Supplementary Information

Rh(III)-Catalyzed C-H Activation of (Hetero)Arenes with

Cyclobutenones via C-C bond Cleavage

Yixin Cui,[†] Dachang Bai,^{*,†} Bingxian Liu, Junbiao Chang,^{*,†} Xingwei Li^{*,†,‡}

 [†]Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
 [‡]School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an 710062, China

Table of Contents

1.	General Information	S2
2.	Optimization Studies	S3
3.	General Procedures	S3
4.	Derivatization Reactions	S4
5.	Mechanism Studies	S8
6.	X-Ray Crystallographic Date	S9
7.	Analytical Data for Products	S10
8.	References	S24
9.	NMR Spectra	S25

1. General Information

All the reactions were carried out under argon atmosphere using standard Schlenk technique or in a argon-filled glove box. The ¹H NMR spectra were recorded on a 400 MHz or 600 MHz NMR spectrometer. The ¹³C NMR spectra were recorded at 100 MHz or 150 MHz. The ¹⁹F NMR spectra were recorded at 376 or 565 MHz. The residual solvent signals were used as references and the chemical shifts were converted to the TMS scale. HRMS data were obtained using a TOF mode. The conversion of starting materials was monitored by thin layer chromatography (TLC), and components were visualized under UV light (254 and 365 nm). Column chromatography was performed on silica gel 300-400 mesh. Unless otherwise noted, all other compounds have been reported in the literature or are commercially available. Commercial reagents were used without further purification. The substrates N-pyridinylisoquinolones ^[11], N-pyrimidylindoles ^[2] and cyclobutenones ^[3] were prepared according to the literature reports.

2. Optimization Studies

10

11

B(OH)₃

B(OH)₃

	+ Fh	C [Cp*RhCl ₂] ₂ , AgS	SbF_6	
4a	2a		5aa	l
Entry	Additive	Solvent	T (°C)	Yield $(\%)^b$
1	CsOAc	TFE	100	10%
2	AcOH	TFE	100	61%
3	PivOH	TFE	100	70%
4	B(OH) ₃	TFE	100	85%
5	Zn(OTf) ₂	TFE	100	N.R
6	K ₂ CO ₃	TFE	100	N.R
7		TFE	100	79%
8	B(OH) ₃	Dioxane	100	29%
9	B(OH) ₃	PhCl	100	18%

Table S1 Optimization studies for the synthesis of 5aa.^a

DCE

TFE

100

80

32%

64%

12°	B(OH) ₃	TFE	100	N.R

^{*a*}Reaction Conditions: **4a** (0.2 mmol), **2a** (0.4 mmol), [Cp*RhCl₂]₂ (4 mol %), AgSbF₆ (16 mol %), additive (0.4 mmol), solvent (2.0 mL) under Argon for 20 h. ^{*b*}Isolated yield. ^{*c*}No rhodium or AgSbF₆ was used.

3. General Procedure

General Procedure A: A mixture of 3-methyl-1-(pyrimidin-2-yl)-1H-indole 1 (0.2 mmol), 3-phenylcyclobut-2-en-1-one 2 (0.4 mmol), $[Cp*RhCl_2]_2$ (0.008 mmol, 4.0 mol %), AgSbF₆ (0.032 mmol, 16.0 mol %), HOAc (0.2 mmol, 1.0 equiv) and DCM (2.0 mL) were charged into a pressure tube under argon. The reaction mixture was stirred at 80 °C for 20 h. After the reaction was complete (20 h), The reaction mixture was filtered through a pad of celite eluting with ethyl acetate, concentrated, and purified by silica gel chromatography (PE : EA = 10:1) to give the indicated product **3**.

General Procedure B: A mixture of *N*-pyridylisoquinolone **4** (0.2 mmol), 3phenylcyclobut-2-en-1-one **2** (0.4 mmol), $[Cp*RhCl_2]_2$ (0.008 mmol, 4.0 mol %), AgSbF₆ (0.032 mmol, 16.0 mol %), B(OH)₃ (0.4 mmol, 2.0 equiv) and TFE (2.0 mL) were charged into a pressure tube under argon. The reaction mixture was stirred at 100 °C for 20 h. The reaction mixture was filtered through a pad of celite eluting with ethyl acetate, concentrated, and purified by silica gel chromatography (PE : EA = 3:1) to give the indicated product **5**.

4. Derivatization

4.1 Scale-Up Synthesis of 5aa.

A mixture of N-pyridylisoquinolone **4a** (666.0 mg, 3.0 mmol), 3-phenylcyclobut-2-en-1-one **2a** (864.0 mg, 6.0 mmol), [Cp*RhCl₂]₂ (74.2 mg, 0.12 mmol, 4.0 mol %), AgSbF₆ (164.6 mg, 0.48 mmol, 16.0 mol %), B(OH)₃ (360.0 mg, 6.0 mmol, 2.0 equiv) and TFE (30 mL) were charged into a pressure tube under argon. The reaction mixture was stirred at 100 °C for 20 h. After the solvent was removed under reduced pressure, the residue was purified by silica gel chromatography (PE:EA = 3:1) to give the indicated product **5aa** as a yellow solid. (613 mg, 56% yield). ¹H NMR (600 MHz, CDCl₃) δ 8.39 (d, *J* = 7.9 Hz, 1H), 8.36 (d, *J* = 4.7 Hz, 1H), 7.82 – 7.76 (m, 2H), 7.68 – 7.63 (m, 1H), 7.59 – 7.51 (m, 2H), 7.43 – 7.38 (m, 2H), 7.34 – 7.29 (m, 3H), 7.21 – 7.15 (m, 1H), 7.07 (s, 1H), 6.76 (s, 1H), 2.36 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 187.2, 162.2, 156.7, 152.1, 148.4, 142.2, 141.8, 137.4, 135.1, 133.3, 129.6, 129.2, 128.6, 128.6, 127.5, 127.2, 126.5, 124.0, 122.8, 122.7, 111.5, 18.6. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₄H₁₉N₂O₂⁺ 367.1441, Found: 367.1440.

4.2 Reduction of 3aa

To a solution of **3aa** (70.0 mg, 0.2 mmol) in anhydrous dichloromethane (2 mL) was added LiAlH₄ (0.06 mmol, 1.0 M THF solution, 0.3 equiv) at 0 °C. After stirring for 0.5 h at the same temperature, the reaction was quenched with H₂O and extracted with dichloromethane. The organic layer was washed with brine and then dried over anhydrous Na₂SO₄. The solvent was evaporated in vacuo and the residue was purified by chromatography on silica gel (petroleum ether/ethyl acetate = 3:1) to afford **8** (52

mg, 73% yield) as yellow oil.¹H NMR (400 MHz, CD_2Cl_2) δ 8.72 (d, J = 4.9 Hz, 2H), 8.34 – 8.27 (m, 1H), 7.54 – 7.46 (m, 1H), 7.25 – 7.12 (m, 2H), 7.12 – 7.04 (m, 4H), 7.00 – 6.94 (m, 2H), 6.51 (d, J = 10.0 Hz, 1H), 5.84 – 5.72 (m, 2H), 2.39 (s, 3H), 1.81 – 1.76 (m, 3H). ¹³C NMR (100 MHz, CD_2Cl_2) δ 158.2, 157.9, 143.2, 137.1, 136.5, 136.3, 130.3, 130.2, 128.0, 126.9, 125.6, 124.2, 122.0, 119.0, 116.8, 115.6, 114.3, 63.6, 15.9, 9.2. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₃H₂₂N₃O⁺ 356.1757, Found: 356.1757.

4.3 The cyclization reaction

A mixture of *N*-pyrimidinylindole **6a** (39.0 mg, 0.2 mmol), 3-phenylcyclobut-2-en-1one **2a** (57.0 mg, 0.4 mmol), Cp*Rh(OAc)₂ (6.0 mg, 0.016 mmol, 8.0 mol %), Zn(OTf)₂ (145.2 mg, 0.4 mmol, 2.0 equiv) and TFE (2.0 mL) were charged into a pressure tube under argon. The reaction mixture was stirred at 100 °C for 20 h. After the solvent was removed under reduced pressure, the residue was purified by silica gel chromatography (PE:EA = 3:1) to give the indicated product **10** as a White solid (37 mg, 54% yield, m.p. 149 – 151 °C). ¹H NMR (600 MHz, CDCl₃) δ 8.85 (d, *J* = 4.8 Hz, 2H), 8.57 (d, *J* = 8.6 Hz, 1H), 7.52 – 7.47 (m, 1H), 7.47 – 7.43 (m, 1H), 7.40 – 7.37 (m, 2H), 7.33 – 7.28 (m, 2H), 7.25 – 7.20 (m, 3H), 3.32 (d, J = 17.8 Hz, 1H), 3.24 (d, J = 17.8 Hz, 1H), 1.98 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 190.5, 158.5, 157.3, 156.8, 146.0, 143.9, 137.7, 128.6, 128.4, 126.6, 126.1, 123.7, 122.9, 122.3, 117.7, 116.1, 60.7, 42.1, 27.6. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₂H₁₈N₃O⁺ 340.1444, Found: 340.1444.

5. Mechanism Studies.

5.1 H/D exchange experiments:

A mixture of **4a** (44.4 mg, 0.2 mmol, 1.0 equiv), **2a** (57.6 mg, 0.4 mmol, 2.0 equiv), $[Cp*RhCl_2]_2(5.0 \text{ mg}, 0.008 \text{ mmol}, 4.0 \text{ mol} \%)$, AgSbF₆ (11.6mg, 0.032mmol, 16.0 mol %), B(OH)₃ (24.7 mg, 0.4 mmol, 2.0 equiv) and CD₃OD (10.0 equiv) were added into a tube. DCE (2.0 mL) was added and the mixture was stirred at 100 °C for 12 h. Then it was evaporated under reduced pressure and the residue was absorbed onto small amounts of silica. The product **5aa**-*d*₂ and the recovered **4a**-*d*₁ were obtained by flash column chromatography on silica gel (eluent: PE/EA = 3:1).

4a-*d*₁. ¹H NMR (400 MHz, CDCl₃) δ 8.62-8.56 (m, 1H), 8.49 (d, *J* = 8.0 Hz, 1H), 8.03-7.97 (m, 1H), 7.88 – 7.81 (m, 1H), 7.8.-7.75 (m, 0.45H), 7.70-7.64 (m, 1H), 7.58 – 7.48 (m, 2H), 7.32-7.67 (m, 1H), 6.65-6.59 (m, 1H).

5aa-*d*₂. ¹H NMR (400 MHz, CDCl₃) δ 8.47 (d, *J* = 8.0, Hz 1H), 8.45-8.41 (m, 1H), 7.92 – 7.80 (m, 2H), 7.77-7.68 (m, 1H), 7.68 – 7.58 (m, 2H), 7.52 – 7.45 (m, 2H), 7.43-7.35 (m, 3H), 7.28 – 7.23 (m, 1H), 7.14 (s, 1H), 6.86-6.82 (m, 1H), 2.41-6-2.36(m, 1.8H).

Two tubes each was charged with **4a** (22.2 mg, 0.1 mmol, 0.5 equiv) or **4a**-*d* (22.2 mg, 0.1 mmol, 0.5 equiv). To each tube was added **2a** (28.8 mg, 0.2 mmol, 1.0 equiv), $[Cp*RhCl_2]_2$ (2.5 mg, 0.004 mmol, 2.0 mol %), AgSbF₆ (5.5 mg, 0.016 mmol, 8.0 mol %) and TFE (1.0 mL) was added and the mixture was stirred side-by-side in a preheated oil bath at 100 °C for 60 minutes. The reaction mixture was filtered through a pad of celite eluting with ethyl acetate, concentrated, After the solvent was removed under reduced pressure, the residue was purified by silica gel chromatography using PE/EA (3:1) to afford the product. The KIE value was determined to be $k_H/k_D = 1.3$ on the basis of ¹H NMR analysis using dibromomethane as internal standard.

5.3. Procedure for the synthesis of cyclometalated Rh(III) complex 11.

[Cp*RhCl₂]₂ (61.8 mg, 0.1 mmol), *N*-Pyrimidinylindole **1a** (42.0 mg, 0.2 mmol), and sodium acetate (65.6 mg, 8.0 equiv) in DCM (2.0 mL) were added to a schlenk tube under Argon protected. Then, the mixture was stirred at room temperature for overnight. The solution was filtered through Celite and evaporated to dryness. The product was crystallized from DCM/hexane to give **11** (23.0 mg, 48% yield) as orange crystals. ¹H NMR (400 MHz, CD₂Cl₂) δ 8.72 – 8.65 (m, 2H), 8.41 (d, *J* = 8.0, 1H), 7.38 (d, *J* = 7.7, 1H), 7.25 – 7.19 (m, 1H), 7.13 – 7.07 (m, 1H), 7.02 – 6.97 (m, 1H), 2.50 (s, 3H), 1.73 (s, 9H). ¹³C NMR (150 MHz, CD₂Cl₂) δ 159.6, 159.2 (d, *J* = 38.6 Hz), 158.8, 136.8, 135.8, 122.2, 121.7, 120.3, 119.5, 116.0, 114.4, 113.2, 96.8 (d, *J* = 6.6 Hz), 11.7, 9.3.HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₃H₂₅N₃Rh⁺ ([M-Cl]) 446.1098, Found: 446.1098.

6. X-Ray Crystallographic Data

Crystal structure details for Product 3ga (CCDC: 1977120).

Table I Crystal uata allu st	lucture rennement for 5ga.			
Identification code	3ga			
Empirical formula	$C_{23}H_{18}CIN_3O$			
Formula weight	387.87			
Temperature/K	292.90(10)			
Crystal system	orthorhombic			
Space group	Pbca			
a/Å	18.3148(3)			
b/Å	7.58000(10)			
c/Å	27.7096(5)			
α/°	90			
β/°	90			
$\gamma/^{\circ}$	90			
Volume/Å ³	3846.82(11)			
Ζ	8			
$\rho_{calc}g/cm^3$	1.3393			
μ/mm^{-1}	1.901			
F(000)	1623.4			
Crystal size/mm ³	$0.9\times0.3\times0.08$			
Radiation	Cu K α (λ = 1.54184)			
2Θ range for data collection/° 9.66 to 142.86				
Index ranges	-22 \leq h \leq 21, -9 \leq k \leq 8, -33 \leq l \leq 33			
Reflections collected	9900			
Independent reflections	$3667 [R_{int} = 0.0477, R_{sigma} = 0.0378]$			
Data/restraints/parameters	3667/0/255			
Goodness-of-fit on F ²	1.036			
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0869, wR_2 = 0.2393$			
Final R indexes [all data]	$R_1 = 0.0920, wR_2 = 0.2446$			
Largest diff. peak/hole / e Å ⁻³ 0.54/-0.55				

Table 1 Crystal data and structure refinement for 3ga.

7. Analytical Data for All Products.

(E)-1-(3-methyl-1-(pyrimidin-2-yl)-1H-indol-2-yl)-3-phenylbut-2-en-1-one (3aa).

Yellow oil (58 mg, 82% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.70 (d, *J* = 4.8 Hz, 2H), 8.48 – 8.43 (m, 1H), 7.70 – 7.64 (m, 1H), 7.39 – 7.33 (m, 1H), 7.34 – 7.27 (m, 6H), 7.05 (t, *J* = 4.8 Hz, 1H), 6.64 (q, *J* = 1.3 Hz, 1H), 2.54 (s, 3H), 2.53 (d, *J* = 1.3 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 187.1, 157.9, 157.9, 151.7, 142.4, 137.2, 136.4, 130.2, 128.9, 128.5, 126.5, 126.5, 126.2, 122.5, 122.0, 120.5, 116.7, 114.5, 18.3, 9.6. HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₃H₁₉N₃NaO⁺ 376.1420, Found: 376.1421.

(*E*)-1-(3-ethyl-1-(pyrimidin-2-yl)-1H-indol-2-yl)-3-phenylbut-2-en-1-one (3ba). Yellow oil (62 mg, 85% yield). ¹H NMR (600 MHz, CDCl₃) δ 8.69 (d, *J* = 4.8 Hz, 2H), 8.50 (d, *J* = 8.4 Hz, 1H), 7.71 (d, *J* = 7.8 Hz, 1H), 7.45 – 7.41 (m, 1H), 7.32 – 7.26 (m, 6H), 7.04 (t, *J* = 4.8 Hz, 1H), 6.62 (q, *J* = 1.2 Hz, 1H), 3.01 (q, *J* = 7.6 Hz, 2H), 2.53 (d, *J* = 1.2 Hz, 3H), 1.38 (t, *J* = 1.2 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 187.2, 157.9, 151.6, 142.4, 137.2, 135.8, 129.3, 128.9, 128.5, 128.0, 126.4, 126.3, 126.2, 122.5, 120.5, 116.7, 114.7, 18.2, 17.8, 15.6. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₄H₂₂N₃O⁺ 368.1757, Found: 368.1751.

(E)-1-(3-cyclopentyl-1-(pyrimidin-2-yl)-1H-indol-2-yl)-3-phenylbut-2-en-1-one

(3ca). Yellow oil (63 mg, 78% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.59 (d, J = 4.8 Hz, 2H), 8.48 (d, J = 8.4 Hz, 1H), 7.70 (d, J = 7.9 Hz, 1H), 7.36 – 7.28 (m, 1H), 7.24 – 7.14 (m, 6H), 6.94 (t, J = 4.8 Hz, 1H), 6.53 (q, J = 1.3 Hz, 1H), 3.60 (p, J = 9.3 Hz, 1H), 2.42 (d, J = 1.2 Hz, 3H), 2.06 – 1.96 (m, 4H), 1.94 – 1.83 (m, 2H), 1.76 – 1.65 (m, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 188.0, 157.8, 157.7, 151.5, 142.4, 137.4, 136.1, 128.9, 128.5, 128.3, 128.0, 126.9, 126.2, 125.7, 122.07, 121.9, 116.6, 115.0, 36.5, 33.0, 26.8, 18.2. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₇H₂₆N₃O⁺ 408.2070, Found:408.2070.

(*E*)-1-(3-cyclohexyl-1-(pyrimidin-2-yl)-1H-indol-2-yl)-3-phenylbut-2-en-1-one (3da). Yellow oil (51 mg, 60% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.59 (d, *J* = 4.8 Hz, 2H), 8.47 (d, *J* = 8.4 Hz, 1H), 7.85 (d, *J* = 8.0 Hz, 1H), 7.34 – 7.28 (m, 1H), 7.25 – 7.15 (m, 6H), 6.95 (t, *J* = 4.8 Hz, 1H), 6.54 (q, *J* = 1.3 Hz, 1H), 3.17 (tt, *J* = 12.2, 3.7 Hz, 1H), 2.42 (d, *J* = 1.3 Hz, 3H), 2.02 – 1.89 (m, 2H), 1.88 – 1.76 (m, 4H), 1.76 – 1.68 (m, 1H), 1.43 – 1.22 (m, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 188.2, 157.8, 157.7, 151.4, 142.4, 137.2, 135.3, 129.5, 128.9, 128.5, 127.1, 126.2, 125.6, 122.4, 122.0, 116.6, 114.8, 36.3, 32.6, 27.0, 26.3, 18.2. HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₈H₂₇N₃NaO⁺ :444.2046, Found: 444.2044.

(E)-1-(3-benzyl-1-(pyrimidin-2-yl)-1H-indol-2-yl)-3-phenylbut-2-en-1-one (3ea).

Yellow solid (76 mg, 88% yield, m.p. 130 – 132 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.70 (d, *J* = 4.8 Hz, 2H), 8.48 (d, *J* = 8.4 Hz, 1H), 7.57 (d, *J* = 7.9 Hz, 1H), 7.43 – 7.32 (m, 3H), 7.31 – 7.12 (m, 9H), 7.06 (t, *J* = 4.9 Hz, 1H), 6.63 (d, *J* = 1.5 Hz, 1H), 4.35 (s, 2H), 2.49 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 187.0, 157.9, 157.8, 152.2, 142.2, 140.0, 137.1, 137.1, 129.5, 128.9, 128.6, 128.4, 126.3, 126.2, 126.1, 123.5, 122.7, 121.0, 116.9, 114.6, 30.3, 18.2. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₉H₂₄N₃O⁺ 430.1914, Found: 430.1897.

(E)-3-phenyl-1-(3-phenyl-1-(pyrimidin-2-yl)-1H-indol-2-yl)but-2-en-1-one (3fa). Brown oil (18 mg, 21% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.69 (d, J = 4.8 Hz, 2H), 8.28 - 8.19 (m, 1H), 7.57 - 7.53 (m, 1H), 7.53 - 7.49 (m, 2H), 7.44 - 7.37 (m, 2H), 7.36 - 7.30 (m, 2H), 7.22 - 7.11 (m, 4H), 7.08 (t, J = 4.8 Hz, 1H), 6.93 - 6.88 (m, 2H), 6.49 (q, J = 1.2 Hz, 1H), 2.40 (d, J = 1.2 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 186.5, 158.1, 157.8, 153.0, 142.4, 137.2, 136.4, 133.2, 130.5, 128.8, 128.5, 128.2, 127.8, 126.4, 126.3, 126.3, 125.5, 122.8, 121.3, 117.6, 113.8, 18.4. HRMS (ESI-TOF) m/z: H^+ Calcd for $C_{28}H_{22}N_3O^+$ 416.1757, 416.1750. [M Found: +

(*E*)-1-(5-chloro-3-methyl-1-(pyrimidin-2-yl)-1H-indol-2-yl)-3-phenylbut-2-en-1one (3ga). White solid (78 mg, 93% yield, m.p. 138 – 140 °C). ¹H NMR (600 MHz, CDCl₃) δ 8.69 (d, *J* = 4.7 Hz, 2H), 8.41 (d, *J* = 8.9 Hz, 1H), 7.64 – 7.60 (m, 1H), 7.36 (dt, *J* = 9.0, 1.8 Hz, 1H), 7.33-7.29 (m, 5H), 7.09-7.06 (m, 1H), 6.62 (s, 1H), 2.54 (s, 3H), 2.48 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 186.9, 158.0, 157.6, 152.3, 142.3, 137.4, 135.3, 129.0, 128.5, 128.1, 126.4, 126.3, 126.2, 120.5, 119.9, 117.0, 115.9, 110.8, 18.3, 9.4. HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₃H₁₈ClN₃NaO⁺ 410.1031, Found: 410.1018.

(*E*)-1-(3-ethyl-5-methyl-1-(pyrimidin-2-yl)-1H-indol-2-yl)-3-phenylbut-2-en-1one (3ha). Yellow oil (63 mg, 82% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.59 (d, *J* = 4.8 Hz, 2H), 8.30 (d, *J* = 8.5 Hz, 1H), 7.40 (s, 1H), 7.24 – 7.14 (m, 6H), 6.93 (t, *J* = 4.8 Hz, 1H), 6.52 (q, *J* = 1.3 Hz, 1H), 2.89 (q, *J* = 7.5 Hz, 2H), 2.43 (d, *J* = 1.3 Hz, 3H), 2.42 (s, 3H), 1.29 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 187.2, 157.9, 157.8, 151.2, 142.5, 135.9, 135.5, 132.0, 129.5, 128.8, 128.4, 127.9, 127.8, 126.6, 126.2, 120.2, 116.5, 114.5, 21.5, 18.2, 17.8, 15.6. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₅H₂₄N₃O⁺ 382.1914, Found: 382.1898.

(*E*)-1-(3-ethyl-1-(pyrimidin-2-yl)-5-(trifluoromethyl)-1H-indol-2-yl)-3-phenylbut-2-en-1-one (3ia). Yellow oil (71 mg, 82% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.72 (d, *J* = 4.8 Hz, 2H), 8.59 (d, *J* = 8.8 Hz, 1H), 7.97 (s, 1H), 7.66 – 7.62 (m, 1H), 7.35 – 7.28 (m, 5H), 7.11 (t, *J* = 4.8 Hz, 1H), 6.63 (q, *J* = 1.4 Hz, 1H), 3.00 (q, *J* = 7.6 Hz, 2H), 2.55 (d, *J* = 1.4 Hz, 3H), 1.38 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 186.8, 158.1, 157.5, 152.7, 142.2, 138.3, 137.2, 129.1, 128.9, 128.5, 127.1, 126.3, 124.9 (q, *J* = 270.0 Hz), 124.8 (q, *J* = 32.0 Hz), 122.7 (q, *J* = 3.7 Hz), 117.88 (q, *J* = 4.4 Hz), 117.87, 117.3, 115.2, 18.4, 17.7, 15.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -60.9 (S, 3F). HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for $C_{25}H_{20}F_3N_3NaO^+$ 458.1451, Found: 458.1435.

(*E*)-1-(3-ethyl-5-fluoro-1-(pyrimidin-2-yl)-1H-indol-2-yl)-3-phenylbut-2-en-1-one (3ja). Yellow solid (69 mg, 89% yield, m.p. 115 – 117 °C). ¹H NMR (600 MHz, CDCl₃) δ 8.60 (d, *J* = 4.7 Hz, 2H), 8.41 (dd, *J* = 9.0, 4.5 Hz, 1H), 7.28 – 7.16 (m, 6H), 7.10 – 7.04 (m, 1H), 7.00-6.96 (m, 1H), 6.53 (s, 1H), 2.85 (q, *J* = 7.5 Hz, 2H), 2.46 (s, 3H), 1.27 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 187.0, 159.2 (d, *J* = 239.8 Hz), 157.9, 157.6, 152.0, 142.3, 137.1, 133.3, 130.1 (d, *J* = 9.1 Hz), 129.0, 128.5, 127.0 (d, *J* = 4.5 Hz), 126.3, 126.2, 116.8, 116.1 (d, *J* = 8.7 Hz) 114.1 (d, *J* = 25.1 Hz), 105.5 (d, *J* = 24.0 Hz)., 18.3, 17.8, 15.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -120.71 – -120.83 (m, 1F). HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₄H₂₁FN₃O⁺ 386.1663, Found: 386.1659.

(*E*)-1-(6-bromo-3-ethyl-1-(pyrimidin-2-yl)-1H-indol-2-yl)-3-phenylbut-2-en-1-one(3ka). Yellow oil (56 mg, 63% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.65 – 8.64 (m, 1H), 8.63 (d, *J* = 4.8 Hz, 2H), 7.48 (d, *J* = 8.4 Hz, 1H), 7.36 – 7.31 (m, 1H), 7.25 – 7.19 (m, 5H), 7.01 (t, *J* = 4.8 Hz, 1H), 6.53 (q, *J* = 1.3 Hz, 1H), 2.88 (q, *J* = 7.6 Hz, 2H), 2.45 (d, *J* = 1.3 Hz, 3H), 1.27 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 186.8, 158.0, 157.5, 152.1, 142.3, 137.6, 136.1, 129.0, 128.5, 128.1, 127.3, 126.2, 126.1, 125.8, 121.6, 119.9, 117.9, 117.1, 18.3, 17.7, 15.5. HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₄H₂₀BrN₃NaO+ 468.0682, Found: 468.0671.

phenylbut-2-en-1-one (3la).

Yellow oil (51 mg, 71% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.57 (d, *J* = 4.4 Hz, 1H), 7.84 – 7.77 (m, 1H), 7.71 (d, *J* = 7.9 Hz, 1H), 7.58 (d, *J* = 8.4 Hz, 1H), 7.38 – 7.28 (m, 5H), 7.27 – 7.18 (m, 4H), 6.69 (s, 1H), 2.64 (s, 3H), 2.47 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 186.2, 152.8, 152.2, 149.2, 142.3, 138.3, 138.2, 136.5, 129.0, 128.9, 128.5, 126.5, 126.3, 126.2, 121.9, 121.7, 121.5, 121.0, 120.6, 111.4, 18.4, 10.5. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₄H₂₁N₂O⁺ 353.1648, Found: 353.1647.

(*E*)-1-(3-methyl-1-(quinolin-2-yl)-1H-indol-2-yl)-3-phenylbut-2-en-1-one(3ma). Yellow oil (69 mg, 85% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.15 (d, *J* = 8.6 Hz, 1H), 8.02 (d, *J* = 8.4 Hz, 1H), 7.76 – 7.72 (m, 1H), 7.69 – 7.63 (m, 3H), 7.50 – 7.43 (m, 1H), 7.37 (d, *J* = 8.6 Hz, 1H), 7.32 – 7.26 (m, 1H), 7.19 – 7.10 (m, 2H), 7.09 – 7.03 (m, 2H), 6.98 – 6.92 (m, 2H), 6.60 (q, *J* = 1.3 Hz, 1H), 2.60 (s, 3H), 2.37 (d, *J* = 1.3 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 186.1, 153.0, 151.2, 147.0, 142.2, 138.5, 138.1, 136.4, 130.5, 129.1, 128.9, 128.7, 128.5, 128.3, 127.6, 126.7, 126.7, 126.7, 126.1, 122.5, 121.7, 121.1, 119.4, 111.7, 18.5, 10.5. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₈H₂₃N₂O⁺ 403.1805, Found: 403.1797.

(*E*)-1-(3-ethyl-1-(5-methylpyrimidin-2-yl)-1H-indol-2-yl)-3-phenylbut-2-en-1-one (3na). Yellow solid (53 mg, 70% yield, m.p. 103 – 105 °C). ¹H NMR (600 MHz, CDCl₃) δ 8.45 (s, 2H), 8.30 (d, *J* = 8.4 Hz, 1H), 7.63 (d, *J* = 7.8 Hz, 1H), 7.36 – 7.31 (m, 1H), 7.26 – 7.17 (m, 7H), 6.57 (s, 1H), 2.94 (q, *J* = 7.5 Hz, 1H), 2.44 (s, 3H), 2.21 (s, 3H), 1.30 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 187.1, 157.9, 156.1, 151.6, 142.4, 137.3, 135.8, 129.0, 128.9, 128.5, 127.7, 127.2, 126.3, 126.3, 126.2, 122.2, 120.5, 114.2, 18.3, 18.0, 15.6, 15.1. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₅H₂₄N₃O⁺ 382.1914, Found: 382.1898.

(*E*)-1-(3-methyl-1-(pyrimidin-2-yl)-1H-indol-2-yl)-3-(p-tolyl)but-2-en-1-one (3ab). Yellow oil (44 mg, 59% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.69 (d, *J* = 4.8 Hz, 2H), 8.45 (d, *J* = 8.4 Hz, 1H), 7.67 (d, *J* = 7.8 Hz, 1H), 7.46 – 7.39 (m, 1H), 7.33-7.27 (m, 1H), 7.24 – 7.18 (m, 2H), 7.11 (d, *J* = 8.2 Hz, 2H), 7.07 – 7.02 (m, 1H), 6.65 (q, *J* = 1.3 Hz, 1H), 2.54 (s, 3H), 2.52 (d, *J* = 1.3 Hz, 3H), 2.33 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 187.1, 158.0, 157.9, 151.7, 139.4, 139.1, 137.1, 136.5, 130.2, 129.2, 126.4, 126.2, 125.7, 122.5, 121.8, 120.5, 116.7, 114.4, 21.2, 18.2, 9.6. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₄H₂₂N₃O⁺ 368.1757, Found:368.1751.

(*E*)-3-(4-chlorophenyl)-1-(3-methyl-1-(pyrimidin-2-yl)-1H-indol-2-yl)but-2-en-1one (3ac). Yellow oil (54 mg, 70% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.61 (d, *J* = 4.8 Hz, 2H), 8.38 (d, *J* = 8.4 Hz, 1H), 7.60 (d, *J* = 7.8 Hz, 1H), 7.40 – 7.33 (m, 1H), 7.26 – 7.11 (m, 5H), 6.97 (t, *J* = 4.8 Hz, 1H), 6.53 (q, *J* = 1.3 Hz, 1H), 2.46 (s, 3H), 2.41 (d, *J* = 1.3 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 186.8, 158.0, 157.9, 150.0, 140.8, 137.2, 136.2, 134.9, 130.1, 128.7, 127.5, 126.7, 126.6, 122.6, 122.2, 120.5, 116.8, 114.5, 18.1, 9.6. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₃H₁₉ClN₃O⁺ 388.1211, Found: 388.1206.

(*E*)-3-(3-phenylbut-2-enoyl)-2-(pyridin-2-yl)isoquinolin-1(2H)-one (5aa). Yellow solid (60 mg, 83% yield, m.p. 126 – 128 °C). ¹H NMR (600 MHz, CDCl₃) δ 8.39 (d, *J* = 7.9 Hz, 1H), 8.36 (d, *J* = 4.7 Hz, 1H), 7.82 – 7.76 (m, 2H), 7.68 – 7.63 (m, 1H), 7.59 – 7.51 (m, 2H), 7.43 – 7.38 (m, 2H), 7.34 – 7.29 (m, 3H), 7.21 – 7.15 (m, 1H), 7.07 (s, 1H), 6.76 (s, 1H), 2.36 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 187.2, 162.2, 156.7, 152.1, 148.4, 142.2, 141.8, 137.4, 135.1, 133.3, 129.6, 129.2, 128.6, 128.6, 127.5, 127.2, 126.5, 124.0, 122.8, 122.7, 111.5, 18.6. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₄H₁₉N₂O₂⁺ 367.1441, Found: 367.1440.

(*E*)-6-methoxy-3-(3-phenylbut-2-enoyl)-2-(pyridin-2-yl)isoquinolin-1(2H)-one (3ba). Yellow oil (44 mg, 55% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.35 (d, *J* = 4.9

Hz, 1H), 8.30 (d, J = 8.9 Hz, 1H), 7.85 – 7.70 (m, 2H), 7.42 – 7.36(m, 2H), 7.35 – 7.29 (m, 3H), 7.18 – 7.13 (m, 1H), 7.08 (dd, J = 8.9, 2.5 Hz, 1H), 6.99 (s, 1H), 6.93 (d, J = 2.5 Hz, 1H), 6.73 (q, J = 1.3 Hz, 1H), 3.86 (s, 3H), 2.35 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 187.3, 163.5, 161.8, 156.5, 152.1, 148.3, 142.8, 141.8, 137.3, 137.3, 130.7, 129.5, 128.6, 126.4, 124.0, 122.8, 122.7, 120.7, 118.1, 111.2, 108.8, 55.7, 18.6. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₅H₂₁N₂O₃⁺ 397.1547, Found: 397.1547.

(*E*)-6-phenyl-3-(3-phenylbut-2-enoyl)-2-(pyridin-2-yl)isoquinolin-1(2H)-one (5ca). Yellow oil (46 mg, 53% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.45 (d, *J* = 8.7 Hz, 1H), 8.39 – 8.35 (m, 1H), 7.84 –7.74 (m, 4H), 7.66 – 7.58 (m, 2H), 7.48 – 7.29 (m, 8H), 7.22 – 7.16 (m, 1H), 7.13 (s, 1H), 6.78 (q, *J* = 1.3 Hz, 1H), 2.37 (d, *J* = 1.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 187.2, 162.1, 156.7, 152.1, 148.4, 146.1, 142.6, 141.8, 139.6, 137.4, 135.6, 129.6, 129.2, 129.1, 128.6, 128.5, 128.2, 127.5, 126.5, 125.9, 125.6, 124.0, 122.8, 122.8, 111.6, 18.7. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₀H₂₃N₂O₂⁺ 443.1754, Found: 443.1752.

(*E*)-6-chloro-3-(3-phenylbut-2-enoyl)-2-(pyridin-2-yl)isoquinolin-1(2H)-one (5da). Yellow oil (34 mg, 42% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.44 (d, *J* = 4.9 Hz, 1H), 8.40 (d, *J* = 8.5 Hz, 1H), 7.94 – 7.81 (m, 2H), 7.63 (d, *J* = 2.0 Hz, 1H), 7.54 (dd, *J* = 8.5, 2.0 Hz, 1H), 7.49 – 7.44 (m, 2H), 7.42 – 7.37 (m, 3H), 7.29 – 7.24 (m, 1H), 7.02 (s, 1H), 6.79 (q, *J* = 1.3 Hz, 1H), 2.43 (d, *J* = 1.3 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 185.9, 160.5, 156.3, 150.7, 147.4, 142.4, 140.7, 138.8, 136.5, 135.5, 129.3, 128.6, 128.4, 127.6, 125.7, 125.4, 124.3, 122.8, 122.0, 121.4, 108.7, 17.6. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₄H₁₈ClN₂O₂⁺ 401.1051, Found: 401.1051.

(*E*)-6-bromo-3-(3-phenylbut-2-enoyl)-2-(pyridin-2-yl)isoquinolin-1(2H)-one (5ea). Yellow oil (33 mg, 37% yield). ¹H NMR (600 MHz, CDCl₃) δ 8.35 (d, *J* = 4.7 Hz, 1H), 8.23 (d, *J* = 8.6 Hz, 1H), 7.83 – 7.73 (m, 2H), 7.72 (d, *J* = 1.8 Hz, 1H), 7.61 (dd, *J* = 8.6, 1.8 Hz, 1H), 7.41 – 7.27(m, 5H), 7.21 – 7.16 (m, 1H), 6.93 (s, 1H), 6.71 (d, *J* = 1.4 Hz, 1H), 2.35 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 186.9, 161.7, 157.3, 151.7, 148.3, 143.4, 141.7, 137.5, 136.7, 132.2, 130.3, 129.9, 129.7, 128.7, 128.5, 126.5, 125.7, 123.9, 123.0, 122.5, 109.6, 18.7. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₄H₁₈BrN₂O₂⁺ 445.0546, Found: 445.0546.

(*E*)-5-bromo-3-(3-phenylbut-2-enoyl)-2-(pyridin-2-yl)isoquinolin-1(2H)-one(5fa). Green solid (28 mg, 32% yield, m.p. 65 – 67 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.38 (d, *J* = 3.8 Hz, 1H), 8.37 – 8.35 (m, 1H), 7.89 (dd, *J* = 7.8, 1.2 Hz, 1H), 7.85-7.79 (m, 1H), 7.79 - 7.73 (m, 1H), 7.44 – 7.31 (m, 6H), 7.24 – 7.17 (m, 2H), 6.79 (q, *J* = 1.1 Hz, 1H), 2.38 (d, *J* = 1.1 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 187.0, 161.5, 157.6, 151.7, 148.4, 143.1, 141.8, 137.6, 137.1, 134.8, 129.7, 129.5, 128.7, 128.7, 128.1, 126.5, 123.8, 123.0, 122.5, 122.3, 109.3, 18.8. HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₄H₁₇BrN₂NaO₂⁺ 467.0366, Found: 467.0363.

(*E*)-2-(3-methylpyridin-2-yl)-3-(3-phenylbut-2-enoyl)isoquinolin-1(2H)-one(5ga). Yellow solid (45 mg, 59% yield, m.p. 119 – 121 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.46 (d, *J* = 7.9 Hz, 1H), 8.27 – 8.22 (m, 1H), 7.75 – 7.56 (m, 5H), 7.52 – 7.35 (m, 5H), 7.13 (s, 1H), 6.84 (s, 1H), 2.44 (s, 3H), 2.35 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 187.3, 162.3, 156.6, 149.8, 148.5, 142.2, 141.8, 138.1, 135.1, 133.2, 132.5, 129.5, 129.1, 128.6, 128.6, 127.5, 127.2, 126.4, 123.3, 122.9, 111.3, 18.6, 18.1. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₅H₂₁N₂O₂⁺ 381.1598, Found: 381.1599.

(*E*)-6-(3-phenylbut-2-enoyl)-2H-[1,2'-bipyridin]-2-one (5ha). Yellow solid (35 mg, 55% yield), m.p. 88 – 90 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.38 – 8.34 (m, 1H), 7.82-7.75 (m, 1H), 7.72 – 7.67 (m, 1H), 7.41 – 7.28 (m, 6H), 7.23 – 7.16 (m, 1H), 6.69 (dd, J = 9.2, 1.2 Hz, 1H), 6.62-6.57 (m, 2H), 2.33 (d, J = 1.2 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 186.8, 162.0, 157.6, 151.3, 148.6, 147.5, 141.6, 138.9, 137.5, 129.7, 128.6, 126.4, 124.7, 123.7, 123.4, 122.5, 108.7, 18.7. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₀H₁₇N₂O₂⁺ 317.1285, Found: 317.1285.

(*E*)-3-methyl-6-(3-phenylbut-2-enoyl)-2H-[1,2'-bipyridin]-2-one (5ia). Gray solid (43 mg, 65% yield, m.p. 157 – 159 °C) ¹H NMR (400 MHz, CDCl₃) δ 8.37 – 8.33 (m, 1H), 7.81 – 7.73 (m, 1H), 7.70 – 7.64 (m, 1.0 Hz, 1H), 7.37 – 7.26 (m, 5H),, 7.26 – 7.15 (m, 2H), 6.64 – 6.58 (m, 2H), 2.31 (d, *J* = 1.3 Hz, 3H), 2.15 (d, *J* = 1.2 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 186.6, 162.5, 156.9, 151.9, 148.5, 145.0, 141.7, 137.3, 135.6, 134.7, 129.6, 128.6, 126.4, 123.9, 123.1, 122.6, 109.5, 18.6, 17.7. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₁H₁₉N₂O₂⁺ 331.1441, Found: 331.1439.

(*E*)-3-fluoro-6-(3-phenylbut-2-enoyl)-2H-[1,2'-bipyridin]-2-one (5ja). Green solid (56 mg, 83% yield, m.p. 123 – 125 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.47 – 8.40 (m, 1H), 7.92 – 7.84 (m, 1H), 7.80 – 7.73 (d, *J* = 8.0 Hz, 1H), 7.44 – 7.34 (m, 5H), 7.33 –

7.27 (m, 1H), 7.18 (t, J = 8.0 Hz, 1H), 6.71 – 6.65 (m, 2H), 2.39 (d, J = 1.2 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 185.6, 157.9, 155.9 (d, J = 26.4 Hz), 153.8 (d, J = 258.5Hz), 150.6, 148.6, 143.0 (d, J = 5.9 Hz), 141.5, 137.9, 129.8, 128.7, 126.4, 123.7, 123.6, 122.2, 118.8 (d, J = 17.6 Hz), 107.8 (d, J = 6.1 Hz), 18.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -123.15 – -123.28. (m, 1F). HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₀H₁₆FN₂O₂⁺ 335.1190, Found: 335.1190.

(*E*)-2-(pyridin-2-yl)-3-(3-(m-tolyl)but-2-enoyl)isoquinolin-1(2H)-one.(5ab). Yellow oil (40 mg, 53% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.40 (d, *J* = 8.0 Hz, 1H), 8.38 – 8.35 (m, 1H), 7.85 – 7.75 (m, 2H), 7.70 – 7.62 (m, 1H), 7.60 – 7.50 (m, 2H), 7.25 – 7.11 (m, 5H), 7.06 (s, 1H), 6.76 (q, *J* = 1.3 Hz, 1H), 2.35 (d, *J* = 1.3 Hz, 3H), 2.32 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 187.2, 162.2, 157.1, 152.2, 148.4, 142.2, 141.9, 138.3, 137.4, 135.2, 133.3, 130.3, 129.1, 128.6, 128.5, 127.5, 127.2, 127.1, 124.0, 123.6, 122.8, 122.6, 111.39, 21.5, 18.7. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₅H₂₁N₂O₂⁺ 381.1598, Found: 381.1598.

(*E*)-3-(3-(4-fluorophenyl)but-2-enoyl)-2-(pyridin-2-yl)isoquinolin-1(2H)-one (5ac). Yellow solid (37 mg, 48% yield, m.p 124 – 126 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.39 (d, *J* = 8.0 Hz, 1H), 8.37 – 8.33 (m, 1H), 7.84 – 7.74 (m, 2H), 7.6 – 7.61 (m, 1H), 7.59 – 7.50 (m, 2H), 7.41 – 7.34 (m, 2H), 7.20 – 7.14 (m, 1H), 7.05 (s, 1H), 7.03 – 6.95 (m, 2H), 6.71 (q, *J* = 1.2 Hz, 1H), 2.33 (d, *J* = 1.2 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 187.0, 163.5 (d, *J* = 249.8 Hz), 162.1, 155.3, 152.1, 148.4, 142.1,137.8 (d, *J* = 4.1 Hz), 137.4, 135.1, 133.3, 129.2, 128.6, 128.3 (d, *J* = 8.7 Hz), 127.5, 127.2, 124.0, 122.8, 122.6, 115.6 (d, *J* = 21.2 Hz), 111.4, 18.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -111.28 – -

111.41 (m, 1F). HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₄H₁₈FN₂O₂⁺ 385.1347, Found: 385.1347.

(E)-3-(3-(4-chlorophenyl)but-2-enoyl)-2-(pyridin-2-yl)isoquinolin-1(2H)-one

(5ad). Yellow oil (47 mg, 58% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.40 (d, J = 8.0 Hz, 1H), 8.36 (d, J = 4.9 Hz, 1H), 7.85 – 7.75 (m, 2H), 7.70 – 7.63 (m, 1H), 7.60 – 7.51 (m, 2H), 7.37 - 7.25 (m, 4H), 7.23 - 7.14 (m, 1H), 7.05 (s, 1H), 6.72 (q, J = 1.3 Hz, 1H), 2.32 (d, J = 1.3 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 186.0, 161.1, 154.0, 151.0, 147.3, 141.0, 140.0, 136.4, 134.5, 134.0, 132.3, 128.2, 127.8, 127.6, 126.7, 126.5, 126.1, 122.9, 121.9, 121.8, 110.5, 17.4. HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C₂₄H₁₈ClN₂O₂⁺ 401.1051, Found: 401.1027.

(E)-3-(3-(4-bromophenyl)but-2-enoyl)-2-(pyridin-2-yl)isoquinolin-1(2H)-one

(5ae). Yellow oil (54 mg, 61% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.39 (d, J = 8.1 Hz, 1H), 8.36 (d, J = 4.8 Hz, 1H), 7.87 - 7.75 (m, 2H), 7.70 - 7.62 (m, 1H), 7.60 - 7.51 (m, 2H), 7.47 – 7.41 (m, 2H), 7.30 – 7.23 (m, 2H), 7.22 – 7.14 (m, 1H), 7.05 (s, 1H), 6.72 (d, J = 1.5 Hz, 1H), 2.31 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 187.0, 162.1, 155.0, 152.0, 148.3, 142.0, 140.6, 137.4, 135.0, 133.4, 131.8, 129.3, 128.6, 128.0, 127.6, 127.2, 124.0, 123.8, 123.0, 122.8, 111.5, 18.4. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for $C_{24}H_{18}BrN_2O_2^+$ 445.0546, Found: 445.0548.

(E)-3-phenyl-1-(2-(pyrrolidine-1-carbonyl)phenyl)but-2-en-1-one (6). Yellow oil (35 mg, 55% yield),¹H NMR (600 MHz, CDCl₃) δ 7.78-7.75 (m, 1H), 7.59 – 7.56 (m, 2H), 7.55-7.51

(m, 1H), 7.48-7.43 (m, 1H), 7.42 – 7.35 (m, 4H), 7.01 (q, J = 1.3 Hz, 1H), 3.60 (t, J = 6.9 Hz, 2H), 3.15 (t, J = 6.6 Hz, 2H), 2.57 (d, J = 1.3 Hz, 3H), 1.96 – 1.80 (m, 4H).¹³C NMR (100 MHz, CDCl₃) δ 193.07, 169.78, 155.44, 142.28, 138.22, 137.89, 131.68, 129.33, 128.92, 128.64, 127.08, 126.58, 123.43, 48.66, 45.75, 25.93, 24.58, 18.78. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₁H₂₂NO₂⁺ 320.1645, Found: 320.1645.

(*E*)-3-phenyl-1-(2-(pyridin-2-yl)phenyl)but-2-en-1-one (7). Yellow solid (32 mg, 53% yield), m.p. (67 – 69 °C). ¹H NMR (600 MHz, CDCl₃) δ 8.57 (d, *J* = 4.8 Hz, 1H), 7.68-7.63 (m, 1H), 7.62 – 7.57 (m, 2H), 7.54 – 7.37 (m, 3H), 7.27 – 7.10 (m, 4H), 7.10 – 7.01 (m, 2H), 6.31 (s, 1H), 2.41 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 196.19, 158.09, 152.98, 149.37, 142.42, 142.26, 139.31, 136.42, 130.41, 129.52, 128.88, 128.72, 128.50, 128.30, 126.26, 126.03, 123.65, 122.33, 18.38. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₁H₁₈NO⁺, 300.1383, Found: 300.1382.

8. References

- Das, D.; Samanta, R. Iridium(III)-Catalyzed Regiocontrolled Direct Amidation of Isoquinolones and Pyridones. *Adv. Synth. Cata.* 2018, *360*, 379-384.
- (2) Leitch, J. A.; Heron, C. J.; McKnight, J.; Kociok-Köhn, G.; Bhonoahd, Y.; Frost,
 C. G. Ruthenium catalyzed remote C4-selective C-H functionalisation of carbazoles via σ-activation. *Chem. Commun.* 2017, *53*, 13039-13042.
- (3) Qin, Q.; Luo, X.; Wei, J.; Zhu, Y.; Wen, X.; Song, S.; Jiao, N. Acetonitrile Activation: An Effective Two-Carbon Unit for Cyclization. *Angew. Chem. Int. Ed.* 2019, 131, 4420–4424.

.- (PPm)

