, 172.5, 172.3, 168.3, 167.6, 167.5, 167.4, 153.7, 153.6, 153.5, 153.3, 149.5, 148.53, 148.45, 148.4, 100.3, 100.0, 99.9, 99.6, 82.7, 81.7, 81.1, 80.2, 77.4, 76.7, 76.1, 75.4, 74.8, 74.5, 70.4, 70.0, 68.4, 66.34, 66.28, 65.8, 65.6, 60.0, 59.0, 58.7, 58.6, 57.8, 54.4, 53.7, 35.7, 34.1, 33.5, 31.9, 29.6, 29.4, 29.3, 26.0, 25.03, 24.97, 24.9, 22.8, 14.2 ; **IR** (KBr) 3505, 2955, 2930, 2856, 1798, 1748, 1291, 1227, 1174, 1144, 1098, 1041

Methyl(octyl5-acetoamido-5-N,4-O-carbonyl-7-O,9-O-carbonyl-3,5-dideoxy-8-O-(methyl5-acetoamido-5-N,4-O-carbonyl-7-O,9-O-carbonyl-3,5-dideoxy-8-O-(methyl5-acetoamido-5-N,4-O-carbonyl-7-O,9-O-carbonyl-7-O,9-O-carbonyl-7-O,9-O-carbonyl-3,5-5-acetoamido-5-N,4-O-carbonyl-7-O,9-O-carbonyl-3,5-7-O,9-O-carbonyl-3,5-dideoxy-8-O-(methyl5-acetoamido-5-N,4-O-carbonyl-7-O,9-O-carbonyl-3,5-5-acetoamido-5-N,4-O-carbonyl-7-O,9-O-carbonyl-3,5-7-O,9-O-carbonyl-3,5-dideoxy-8-O-(methyl5-acetoamido-8-O-tert-butyldimethylsilyl-5-N,4-O-carbonyl-7-O,9-O-carbonyl-3,5-5-acetoamido-8-O-tert-butyldimethylsilyl-5-N,4-O-carbonyl-7-O,9-O-carbonyl-3,5-3,5-dideoxy-D-glycero-α-D-galacto-2-nonulopyranosylonate)-D-glycero-α-D-galacto-2-nonulopyranosylonate)-D-glycero-α-D-galacto-2-nonulopyranosylonate)-D-glycero-α-D-galacto-2-nonulopyranosylonate)-D-glycero-α-D-galacto-2-nonulopyranosylonate)-D-glycero-α-D-galacto-2-nonulopyranosylonate)-D-glycero-α-D-galacto-2-nonulopyranosylonate)-D-glycero-α-D-galacto-2-nonulopyranosylonate)-D-glycero-α-D-galacto-2-nonulopyranosylonate)-D-glycero-α-D-galacto-2-nonulopyranosylonate)-D-glycero-α-D-galacto-2-nonulopyranosylonate)-D-glycero-α-D-galacto-2-nonulopyranosylonate)-D-glycero-α-D-galacto-2-nonulopyranosylonate)-D-glycero-α-D-galacto-2-nonulopyranosylonate)-D-glycero-α-D-galacto-2-nonulopyranosylonate)-D-glycero-α-D-galacto-2-nonulopyranosylonate)-D-glycero-α-D-galacto-2-nonulopyranosylonate)-D-glycero-α-D-galacto-2-nonulopyranosylonate)-D-glycero-α-D-galacto-2-nonulopyranosylonate)-D-glycero-α-D-galacto-2-nonulopyranosylonate)-D-glycero-α-D-galacto-2-nonulopyranosylonate)-D-glycero-α-D-galacto-2-nonulopyranosylonate)-D-glycero-α-D-galacto-2-nonulopyranosylonate)-D-glycero-α-D-galacto-2-nonulopyranosylonate)-D-glycero-α-D-galacto-2-nonulopyranosylonate)-D-glycero-α-D-galacto-2-nonulopyranosylonate)-D-glycero-α-D-galacto-2-nonulopyranosylo

A mixture of **24** (329 mg, 0.211 mmol, 1.00 eq.), 7 (404 mg, 0.696 mmol) and pulverized activated MS-3A (633 mg, 3.00 g/mmol) in dry CH<sub>2</sub>Cl<sub>2</sub> (6.30 mL, 30.0 mL/mmol) was stirred at room temperature for 1 h under argon to remove a trace amount of water. Then the reaction mixture was cooled to -78 °C. *N*-iodosuccinimide (380 mg, 1.69 mmol) and trifluoromethanesulfonic acid (19.0  $\mu$ L, 0.210 mmol) were added to reaction mixture at -78 °C. After being stirred and warmed up to -60 °C for 4 h, the reaction mixture was neutralized with triethylamine and filtered through a pad of Celite. The filtrate mixture was poured into a mixture of saturated aq. NaHCO<sub>3</sub> and saturated aq. Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> with cooling. The aqueous layer was extracted with two portions of ethyl acetate. The combined extract was washed with saturated aq. NaHCO<sub>3</sub> and saturated aq. Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> and brine, dried over MgSO<sub>4</sub>, filtered and evaporated *in vacuo*. The residue was purified by column chromatography on silica gel with 95:5 toluene-acetone to give **25** (355 mg, 0.175 mmol, 83%,  $\alpha$  only).

 $[a]_{p}^{29}$  -27.0 (c 0.192, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  5.42-5.41 (m, 2H), 5.37 (d, 1H, J = 2.4 Hz), 5.32 (s, 1H), 5.18 (d, 1H, J = 5.3 Hz), 4.76-4.73 (m, 2H), 4.62-4.45 (m, 6H), 4.34-3.97 (m, 22H), 3.913 (s, 3H), 3.91 (s, 3H), 3.90 (s, 3H), 3.88 (s, 3H), 3.87 (s, 3H), 3.61 (dt, 1H, J = 6.4 Hz, J = 8.6 Hz), 3.29 (dt, 1H, J = 6.7 Hz, J = 8.8 Hz), 3.08-2.92 (m, 5H), 2.54-2.45 (m, 16H), 2.37-2.24 (m, 3H), 2.12 (t, 1H, J = 12.8 Hz×2), 1.55-1.50 (m, 2H), 1.28-1.26 (m, 10H), 0.91-0.86 (m, 12H), 0.14 (s, 3H), 0.13 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  172.71, 172.66, 172.60, 172.55, 172.2, 168.3, 167.6, 167.2, 167.1, 167.0, 153.60, 153.55 153.50, 149.2, 148.7, 148.4, 148.3, 148.2, 138.0, 129.2, 128.4, 125.4, 100.0, 99.92, 99.90, 99.3, 82.6, 81.7, 81.4, 81.1, 77.4, 76.7, 76.4, 76.3, 76.2, 74.8, 74.6, 74.5, 74.4, 70.5, 70.3, 70.2, 70.0, 69.3, 66.1, 65.7, 65.6, 65.4, 62.4, 59.0, 58.7, 58.63, 58.59, 58.5, 54.4, 54.3, 54.0, 53.7, 35.7, 34.6, 34.1, 33.7, 33.6, 31.9, 29.6, 29.4, 29.3, 26.0, 25.7, 25.02, 24.98, 24.93, 24.89, 22.8, 21.6, 17.9, 14.2, -4.39, -4.70 ; IR (KBr) 3013, 2956, 2931, 2857, 1799, 1751, 1291, 1228, 1174, 1133, 1101, 1040 (cm<sup>-1</sup>); HRMS (ESI-TOF) Calcd for C<sub>84</sub>H<sub>111</sub>N<sub>6</sub>O<sub>51</sub>Si [M+NH<sub>4</sub>]<sup>+</sup> 2047.6023, found 2047.6046.

Methyl (octyl 5-acetoamido-5-*N*,4-*O*-carbonyl-7-*O*,9-*O*-carbonyl-3,5-dideoxy-8-*O*-(methyl 5acetoamido-5-*N*,4-*O*-carbonyl-7-*O*,9-*O*-carbonyl-3,5-dideoxy-8-*O*-(methyl 5-acetoamido-5-*N*,4-*O*carbonyl-7-*O*,9-*O*-carbonyl-3,5-dideoxy-8-*O*-(methyl 5-acetoamido-5-*N*,4-*O*-carbonyl-7-*O*,9-*O*-carbonyl-3,5-dideoxy-8-*O*-(methyl 5-acetoamido-5-*N*,4-*O*-carbonyl-7-*O*,9-*O*-carbonyl-3,5-dideoxy-D-*glycero*-α -D*galacto*-2-nonulopyranosylonate)-D-*glycero*-α-D-*galacto*-2-nonulopyranosylonate)-D-*glycero*-α-D-*galacto*-2nonulopyranosylonate)-D-*glycero*-α-D-*galacto*-2-

#### nonulopyranosid)onate (26)

To a solution of **25** (720 mg 0.350 mmol) in tetrahydrofuran (18.0 mL, 50.0 mL/mmol) was added HF•Py (2.80 mL, 8.00 mL/mmol) at 0 °C. After being stirred and warmed up to room temperature for 5 h, the reaction mixture was poured into ethyl acetate and saturated aq. NaHCO<sub>3</sub>. The aqueous layer was extracted with two portions of ethyl acetate. The combined extract was washed with saturated aq. NaHCO<sub>3</sub> and brine, dried over MgSO<sub>4</sub>, filtered and evaporated in *vacuo*. The residue was purified by column chromatography on silica gel with 99:1 chloroformate-methanol to give **26** (640 mg, 0.334 mmol, 94%).

 $[\alpha]_{D}^{22}$  -14.3 (c 0.319, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  5.57 (d, 1H, J = 1.8 Hz), 5.42 (dd, 2H, J = 2.4 Hz, J = 6.8 Hz), 5.28 (s, 1H), 4.84-4.79 (m, 2H), 4.74-4.71 (m, 2H), 4.64-4.59 (m, 2H), 4.54-4.50 (m, 2H), 4.40-3.87 (m, 38H), 3.61 (dt, 1H, J = 6.4 Hz, J = 8.6 Hz), 3.36 (d, 1H, J = 5.0 Hz), 3.28 (dt, 1H, J = 6.8 Hz, J = 8.7 Hz), 3.08-2.93 (m, 5H), 2.55-2.51 (m, 16H), 2.31-2.08 (m, 4H), 1.55-1.50 (m, 2H), 1.30-1.21 (m, 10H), 0.88 (m, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  173.0, 172.73, 172.70, 172.34, 172.30, 168.3, 167.6, 167.54, 167.48, 167.1, 153.7, 153.62, 153.58, 153.5, 153.2, 149.7, 148.8, 148.54, 148.45, 147.9, 100.16, 100.15, 100.14, 99.9, 99.5, 99.4, 82.78, 82.76, 81.8, 81.52, 81.54, 80.5, 80.3, 77.4, 76.7, 76.6, 76.3, 75.4, 74.8, 74.7, 74.5, 74.38, 74.37, 74.32, 74.28, 71.1, 70.6, 70.2, 69.3, 69.2, 68.0, 66.3, 66.1, 65.6, 65.3, 60.1, 59.0, 58.8, 58.70, 58.68, 58.6, 58.4, 57.8, 54.5, 54.42, 54.40, 54.36, 53.8, 35.8, 34.58, 34.57, 34.50, 34.45, 33.58, 33.55, 33.4, 33.3, 31.9, 29.6, 29.4, 29.3, 26.0, 25.0, 24.9, 24.8, 22.8, 14.2 ; **IR** (KBr) 3527, 3013, 2956, 2931, 2856, 1799, 1750, 1291, 1228, 1174, 1142, 1098, 1040 (cm<sup>-1</sup>); **HRMS** (ESI-TOF) Calcd for C<sub>78</sub>H<sub>94</sub>N<sub>5</sub>O<sub>51</sub> [M+CH<sub>3</sub>OH+NH4]<sup>+</sup> 1965.5397, found 1965.5443.

Methyl(octyl5-acetoamido-5-N,4-O-carbonyl-7-O,9-O-carbonyl-3,5-dideoxy-8-O-(methyl5-acetoamido-5-N,4-O-carbonyl-7-O,9-O-carbonyl-3,5-dideoxy-8-O-(methyl5-acetoamido-5-N,4-O-carbonyl-7-O,9-O-carbonyl-7-O,9-O-carbonyl-7-O,9-O-carbonyl-3,5-dideoxy-8-O-(methyl5-acetoamido-5-N,4-O-carbonyl-3,5-dideoxy-8-O-(methyl5-acetoamido-5-N,4-O-carbonyl-3,5-dideoxy-8-O-(methyl8-O-(methyl5-acetoamido-5-N,4-O-carbonyl-7-O,9-O-carbonyl-3,5-dideoxy-8-O-(methyl5-acetoamido-5-N,4-O-carbonyl-3,5-dideoxy-8-O-(methyl5-acetoamido-8-O-(methyl8-O-(methyl5-acetoamido-5-N,4-O-carbonyl-7-O,9-O-carbonyl-3,5-dideoxy-8-O-(methyl5-acetoamido-8-O-(methyl5-acetoamido-8-O-(methyl8-O-(methyl5-acetoamido-5-N,4-O-carbonyl-7-O,9-O-carbonyl-3,5-dideoxy-8-O-(methyl5-acetoamido-8-O-(methyl5-acetoamido-2-8-O-(methyl5-acetoamido-5-N,4-O-carbonyl-7-O,9-O-carbonyl-3,5-dideoxy-8-O-(methyl5-acetoamido-8-O-(methyl5-acetoamido-2-8-O-(methyl5-acetoamido-2-nonulopyranosylonate)-D-glycero-α-D-galacto-2-nonulopyranosylonate)-D-glycero-α-D-galacto-2-nonulopyranosylonate)-D-glycero-α-D-galacto-2-nonulopyranosylonate)-D-glycero-α-D-galacto-2-nonulopyranosylonate)-D-glycero-α-D-galacto-2-nonulopyranosylonate)-D-glycero-α-D-galacto-2-

A mixture of **26** (289 mg, 0.150 mmol), 7 (349 mg, 0.600 mmol) and pulverized activated MS-3A (450 mg, 3.00 g/mmol) in dry CH<sub>2</sub>Cl<sub>2</sub> (4.50 mL, 30.0 mL/mmol) was stirred at room temperature for 1 h under argon to remove a trace amount of water. Then the reaction mixture was cooled to -78 °C. *N*-iodosuccinimide (338 mg, 1.50 mmol) and trifluoromethanesulfonic acid (13.0  $\mu$ L, 0.150 mmol) was added to reaction mixture at -78 °C. After being stirred and warmed up to -60 °C for 5 h, the reaction mixture was neutralized with triethylamine and filtered through a pad of Celite. The filtrate mixture was poured into a mixture of saturated aq. NaHCO<sub>3</sub> and saturated aq. Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> with cooling. The aqueous layer was extracted with two portions of ethyl acetate. The combined extract was washed with saturated aq. NaHCO<sub>3</sub> and saturated aq. Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> and brine, dried over MgSO<sub>4</sub>, filtered and evaporated *in vacuo*. The residue was purified by column chromatography on silica gel with 80:20 toluene-acetone to give **27** (309 mg, 0.130 mmol, 86%,  $\alpha$  only).

 $[α]_{D}^{23}$  -11.7 (c 0.243, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 5.42 (s, 2H), 5.38-5.36 (m, 2H), 5.28 (s, 1H), 5.17 (d, 1H, 5.8 Hz), 4.76-4.73 (m, 2H), 4.65-4.47 (m, 8H), 4.37-3.87 (m, 45H), 3.62 (dt, 1H, *J* = 6.4 Hz, *J* = 8.8 Hz), 3.28 (dt, 1H, *J* = 6.8 Hz, *J* = 8.4 Hz), 3.09-2.92 (m, 6H), 2.54-2.47 (m, 19H), 2.40-2.23 (m, 4H), 2.12 (t, 1H, *J* = 12.4 Hz × 2), 1.55-1.52 (m, 2H), 1.30-1.27 (m, 10H), 0.90-0.86 (m, 12H), 0.15 (s, 3H), 0.13 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 172.8, 172.7, 172.6, 172.5, 172.2, 168.3, 167., 167.18, 167.15, 167.1, 153.6, 153.5, 153.4, 149.2, 148.7, 148.4, 148.3, 148.0, 100.1, 99.9, 99.8, 99.7, 99.2, 82.5, 81.7, 81.4, 81.0, 80.8, 77.4, 76.7, 76.5, 76.3, 76.1, 74.7, 74.6, 74.4, 74.3, 70.6, 70.2, 70.1, 69.9, 69.1, 66.2, 66.0, 65.6, 65.4, 62.3, 59.0, 58.6, 58.5, 54.5, 54.4, 54.3, 54.0, 53.7, 35.7, 34.7, 33.9, 33.7, 31.9, 29.6, 29.4, 29.2, 25.9, 25.7, 25.0, 24.9, 22.7, 17.9, 14.2, -4.42, -4.72 ; **IR** (KBr) 3017, 2956, 2930, 2857, 1798, 1750, 1291, 1228, 1173, 1132, 1100, 1039 (cm<sup>-1</sup>); **HRMS** (ESI-TOF) Calcd for C<sub>98</sub>H<sub>125</sub>N<sub>6</sub>O<sub>62</sub>Si [M+H<sub>2</sub>O+H]<sup>+</sup> 2405.6541, found 2405.6582.

To a solution of **27** (395 mg 0.165 mmol) in tetrahydrofuran (8.30 mL, 50.0 mL/mmol) was added HF•Py (1.32 mL, 8.00 mL/mmol) at 0 °C. After being stirred and warmed up to room temperature for 5 h, the reaction mixture was poured into ethyl acetate and saturated aq. NaHCO<sub>3</sub>. The aqueous layer was extracted with two portions of ethyl acetate. The combined extract was washed with saturated aq. NaHCO<sub>3</sub> and brine, dried over MgSO<sub>4</sub>, filtered and evaporated in *vacuo*. The residue was purified by column chromatography on silica gel with 98:2 chloroformate-methanol to give **28** (304 mg, 0.134 mmol, 87%).

 $[α]_{0}^{25}$  -10.2 (c 0.170, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 5.58 (d, 1H, *J* = 1.7 Hz), 5.43-5.42 (m, 2H), 5.35 (s, 1H), 5.29 (s, 1H), 4.86-4.73 (m, 4H), 4.63-3.87 (m, 52H), 3.60 (dt, 1H, *J* = 6.4 Hz, *J* = 8.8 Hz), 3.31-3.25 (m, 2H), 3.09-2.92 (m, 6H), 2.61-2.51 (m, 19H), 2.38-2.07 (m, 5H), 1.58-1.50 (m, 2H), 1.30-1.21 (m, 10H), 0.88 (m, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 173.0, 172.8, 172.7, 172.3, 172.2, 168.4, 167.7, 167.60, 167.56, 167.06, 167.05, 153.7, 153.61, 153.55, 153.3, 153.2, 149.7, 148.9, 148.5, 148.4, 148.14, 148.12, 100.19, 100.16, 99.9, 99.4, 99.2, 82.9, 81.8, 81.5, 81.0, 80.7, 80.1, 77.4, 76.5, 76.3, 75.5, 74.8, 74.6, 74.5, 74.4, 74.3, 70.9, 70.8, 70.7, 70.3, 69.0, 67.9, 66.3, 66.2, 66.0, 65.8, 65.6, 65.2, 60.0, 59.0, 58.8, 58.6, 57.8, 54.51, 54.46, 54.4, 53.8, 35.8, 34.8, 34.4, 33.6, 33.5, 33.4, 31.9, 29.6, 29.4, 29.3, 26.6, 26.0, 25.03, 25.00, 24.95, 24.88, 24.85, 24.8, 22.8, 14.2; **IR** (KBr) 3526, 3013, 2957, 2930, 2856, 1799, 1750, 1291, 1228, 1174, 1134, 1098, 1040 (cm<sup>-1</sup>); **HRMS** (ESI-TOF) Calcd for C<sub>93H116</sub>N<sub>7</sub>O<sub>62</sub> [M+CH<sub>3</sub>OH+NH<sub>4</sub>]<sup>+</sup> 2322.6145, found 2322.6139.

#### Methyl (octyl 5-acetoamido-5-*N*,4-*O*-carbonyl-7-*O*,9-*O*-carbonyl-3,5-dideoxy-8-*O*-(methyl

5-

acetoamido-5-*N*,4-*O*-carbonyl-7-*O*,9-*O*-carbonyl-3,5-dideoxy-8-*O*-(methyl 5-acetoamido-5-*N*,4-*O*-carbonyl-7-*O*,9-*O*-carbonyl-3,5-dideoxy-8-*O*-(methyl 5-acetoamido-5-*N*,4-*O*-carbonyl-7-*O*,9-*O*-carbonyl-3,5-dideoxy-8-*O*-(methyl 5-acetoamido-5-*N*,4-*O*-carbonyl-7-*O*,9-*O*-carbonyl-7-*O*,9-*O*-carbonyl-3,5-dideoxy-8-*O*-(methyl 5-acetoamido-5-*N*,4-*O*-carbonyl-7-*O*,9-*O*-carbonyl-3,5-dideoxy-8-*O*-(methyl 5-acetoamido-5-*N*,4-*O*-carbonyl-7-*O*,9-*O*-carbonyl-3,5-dideoxy-8-*O*-(methyl 5-acetoamido-5-*N*,4-*O*-carbonyl-7-*O*,9-*O*-carbonyl-3,5-dideoxy-8-*O*-(methyl 5-acetoamido-8-*O*-*tert*-butyldimethylsilyl-5-*N*,4-*O*-carbonyl-7-*O*,9-*O*-carbonyl-3,5-dideoxy-0-(methyl 5-acetoamido-8-*O*-*tert*-butyldimethylsilyl-5-*N*,4-*O*-carbonyl-7-*O*,9-*O*-carbonyl-3,5-dideoxy-0-(methyl 5-acetoamido-8-*O*-*tert*-butyldimethylsilyl-5-*N*,4-*O*-carbonyl-7-*O*,9-*O*-carbonyl-3,5-dideoxy-0-glycero-α-D-galacto-2-nonulopyranosylonate)-D-glycero-α-D-galacto-2-nonulopyranosylonate)-D-glycero-α-D-galacto-2-nonulopyranosylonate)-D-glycero-α-D-galacto-2-nonulopyranosylonate)-D-glycero-α-D-galacto-2-nonulopyranosylonate)-D-glycero-α-D-galacto-2-nonulopyranosylonate)-D-glycero-α-D-galacto-2-nonulopyranosylonate)-D-glycero-α-D-galacto-2-nonulopyranosylonate)-D-glycero-α-D-galacto-2-nonulopyranosylonate)-D-glycero-α-D-galacto-2-nonulopyranosylonate)-D-glycero-α-D-galacto-2-nonulopyranosylonate)-D-glycero-α-D-galacto-2-nonulopyranosylonate)-D-glycero-α-D-galacto-2-nonulopyranosylonate)-D-glycero-α-D-galacto-2-nonulopyranosylonate)-D-glycero-α-D-galacto-2-nonulopyranosylonate)-D-glycero-α-D-galacto-2-nonulopyranosylonate)-D-glycero-α-D-galacto-2-nonulopyranosylonate)-D-glycero-α-D-galacto-2-nonulopyranosylonate)-D-glycero-α-D-galacto-2-nonulopyranosylonate)-D-glycero-α-D-galacto-2-nonulopyranosylonate)-D-glycero-α-D-galacto-2-nonulopyranosylonate)-D-glycero-α-D-galacto-2-nonulopyranosylonate)-D-glycero-α-D-galacto-2-nonulopyranosylonate)-D-glycero-α-D-galacto-2-nonulopyranosylonate)-D-glycero-α-D-galacto-2-nonulopyranosyl

A mixture of **28** (304 mg, 0.134 mmol), 7 (467 mg, 0.803 mmol) and pulverized activated MS-3A (402 mg, 3.00 g/mmol) in dry CH<sub>2</sub>Cl<sub>2</sub> (5.30 mL, 40.0 mL/mmol) was stirred at room temperature for 1 h under argon to remove a trace amount of water. Then the reaction mixture was cooled to -78 °C. *N*-iodosuccinimide (402 mg, 1.07 mmol, 8.00 eq.) and trifluoromethanesulfonic acid (12.0  $\mu$ L, 0.134 mmol) were added to reaction mixture at -78 °C. After being stirred and warmed up to -60 °C for 5 h, the reaction mixture was neutralized with triethylamine and filtered through a pad of Celite. The filtrate mixture was poured into a mixture of saturated aq. NaHCO<sub>3</sub> and saturated aq. Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> with cooling. The aqueous layer was extracted with two portions of ethyl acetate. The combined extract was washed with saturated aq. NaHCO<sub>3</sub> and saturated aq. Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> and brine, dried over MgSO<sub>4</sub>, filtered and evaporated *in vacuo*. The residue was purified by column chromatography on silica gel with 75:25 toluene-acetone to give **29** (368 mg, 0.134 mmol, quant.,  $\alpha$  only).

 $[α]p^{29}$  -27.0 (c 0.192, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 5.42 (s, 2H), 5,38 (s, 1H), 5.35 (s, 2H), 5.28 (s, 1H), 5.18 (d, 1H, *J* = 5.6 Hz), 4.77-4.74 (m, 2H), 4.66-4.45 (m, 10H), 4.34-3.84 (m, 51H), 3.62 (dt, 1H, *J* = 7.6 Hz, *J* = 8.8 Hz), 3.28 (dt, 1H, *J* = 6.8 Hz, *J* = 8.4 Hz), 3.09-2.89 (m, 7H), 2.54-2.51 (m, 21H), 2.42-2.21 (m, 5H), 2.15-2.02 (m, 2H), 1.55-1.51 (m, 2H), 1.30-1.27 (m, 10H), 0.91-0.86 (m, 12H), 0.14 (s, 3H), 0.13 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 172.82, 172.75, 172.63, 172.59, 172.1, 168.4, 167.7, 167.3, 167.2, 167.13, 167.08, 167.0, 153.6, 153.54, 153.52, 153.48, 153.45, 153.4, 149.2, 148.8, 148.5, 148.4, 148.29, 148.25, 148.1, 100.1, 99.92, 99.89, 99.8, 99.7, 99.2, 82.6, 81.8, 81.5, 81.2, 81.0, 80.9, 77.4, 76.6, 76.5, 76.4, 76.3, 76.2, 74.8, 74.6, 74.4, 70.6, 70.4, 70.3, 70.1, 69.6, 69.1, 66.3, 66.1, 65.8, 65.7, 65.6, 65.5, 65.4, 62.4, 59.0, 58.8, 58.7, 58.5, 54.50, 54.45, 54.4, 54.1, 53.8, 35.8, 34.8, 34.1, 34.0, 33.6, 33.5, 31.9, 29.6, 29.4, 29.3, 26.0, 25.8, 25.7, 25.02, 24.95, 24.9, 22.8, 18.0, 17.9, 14.2, -4.37, -4.68 ; **IR** (KBr) 3023, 2956, 2857, 1799, 1749, 1291, 1228, 1174, 1134, 1100, 1039 (cm<sup>-1</sup>); **HRMS** (ESI-TOF) Calcd for C<sub>112</sub>H<sub>138</sub>N<sub>7</sub>O<sub>71</sub>Si [M+H]<sup>+</sup> 2744.7173, found 2744.7172.

Methyl (octyl 5-acetoamido-5-*N*,4-*O*-carbonyl-7-*O*,9-*O*-carbonyl-3,5-dideoxy-8-*O*-(methyl 5acetoamido-5-*N*,4-*O*-carbonyl-7-*O*,9-*O*-carbonyl-3,5-dideoxy-8-*O*-(methyl 5-acetoamido-5-*N*,4-*O*carbonyl-7-*O*,9-*O*-carbonyl-3,5-dideoxy-8-*O*-(methyl 5-acetoamido-5-*N*,4-*O*-carbonyl-7-*O*,9-*O*-carbonyl-3,5-dideoxy-8-*O*-(methyl 5-acetoamido-5-*N*,4-*O*-carbonyl-7-*O*,9-*O*-carbonyl-3,5-dideoxy-8-*O*-(methyl 5acetoamido-5-*N*,4-*O*-carbonyl-7-*O*,9-*O*-carbonyl-3,5-dideoxy-8-*O*-(methyl 5acetoamido-5-*N*,4-*O*-carbonyl-7-*O*,9-*O*-carbonyl-3,5-dideoxy-8-*O*-(methyl 5acetoamido-5-*N*,4-*O*-carbonyl-7-*O*,9-*O*-carbonyl-3,5-dideoxy-8-*O*-(methyl 5acetoamido-5-*N*,4-*O*-carbonyl-7-*O*,9-*O*-carbonyl-3,5-dideoxy-8-*O*-(methyl 5acetoamido-5-*N*,4-*O*-carbonyl-3,5-dideoxy-D-*glycero*-α-D-*galacto*-2-nonulopyranosylonate)-D-*glycero*-α-D-*galacto*-2nonulopyranosylonate)-D-*glycero*-α-D-*galacto*-2-nonulopyranosylonate)-D-*glycero*-α-D-*galacto*-2-

#### nonulopyranosylonate)-D-glycero-α-D-galacto-2-nonulopyranosid)onate (30)

To a solution of **29** (221 mg 0.0810 mmol) in tetrahydrofuran (4.00 mL, 50.0 mL/mmol) was added HF•Py (0.810 mL, 10.0 mL/mmol) at 0 °C. After being stirred and warmed up to room temperature for 4.0 h, the reaction mixture was poured into ethyl acetate and saturated aq. NaHCO<sub>3</sub>. The aqueous layer was extracted with two portions of ethyl acetate. The combined extract was washed with saturated aq. NaHCO<sub>3</sub> and brine, dried over MgSO<sub>4</sub>, filtered and evaporated in *vacuo*. The residue was purified by column chromatography on silica gel with 97:3 chloroformate-methanol to give **30** (228 mg, 0.0865 mmol, quant.).

 $[a]_{D}^{29}$  -27.0 (c 0.192, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  5.57 (d, 1H, *J* = 2.0 Hz), 5.41 (s, 2H), 5.37 (s, 1H), 5.35 (s, 1H), 5.29 (s, 1H), 4.85-4.72 (m, 4H), 4.62-4.50 (m, 8H), 4.38-3.81 (m, 54H), 3.60 (dt, 1H, *J* = 6.4 Hz, *J* = 8.8 Hz), 3.28 (dt, 1H, *J* = 6.4 Hz, *J* = 9.2 Hz), 3.08-2.92 (m, 7H), 2.57-2.45 (m, 21H), 2.41-2.21 (m, 5H), 2.18-2.08 (m, 2H), 1.54-1.52 (m, 2H), 1.32-1.27 (m, 10H), 0.88 (m, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  173.0, 172.80, 172.75, 172.68, 172.65, 172.3, 172.2, 168.3, 167.6, 167.5, 167.2, 167.1, 153.7, 153.60, 153.57, 153.42, 153.36, 153.2, 149.7, 148.7, 148.5, 148.4, 148.3, 148.2, 148.1, 100.2, 100.0, 99.92, 99.87, 99.5, 99.3, 83.0, 81.8, 81.4, 81.1, 81.0, 80.9, 80.8, 80.1, 77.4, 76.3, 75.5, 74.8, 74.58, 74.55, 74.42, 74.38, 70.72, 70.69, 70.61, 70.58, 70.3, 70.0, 69.9, 69.3, 67.98, 67.95, 66.3, 66.19, 66.17, 66.1, 65.8, 65.7, 65.6, 65.3, 60.0, 59.02, 59.01, 58.8, 58.7, 58.6, 57.8, 54.54, 54.50, 54.46, 54.4, 53.8, 35.79, 35.77, 35.72, 35.69, 34.7, 34.3, 33.7, 33.63, 33.61, 33.4, 33.3, 31.9, 29.6, 29.4, 29.3, 26.0, 25.8, 25.04, 25.01, 24.93, 24.89, 24.85, 24.8, 22.8, 14.2; IR (KBr) 3564, 3013, 2956, 2930, 2856, 1798, 1749, 1291, 1229, 1173, 1133, 1098, 1040 (cm<sup>-1</sup>); HRMS (ESI-TOF) Calcd for C<sub>107</sub>H<sub>130</sub>N<sub>7</sub>O<sub>73</sub> [M+CH<sub>3</sub>OH+H<sub>3</sub>O]<sup>+</sup> 2680.6711, found 2680.6675.

Methyl (octyl 5-acetoamido-5-*N*,4-*O*-carbonyl-7-*O*,9-*O*-carbonyl-3,5-dideoxy-8-*O*-(methyl 5-acetoamido-5-*N*,4-*O*-carbonyl-7-*O*,9-*O*-carbonyl-3,5-dideoxy-8-*O*-(methyl 5-acetoamido-5-*N*,4-*O*-carbonyl-3,5-dideoxy-8-*O*-(methyl 5-acetoamido-5-*N*,4-*O*-carbonyl-3,5-dideoxy-8-*O*-(methyl 5-acetoamido-5-*N*,4-*O*-carbonyl-3,5-dideoxy-8-*O*-(methyl 5-acetoamido-5-*N*,4-*O*-carbonyl-3,5-dideoxy-8-*O*-(methyl 5-acetoamido-5-*N*,4-*O*-carbonyl-3,5-dideoxy-8-*O*-(methyl 5-acetoamido-5-*N*,4-*O*-carbonyl-7-*O*,9-*O*-carbonyl-3,5-dideoxy-8-*O*-(methyl 5-acetoamido-5-*N*,4-*O*-carbonyl-7-*O*,9-*O*-carbonyl-3,5-dideoxy-8-*O*-(methyl 5-acetoamido-5-*N*,4-*O*-carbonyl-7-*O*,9-*O*-carbonyl-3,5-dideoxy-8-*O*-(methyl 5-acetoamido-8-*O*-tert-butyldimethylsilyl-5-*N*,4-*O*-carbonyl-7-*O*,9-*O*-carbonyl-3,5-dideoxy-8-*O*-(methyl 5-acetoamido-8-*O*-tert-butyldimethylsilyl-5-*N*,4-*O*-carbonyl-7-*O*,9-*O*-carbonyl-3,5-dideoxy-8-*O*-(methyl 5-acetoamido-8-*O*-tert-butyldimethylsilyl-5-*N*,4-*O*-carbonyl-7-*O*,9-*O*-carbonyl-3,5-dideoxy-8-*O*-(methyl 5-acetoamido-8-*O*-tert-butyldimethylsilyl-5-*N*,4-*O*-carbonyl-7-*O*,9-*O*-carbonyl-3,5-dideoxy-8-*O*-(methyl 5-acetoamido-8-*O*-tert-butyldimethylsilyl-5-*N*,4-*O*-carbonyl-7-*O*,9-*O*-carbonyl-3,5-dideoxy-8-*O*-(methyl 5-acetoamido-8-*O*-tert-butyldimethylsilyl-5-*N*,4-*O*-carbonyl-7-*O*,9-*O*-carbonyl-3,5-dideoxy-8-*O*-(methyl 5-acetoamido-8-*O*-tert-butyldimethylsilyl-5-*N*,4-*O*-carbonyl-7-*O*,9-*O*-carbonyl-3,5-dideoxy-D-*glycero*- $\alpha$ -D-*galacto*-2-nonulopyranosylonate)-D-*glycero*- $\alpha$ -D-*galacto*-2-nonulopyranos

A mixture of **30** (226 mg, 0.0860 mmol, 7 (300 mg, 0.516 mmol) and pulverized activated MS-3A (258 mg, 3.00 g/mmol) in dry  $CH_2Cl_2$  (3.44 mL, 40.0 mL/mmol) and dry  $CH_3CN$  (0.860 mL, 10.0 mL/mmol) was stirred at room temperature for 1 h under argon to remove a trace amount of water. Then the reaction mixture was cooled to -78 °C. *N*-iodosuccinimide (155 mg, 0.688 mmol) and trifluoromethanesulfonic acid (7.70 µL, 0.0860 mmol) were added to reaction mixture at -78 °C. After being stirred and warmed up to -65 °C for 5 h, the reaction mixture was neutralized with triethylamine and filtered through a pad of Celite. The filtrate

mixture was poured into a mixture of saturated aq. NaHCO<sub>3</sub> and saturated aq. Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> with cooling. The aqueous layer was extracted with two portions of ethyl acetate. The combined extract was washed with saturated aq. NaHCO<sub>3</sub> and saturated aq. Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> and brine, dried over MgSO<sub>4</sub>, filtered and evaporated *in vacuo*. The residue was purified by column chromatography on silica gel with 80:20 toluene-acetone to give **31** (202 mg, 0.0651 mmol, 76%,  $\alpha$  only).

 $[a]_{p}^{30}$  -9.66 (c 0.196, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  5.41-5.28 (m, 6H), 5.18 (s, 1H), 4.73-4.47 (m, 14H), 4.33-3.84 (m, 59H), 3.60 (dt, 1H, *J* = 6.4 Hz, *J* = 8.4 Hz), 3.28 (dt, 1H, *J* = 6.8 Hz, *J* = 8.4 Hz), 3.09-2.93 (m, 8H), 2.53-2.50 (m, 24H), 2.40-2.23 (m, 6H), 2.15-2.09 (m, 2H), 1.55-1.51 (m, 2H), 1.30-1.27 (m, 10H,), 0.90-0.86 (m, 12H), 0.14 (s, 3H), 0.13 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  172.8, 172.6, 172.2, 168.3, 167.6, 167.2, 167.0, 153.6, 153.5, 149.2, 148.7, 148.3, 148.0, 100.1, 99.9, 99.82, 99.75, 99.3, 82.5, 81.7, 81.3, 80.9, 77.4, 76.7, 76.4, 76.1, 74.7, 74.6, 74.5, 74.3, 70.6, 70.1, 69.2, 66.1, 66.0, 65.6, 62.4, 58.9, 58.6, 54.5, 54.0, 53.8, 35.7, 34.7, 34.1, 31.9, 29.6, 29.4, 29.2, 25.9, 25.6, 24.9, 24.8, 22.7, 17.9, 14.2, -4.44, -4.73 ; IR (KBr) 2956, 2856, 1799, 1749, 1292, 1230, 1174, 1133, 1100, 1039 (cm<sup>-1</sup>). HRMS (ESI-TOF) Calcd for C<sub>96</sub>H<sub>155</sub>N<sub>8</sub>O<sub>65</sub> [M+H]<sup>2+</sup> 2459.9070, found 2459.9069.

Octyl 5-acetoamido-8-(5-acetoamido-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-acetoamide-8-(5-aceto

To a solution of **31** (10.2 mg, 3.29 µmol) in CH<sub>3</sub>CN (0.494 mL) was added ethanethiol (12.3 µL, 165 µmol) and K<sub>2</sub>CO<sub>3</sub> (1.36 mg, 9.87 µmol) at room temperature. After being stirred at the same temperature for 1 day, the reaction mixture was poured into ethyl acetate and saturated aq. NH<sub>4</sub>Cl. The aqueous layer was extracted with two portions of ethyl acetate. The combined extract was washed with brine, dried over MgSO<sub>4</sub>, filtered and evaporated *in vacuo*. The residue was dissolved in tetrahydrofuran (0.987 mL) and H<sub>2</sub>O (0.494 mL) was added dimethyldioxirane (1.88 mL, 132 µmol) at room temperature. After being stirred at the same temperature for 6 h, the reaction mixture was evaporated *in vacuo*. The residue was dissolved to tetrahydrofuran (0.329 mL) was added tetra-n-butylammonium fluoride (33 µL, 165 µmol) at room temperature. After being stirred at the same temperature for 6 h then a H<sub>2</sub>O (2.00 mL) solution of LiOH  $\cdot$  H<sub>2</sub>O (1.38 mg, 0.0329 mmol) was added to the reaction mixture. After being stirred for 1 day, the residue was purified by size exclusion column chromatography on Sephadex LH-20 eluted with water to give **6** (5.0 mg, 2.02 µmol, 62%).

 $[\alpha]_{D}^{18} + 4.74 (c \ 0.210, H_2O); {}^{1}H \ NMR (400 \ MHz, D_2O) \ \delta \ 4.11-4.00 (m, 14H), 3.83-3.30 (m, 46H), 2.67-2.53 (m, 8H), 1.98-1.93 (m, 24H), 1.67-1.62 (m, 7H), 1.51-1.45 (m, 3H), 1.17 (bs, 10H), 0.76-0.74 (m, 3H); {}^{13}C \ NMR (100 \ MHz, D_2O) \ \delta \ 175.0, 174.9, 173.5504 ({}^{3}J_{C1,H-3ax} = 5.8 \ Hz), 173.4872 ({}^{3}J_{C1,H-3ax} = 5.5 \ Hz), 173.2216 ({}^{3}J_{C1,H-3ax} = 5.2 \ Hz), 173.1341 ({}^{3}J_{C1,H-3ax} = 4.3 \ Hz), 101.2, 101.1, 101.0, 100.3, 78.0, 77.8, 73.8, 73.5, 73.2, 72.6, 71.7, 69.3, 69.1,$ 

68.4, 68.2, 65.2, 62.6, 61.5, 61.2, 52.4, 51.7, 40.5, 39.8, 31.1, 28.9, 28.5, 28.3, 25.2, 22.5, 22.3, 22.04, 22.00, 13.4; **IR** (KBr) 3400, 2938, 1620, 1563, 1440, 1402, 1074, 1038 (cm<sup>-1</sup>); **HRMS** (ESI-TOF) Calcd for C<sub>96</sub>H<sub>155</sub>N<sub>8</sub>O<sub>65</sub> [M+H]<sup>+</sup> 2459.9070, found 2459.9069. N-Ac-carbony-acc.mae

N-Ac-carbony-acc-out.maegz

| MMOD | 0    | 1   | 0  | 0        | 0.0000    | 0.0000    | 0.0000 | 0.0000 |
|------|------|-----|----|----------|-----------|-----------|--------|--------|
| FFLD | 16   | 1   | 0  | 0        | 1.0000    | 0.0000    | 0.0000 | 0.0000 |
| SOLV | 3    | 5   | 0  | 0        | 0.0000    | 0.0000    | 0.0000 | 0.0000 |
| EXNB | 0    | 0   | 0  | 0        | 0.0000    | 0.0000    | 0.0000 | 0.0000 |
| BDCO | 0    | 0   | 0  | 0        | 89.4427 9 | 9999.0000 | 0.0000 | 0.0000 |
| READ | 0    | 0   | 0  | 0        | 0.0000    | 0.0000    | 0.0000 | 0.0000 |
| CRMS | 0    | 0   | 0  | 0        | 0.0000    | 0.5000    | 0.0000 | 0.0000 |
| LMCS | 2000 | 0   | 0  | 0        | 0.0000    | 0.0000    | 3.0000 | 6.0000 |
| NANT | 0    | 0   | 0  | 0        | 0.0000    | 0.0000    | 0.0000 | 0.0000 |
| MCNV | 1    | 5   | 0  | 0        | 0.0000    | 0.0000    | 0.0000 | 0.0000 |
| MCSS | 2    | 0   | 0  | 0        | 21.0000   | 0.0000    | 0.0000 | 0.0000 |
| MCOP | 1    | 0   | 0  | 0        | 0.5000    | 0.0000    | 0.0000 | 0.0000 |
| DEMX | 0    | 833 | 0  | 0        | 21.0000   | 42.0000   | 0.0000 | 0.0000 |
| COMP | 1    | 2   | 3  | 4        | 0.0000    | 0.0000    | 0.0000 | 0.0000 |
| COMP | 5    | 11  | 12 | 13       | 0.0000    | 0.0000    | 0.0000 | 0.0000 |
| COMP | 14   | 15  | 16 | 17       | 0.0000    | 0.0000    | 0.0000 | 0.0000 |
| COMP | 18   | 19  | 23 | 24       | 0.0000    | 0.0000    | 0.0000 | 0.0000 |
| COMP | 28   | 30  | 32 | 35       | 0.0000    | 0.0000    | 0.0000 | 0.0000 |
| COMP | 36   | 37  | 38 | 39       | 0.0000    | 0.0000    | 0.0000 | 0.0000 |
| COMP | 43   | 44  | 45 | 46       | 0.0000    | 0.0000    | 0.0000 | 0.0000 |
| MSYM | 0    | 0   | 0  | 0        | 0.0000    | 0.0000    | 0.0000 | 0.0000 |
| CHIG | 1    | 3   | 4  | <b>5</b> | 0.0000    | 0.0000    | 0.0000 | 0.0000 |
| CHIG | 28   | 30  | 0  | 0        | 0.0000    | 0.0000    | 0.0000 | 0.0000 |
| AUOP | 0    | 0   | 0  | 0        | 100.0000  | 0.0000    | 0.0000 | 0.0000 |
| TORS | 1    | 11  | 0  | 0        | 0.0000    | 180.0000  | 0.0000 | 0.0000 |
| TORS | 1    | 12  | 0  | 0        | 0.0000    | 180.0000  | 0.0000 | 0.0000 |
| TORS | 1    | 14  | 0  | 0        | 0.0000    | 180.0000  | 0.0000 | 0.0000 |
| TORS | 2    | 3   | 0  | 0        | 0.0000    | 180.0000  | 0.0000 | 0.0000 |
| TORS | 3    | 4   | 0  | 0        | 0.0000    | 180.0000  | 0.0000 | 0.0000 |
| TORS | 4    | 5   | 0  | 0        | 0.0000    | 180.0000  | 0.0000 | 0.0000 |
| TORS | 4    | 13  | 0  | 0        | 0.0000    | 180.0000  | 0.0000 | 0.0000 |
| TORS | 5    | 11  | 0  | 0        | 0.0000    | 180.0000  | 0.0000 | 0.0000 |
| TORS | 5    | 28  | 0  | 0        | 0.0000    | 180.0000  | 0.0000 | 0.0000 |
| TORS | 13   | 16  | 0  | 0        | 0.0000    | 180.0000  | 0.0000 | 0.0000 |
| TORS | 13   | 37  | 0  | 0        | 0.0000    | 180.0000  | 0.0000 | 0.0000 |
| TORS | 16   | 18  | 0  | 0        | 0.0000    | 180.0000  | 0.0000 | 0.0000 |

| TORS | 28 | 44 | 0    | 0  | 0.0000 | 180.0000 | 0.0000 | 0.0000 |
|------|----|----|------|----|--------|----------|--------|--------|
| TORS | 30 | 32 | 0    | 0  | 0.0000 | 180.0000 | 0.0000 | 0.0000 |
| TORS | 30 | 36 | 0    | 0  | 0.0000 | 180.0000 | 0.0000 | 0.0000 |
| TORS | 32 | 35 | 0    | 0  | 0.0000 | 180.0000 | 0.0000 | 0.0000 |
| TORS | 35 | 45 | 0    | 0  | 0.0000 | 180.0000 | 0.0000 | 0.0000 |
| TORS | 44 | 45 | 0    | 0  | 0.0000 | 180.0000 | 0.0000 | 0.0000 |
| TORC | 24 | 23 | 14   | 15 | 0.0000 | 90.0000  | 0.0000 | 0.0000 |
| RCA4 | 4  | 3  | 18   | 16 | 0.5000 | 2.5000   | 0.0000 | 0.0000 |
| RCA4 | 11 | 1  | 2    | 3  | 0.5000 | 2.5000   | 0.0000 | 0.0000 |
| RCA4 | 44 | 28 | 30   | 32 | 0.5000 | 2.5000   | 0.0000 | 0.0000 |
| CONV | 2  | 0  | 0    | 0  | 0.0500 | 0.0000   | 0.0000 | 0.0000 |
| MINI | 1  | 0  | 2500 | 0  | 0.0000 | 0.0000   | 0.0000 | 0.0000 |

Final report:

 $32\ {\rm unique}\ {\rm conformations}\ {\rm found}$ 

32 minimized with good convergence

| Found     | $2 	ext{ confs within}$ | 1.00 kcal/mol | (4.18 kJ/mol) of glob. min.  |
|-----------|-------------------------|---------------|------------------------------|
| Found     | 8 confs within          | 2.00 kcal/mol | ( 8.37 kJ/mol) of glob. min. |
| Found     | 12  confs within        | 3.00 kcal/mol | (12.55 kJ/mol) of glob. min. |
| Found     | 32  confs within        | 5.00 kcal/mol | (20.92 kJ/mol) of glob. min. |
| Global mi | nimum E = -5            | 3.78 found    | 54 times.                    |

#### Total number of structures processed = 2000

Conformations with poor convergence marked with a  $\ensuremath{^{\star}}$ 

| Conformation | 1 (  | -53.77902 | kJ/mol) was found | 54  times            |
|--------------|------|-----------|-------------------|----------------------|
| Conformation | 2 (  | -49.77315 | kJ/mol) was found | 94 times             |
| Conformation | 3 (  | -48.17202 | kJ/mol) was found | 38 times             |
| Conformation | 4 (  | -47.30288 | kJ/mol) was found | $55 \mathrm{ times}$ |
| Conformation | 5 (  | -46.94449 | kJ/mol) was found | 89 times             |
| Conformation | 6 (  | -46.94240 | kJ/mol) was found | 48 times             |
| Conformation | 7 (  | -45.49200 | kJ/mol) was found | 23 times             |
| Conformation | 8 (  | -45.41121 | kJ/mol) was found | 36 times             |
| Conformation | 9 (  | -44.73383 | kJ/mol) was found | 20 times             |
| Conformation | 10 ( | -43.05256 | kJ/mol) was found | 14 times             |
| Conformation | 11 ( | -42.27179 | kJ/mol) was found | 13 times             |
| Conformation | 12 ( | -42.19503 | kJ/mol) was found | 16 times             |
| Conformation | 13 ( | -40.33296 | kJ/mol) was found | 8 times              |
| Conformation | 14 ( | -40.26244 | kJ/mol) was found | 18 times             |
| Conformation | 15 ( | -39.54509 | kJ/mol) was found | 11 times             |
| Conformation | 16 ( | -39.37304 | kJ/mol) was found | 15 times             |

| Conformation | 17 ( | -39.05172 | kJ/mol) was found | 19 times             |
|--------------|------|-----------|-------------------|----------------------|
| Conformation | 18 ( | -38.94464 | kJ/mol) was found | 36 times             |
| Conformation | 19 ( | -37.47754 | kJ/mol) was found | 2  times             |
| Conformation | 20 ( | -37.36001 | kJ/mol) was found | 14 times             |
| Conformation | 21 ( | -37.25628 | kJ/mol) was found | 6 times              |
| Conformation | 22 ( | -37.08435 | kJ/mol) was found | 16 times             |
| Conformation | 23 ( | -36.41439 | kJ/mol) was found | 2  times             |
| Conformation | 24 ( | -36.29348 | kJ/mol) was found | $25 \mathrm{ times}$ |
| Conformation | 25 ( | -35.92690 | kJ/mol) was found | 7 times              |
| Conformation | 26 ( | -35.73057 | kJ/mol) was found | 20 times             |
| Conformation | 27 ( | -35.42857 | kJ/mol) was found | 6 times              |
| Conformation | 28 ( | -34.75748 | kJ/mol) was found | 20 times             |
| Conformation | 29 ( | -34.47337 | kJ/mol) was found | 12  times            |
| Conformation | 30 ( | -34.38362 | kJ/mol) was found | 10 times             |
| Conformation | 31 ( | -33.60769 | kJ/mol) was found | 13 times             |
| Conformation | 32 ( | -33.34118 | kJ/mol) was found | 23 times             |
|              |      |           |                   |                      |

Global minium

::

 $1\ 3\ 4.099971\ \ -13.921805\ \ 17.070507\ \ 1\ \ 2\ \ 0.15186\ \ 0.15186\ \ "$ ..... "6 A0A0A0 C1 01 2 3 5.401120 -14.324958 16.346828 1 2 -0.23683 -0.23683 " "" c1"6A0A0A0 C2 22 3 3 5.053770 -14.943010 14.999662 1 2 0.12970 0.12970 " "6 A0A0A0 C3 1 3 " " 4 3 4.277761 -13.966146 14.162211 1 2 -0.09711 -0.09711 " " " "6 A0A0A0 C4 14  $5\ 3\ 2.964245\ -13.581290\ 14.893659\ 1\ 2\ 0.16763\ 0.16763$  " "" n1"6 A0A0A0 C5 15 6 41 5.975182 -15.011349 16.969881 1 21 0.11460 0.11460 " " " c2" 1 FFFFFF H6 06 7 41 6.011699 -13.430035 16.215395 1 21 0.11460 0.11460 " " " c3" 1 FFFFFF H7 07 8 41 4.511419 -15.883560 15.145354 1 21 0.09318 0.09318 " " " "1 FFFFFF H8 08 9 41 4.844409 -13.034352 14.068579 1 21 0.09922 0.09922 " " " "1 FFFFFF H9 09  $10\;41\;2.346672\;\text{-}14.477915\;14.984571\;1\;21\;0.11008\;0.11008 \,\text{"}$ "" n3"1 FFFFFF H10 010 11 16 3.328101 -13.095782 16.209991 1 75 -0.31568 -0.31568 " "" c1" 8 FF5757 O11 0 11 "" c1" 8 FF5757 O12 012  $12\ 16\ 4.545465\ \textbf{-}13.177872\ 18.174511\ 1\ 75\ \textbf{-}0.36714\ \textbf{-}0.36714\ \texttt{"}$ 13 25 4.379741 -14.679700 12.876542 1 38 -0.08137 -0.08137 " "" c1" 7 2F2FFF N13 0 13  $14\ 2\ 3.158676\ {}^{-15.140691}\ 17.580839\ 1\ 2\ 0.50316\ 0.50316\ "\ ""\ c1"\ 6\ A0A0A0\ C14\ 0\ 14$  $15\ 15\ 1.925767\ \textbf{-}15.118026\ 17.504467\ 1\ 75\ \textbf{-}0.43853\ \textbf{-}0.43853\ \textbf{"}$ "" c3" 8 FF5757 O15 015 16 2 5.635217 -15.192761 12.839891 1 2 0.57420 0.57420 " " " c1" 6 A0A0A0 C16 0 16 "" c3" 8 FF5757 O17 017 17 15 6.275758 -15.688084 11.913997 1 75 -0.47545 -0.47545 " 18 16 6.136696 -15.138720 14.125523 1 75 -0.32410 -0.32410 " "" c1" 8 FF5757 O18 018 19 3 3.593868 -12.385403 18.886780 1 2 0.15268 0.15268 " " " c1" 6 A0A0A0 C19 3 19 20 41 4.081915 -11.926810 19.746662 1 21 0.04261 0.04261 " "" n2"1 FFFFFF H20 0 20 21 41 2.753200 -12.970366 19.261108 1 21 0.04261 0.04261 " " " "1 FFFFFF H21 021 22 41 3.208049 -11.577389 18.264082 1 21 0.04261 0.04261 " " " "1 FFFFFF H22 0 22 23 16 3.895948 -16.152943 18.086245 1 75 -0.27560 -0.27560 " "" c1" 8 FF5757 O23 023 24 3 3.256570 -17.309084 18.609274 1 2 0.09077 0.09077 " "" c1"6A0A0A0 C24 324 25 41 2.603149 -17.053164 19.445091 1 21 0.05110 0.05110 " "" n2"1 FFFFFF H25 025 26 41 4.004170 -18.015478 18.970642 1 21 0.05110 0.05110 " "1 FFFFFF H26 026 ..... 27 41 2.659766 -17.810383 17.845427 1 21 0.05110 0.05110 " ..... "1 FFFFFF H27 027 28 3 2.080550 -12.472985 14.247098 1 2 0.10317 0.10317 " " " c1" 6 A0A0A0 C28 1 28 "" "1 FFFFFF H29 0 29 29 41 1.903443 -12.758588 13.212569 1 21 0.09533 0.09533 " 30 3 0.679157 -12.324637 14.886811 1 2 0.12053 0.12053 " " " c1" 6 A0A0A0 C30 1 30 31 41 0.264552 -13.308169 15.120224 1 21 0.09055 0.09055 " "1 FFFFFF H31 0 31 ..... 32 3 0.815319 -11.502599 16.176157 1 2 0.07502 0.07502 " " " c1" 6 A0A0A0 C32 2 32 33 41 -0.172779 -11.251958 16.564060 1 21 0.07527 0.07527 " " " "1 FFFFFF H33 033 34 41 1.279771 -12.109942 16.952835 1 21 0.07527 0.07527 " "" "1 FFFFFF H34 034 35 16 1.575880 -10.299946 16.013060 1 75 -0.28529 -0.28529 " "" c1" 8 FF5757 O35 035 36 16 -0.243354 -11.718606 13.995258 1 75 -0.62930 -0.62930 " "" c1" 8 FF5757 O36 1 36 37 2 3.356814 -15.006002 12.044450 1 2 0.41492 0.41492 " " " c1" 6 A0A0A0 C37 0 37 38 15 2.180287 -14.909256 12.388782 1 75 -0.50996 -0.50996 " "" c3" 8 FF5757 O38 038

S-21

| 39 3    | 33.          | 6303  | 850 - | 15.52 | 20701  | 10.6  | 25316 | 512- | 0.09   | 199 -( | 0.0919 | 9 "   |      | c1"  | 6 A   | 0A0. | A0   | C39 | 3   | 39      |
|---------|--------------|-------|-------|-------|--------|-------|-------|------|--------|--------|--------|-------|------|------|-------|------|------|-----|-----|---------|
| 40 4    | <b>1</b> 1 : | 3.929 | 9121  | -16.5 | 56859  | 0 10. | 65080 | 612  | 1 0.0  | )7286  | 0.0728 | 86 "  | " "  | nź   | 2" 1  | FFF  | FFF  | H4  | 0   | 0 40    |
| 41 4    | 11 2         | 2.733 | 3100  | -15.4 | 13859  | 0 10. | 01176 | 512  | 1 0.0  | 7286   | 0.0728 | 36 "  |      |      | "1    | FFFI | FFF  | H4  | 1   | 0 41    |
| 42 4    | <b>1</b> 1 4 | 4.418 | 3171  | -14.8 | 943113 | 3 10. | 14139 | 512  | 1 0.0  | 7286   | 0.0728 | 36 "  |      |      | "1    | FFFI | FFF  | H4  | 2   | $0\ 42$ |
| 43 4    | 12 (         | 0.056 | 6775  | -10.8 | 82600  | 4 13. | 79067 | 812  | 1 0.4  | 2786   | 0.4278 | 86 "  | " "  |      | " 1   | FFF  | FFF  | H4  | 3   | 0 43    |
| 44 1    | 16 2         | 2.797 | 7127  | -11.2 | 2797   | 4 14. | 17267 | 517  | 5 -0.1 | 28921  | -0.289 | 921 " |      | " (  | e1" 8 | 3 FF | 5757 | 04  | 4   | $0\ 45$ |
| $45\ 2$ | 22.          | 5961  | 31 -  | 10.23 | 39813  | 15.1  | 01642 | 120  | ).524  | 36 0.  | 52436  | "     | "" с | 1" ( | 3 A0  | A0A  | 0 C  | 245 | 0 < | >       |
| 46 1    | 15 3         | 3.299 | 9406  | -9.23 | 35904  | 15.0  | 60721 | 1.75 | -0.3   | 8606   | -0.386 | 06 "  |      | c    | 3" 8  | FF5' | 757  | 046 | 6 ( | ) <>    |
| :::     |              |       |       |       |        |       |       |      |        |        |        |       |      |      |       |      |      |     |     |         |



| 180                                                                                                            |                                               | 140 | 120                                                                                                                                                          | 100                                                                                                                                                                                                                                |                                                 | 60                                                                                                              | 40                          |     | qq                               |
|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------|-----|----------------------------------|
| n si di kangangan si na si kata si kat | ni ang sa |     | na filmandaria, e sidensid film eta potot<br>Ing di na | No de la contrata da la contrata da contrata da deservada da contrata da de la contrata da de la contrata da de<br>No de la contrata da contrata da de la contrata da contrata da de la contrata da de la contrata da de la contra | there a garry of spinor has been a factored and | alle of size i have been as a size of the size of t | illi yetan yaka da ili da i |     | n an in so that of his purple of |
|                                                                                                                |                                               |     |                                                                                                                                                              |                                                                                                                                                                                                                                    |                                                 |                                                                                                                 |                             |     |                                  |
|                                                                                                                |                                               |     |                                                                                                                                                              |                                                                                                                                                                                                                                    |                                                 |                                                                                                                 |                             |     |                                  |
|                                                                                                                |                                               |     |                                                                                                                                                              |                                                                                                                                                                                                                                    |                                                 |                                                                                                                 |                             |     |                                  |
|                                                                                                                |                                               |     |                                                                                                                                                              |                                                                                                                                                                                                                                    |                                                 |                                                                                                                 |                             |     |                                  |
| 1                                                                                                              | 12                                            |     |                                                                                                                                                              |                                                                                                                                                                                                                                    |                                                 |                                                                                                                 |                             |     |                                  |
| TBSO                                                                                                           | OH<br>SPh<br>CO₂I                             | Me  |                                                                                                                                                              |                                                                                                                                                                                                                                    |                                                 |                                                                                                                 |                             |     |                                  |
|                                                                                                                |                                               | 1 1 | r                                                                                                                                                            |                                                                                                                                                                                                                                    | I Trr                                           |                                                                                                                 | I                           | ¥ 1 | 1                                |
|                                                                                                                |                                               |     |                                                                                                                                                              |                                                                                                                                                                                                                                    |                                                 |                                                                                                                 |                             |     | , Š                              |























| investigation of the second second | share we get a second | ministryman | and the second se | angan kati kati kati kati kati kati kati kati | adiate constraints | e de la construcción de la constru | energing bear beneficial | ephysicallylowiczan | ed at the second se | understeine sei i  | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | and which and the state of the | node (nastrijujimjen) | second the picture for the | the head of the address of the addre | and the second | and Herentzenergenerge | uina quanta da ang | and productive skirtlen |
|------------------------------------|-----------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------|--------------------------|---------------------|----------------------------------------------------------------------------------------------------------------|--------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------|--------------------|-------------------------|
| 180.0                              | 170.0                 | 160.0       | 150.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 140.0                                         | 130.0              | 120.0                                                                                                          | 110.0                    | 100.0               | 90.0                                                                                                           | 80.0               | 70.0                                                                                        | 60.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50.0                  | 40.0                       | 3(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>D.O</b>                                                                                                       | 20.0                   | 10.0               | 0                       |
|                                    | 172.3423<br>169.1849  |             | 153.7187<br>148.8564                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                    |                                                                                                                |                          | 99.6291             |                                                                                                                | 81.2043<br>77.4811 | 76.8389<br>75.5698<br>74.3466                                                               | 70.2182<br>65.5164<br>61.1740                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 53.6052               |                            | 31.9083<br>29.5383<br>20.2548                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 29.2707<br>25.9603                                                                                               | 24.9359                | 14.1944            |                         |



































































