Supplementary Information

Template-assisted 2D self-assembled chiral Kagomé network for selective adsorption of coronene

Yi Wang^{a,} ‡, Xiaoping Tan,^{b,}‡ Peng Pang^a, Bang Li^a, Xinrui Miao^{a,*} Xiaohong Cheng^{b,*} and Wenli Deng^{a,*}

^aCollege of Materials Science and Engineering, South China University of Technology, Guangzhou 510640,

People's Republic of China.

^bKey Laboratory of Medicinal Chemistry for Natural Resources, Chemistry School of Chemical Science and

Technology, Yunnan University, Kunming 650091, People's Republic of China.

[‡]The authors contributed to this work equally.

*To whom correspondence should be addressed. E-mail: msxrmiao@scut.edu.cn; xhcheng@ynu.edu.cn, and wldeng@scut.edu.cn

1. S1. Experimental section

S1.1 Sample preparation

2TDT-10 (6-(5'-(4-((3,4,5-tris (decyloxy)benzyl)oxy)phenyl)-[2,2'-bithiophen]-5-yl)-1,3,5-triazine-2,4diamine) was home synthesized and reported in previous work.¹ COR, 1-octanoic acid, 1-phenyloctane, *n*tridecane and *n*-tetradecane were purchased from TCI. All these materials were used without further purification. 1-octanoic acid, 1-phenyloctane, *n*-tridecane and *n*-tetradecane functioned as solvent to dissolve 2TDT-10 and COR, and the initial concentrations of 2TDT-10 and COR were controlled around 10^{-4} mol·L⁻¹. The assemblies were prepared by subsequent deposition of the components onto a freshly cleaved HOPG (grade ZYB, Bruker, USA) surface. All experiments were performed at room temperature. 2TDT-10 solution was deposited on HOPG, and then detected by STM. Afterwards, COR dissolved in *n*-tridecane and *n*tetradecane was added to 2TDT-10 self-assembly Kagomé structure followed by STM detection, respectively. The low concentration of COR solution was controlled below 10^{-6} mol·L⁻¹.

S1.2 STM detection

The STM measurements were performed on a Nanoscope IIIa (Bruker, USA). In this work, all the images were recorded using the constant current mode under ambient conditions. As STM probes, mechanically cut Pt/Ir tips (80/20) were used.

S1.3 DFT calculations

DFT calculations were performed using the Gaussian 09 software package. The full-geometry optimization of the molecule was conducted using the hybrid M06-2X method together with the split-valence polarized 6-31+g(d) basis set.

References:

^{1.} C. Liu, H. Gao, T. Li, Y. Xiao and X. H. Cheng, J. Mol. Struct., 2019, 1193, 294-302.

Fig. S1 Scheme of the molecular conformation (the terminal C_{10} chains of 2TDT-10 are replaced by methyl) and corresponding energy. Left: straight *s*-trans conformation; Right: curved *s*-cis conformation. The top and side views of two molecular conformations are presented.

Fig. S2 Large-scale STM image of 2TDT-10 adlayer showing the four-leaved I pattern at the 1-octanoic acid/HOPG interface (90 × 90 nm²; I_t = 430 pA, and V_b = 500 mV. Concentration: 1.5 × 10⁻⁴ M).

Fig. S3 Large-scale (a) and high-resolution (b) STM images of the 2TDT-10 adlayer showing the four-leaved I pattern at the 1-phenyloctane/HOPG interface ($80 \times 80 \text{ nm}^2$; $I_t = 480 \text{ pA}$, and $V_b = 590 \text{ mV}$, $24 \times 24 \text{ nm}^2$; $I_t = 480 \text{ pA}$, and $V_b = 590 \text{ mV}$. Concentration: $1.5 \times 10^{-4} \text{ M}$).

Fig. S4 Large-scale STM image of 2TDT-10 self-assembled nanostructure showing the four-leaved I pattern at the *n*-tridecane/HOPG interface ($110 \times 110 \text{ nm}^2$; $1.0 \times 10^{-4} \text{ M}$; I_t =480 pA, and V_b = 590 mV. Concentration: $1.5 \times 10^{-4} \text{ M}$).

Fig. S5 Large-scale STM image of 2TDT-10 self-assembled nanostructure showing the four-leaved II pattern at the *n*-tridecane/HOPG interface (105 × 105 nm²; I_t =480 pA, and V_b = 590 mV. Concentration: 2.0 × 10⁻⁵ M).

Fig. S6 High-resolution STM image of 2TDT-10 adlayer at the *n*-tridecane/HOPG interface under low solution concentrations. (a) CCW Kagomé pattern: $(30 \times 30 \text{ nm}^2)$; $I_t = 480 \text{ pA}$, and $V_b = 600 \text{ mV}$; Concentration: 4.0×10^{-6} M). (b) Tentative models of CCW Kagomé networks. A unit cell is indicated in green in the model.

Fig. S7 Large-scale STM image of 2TDT-10 self-assembled nanostructure showing the four-leaved I pattern at the *n*-tetradecane/HOPG interface ($67 \times 67 \text{ nm}^2$; $I_t = 490 \text{ pA}$, and $V_b = 580 \text{ mV}$. Concentration: 1.5×10^{-4} M).

Fig. S8 (a,b) High-solution STM images of 2TDT-10 adlyers at the *n*-tetradecane/HOPG interface with a low solution concentration. (a) CW Kagomé pattern: $(24 \times 24 \text{ nm}^2; I_t = 480 \text{ pA}, \text{ and } V_b = 600 \text{ mV}$. Concentration: 4.0×10^{-6} M). Green straight arrows represent the direction of the co-adsorbed *n*-tetradecane. (b) CCW Kagomé pattern: $(24 \times 24 \text{ nm}^2; I_t = 485 \text{ pA}, \text{ and } V_b = 610 \text{ mV}$. Concentration: 4.0×10^{-6} M). (c,d) Tentative

models of monolayer structure with CW and CCW Kagomé networks, respectively. A unit cell is indicated in green for each model. Green straight arrows represent the direction of the co-adsorbed *n*-tetradecane in (a,b).

Fig. S9 (a,b) High-resolution STM images of 2T-10 CCW kagomé structures at the *n*-tetradecane/HOPG interface ($30 \times 30 \text{ nm}^2$; I_t =480 pA, and V_b = 590 mV; Concentration: 4.0×10^{-6} M. $30 \times 30 \text{ nm}^2$; I_t =460 pA, and V_b = 570 mV; Concentration: 4.0×10^{-6} M). Arrow show the different directions of the coadsorbed solvent orientation in the cavities.

Fig. S10 Large-scale STM images of (a) CW and (b) CCW 2TDT-10/COR (host-guest) Kagomé structures at the *n*-tridecane/HOPG interface. (a) $60 \times 60 \text{ nm}^2$; $I_t = 480 \text{ pA}$, and $V_b = 590 \text{ mV}$; Concentration: $2.0 \times 10^{-6} \text{ M}$. (b) $75 \times 75 \text{ nm}^2$; $I_t = 460 \text{ pA}$, and $V_b = 575 \text{ mV}$; Concentration: $2.0 \times 10^{-6} \text{ M}$.

Fig. S11 Large-scale STM image of CW 2TDT-10/COR (host-guest) Kagomé structures at the *n*-tetradecane/HOPG interface. (a) 75×75 nm²; $I_t = 480$ pA and $V_b = 590$ mV. Concentration: 2.0×10^{-6} M).

Fig. S12 (a,b) High-resolution STM images showing CW and CCW Kagomé networks of 2TDT-10/COR nanostructures at the *n*-tridecane/HOPG interface. (a) 30×30 nm²; $I_t = 450$ pA and $V_b = 590$ mV.

Concentration: 2.0 × 10⁻⁶ M. (b) 30 × 30 nm²; I_t = 480 pA and V_b = 570 mV. Concentration: 2.0 × 10⁻⁶ M. (c,d) Tentative models for host-guest CW and CCW Kagomé networks. A unit cell is indicated in green for each model.

livents at the Interface.									
Structural model	Solvent	<i>a</i> (nm)	<i>b</i> (nm)	θ(°)	Nª	Area density, S (nm ² per molecule)			
Four-leaved I	Octanoic acid 1-Phenyloctane <i>n</i> -Tridecane <i>n</i> -Tetradecane	4.5 ± 0.1	6.2 ± 0.1	40 ± 1	4	4.59			
Four-leaved II	<i>n</i> -Tridecane	3.9 ± 0.1	6.2 ± 0.1	50 ± 1	4	4.73			
Kagomé	<i>n</i> -Tridecane	6.1 ± 0.1	6.1 ± 0.1	60 ± 1	6	5.37			

 6.1 ± 0.1

 6.1 ± 0.1

6 (host)

1 (guest)

_

 60 ± 1

Table S1.	Lattice	Parameters	of Molecular	Self-Assembled	Patterns fo	or 2TDT-10	under	Di 🗆 erent
Solvents a	t the Int	erface.						

^aN stands for the number of molecules per unit cell in each structure.

network

Kagomé

(host-guest)

n-Tetradecane

n-Tridecane

n-Tetradecane