Supporting Information

Nickel-Catalyzed Insertions of Vinylidenes into Si-H Bonds

Sourish Biswas, Sudipta Pal and Christopher Uyeda*

Department of Chemistry, Purdue University, West Lafayette, IN 47907, United States

Correspondence: cuyeda@purdue.edu

Supporting Information

1. General Information	S2
2. Reaction Optimization Studies	S3
3. Synthesis and Characterization of 1,1-Dichloroalkene Substrates	S5
4. Substrate Scope Studies and Characterization Data for Si-H insertion Products	S24
5. Hiyama Cross Coupling Product	S35
6. Sequential Hydrosilylation and Vinylidene Si-H Insertion Product	S36
7. Deuterium Isotope Experiments	S38
8. NMR Data for the 1,1-Dichloroalkene Substrates	S42
9. NMR Data for the Si–H Insertion Products	S60
10. NMR Data for the Hiyama Coupling Product	S83
11 . NMR data for the Sequential Hydrosilylation and Vinylidene Si–H Insertion Product	S84
12. NMR data for Deuterium Isotope Experiments	S86
13. References	S88

1. General Information

General considerations. Solvents were degassed and stored over activated 3 Å molecular sieves prior to use. Deuterated solvents were purchased from Cambridge Isotope Laboratories, degassed, and stored over activated 3 Å molecular sieves. Zn powder (325 mesh, 99.9%) was purchased from Strem Chemicals, stored under inert atmosphere, and used without further purification. The (*i*-prNDI)Ni₂(C₆H₆) complex was prepared according to a previously reported procedure.¹ The (±)-*t*-Bu-Quinox ligand was prepared according to a previously reported procedure.² Unless otherwise noted, all 1,1-dichloroalkenes were prepared according to previously reported procedures.³ All other reagents and starting materials were purchased from commercial vendors and used without further purification unless otherwise noted.

Physical methods. ¹H, ¹⁹F and ¹³C{¹H} NMR spectra were collected at room temperature on a Varian INOVA 300 MHz, Bruker AV-III-400, or Bruker AV-III-500 NMR spectrometer. ¹H, ¹⁹F, and ¹³C{¹H} NMR spectra are reported in parts per million relative to tetramethylsilane, using the residual solvent resonances as an internal standard. High-resolution mass data were obtained using a Thermo Scientific LTQ Orbitrap XL mass spectrometer or a Thermo Electron Corporation MAT 95XP-Trap mass spectrometer.

2. Reaction Optimization Studies

General procedure for reaction parameters study. In an N₂-filled glovebox, a 5-mL vial was charged with Ni(DME)Cl₂ (1.1 mg, 0.0050 mmol, 0.050 equiv), (±)-*t*-Bu-Quinox (1.5 mg, 0.0060 mmol, 0.060 equiv), Zn powder (27 mg, 0.40 mmol, 4.0 equiv), and a magnetic stir bar. DMA (0.2 mL) and Et₂O (0.2 mL) were added, and the mixture was stirred for 10 min at room temperature. To this mixture was added a solution containing (5,5-dichloropent-4-en-1-yl)diphenylsilane (32.1 mg, 0.100 mmol, 1.0 equiv) and mesitylene (14 μ L, 0.10 mmol, 1.0 equiv) dissolved in Et₂O (0.4 mL). The reaction was stirred at room temperature for 16 h. The reaction vial was then removed from the glovebox and opened to ambient atmosphere. Et₂O was removed under a stream of N₂. An aliquot of the crude residue was filtered through a short silica pad, eluting with CH₂Cl₂. The filtrate was then concentrated and analyzed by ¹H NMR.

Entry	Deviation from Standard Conditions	Yield
1	none	91%
2	No Zn	0%
3	No Ni(DME)Cl2	0%
4	No (±)- <i>t</i> -Bu-Quinox	0%
5	Mn instead of Zn	85%
6	DMA only instead of Et ₂ O/DMA	36%
7	Et ₂ O only instead of Et ₂ O/DMA	0%

General procedure for ligand effects study. In an N₂-filled glovebox, a 5-mL vial was charged with Ni(DME)Cl₂ (1.1 mg, 0.0050 mmol, 0.050 equiv), Ligand (0.06 equiv), Zn powder (27 mg, 0.40 mmol, 4.0 equiv), and a magnetic stir bar. DMA (0.2 mL) and Et₂O (0.2 mL) were added, and the mixture was stirred for 10 min in ambient temperature. To this mixture was added a solution containing the (5,5-dichloropent-4-en-1-yl)diphenylsilane (32.1 mg, 0.100 mmol, 1.0 equiv) and mesitylene (13.9 μ L, 0.100 mmol, 1.0 equiv) dissolved in Et₂O (0.4 mL). The reaction was stirred at room temperature for 16 h. The reaction vial was then removed from the glovebox and opened to ambient atmosphere. Et₂O was removed under a stream of N₂. An aliquot of the crude residue was filtered through a short silica pad, eluting with CH₂Cl₂. The filtrate was then concentrated and analyzed by ¹H NMR.

Entry	Ligand	Yield
1	3	91%
2	4	50%
3	5	17%
4	6	83%
5	7	45%
6	8	43%
7	S1	71%
8	S2	89%
9	\$3	18%
10	S4	<2%
11	S5	23%
12	\$6	34%

S4

S5

3. Synthesis and Characterization of 1,1-Dichloroalkene Substrates

General procedure A: Synthesis of Silyl Alcohols. According to a previously reported procedure:⁴ In a N₂ filled glovebox, a 20-dram vial is charged with **S3** (0.025 equiv) dissolved in C₆D₆. To this mixture, a solution containing the unsaturated alcohol (1.0 equiv) and diphenylsilane (1.1 equiv) dissolved in C₆D₆ (0.6 M) was added. The reaction mixture was stirred at room temperature and was monitored by ¹H NMR. After full conversion of the unsaturated alcohol, the reaction vial was then removed from the glovebox and opened to ambient temperature. The crude mixture was loaded directly onto a SiO₂ column for purification. Note: the purification must be done as quickly as possible, because the product is susceptible to cyclization.

General procedure B: Alcohol Oxidations. In an oven dried round bottom flask, oxalyl chloride (1.0 equiv) was dissolved in CH₂Cl₂ (0.07 M). The solution was then cooled to -78 °C. To this solution, DMSO (2.0 equiv) was added dropwise. The reaction mixture was stirred for 15 min at -78 °C. To the reaction mixture, the silyl alcohol (1.0 equiv) dissolved in CH₂Cl₂ (2 M) was added dropwise. The reaction mixture was allowed to stir for 30 min at -78 °C. Et₃N (4.0 equiv) was added, and the reaction mixture was warmed to room temperature. After 1 h, the reaction was quenched with a saturated solution of NH₄Cl (aq), and the aqueous mixture was extracted with 3 x 10 mL/mmol with CH₂Cl₂. The combined organic layers were dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The crude product was carried forward to the next step without purification unless otherwise noted.

General Procedure C: Dichlorination of Aldehyde and symmetric ketones. Under N₂ atmosphere, an oven dried 100-mL round bottom flask equipped with a magnetic stir bar was charged with Ph₃P (4.0 equiv) and MeCN (5 mL/mmol). With stirring, a solution containing the aldehyde/ketone (1.0 equiv) and CCl₄ (2.0 equiv) dissolved in MeCN (2 mL/mmol) was added dropwise. Following the addition, the reaction mixture was stirred overnight. The reaction mixture was then quenched with H₂O (15 mL/mmol). The product was extracted with Et₂O (3 x 10 mL/mmol). The combined organic phases were dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The crude material was purified by column chromatography.

General Procedure D. Dichlorination of unsymmetric ketones. According to a previously reported procedure:⁵ Under a N₂ atmosphere, an oven dried round bottom flask was charged with diethyl trichloromethylphosphonate (3.0 equiv) dissolved in anhydrous THF (1.7 M) and Et₂O (1.7 M). The solution was cooled to -115 °C (EtOH and liquid N₂ bath). To the solution, 2.5 M *n*-BuLi in hexanes (3.0 equiv) was added dropwise. After 30 min, a solution of the ketone (1.0 equiv) in Et₂O (1.1 M) was added dropwise. The reaction mixture was stirred for additional 1 h at -115 °C before warming to room temperature. After stirring overnight, the reaction mixture was then quenched using saturated NH₄Cl (aq) and extracted with Et₂O. The combined organic phases were dried over Na₂SO₄ and filtered. The filtrate was evaporated to dryness under reduced pressure. The crude material was purified by column chromatography.

3-(methyl(phenyl)silyl)propan-1-ol (S7): The reaction was conducted according to the general procedure A without modification using prop-2-en-1-ol (350 mg, 6.03 mmol, 1.0 equiv), methylphenylsilane (0.91 mL, 6.6 mmol, 1.1 equiv), and **S3** (110 mg, 0.151 mmol, 0.025 equiv) in C₆D₆ (4 mL). The product was purified by column chromatography (SiO₂, 100% CH₂Cl₂, R_f = 0.4) to provide 3-(methyl(phenyl)silyl)propan-1-ol (544 mg, 50% yield) as a pale yellow liquid.

¹H NMR (300 MHz, CDCl₃) δ 7.59 – 7.49 (m, 2H), 7.42 – 7.32 (m, 3H), 4.38 (h, *J* = 3.6 Hz, 1H), 3.61 (t, *J* = 6.7 Hz, 2H), 1.72 – 1.57 (m, 2H), 1.35 (br s, 1H), 0.92 – 0.79 (m, 2H), 0.39 – 0.34 (m, 3H).

3-(methyl(phenyl)silyl)propanal (S8): The reaction was conducted according to the general procedure B without modification using **S7** (544 mg, 3.02 mmol, 1.0 equiv), oxalyl chloride (0.26 mL, 3.0 mmol, 1.0 equiv), dimethylsulfoxide (0.43 mL, 6.0 mmol, 2.0 equiv), and triethylamine (1.7 mL, 12 mmol, 4.0 equiv) in CH₂Cl₂ (40 mL). The crude product was carried forward without purification.

¹H NMR (400 MHz, CDCl₃) δ 9.74 (t, *J* = 1.5 Hz, 1H), 7.55 – 7.48 (m, 2H), 7.41 – 7.33 (m, 3H), 4.40 (sxt, *J* = 3.6 Hz, 1H), 2.50 – 2.43 (m, 2H), 1.10 (tdd, *J* = 8.2, 3.4, 1.2 Hz, 2H), 0.38 (d, *J* = 3.7 Hz, 3H).

(4,4-dichlorobut-3-en-1-yl)(methyl)(phenyl)silane (S9): The reaction was conducted according to the general procedure C without modification using S8 (178 mg, 1.00 mmol, 1.0 equiv). Isolated yields were determined following column chromatography (SiO₂, 100% hexanes, $R_f = 0.9$) to provide (4,4-dichlorobut-3-en-1-yl)(methyl)(phenyl)silane (98 mg, 38% overall yield over two steps) as a colorless oil.

¹H NMR (500 MHz, CDCl₃) δ 7.59 – 7.43 (m, 2H), 7.42 – 7.29(m, 3H), 5.86 (t, *J* = 7.5 Hz, 1H), 4.40 (h, *J* = 3.6 Hz, 1H), 2.28 (q, *J* = 8.1 Hz, 2H), 1.00 (dtt, *J* = 11.7, 8.2, 3.8 Hz, 2H), 0.43 (d, *J* = 4.0 Hz, 3H).

¹³C{¹H} NMR (126 MHz, CDCl₃) δ 135.5, 134.3, 131.7, 129.5, 128.0, 119.4, 24.6, 12.4, -5.8. HRMS (APCI) (m/z): [M - H]⁺ Calcd for C₁₁H₁₃Cl₂Si: 243.0158; found: 243.0159.

3-(diphenylsilyl)propan-1-ol (S10): The reaction was conducted according to the general procedure A without modification using prop-2-en-1-ol (100 mg, 1.72 mmol, 1.0 equiv), diphenylsilane (0.35 mL, 1.9 mmol, 1.1 equiv) and **S3** (31 mg, 0.043 mmol, 0.025 equiv) in C₆D₆ (3 mL). The product was purified by column chromatography (SiO₂, 100% CH₂Cl₂, R_f = 0.4) to provide 3-(diphenylsilyl)propan-1-ol (153 mg, 37% yield) as a pale yellow viscous liquid.

¹H NMR (300 MHz, C₆D₆) δ 7.55 – 7.51 (m, 4H), 7.21 – 7.27 (m, 6H), 5.08 (t, J = 3.7 Hz, 1H), 3.32 (t, J = 6.5 Hz, 2H), 1.65 – 1.50 (m, 2H), 1.11 – 0.98 (m, 2H).

3-(diphenylsilyl)propanal (S11): The reaction was conducted according to the general procedure B without modification using **S10** (153 mg, 0.631 mmol, 1.0 equiv), oxalyl chloride (0.064 mL, 0.63 mmol, 1.0 equiv), dimethylsulfoxide (0.089 mL, 1.3 mmol, 2.0 equiv) and triethylamine (0.35 mL, 2.5 mmol, 4.0 equiv) in CH₂Cl₂ (10 mL). The crude product was carried forward without purification.

¹H NMR (300 MHz, C₆D₆) δ 9.18 (s, 1H), 7.45 – 7.42(m, 4H), 7.16 – 7.14 (m, 6H), 4.96 (t, *J* = 3.8 Hz, 1H), 2.09 – 1.91 (m, 2H), 1.21 – 1.16 (m, 2H).

(4,4-dichlorobut-3-en-1-yl)diphenylsilane (S12): The reaction was conducted according to the general procedure C without modification using **S11** (240 mg, 1.00 mmol, 1.0 equiv). Isolated yields were determined following column chromatography (SiO₂, 100% hexanes, $R_f = 0.9$) to provide ((4,4-dichlorobut-3-en-1-yl)diphenylsilane (166 mg, 49% overall yield over two steps) as a colorless oil.

¹H NMR (500 MHz, CDCl₃) δ 7.60 – 7.53 (m, 4H), 7.46 – 7.33 (m, 6H), 5.88 (t, *J* = 7.4 Hz, 1H), 4.89 (t, *J* = 3.7 Hz, 1H), 2.36 – 2.26 (m, 2H), 1.31 – 1.24 (m, 3H).

¹³C{¹H} NMR (126 MHz, CDCl₃) δ 135.2, 133.7, 131.6, 130.0, 128.3, 119.8, 24.7, 11.3.

HRMS (APCI) (m/z): [M - H]⁺ Calcd for C₁₆H₁₅Cl₂Si: 305.0315; found: 305.0317.

4-(diphenylsilyl)butan-1-ol (S13): The reaction was conducted according to the general procedure A without modification using but-3-en-1-ol (110 mg, 1.52 mmol, 1.0 equiv), diphenylsilane (0.31 mL, 1.7 mmol, 1.1 equiv) and **S3** (50 mg, 0.038 mmol, 0.025 equiv) in C₆D₆ (3 mL). The product was purified by column chromatography (SiO₂, 100% CH₂Cl₂, R_f = 0.4) to provide 4-(diphenylsilyl)butan-1-ol (257 mg, 66% yield) as a pale yellow viscous liquid.

¹H NMR (400 MHz, CDCl₃) δ 7.66 – 7.50 (m, 4H), 7.48 – 7.31 (m, 6H), 4.88 (t, *J* = 3.6 Hz, 1H), 3.63 (q, *J* = 6.0 Hz, 2H), 1.71 – 1.61 (m, 2H), 1.60 – 1.48 (m, 2H), 1.23 – 1.13 (m, 2H).

4-(diphenylsilyl)butanal (S14): The reaction was conducted according to the general procedure B without modification using **S13** (256 mg, 0.995 mmol, 1.0 equiv), oxalyl chloride (0.080 mL, 1.0 mmol, 1.0 equiv), dimethylsulfoxide (0.1 mL, 2.0 mmol, 2.0 equiv) and triethylamine (0.5 mL, 4.0 mmol, 4.0 equiv) in CH₂Cl₂ (15 mL). The crude product was carried forward without purification.

¹H NMR (400 MHz, CDCl₃) δ 9.73 (t, *J* = 1.7 Hz, 1H), 7.55 (dd, *J* = 7.7, 1.7 Hz, 4H), 7.43 – 7.33 (m, 6H), 4.88 (t, *J* = 3.7 Hz, 1H), 2.50 (td, *J* = 7.2, 1.7 Hz, 2H), 1.86 – 1.73 (m, 2H), 1.23 – 1.13 (m, 2H).

(5,5-dichloropent-4-en-1-yl)diphenylsilane (S15): The reaction was conducted according to the general procedure C without modification using S14 (254 mg, 1.00 mmol, 1.0 equiv). Isolated yields were determined following column chromatography (SiO₂, 100% hexanes, $R_f = 0.9$) to provide (5,5-dichloropent-4-en-1-yl)diphenylsilane (275 mg, 85% overall yield over two steps) as a colorless oil.

¹H NMR (500 MHz, CDCl₃) δ 7.62 – 7.53 (m, 4H), 7.46 – 7.35 (m, 6H), 5.84 (t, *J* = 7.4, 1H), 4.89 (td, *J* = 3.7, 1.3 Hz, 1H), 2.25 (qd, *J* = 7.4, 1.1 Hz, 2H), 1.65 – 1.54 (m, 2H), 1.24 – 1.15 (m, 2H).

¹³C{¹H} NMR (126 MHz, CDCl₃) δ 135.2, 134.2, 129.8, 129.6, 128.2, 120.4, 33.0, 23.4, 12.0.

HRMS (APCI) (m/z): [M - H]⁺ Calcd for C₁₇H₁₇Cl₂Si: 319.0471; found: 319.0476.

5-(diphenylsilyl)pentan-1-ol (S16): The reaction was conducted according to the general procedure A without modification using pent-4-en-1-ol (120 mg, 1.39 mmol, 1.0 equiv), diphenylsilane (0.28 mL, 1.5 mmol, 1.1 equiv) and **S3** (23 mg, 0.034 mmol, 0.025 equiv) in C₆D₆ (2 mL). The product was purified by column chromatography (SiO₂, 100% CH₂Cl₂, R_f = 0.4) to provide 5-(diphenylsilyl)pentan-1-ol (260 mg, 69% yield) as a pale yellow viscous liquid.

¹H NMR (300 MHz, C₆D₆) δ 7.58 – 7.54 (m, 4H), 7.20 – 7.16 (m, 6H), 5.12 (t, J = 3.7 Hz, 1H), 3.38 – 3.34 (m, 2H), 1.50 – 1.45 (m, 2H), 1.33 – 1.26 (m, 4H), 1.14 – 1.05 (m, 2H).

5-(diphenylsilyl)pentanal (S17): The reaction was conducted according to the general procedure B without modification using **S16** (260 mg, 0.961 mmol, 1.0 equiv), oxalyl chloride (0.080 mL, 1.0 mmol, 1.0 equiv), dimethylsulfoxide (0.14 mL, 1.9 mmol, 2.0 equiv) and triethylamine (0.53 mL, 3.8 mmol, 4.0 equiv) in CH₂Cl₂ (10 mL). The crude product was carried forward without purification.

¹H NMR (400 MHz, CDCl₃) δ 9.73 (t, *J* = 1.8 Hz, 1H), 7.57 – 7.55 (m, 4H), 7.42 – 7.32 (m, 6H), 4.87 (t, *J* = 3.6 Hz, 1H), 2.41 (td, *J* = 7.3, 1.9 Hz, 2H), 1.78 – 1.66 (m, 2H), 1.56 – 1.45 (m, 2H), 1.21 – 1.14 (m, 2H).

(6,6-dichlorohex-5-en-1-yl)diphenylsilane (S18): The reaction was conducted according to the general procedure C without modification using S17 (268 mg, 1.00 mmol, 1.0 equiv). Isolated yields were determined following column chromatography (SiO₂, 100% hexanes, $R_f = 0.9$) to provide (6,6-dichlorohex-5-en-1-yl)diphenylsilane (107 mg, 30% overall yield over two steps) as a colorless oil.

¹H NMR (500 MHz, CDCl₃) δ 7.60 – 7.53 (m, 4H), 7.44 – 7.34 (m, 6H), 5.80 (t, *J* = 7.4 Hz, 1H), 4.87 (t, *J* = 3.7 Hz, 1H), 2.21 – 2.12 (m, 2H), 1.52 – 1.44 (m, 4H), 1.20 – 1.11 (m, 2H).

¹³C {¹H} NMR (126 MHz, CDCl₃) δ 135.3, 134.5, 130.0, 129.7, 128.2, 120.0, 31.6, 29.3, 24.1, 12.0.

HRMS (APCI) (m/z): [M - H]⁺ Calcd for C₁₈H₁₉Cl₂Si: 333.0628; found: 333.0631.

5-(diphenylsilyl)-3-(hydroxymethyl)pentanenitrile (S19): The reaction was conducted according to the general procedure A without modification using 3-(hydroxymethyl)pent-4-enenitrile⁶ (238 mg, 2.14 mmol, 1.0 equiv), diphenylsilane (0.44 mL, 2.3 mmol, 1.1 equiv) and **S3** (39 mg, 0.053 mmol, 0.025 equiv) in C₆D₆ (5 mL). The product was purified by column chromatography (SiO₂, 10% EtOAc in CH₂Cl₂, R_f = 0.3) to provide 5-(diphenylsilyl)-3-(hydroxymethyl)pentanenitrile (410 mg, 67% yield) as a deep yellow liquid.

¹H NMR (400 MHz, CDCl₃) δ 7.60 – 7.53 (m, 4H), 7.43 – 7.35 (m, 6H), 4.89 (t, *J* = 3.6 Hz, 1H), 3.71 (dt, *J* = 10.8, 4.2 Hz, 1H), 3.56 (ddd, *J* = 11.0, 6.9, 4.4 Hz, 1H), 2.47 (d, *J* = 6.0 Hz, 2H), 1.93 – 1.82 (m, 2H), 1.59 (ddddd, *J* = 17.2, 13.1, 10.8, 8.9, 6.1 Hz, 2H), 1.20 – 1.10 (m, 2H).

5-(diphenylsilyl)-3-formylpentanenitrile (S20): The reaction was conducted according to the general procedure B without modification using **S19** (410 mg, 1.39 mmol, 1.0 equiv), oxalyl chloride (0.12 mL, 1.4 mmol, 1.0 equiv), dimethylsulfoxide (0.20 mL, 2.8 mmol, 2.0 equiv) and triethylamine (0.77 mL, 5.5 mmol, 4.0 equiv) in CH₂Cl₂ (20 mL). The crude product was carried forward without purification.

¹H NMR (400 MHz, CDCl₃) δ 9.64 (s, 1H), 7.59 – 7.52 (m, 4H), 7.46 – 7.34 (m, 6H), 4.90 (t, *J* = 3.6 Hz, 1H), 2.76 (p, *J* = 6.4 Hz, 1H), 2.69 – 2.45 (m, 2H), 2.08 – 1.80 (m, 2H), 1.28 – 1.06 (m, 2H).

5,5-dichloro-3-(2-(diphenylsilyl)ethyl)pent-4-enenitrile (S21): The reaction was conducted according to the general procedure C without modification using **S20** (384 mg, 1.31 mmol, 1.0 equiv), PPh₃ (1.4 g, 5.2 mmol, 4.0 equiv) and CCl₄ (0.20 mL, 3.0 mmol, 2.0 equiv) in MeCN (15 mL). Isolated yields were determined following column chromatography (SiO₂, 10% EtOAc in hexanes, R_f = 0.3) to provide 5,5-dichloro-3-(2-(diphenylsilyl)ethyl)pent-4-enenitrile (250 mg, 50% overall yield over two steps) as a colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 7.55 (dt, *J* = 7.8, 1.5 Hz, 4H), 7.47 – 7.34 (m, 6H), 5.72 (d, *J* = 9.7 Hz, 1H), 4.87 (t, *J* = 3.7 Hz, 1H), 2.92 – 2.76 (m, 1H), 2.42 (d, *J* = 5.8 Hz, 2H), 1.80 – 1.56 (m, 3H), 1.21 – 1.07 (m, 2H).

 $^{13}C\{^{1}H\}$ NMR (101 MHz, CDCl_3) δ 135.1, 133.4, 130.0, 129.8, 128.3, 123.9, 117.5, 39.5, 28.7, 21.9, 9.7.

HRMS (APCI) (m/z): [M - H]⁺ Calcd for C₁₉H₁₈Cl₂NSi: 358.0580; found: 358.0578.

3-(diphenylsilyl)-2-methylpropan-1-ol (S22): The reaction was conducted according to the general procedure A without modification using 2-methylprop-2-en-1-ol (110 mg, 1.52 mmol, 1.00 equiv), diphenylsilane (0.31 mL, 1.7 mmol, 1.1 equiv) and **S3** (28 mg, 0.038 mmol, 0.025 equiv) in C₆D₆ (3 mL). The product was purified by column chromatography (SiO₂, 100% CH₂Cl₂, R_f = 0.4) to provide 3-(diphenylsilyl)-2-methylpropan-1-ol (300 mg, 70% yield) as a yellow liquid.

¹H NMR (300 MHz, C₆D₆) δ 7.95 – 7.33 (m, 4H), 7.25 – 7.16 (m, 6H), 5.17 (t, J = 4.1 Hz, 1H), 3.26 – 3.16 (m, 2H), 1.35 – 1.27 (m, 1H), 1.00 – 0.94 (m, 5H).

3-(diphenylsilyl)-2-methylpropanal (S23): The reaction was conducted according to the general procedure B without modification using **S22** (300 mg, 1.17 mmol, 1.0 equiv), oxalyl chloride (0.1 mL, 1 mmol, 1 equiv), dimethylsulfoxide (0.17 mL, 2.3 mmol, 2.0 equiv) and triethylamine (0.65 mL, 4.7 mmol, 4.0 equiv) in CH₂Cl₂ (10 mL). The crude product was carried forward without purification.

¹H NMR (400 MHz, CDCl₃) δ 9.60 (d, *J* = 1.3 Hz, 1H), 7.59 – 7.56 (m, 4H), 7.48 – 7.29 (m, 6H), 4.99 – 4.97 (m, 1H), 2.52 – 2.43 (m, 1H), 1.66 – 1.57 (m, 2H), 1.16 (d, *J* = 7.1 Hz, 3H).

(4,4-dichloro-2-methylbut-3-en-1-yl)diphenylsilane (S24): The reaction was conducted according to the general procedure C without modification using S23 (254 mg, 1.00 mmol, 1.0 equiv). Isolated yields were determined following column chromatography (SiO₂, 100% hexanes, $R_f = 0.9$) to provide (4,4-dichloro-2-methylbut-3-en-1-yl)diphenylsilane (119 mg, 35% overall yield over two steps) as a colorless oil.

¹H NMR (500 MHz, CDCl₃) δ 7.61 – 7.53 (m, 4H), 7.45 – 7.33 (m, 6H), 5.69 (d, *J* = 9.6 Hz, 1H), 4.92 (t, *J* = 4.0 Hz, 1H), 2.86 – 2.73 (m, 1H),1.30 (ddq, *J* = 11.3, 7.5, 3.6 Hz, 2H), 1.10 (d, *J* = 6.7 Hz, 3H).

 $^{13}C\{^{1}H\}$ NMR (126 MHz, CDCl_3) δ 136.8, 135.2, 134.3, 134.0, 129.8 , 129.8, , 128.2, 128.2, 118.7, 31.7, 22.8, 20.6.

HRMS (APCI) (m/z): [M - H]⁺ Calcd for C₁₇H₁₇Cl₂Si: 319.0471; found: 319.0470.

4-(diphenylsilyl)butan-2-ol (S25): The reaction was conducted according to the general procedure A without modification using but-3-en-2-ol (500 mg, 6.93 mmol, 1.0 equiv), diphenylsilane (1.4 mL, 7.6 mmol, 1.1 equiv) and **S3** (126 mg, 0.173 mmol, 0.025 equiv) in C₆D₆ (10 mL). The product was purified by column chromatography (SiO₂, 100% CH₂Cl₂, R_f = 0.4) to provide 4-(diphenylsilyl)butan-2-ol (900 mg, 51% yield) as a pale yellow viscous liquid.

¹H NMR (300 MHz, C₆D₆) δ 7.61 – 7.51 (m, 4H), 7.22 – 7.21 (m, 6H), 5.11 (t, *J* = 3.5 Hz, 1H), 3.61 – 3.48 (m, 1H), 1.61 – 1.53 (m, 2H), 1.39 – 1.29 (m, 2H), 1.04 (d, J = 6.1 Hz, 3H).

4-(diphenylsilyl)butan-2-one (S26): The reaction was conducted according to the general procedure B without modification using **S25** (900 mg, 3.51 mmol, 1.0 equiv), oxalyl chloride (0.30 mL, 3.5 mmol, 1.0 equiv), dimethylsulfoxide (0.50 mL, 7.0 mmol, 2.0 equiv) and triethylamine (2.0 mL, 14 mmol, 4.0 equiv) in CH₂Cl₂ (30 mL). The crude product was carried forward without purification.

¹H NMR (300 MHz, CDCl₃) δ 7.61 – 7.53 (m, 4H), 7.44 – 7.34 (m, 6H), 4.91 (t, *J* = 3.5 Hz, 1H), 2.47 – 2.36 (m, 2H), 1.90 (s, 3H), 1.42 – 1.30 (m, 2H).

(4,4-dichloro-3-methylbut-3-en-1-yl)diphenylsilane (S27): The reaction was conducted according to the general procedure C without modification using S26 (3.2 g, 13 mmol, 1.0 equiv). Isolated yields were determined following column chromatography (SiO₂, 100% hexanes, $R_f = 0.9$) to provide (4,4-dichloro-3-methylbut-3-en-1-yl)diphenylsilane (1.42 g, 32% overall yield over two steps) as a colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 7.64 – 7.60 (m, 4H), 7.4 – 7.39 (m, 6H), 4.95 (t, *J* = 3.7 Hz, 1H), 2.47 – 2.36 (m, 2H), 1.89 (s, 3H), 1.39 – 1.30 (m, 2H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 136.8, 135.2, 133.8, 129.9, 128.2, 114.1, 30.5, 19.6, 10.0.

HRMS (APCI) (m/z): [M - H]⁺ Calcd for C₁₇H₁₇Cl₂Si: 319.0471; found: 319.0479.

5-(diphenylsilyl)-2-phenylpentan-1-ol (S28): The reaction was conducted according to the general procedure A without modification using 2-phenylpent-4-en-1-ol⁷ (500 mg, 3.08 mmol, 1.0 equiv), diphenylsilane (0.63 mL, 3.4 mmol, 1.1 equiv) and **S3** (56 mg, 0.078 mmol, 0.025 equiv) in C₆D₆ (5 mL). The product was purified by column chromatography (SiO₂, 100% CH₂Cl₂, R_f = 0.4) to provide 5-(diphenylsilyl)-2-phenylpentan-1-ol (730 mg, 68% yield) as a yellow liquid.

¹H NMR (300 MHz, CDCl₃) δ 7.48 (dt, *J* = 7.7, 2.1 Hz, 4H), 7.43 – 7.24 (m, 9H), 7.19 – 7.10 (m, 2H), 4.80 (t, *J* = 3.7 Hz, 1H), 3.80 – 3.57 (m, 2H), 2.88 – 2.69 (m, 1H), 1.83 – 1.61 (m, 2H), 1.41 (p, *J* = 7.9 Hz, 2H), 1.30 – 1.03 (m, 2H).

5-(diphenylsilyl)-2-phenylpentanal (S29): The reaction was conducted according to the general procedure B without modification using **S28** (730 mg, 2.10 mmol, 1.0 equiv), oxalyl chloride (0.18 mL, 2.1 mmol, 1.0 equiv), dimethylsulfoxide (0.30 mL, 4.2 mmol, 2.0 equiv) and triethylamine (1.8 ml, 8.4 mmol, 4.0 equiv) in CH₂Cl₂ (30 mL). The crude product was carried forward without purification.

¹H NMR (400 MHz, CDCl₃) δ 9.64 – 9.60 (m, 1H), 7.50 – 7.44 (m, 4H), 7.40 – 7.29 (m, 9H), 7.19 – 6.99 (m, 2H), 4.82 (t, *J* = 3.8 Hz, 1H), 3.18 – 2.95 (m, 1H), 2.19 – 2.09 (m, 2H), 1.86 – 1.77 (m, 2H), 1.20 – 1.10 (m, 2H).

(6,6-dichloro-4-phenylhex-5-en-1-yl)diphenylsilane (S30): The reaction was conducted according to the general procedure C without modification using S29 (684 mg, 1.98 mmol, 1.0 equiv), PPh₃ (2.1 g, 8.0 mmol, 4.0 equiv) and CCl₄ (0.4 mL, 4.0 mmol, 2.0 equiv) in MeCN (20 mL). Isolated yields were determined following column chromatography (SiO₂, 100% hexanes, R_f = 0.9) to provide (6,6-dichloro-4-phenylhex-5-en-1-yl)diphenylsilane (506 mg, 59% overall yield over two steps) as a colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 7.58 – 7.47 (m, 4H), 7.44 – 7.21 (m, 9H), 7.15 (d, *J* = 7.5 Hz, 2H), 5.93 (d, *J* = 9.8 Hz, 1H), 4.84 (t, *J* = 3.7 Hz, 1H), 3.73 – 3.61 (m, 1H), 1.80 (qt, *J* = 10.1, 6.0 Hz, 2H), 1.56 – 1.41 (m, 2H), 1.17 (qq, *J* = 11.4, 7.6, 5.7 Hz, 2H).

 $^{13}C\{^{1}H\}$ NMR (101 MHz, CDCl_3) δ 142.5, 135.2, 134.4, 133.4, 129.7, 128.8, 128.1, 127.4, 126.8, 120.4, 45.8, 38.9, 22.2, 12.0.

HRMS (APCI) (m/z): [M - H]⁺ Calcd for C₂₄H₂₃Cl₂Si: 409.0941; found: 409.0940.

(2-(benzofuran-3-yl)-4-(benzyloxy)butyl)diethylsilane (S31): According to a previously reported procedure:⁸ In a N₂ filled glovebox, a 20-dram vial was charged with [MePDI]FeBr₂⁹ (151 mg, 0.260 mmol, 0.060 equiv), toluene (10 mL), and a magnetic stir bar. To this slurry, diethylsilane (1.1 mL, 8.6 mmol, 2.0 equiv) was added followed by dropwise addition of Sodium triethylborohydride in 1 M THF (0.52 mL, 0.52 mmol, 0.12 equiv). The slurry was converted to a homogenous solution, and bubbling was observed. To the solution, 3-(4-(benzyloxy)but-1-en-2-yl)benzofuran¹⁰ (1.2 g, 4.3 mmol, 1.0 equiv) was added. The reaction mixture was stirred for 22 h. The crude reaction mixture was then removed from the glovebox and poured into hexanes (40 mL). To this solution, Sodium hydrogen sulfate (15 g) was added, and the resulting mixture was filtered through celite. The filtrate was concentrated, and the crude product was purified using column chromatography (SiO₂, 20% CH₂Cl₂ in hexanes, R_f = 0.4) to provide (2-(benzofuran-3-yl)-4-(benzyloxy)butyl)diethylsilane (1.1 g, 70% Yield) as yellow liquid.

¹H NMR (400 MHz, CDCl₃) δ 7.52 – 7.43 (m, 1H), 7.42 – 7.39 (m, 1H), 7.36 – 7.23 (m, 6H), 7.25 – 7.09 (m, 1H), 6.34 (s, 1H), 4.45 (d, *J* = 3.3 Hz, 2H), 3.60 (sept, *J* = 2.9 Hz, 1H), 3.52 – 3.33 (m, 2H), 3.19 (tt, *J* = 8.6, 6.3 Hz, 1H), 2.10 – 1.98 (m, 2H), 1.22 – 1.02 (m, 2H), 0.94 – 0.83 (m, 6H), 0.55 – 0.41 (m, 4H).

3-(benzofuran-3-yl)-4-(diethylsilyl)butan-1-ol (S32): According to a previously reported procedure:¹¹ In an oven dried 100 mL round bottom flask, lithium (265 mg, 38.2 mmol, 14.0 equiv) and naphthalene (28 mg, 0.22 mmol, 0.080 equiv) were combined with anhydrous THF (20 mL). The mixture was sonicated until the solution turned deep green. The reaction mixture was then taken out from the sonicator bath and stirred at –78 °C for 5 min. To this reaction mixture, a solution containing **S31** (1.0 g, 2.7 mmol, 1.0 equiv) dissolved in THF (6 mL) was added dropwise. The resulting reaction mixture was stirred at –78 °C for 5 h. The crude mixture was quenched using saturated solution of NH₄Cl at –78 °C. The solution was then warmed to room temperature and extracted with ether (3 x 20 mL). The combined organic layers were dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The crude product was then purified by column chromatography (SiO₂, 100% CH₂Cl₂, R_f = 0.3) to provide 3-(benzofuran-3-yl)-4-(diethylsilyl)butan-1-ol (241 mg, 32% Yield) as colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 7.53 – 7.45 (m, 1H), 7.44 – 7.39 (m, 1H), 7.24 – 7.15 (m, 2H), 6.42 (s, 1H), 3.69 – 3.62 (m, 2H) 3.61 – 3.53 (m, 1H), 3.24 – 3.11 (m, 1H), 2.08 – 1.96 (m, 2H), 1.84 (br s, 1H), 1.26 – 1.05 (m, 2H), 0.97 – 0.86 (m, 6H), 0.57 – 0.41 (m, 4H).

3-(benzofuran-3-yl)-4-(diethylsilyl)butanal (S33): The reaction was conducted according to the general procedure B without modification using **S32** (237 mg, 0.850 mmol, 1.0 equiv), oxalyl chloride (0.070 mL, 0.90 mmol, 1.0 equiv), dimethylsulfoxide (0.12 mL, 1.7 mmol, 2.0 equiv) and triethylamine (0.50 mL, 3.4 mmol, 4.0 equiv) in CH₂Cl₂ (10 mL). The crude product was carried forward without purification.

¹H NMR (400 MHz, CDCl₃) δ 9.76 (t, *J* = 1.8 Hz, 1H), 7.50 – 7.46 (m, 1H), 7.42 – 7.39 (m, 1H), 7.24 – 7.15 (m, 1H), 6.43 (s, 1H), 3.67 – 3.54 (m, 2H), 2.98 – 2.75 (m, 2H), 1.28 – 1.04 (m, 2H), 0.97 – 0.88 (m, 6H), 0.59 – 0.45 (m, 4H).

(2-(benzofuran-3-yl)-5,5-dichloropent-4-en-1-yl)diethylsilane (S34): The reaction was conducted according to the general procedure C without modification using S33 (200 mg, 0.730 mmol, 1.0 equiv), PPh₃ (765 mg, 2.90 mmol, 4.0 equiv) and CCl₄ (0.14 mL, 1.5 mmol, 2.0 equiv) in MeCN (5 mL). Isolated yields were determined following column chromatography (SiO₂, 100% hexanes, $R_f = 0.7$) to provide (2-(benzofuran-3-yl)-5,5-dichloropent-4-en-1-yl)diethylsilane (156 mg, 54% overall yield over two steps) as a colorless oil.

¹H NMR (500 MHz, CDCl₃) δ 7.48 (dd, J = 40.0, 10.1 Hz, 2H), 7.25 – 7.20 (m, 2H), 6.43 (s, 1H), 5.82 (t, J = 10.2 Hz, 1H), 3.66 (quint, J = 3.2 Hz, 1H), 3.11 (quint, J = 6.7 Hz, 1H), 2.66 – 2.63 (m, 2H), 1.25 – 1.20 (m, 1H), 1.09 – 1.05 (m, 1H), 0.95 (q, J = 8.1 Hz, 6H), 0.57 – 0.50 (m, 4H).

 $^{13}C\{^{1}H\}$ NMR (126 MHz, CDCl_3) δ 161.3, 154.7, 128.6, 127.5, 123.6, 122.7, 121.4, 120.7, 111.0, 102.3, 36.9, 35.3, 15.8, 8.2, 8.2, 2.9, 2.8.

HRMS (APCI) (m/z): [M + H]⁺ Calcd for C₁₇H₂₃C₁₂OSi: 341.0890; found: 341.0896.

2-(2-(diphenylsilyl)ethyl)cyclohexan-1-ol (S35): The reaction was conducted according to the general procedure A without modification using 2-vinylcyclohexan-1-ol¹² (423 mg, 3.35 mmol, 1.0 equiv), diphenylsilane (0.68 mL, 3.7 mmol, 1.1 equiv) and **S3** (61 mg, 0.084 mmol, 0.025 equiv) in C₆D₆ (5 mL). The product was purified by column chromatography (SiO₂, 100% CH₂Cl₂, R_f = 0.4) to provide 2-(2-(diphenylsilyl)ethyl)cyclohexan-1-ol (700 mg, 67% yield) as a deep yellow viscous liquid.

¹H NMR (400 MHz, CDCl₃) δ 7.57 (dt, *J* = 7.7, 1.8 Hz, 4H), 7.42 – 7.32 (m, 6H), 4.86 (t, *J* = 3.6 Hz, 1H), 3.21 (tt, *J* = 9.5, 4.6 Hz, 1H), 2.00 – 1.85 (m, 3H), 1.76 – 1.62 (m, 2H), 1.35 – 1.10 (m, 8H), 1.04 (ddt, *J* = 14.8, 12.1, 3.8 Hz, 1H), 0.97 – 0.82 (m, 1H).

2-(2-(diphenylsilyl)ethyl)cyclohexan-1-one (S36): The reaction was conducted according to the general procedure B without modification using **S35** (700 mg, 2.25 mmol, 1.0 equiv), oxalyl chloride (0.19 mL, 2.2 mmol, 1.0 equiv), dimethylsulfoxide (0.32 mL, 4.5 mmol, 2.0 equiv) and triethylamine (1.2 mL, 9.0 mmol, 4.0 equiv) in CH₂Cl₂ (30 mL). The product was purified by column chromatography (SiO_{2}) 30% CH_2Cl_2 hexanes, = 0.2) provide 2in Rf to ((diphenylsilyl)methyl)cyclohexan-1-one (314 mg, 81% yield) as a white solid.

¹H NMR (500 MHz, CDCl₃) δ 7.60 – 7.52 (m, 4H), 7.42 – 7.32 (m, 6H), 4.86 (t, *J* = 3.6 Hz, 1H), 2.38 – 2.29 (m, 1H), 2.28 – 2.19 (m, 2H), 2.14 – 2.06 (m, 1H), 2.04 – 1.88 (m, 2H), 1.82 (dtd, *J* = 10.7, 4.0, 3.5, 1.8 Hz, 1H), 1.69 – 1.54 (m, 2H), 1.46 – 1.30 (m, 2H), 1.15 (ddt, *J* = 10.1, 6.2, 3.6 Hz, 2H).

(2-(2-(dichloromethylene)cyclohexyl)ethyl)diphenylsilane (S37): The reaction was conducted according to the general procedure D without modification using S36 (420 mg, 1.36 mmol, 1.0 equiv). Diethyl trichloromethylphosphonate (0.77 mL, 4.1 mmol, 3.0 equiv) and 2.5 M *n*-BuLi in hexanes (1.6 mL, 4.0 mmol, 3.0 equiv) in THF (2 mL) and Et₂O (4 mL). Isolated yields were determined following column chromatography (SiO₂, 100% hexanes, R_f = 0.9) to provide (2-(2-(dichloromethylene)cyclohexyl)ethyl)diphenylsilane (332 mg, 65% Yield) as a pale yellow oil.

¹H NMR (500 MHz, CDCl₃) δ 7.60 – 7.52 (m, 4H), 7.44 – 7.35 (m, 6H), 4.86 (t, *J* = 3.7 Hz, 1H), 3.04 (dt, *J* = 10.6, 5.7 Hz, 1H), 2.81 – 2.71 (m, 1H), 1.85 (td, *J* = 13.8, 4.5 Hz, 1H), 1.80 – 1.66 (m, 3H), 1.63 – 1.37 (m, 4H), 1.34 – 1.12 (m, 2H), 1.11 – 1.00 (m, 1H).

 $^{13}C\{^{1}H\}$ NMR (126 MHz, CDCl_3) δ 140.4, 135.2, 134.4, 134.3, 129.8, 128.2, 112.2, 42.0, 30.3, 27.7, 26.8, 26.3, 20.4, 9.7.

HRMS (APCI) (m/z): [M - H]⁺ Calcd for C₂₁H₂₃Cl₂Si: 373.0941; found: 373.0945.

3-(diphenylsilyl)-1-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)propan-1-ol (**S38)**: The reaction was conducted according to the general procedure A without modification using 1-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)prop-2-en-1-ol³ (624 mg, 2.40 mmol, 1.0 equiv), diphenylsilane (0.49 mL, 2.6 mmol, 1.1 equiv) and **S3** (44 mg, 0.060 mmol, 0.025 equiv) in C₆D₆ (4 mL). The product was purified by column chromatography (SiO₂, 10% EtOAc in CH₂Cl₂, R_f = 0.5) to provide 3-(diphenylsilyl)-1-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)phenyl)propan-1-ol (595 mg, 56% yield) as a deep yellow liquid.

¹H NMR (300 MHz, CDCl₃) δ 7.82 – 7.72 (m, 2H), 7.54 – 7.47 (m, 3H), 7.45 – 7.28 (m, 9H), 4.84 (t, *J* = 3.7 Hz, 1H), 4.72 – 4.62 (m, 1H), 1.96 – 1.79 (m, 2H), 1.34 (s, 12H), 1.18 – 0.98 (m, 2H).

3-(diphenylsilyl)-1-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)propan-1-one (**S39**): The reaction was conducted according to the general procedure B without modification using **S38** (595 mg, 1.34 mmol, 1.0 equiv), oxalyl chloride (0.11 mL, 1.3 mmol, 1.0 equiv), dimethylsulfoxide (0.20 mL, 2.7 mmol, 2.0 equiv) and triethylamine (0.74 mL, 5.3 mmol, 4.0 equiv) in CH₂Cl₂ (20 mL). The crude product was carried forward without purification.

¹H NMR (400 MHz, CDCl₃) δ 7.84 (s, 4H), 7.63 – 7.56 (m, 4H), 7.42 – 7.34 (m, 6H), 4.94 (t, *J* = 3.7 Hz, 1H), 3.11 – 3.03 (m, 2H), 1.58 – 1.54 (m, 2H), 1.35 (s, 12H).

(4,4-dichloro-3-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)but-3-en-1-yl) diphenylsilane (S40): The reaction was conducted according to the general procedure D without modification using S39 (211 mg, 0.550 mmol, 1.0 equiv). diethyl trichloromethylphosphonate (0.31 mL, 1.6 mmol, 3.0 equiv) and 2.5 M *n*-BuLi in hexanes (0.70 mL, 1.6 mmol, 3.0 equiv) in THF (1 mL) and Et₂O (1.5 mL). Isolated yields were determined following column chromatography (SiO₂, 15% Et₂O in hexanes, $R_f = 0.5$) to provide (4,4-dichloro-3-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)but-3-en-1-yl)diphenylsilane (165 mg, 59% overall yield over two steps) as a colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, *J* = 8.0 Hz, 2H), 7.51 – 7.45 (m, 4H), 7.35 (dddd, *J* = 14.1, 8.4, 5.9, 2.3 Hz, 8H), 7.20 – 7.15 (m, 2H), 4.83 (t, *J* = 3.7 Hz, 1H), 2.76 – 2.63 (m, 2H), 1.35 (s, 12H), 1.22 – 1.16 (m, 4H).

 $^{13}C\{^{1}H\}$ NMR (101 MHz, CDCl_3) δ 142.0, 141.6, 135.7, 135.2, 134.9, 133.6, 129.9, 128.2, 128.1, 127.8, 84.0, 31.5, 29.9 25.0, 10.1.

HRMS (APCI) (m/z): [M + H]⁺ Calcd for C₂₈H₃₀BCl₂O₂Si: 506.1516; found: 506.1513.

1-(3-chlorophenyl)-5-(diphenylsilyl)pentan-3-ol (S41): The reaction was conducted according to the general procedure A without modification using 5-(3-chlorophenyl)pent-1-en-3-ol¹³ (1.24 g, 6.30 mmol, 1.0 equiv), diphenylsilane (1.3 mL, 6.9 mmol, 1.1 equiv) and **S3** (115 mg, 0.160 mmol, 0.025 equiv) in C₆D₆ (10 mL). The product was purified by column chromatography (SiO₂, 100% CH₂Cl₂, R_f = 0.4) to provide 1-(3-chlorophenyl)-5-(diphenylsilyl)pentan-3-ol (1.3 g, 55% yield) as a deep yellow viscous liquid.

¹H NMR (300 MHz, CDCl₃) δ 7.60 – 7.49 (m, 4H), 7.45 – 7.32 (m, 6H), 7.21 – 7.12 (m, 3H), 7.04 (dt, *J* = 6.9, 1.8 Hz, 1H), 4.87 (t, *J* = 3.6 Hz, 1H), 3.61 – 3.53 (m, 1H), 2.84 – 2.52 (m, 2H), 1.76 – 1.59 (m, 4H), 1.44 – 0.98 (m, 3H).

1-(3-chlorophenyl)-5-(diphenylsilyl)pentan-3-one (S42): The reaction was conducted according to the general procedure B without modification using **S41** (1.30 g, 3.41 mmol, 1.0 equiv), oxalyl chloride (0.29 mL, 3.0 mmol, 1.0 equiv), dimethylsulfoxide (0.48 mL, 6.8 mmol, 2.0 equiv) and triethylamine (1.9 mL, 14 mmol, 4.0 equiv) in CH₂Cl₂ (50 mL). The product was purified by column chromatography (20% Et₂O in hexanes, $R_f = 0.2$) to provide 1-(3-chlorophenyl)-5-(diphenylsilyl)pentan-3-one (1.12 g, 87% yield) as a colorless liquid.

¹H NMR (400 MHz, CDCl₃) δ 7.58 – 7.48 (m, 4H), 7.46 – 7.33 (m, 6H), 7.22 – 7.10 (m, 3H), 7.01 (dt, J = 6.8, 1.8 Hz, 1H), 4.85 (t, J = 3.8 Hz, 1H), 2.82 (t, J = 7.5 Hz, 2H), 2.67 – 2.58 (m, 2H), 2.52 – 2.43 (m, 2H), 1.44 – 1.33 (m, 2H).

(5-(3-chlorophenyl)-3-(dichloromethylene)pentyl)diphenylsilane (S43): The reaction was conducted according to the general procedure D without modification using S42 (500 mg, 1.32 mmol, 1.0 equiv), diethyl trichloromethylphosphonate (0.74 mL, 4.0 mmol, 3.0 equiv) and 2.5 M *n*-BuLi in hexanes (1.6 mL, 4.0 mmol, 3.0 equiv) in THF (2 mL) and Et₂O (4 mL). Isolated yields were determined following column chromatography (SiO₂, 100% hexanes, R_f = 0.9) to provide (5-(3-chlorophenyl)-3-(dichloromethylene)pentyl)diphenylsilane (394 mg, 67% Yield) as a pale yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 7.61 – 7.50 (m, 4H), 7.47 – 7.33 (m, 7H), 7.23 – 7.14 (m, 2H), 7.12 – 7.11 (m, 1H), 7.03 – 6.96 (m, 1H), 4.89 (t, *J* = 3.7 Hz, 1H), 2.68 – 2.58 (m, 2H), 2.54 – 2.43 (m, 2H), 2.38 – 2.27 (m, 2H), 1.36 – 1.21 (m, 3H).

 $^{13}C\{^{1}H\}$ NMR (101 MHz, CDCl₃) δ 143.1, 139.9, 135.7, 135.2, 134.3, 133.6, 130.0, 129.8, 128.6, 128.3, 126.6, 126.5, 35.1, 33.1, 28.7, 10.2.

HRMS (APCI) (m/z): [M - H]⁺ Calcd for C₂₄H₂₂Cl₃Si: 443.0551; found: 443.0542.

2-((diphenylsilyl)methyl)cyclohexan-1-ol (S44): The reaction was conducted according to the general procedure A without modification using 2-methylenecyclohexan-1-ol¹⁴ (198 mg, 1.76 mmol, 1.0 equiv), diphenylsilane (0.36 mL, 1.9 mmol, 1.1 equiv) and **S3** (32 mg, 0.040 mmol, 0.025 equiv) in C₆D₆ (3 mL). The product was purified by column chromatography (SiO₂, 100% CH₂Cl₂, R_f = 0.4) to provide 2-((diphenylsilyl)methyl)cyclohexan-1-ol (392 mg, 75% yield) as a deep yellow viscous liquid.

¹H NMR (300 MHz, CDCl₃) δ 7.62 – 7.52 (m, 4H), 7.43 – 7.29 (m, 6H), 4.98 – 4.93 (m, 1H), 3.18 (dt, *J* = 9.7, 5.3 Hz, 1H), 1.99 – 1.82 (m, 2H), 1.80 – 1.65 (m, 2H), 1.39 – 0.84 (m, 8H)

2-((diphenylsilyl)methyl)cyclohexan-1-one (S45): The reaction was conducted according to the general procedure B without modification using **S44** (390 mg, 1.32 mmol, 1.0 equiv), oxalyl chloride (0.11 mL, 1.3 mmol, 1.0 equiv), dimethylsulfoxide (0.19 mL, 2.6 mmol, 2.0 equiv) and triethylamine (0.73 mL, 5.3 mmol, 4.0 equiv) in CH₂Cl₂ (20 mL). The crude product was carried forward without purification.

¹H NMR (300 MHz, CDCl₃) δ 7.61 – 7.53 (m, 4H), 7.48 – 7.31 (m, 6H), 4.85 (t, *J* = 3.7 Hz, 1H), 2.41 – 1.08 (m, 11H).

((2-(dichloromethylene)cyclohexyl)methyl)diphenylsilane (S46): The reaction was conducted according to the general procedure D without modification using **S45** (330 mg, 1.12 mmol, 1.0 equiv), diethyl trichloromethylphosphonate (0.63 mL, 3.4 mmol, 3.0 equiv) and 2.5 M *n*-BuLi in hexanes (1.3 mL, 3.4 mmol, 3.0 equiv) in THF (2 mL) and Et₂O (3 mL). Isolated yields were determined following column chromatography (SiO₂, 100% hexanes, R_f= 0.9) to provide ((2-(dichloromethylene)cyclohexyl)methyl)diphenylsilane (328 mg, 55% overall yield over two steps) as a pale yellow oil

¹H NMR (500 MHz, CDCl₃) δ 7.58 (ddt, *J* = 7.4, 5.4, 1.6 Hz, 4H), 7.43 – 7.32 (m, 6H), 4.91 (ddd, *J* = 4.9, 3.3, 1.6 Hz, 1H), 3.31 (dd, *J* = 8.8, 4.9 Hz, 1H), 2.68 (dtt, *J* = 14.3, 3.0, 1.4 Hz, 1H), 2.01 (td, *J* = 14.0, 4.6 Hz, 1H), 1.83 – 1.68 (m, 2H), 1.61 (tt, *J* = 14.2, 3.9 Hz, 1H), 1.55 – 1.34 (m, 5H), 1.25 (ttd, *J* = 13.2, 9.2, 8.2, 3.8 Hz, 1H).

 $^{13}C\{^{1}H\}$ NMR (126 MHz, CDCl_3) δ 141.6, 135.2, 135.2, 134.6, 134.1, 129.8, 129.8, 128.1, 111.4, 35.3, 32.3, 27.3, 26.7, 19.9, 15.6.

HRMS (APCI) (m/z): [M + H]⁺ Calcd for C₂₀H₂₃Cl₂Si: 359.0784; found: 359.0779.

1-(benzyloxy)-5-(diphenylsilyl)pentan-3-ol (S47): The reaction was conducted according to the general procedure A without modification using 5-(benzyloxy)pent-1-en-3-ol¹⁵ (837 mg, 4.35 mmol, 1.0 equiv), diphenylsilane (0.89 mL, 4.8 mmol, 1.1 equiv) and **S3** (79 mg, 0.11 mmol, 0.025 equiv) in C₆D₆ (7 mL). The product was purified by column chromatography (SiO₂, 100% CH₂Cl₂, R_f = 0.3) to provide 1-(benzyloxy)-5-(diphenylsilyl)pentan-3-ol (1.1 g, 67% yield) as a yellow viscous liquid.

¹H NMR (400 MHz, CDCl₃) δ 7.59 – 7.53 (m, 4H), 7.40 – 7.28 (m, 11H), 4.87 (t, *J* = 3.7 Hz, 1H), 4.50 (s, 2H), 3.83 – 3.74 (m, 1H), 3.72 – 3.57 (m, 2H), 1.79 – 1.70 (m, 2H), 1.65 – 1.53 (m, 2H), 1.37 – 1.28 (m, 2H), 1.18 – 1.06 (m, 1H).

1-(benzyloxy)-5-(diphenylsilyl)pentan-3-one (S48): The reaction was conducted according to the general procedure B without modification using **S47** (1.1 g, 2.9 mmol, 1.0 equiv), oxalyl chloride (0.25 mL, 2.9 mmol, 1.0 equiv), dimethylsulfoxide (0.40 mL, 5.8 mmol, 2.0 equiv) and triethylamine (1.6 mL, 11 mmol, 4.0 equiv) in CH₂Cl₂ (40 mL). The crude product was carried forward without purification.

¹H NMR (300 MHz, CDCl₃) δ 7.59 – 7.51 (m, 4H), 7.43 – 7.27 (m, 11H), 4.86 (t, *J* = 3.8 Hz, 1H), 4.47 (s, 2H), 3.69 (t, *J* = 6.3 Hz, 2H), 2.63 (t, *J* = 6.3 Hz, 2H), 2.58 – 2.50 (m, 2H), 1.47 – 1.33 (m, 2H).

(5-(benzyloxy)-3-(dichloromethylene)pentyl)diphenylsilane (S49): The reaction was conducted according to the general procedure D without modification using S48 (650 mg, 1.73 mmol, 1.0 equiv). diethyl trichloromethylphosphonate (1.0 mL, 5.2 mmol, 3.0 equiv) and 2.5 M *n*-BuLi in hexanes (2.1 mL, 5.2 mmol, 3.0 equiv) in THF (3 mL) and Et₂O (5 mL). Isolated yields were determined following column chromatography (SiO₂, 5% Et₂O in hexanes, R_f = 0.3) to provide (5-(benzyloxy)-3-(dichloromethylene)pentyl)diphenylsilane (233 mg, 23% overall yield over two steps) as a colorless viscous oil.

¹H NMR (400 MHz, CDCl₃) δ 7.58 – 7.51 (m, 4H), 7.44 – 7.26 (m, 11H), 4.87 (t, *J* = 3.7 Hz, 1H), 4.46 (s, 2H), 3.52 (t, *J* = 6.9 Hz, 2H), 2.57 (t, *J* = 7.0 Hz, 2H), 2.43 – 2.32 (m, 2H), 1.30 (dq, *J* = 13.2, 4.3 Hz, 2H).

 $^{13}C\{^{1}H\}$ NMR (101 MHz, CDCl_3) δ 139.6, 138.3, 138.2, 135.2, 133.8, 129.9, 128.5, 128.2, 127.8, 127.7, 73.0, 67.6, 33.6, 29.1, 10.1.

HRMS (APCI) (m/z): [M - H]⁺ Calcd for C₂₅H₂₅Cl₂OSi: 439.1046; found: 439.1042.

ethyl 3-(dichloromethylene)-8-azabicyclo[3.2.1]octane-8-carboxylate (S50): The reaction was conducted according to the general procedure A without modification using ethyl 3-oxo-8-azabicyclo[3.2.1]octane-8-carboxylate (1.0 g, 5.1 mmol, 1.0 equiv), PPh₃ (5.3 g, 20 mmol, 4.0 equiv) and CCl₄ (1.0 mL, 10 mmol, 2.0 equiv) in MeCN (60 mL). Isolated yields were determined following column chromatography (SiO₂, 10% Et₂O in hexanes, $R_f = 0.2$) to provide ethyl 3-(dichloromethylene)-8-azabicyclo[3.2.1]octane-8-carboxylate (1.3 g, 98% Yield) as a white solid.

¹H NMR (400 MHz, CDCl₃) δ 4.36 (s, 2H), 4.16 (qd, *J* = 7.1, 2.6 Hz, 2H), 2.69 (d, *J* = 16.1 Hz, 2H), 1.94 (s, 2H), 1.69 – 1.48 (m, 3H), 1.27 (td, *J* = 7.1, 2.6 Hz, 3H).

 $^{13}C\{^{1}H\}$ NMR (101 MHz, CDCl_3) δ 154.0, 131.3, 116.7, 61.2, 53.1, 37.8, 37.3, 28.8, 28.7, 28.2, 28.0, 14.9.

HRMS (APCI) (m/z): [M + H]⁺ Calcd for C₁₁H₁₆Cl₂NO₂: 264.0553; found: 264.0555.

4-(dichloromethylene)-1-(3,4-difluorophenyl)piperidine (S51): The reaction was conducted according to the general procedure A without modification using 1-(3,4-difluorophenyl)piperidin-4-one (500 mg, 2.37 mmol, 1.0 equiv). PPh₃ (2.5 g, 9.5 mmol, 4.0 equiv) and CCl₄ (0.5 mL, 4.7 mmol, 2.0 equiv) in MeCN (25 mL). Isolated yields were determined following column chromatography (SiO₂, 100% hexanes, R_f = 0.1) to provide 4-(dichloromethylene)-1-(3,4-difluorophenyl)piperidine (546 mg, 82% Yield) as a white solid.

¹H NMR (400 MHz, CDCl₃) δ 7.10 – 6.98 (m, 1H), 6.70 (ddd, *J* = 13.2, 6.8, 2.9 Hz, 1H), 6.58 (dtd, *J* = 9.0, 3.2, 1.5 Hz, 1H), 3.19 (t, *J* = 5.8 Hz, 4H), 2.62 (t, *J* = 5.8 Hz, 4H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 147.8, 147.9, 147.8, 133.6, 117.5 (d, ²*J*_{CF} = 17.0 Hz), 113.7, 112.0, 105.8 (d, ²*J*_{CF} = 20.0 Hz), 49.7, 30.8.

¹⁹F NMR (376 MHz, CDCl₃) δ -138.0 (ddd, *J* = 22.0, 13.3, 9.0 Hz), -151.0 - -151.2 (m).

HRMS (APCI) (m/z): [M + H]⁺ Calcd for C₁₂H₁₂Cl₂F₂N: 278.0309; found: 278.0311.

8-(dichloromethylene)-1,4-dioxaspiro[4.5]decane (S52): The reaction was conducted according to the general procedure A without modification using 1,4-dioxaspiro[4.5]decan-8-one

(500 mg, 3.20 mmol, 1.0 equiv). PPh₃ (3.4 g, 13 mmol, 4.0 equiv) and CCl₄ (0.62 mL, 6.4 mmol, 2.0 equiv) in MeCN (35 mL). Isolated yields were determined following column chromatography (SiO₂, 5% Et₂O in hexanes, R_f = 0.2) to provide 8-(dichloromethylene)-1,4-dioxaspiro[4.5]decane (635 mg, 89% Yield) as a white solid.

¹H NMR (400 MHz, CDCl₃) δ 3.97 (s, 4H), 2.60 – 2.45 (m, 4H), 1.75 – 1.65 (m, 4H).

 $^{13}C\{^{1}H\}$ NMR (101 MHz, CDCl₃) δ 135.7, 108.1, 64.6, 34.5, 28.7.

HRMS (APCI) (m/z): [M + H]⁺ Calcd for C₉H₁₃Cl₂O₂: 223.0287; found: 223.0284.

4. Substrate Scope Studies and Characterization Data for Si-H insertion Products

General Procedure A for the Intramolecular Si–H insertion reaction. In an N₂-filled glovebox, a 5-mL vial was charged with Ni(DME)Cl₂ (2.2 mg, 0.010 mmol, 0.050 equiv), (\pm) -*t*-Bu-Quinox (3.1 mg, 0.012 mmol, 0.060 equiv), Zn powder (52 mg, 0.80 mmol, 4.0 equiv), and a magnetic stir bar. DMA (0.4 mL) and Et₂O (0.4 mL) were added, and the mixture was stirred for 10 min in ambient temperature. To this mixture was added a solution containing the substrate (0.20 mmol, 1.0 equiv) dissolved in Et₂O (0.8 mL). The reaction was stirred at room temperature. After 16 h, the reaction vial was removed from the glovebox and opened to ambient atmosphere. Et₂O was removed under N₂ stream, and the crude residue was loaded directly onto a SiO₂ column for purification.

General Procedure B for the Intramolecular Si–H insertion reaction. In an N₂-filled glovebox, a 10-mL microwave vial was charged with Ni(DME)Cl₂ (8.8 mg, 0.040 mmol, 0.20 equiv), (\pm) -*t*-Bu-Quinox (12 mg, 0.048 mmol, 0.24 equiv), Zn powder (52 mg, 0.80 mmol, 4.0 equiv), and a magnetic stir bar. DMA (0.4 mL) and Et₂O (0.4 mL) were added, and the mixture was stirred for 10 min in ambient temperature. To this mixture was added a solution containing the substrate (0.20 mmol, 1.0 equiv) dissolved in Et₂O (0.8 mL). The Schlenk tube was sealed inside the glovebox, removed then heated in an oil bath set to 50 °C. After 48 h, the Schlenk tube was opened to ambient atmosphere. Et₂O was removed under N₂ stream, and the crude residue was loaded directly onto a SiO₂ column for purification.

1-methyl-1-phenyl-2,3-dihydro-1H-silole (9): The reaction was conducted according to the general procedure A without modification using (4,4-dichlorobut-3-en-1-yl)(methyl)(phenyl)silane (49 mg, 0.20 mmol, 1.0 equiv). Isolated yields were determined following column chromatography (SiO₂, 100% hexanes, R_f = 0.9).

24 mg isolated (68% yield), colorless oil

¹H NMR (500 MHz, CDCl₃) δ 7.57 – 7.48 (m, 2H), 7.40 – 7.33 (m, 3H), 7.00 (dt, *J* = 10.1, 2.7 Hz, 1H), 6.07 (dt, *J* = 10.1, 2.2 Hz, 1H), 2.62 (tt, *J* = 7.9, 2.4 Hz, 2H), 1.06 – 0.84 (m, 2H), 0.49 (s, 3H). ¹³C {¹H} NMR (126 MHz, CDCl₃) δ 155.2, 138.9, 134.0, 129.2, 128.8, 127.9, 32.4, 8.8, -3.0.

HRMS (APCI) (m/z): [M + H – CH₃]⁺ Calcd for C₁₀H₁₂Si: 161.0937; found: 161.1325.

Ph Ph

1,1-diphenyl-2,3-dihydro-1H-silole (10): The reaction was conducted according to the general procedure without A modification using (4,4-dichlorobut-3-en-1-yl)diphenylsilane (69 mg, 0.20 mmol, 1.0 equiv). Isolated yields were determined following column chromatography (SiO₂, 100% hexanes, R_f = 0.9).

44 mg isolated (93% yield), colorless oil

¹H NMR (500 MHz, CDCl₃) δ 7.59 – 7.52 (m, 4H), 7.43 – 7.34 (m, 6H), 7.12 (dt, *J* = 10.1, 2.7 Hz, 1H), 6.28 (dt, *J* = 10.1, 2.2 Hz, 1H), 2.70 (ddt, *J* = 9.4, 5.0, 2.5 Hz, 2H), 1.27 – 1.19 (m, 2H).

```
<sup>13</sup>C{<sup>1</sup>H} NMR (126 MHz, CDCl<sub>3</sub>) δ 156.5, 136.6, 135.0, 129.5, 128.0, 127.2, 32.5, 8.1.
```

HRMS (APCI) (m/z): [M + H]⁺ Calcd for C₁₆H₁₇Si: 237.1094; found:237.1095.

1,1-diphenyl-1,2,3,4-tetrahydrosiline (2): The reaction was conducted according to the general procedure A without modification using (5,5-dichloropent-4-en-1-yl)diphenylsilane (64 mg, 0.20 mmol, 1.0 equiv). Isolated yields were determined following column chromatography (SiO₂, 100% hexanes, R_f = 0.9).

44 mg isolated (87% yield), colorless oil

¹H NMR (500 MHz, CDCl₃) δ 7.62 – 7.51 (m, 4H), 7.43 – 7.32 (m, 6H), 7.04 (dt, *J* = 14.1, 4.0 Hz, 1H), 6.08 (dt, *J* = 14.1, 2.1 Hz, 1H), 2.29 (tdd, *J* = 6.0, 4.0, 2.0 Hz, 2H), 1.97 – 1.86 (m, 2H), 1.25 – 1.16 (m, 2H).

¹³C {¹H} NMR (126 MHz, CDCl₃) δ 152.0, 136.9, 135.0, 129.4, 128.0, 122.6, 31.1, 21.0, 10.3.

HRMS (APCI) (m/z): [M + H]⁺ Calcd for C₁₇H₁₉Si: 251.1251; found:251.1258.

1,1-diphenyl-2,3,4,5-tetrahydro-1*H***-silepine (11):** The reaction was conducted according to the general procedure A without modification using (6,6-dichlorohex-5-en-1-yl)diphenylsilane (67 mg, 0.20 mmol, 1.0 equiv). Isolated yields were determined following column chromatography (SiO₂, 100% hexanes, R_f = 0.9).

15 mg isolated (29% yield), colorless oil

¹H NMR (400 MHz, CDCl₃) δ 7.59 – 7.46 (m, 4H), 7.37 – 7.35 (m, 6H), 7.01 – 6.88 (m, 1H), 6.06 (d, J = 14.2 Hz, 1H), 2.34 – 2.29 (m, 2H), 1.89 – 1.77 (m, 2H), 1.67 – 1.61 (m, 2H), 1.27 – 1.24 (m, 2H).

 $^{13}C\{^{1}H\}$ NMR (101 MHz, CDCl_3) δ 151.9, 137.4, 134.8, 129.2, 128.0, 126.7, 31.4, 27.8, 23.1, 12.1.

HRMS (APCI) (m/z): [M + H]⁺ Calcd for C₁₈H₂₁Si: 265.1407; found: 265.1405.

2-(1,1-diphenyl-1,2,3,4-tetrahydrosilin-4-yl)acetonitrile (12): The reaction was conducted according to the general procedure A with the following modification using 5,5-dichloro-3-(2-(diphenylsilyl)ethyl)pent-4-enenitrile (72.1 mg, 0.200 mmol, 1.0 equiv), Ni(DME)Cl₂ (4.4 mg, 0.020 mmol, 0.10 equiv), (\pm)-*t*-Bu-Quinox (6.1 mg, 0.024 mmol, 0.12 equiv), Zn powder (52.3 mg, 0.800 mmol, 4.0 equiv). Isolated yields were determined following column chromatography (SiO₂, 10% EtOAc in hexanes, R_f = 0.4).

34 mg isolated (58% yield), pale yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 7.57 – 7.51 (m, 4H), 7.45 – 7.32 (m, 6H), 6.85 (ddd, J = 14.1, 2.6, 1.0 Hz, 1H), 6.27 (ddd, J = 14.0, 2.4, 1.2 Hz, 1H), 2.71 – 2.73 (m, 1H), 2.46 – 2.43 (m, 2H), 2.23 – 2.16 (m, 1H), 1.81 – 1.69 (m, 1H), 1.42 – 1.46 (m, 1H), 1.21 – 1.13 (m, 1H).

 $^{13}C\{^{1}H\}$ NMR (101 MHz, CDCl_3) δ 151.3, 135.0, 134.9, 129.8, 128.2, 128.2, 126.5, 118.6, 37.5, 26.9, 24.1, 8.3.

HRMS (APCI) (m/z): [M + H]⁺ Calcd for C₁₉H₂₀NSi: 290.1359; found: 290.1362.

4-methyl-1,1-diphenyl-2,3-dihydro-1*H***-silole (13):** The reaction was conducted according to the general procedure A without modification using (4,4-dichloro-3-methylbut-3-en-1-yl)diphenylsilane (64 mg, 0.20 mmol, 1.0 equiv). Isolated yields were determined following column chromatography (SiO₂, 100% hexanes, R_f = 0.9).

43 mg isolated (86% yield), colorless oil

¹H NMR (500 MHz, CDCl₃) δ 7.65 – 7.48 (m, 5H), 7.45 – 7.31 (m, 7H), 5.83 (s, 1H), 2.65 – 2.53 (m, 2H), 1.99 (s, 3H), 1.35 – 1.29 (m, 2H).

 ^{13}C {1H} NMR (126 MHz, CDCl3) δ 162.2, 136.8, 135.0, 135.0, 129.5, 128.0, 126.1, 39.8, 24.1, 17.9.

HRMS (APCI) (m/z): [M + H]⁺ Calcd for C₁₇H₁₉Si: 251.1251; found:251.1256.

Me Si Ph Ph

3-methyl-1,1-diphenyl-2,3-dihydro-1H-silole (14): The reaction was conducted according to the general procedure A without modification using 4,4-dichloro-2-methylbut-3-en-1-yl)diphenylsilane (64 mg, 0.20 mmol, 1.0 equiv). Isolated yields were determined following column chromatography (SiO₂, 100% hexanes, R_f = 0.9).

46 mg isolated (92% yield), colorless oil

¹H NMR (500 MHz, CDCl₃) δ 7.70 – 7.54 (m, 4H), 7.33 – 7.14(m, 6H), 6.87 (dd, *J* = 9.9, 2.5 Hz, 1H), 6.24 (dd, *J* = 9.7, 2.2 Hz, 1H), 2.85 (dqt, *J* = 9.6, 7.0, 3.6 Hz, 1H), 1.55 (dd, *J* = 15.1, 8.1 Hz, -1H), 1.14 (d, *J* = 7.2 Hz, 3H), 0.85 (dd, *J* = 15.1, 4.8 Hz, 1H).

¹³C{¹H} NMR (126 MHz, CDCl₃) δ 166.8, 137.2, 135.0, 129.4, 128.0, 121.2, 36.7, 23.5, 9.8.

HRMS (APCI) (m/z): [M + H]⁺ Calcd for C₁₇H₁₉Si: 251.1251; found:251.1247.

1,1,5-triphenyl-2,3,4,5-tetrahydro-1*H***-silepine (15):** The reaction was conducted according to the general procedure A with the following modification using (6,6-dichloro-4-phenylhex-5-en-1-yl)diphenylsilane (82 mg, 0.20 mmol, 1.0 equiv), Ni(DME)Cl₂ (4.4 mg, 0.020 mmol, 0.10 equiv), (±)-*t*-Bu-Quinox (6.1 mg, 0.024 mmol, 0.12 equiv), Zn powder (52 mg, 0.80 mmol, 4.0 equiv). Isolated yields were determined following column chromatography (SiO₂, 100% hexanes, R_f = 0.9).

27 mg isolated (40% yield), colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 7.69 – 7.53 (m, 4H), 7.43 – 7.36 (m, 6H), 7.32 – 7.28 (m, 2H), 7.22 – 7.18 (m, 3H), 6.84 (dd, J = 14.1, 5.5 Hz, 1H), 6.11 (dd, J = 14.1, 1.9 Hz, 1H), 3.69 – 3.62 (m, 1H), 2.03 – 1.81 (m, 4H), 1.45 – 1.38 (m, 1H), 1.30 – 1.15 (m, 1H).

 $^{13}C\{^{1}H\}$ NMR (101 MHz, CDCl_3) δ 154.9, 134.9, 134.7, 129.4, 129.3, 128.7, 128.1, 127.6, 126.3, 125.7, 48.8, 35.9, 21.9, 11.7.

HRMS (APCI) (m/z): [M + H]⁺ Calcd for C₂₄H₂₅Si: 341.1720; found: 341.1721.

3-(benzofuran-3-yl)-1,1-diethyl-1,2,3,4-tetrahydrosiline (16): The reaction was conducted according to the general procedure A without modification using (2-(benzofuran-3-yl)-5,5-

dichloropent-4-en-1-yl)diethylsilane (68 mg, 0.20 mmol, 1.0 equiv). Isolated yields were determined following column chromatography (SiO₂, 5% Et₂O in hexanes, R_f = 0.9).

41 mg isolated (75% yield), yellow oil

¹H NMR (500 MHz, CDCl₃) δ 7.47 (dd, *J* = 36.5, 7.1 Hz, 2H), 7.24 – 7.17 (m, 2H), 6.88 (ddd, *J* = 14.6, 5.4, 1.9 Hz, 1H), 6.41 (s, 1H), 5.86 – 5.78 (m, 1H), 3.21 – 3.14 (m, 1H), 2.73 – 2.68 (m, 1H), 2.30 – 2.23 (m, 1H), 1.29 – 1.27 (m, 1H), 1.06 – 0.90 (m, 7H), 0.71 – 0.58 (m, 4H).

 $^{13}C\{^{1}H\}$ NMR (126 MHz, CDCl_3) δ 165.4, 154.7, 148.3, 129.0, 124.9, 123.3, 122.5, 120.5, 110.9, 99.9, 35.6, 33.5, 13.7, 7.8, 7.4, 5.5, 4.9.

HRMS (APCI) (m/z): [M + H]⁺ Calcd for C₁₇H₂₃OSi: 271.1513; found:271.1518.

2,2-diphenyl-2,3,4,4a,5,6,7,8-octahydrobenzo[*c*]*siline* (17): The reaction was conducted according to the general procedure B without modification using (2-(2-(dichloromethylene)cyclohexyl)ethyl)diphenylsilane (75 mg, 0.20 mmol, 1.0 equiv). Isolated yields were determined following column chromatography (SiO₂, 100% hexanes, R_f = 0.9).

32 mg isolated (52% yield), pale yellow oil

¹H NMR (400 MHz, CDCl₃) δ 7.65 – 7.50 (m, 4H), 7.43 – 7.32 (m, 6H), 5.69 (s, 1H), 2.48 – 2.43 (m, 1H), 2.29 – 2.16 (m, 2H), 2.07 – 1.99 (m, 1H), 1.91 – 1.77 (m, 3H), 1.66 – 1.34 (m, 2H), 1.29 – 1.18 (m, 3H), 1.02 (ddd, *J* = 14.4, 12.3, 3.3 Hz, 1H).

 $^{13}C\{^{1}H\}$ NMR (101 MHz, CDCl_3) δ 166.1, 137.3, 137.2, 135.2, 135.0, 129.3, 129.2, 127.9, 114.4, 42.8, 41.8, 36.1, 28.7, 28.3, 26.8, 7.5.

HRMS (APCI) (m/z): [M + H]⁺ Calcd for C₂₁H₂₅Si: 305.1720; found: 305.1723.

1,1-diphenyl-4-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-2,3-dihydro-1*H***-silole (18):** The reaction was conducted according to the general procedure B without modification using (4,4-dichloro-3-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)but-3-en-1-yl)diphenylsilane (102 mg, 0.200 mmol, 1.0 equiv). Isolated yields were determined following column chromatography (SiO₂, 15% Et₂O in hexanes, R_f= 0.5).

33 mg isolated (38% yield), white solid.

¹H NMR (300 MHz, CDCl₃) δ 7.85 – 7.73 (m, 2H), 7.65 – 7.53 (m, 6H), 7.44 – 7.34 (m, 7H), 6.71 (t, *J* = 1.8 Hz, 1H), 3.18 – 3.06 (m, 2H), 1.51 – 1.41 (m, 2H), 1.36 (s, 12H).

 $^{13}C\{^{1}H\}$ NMR (101 MHz, CDCl_3) δ 164.7, 142.2, 136.4, 135.1, 134.9, 134.7, 129.6, 128.1, 125.5, 123.9, 83.9, 33.1, 25.0, 9.3.

HRMS (APCI) (m/z): Calcd for C₂₈H₃₁¹⁰BO₂Si: 437.2217; found: 437.2216.

4-(3-chlorophenethyl)-1,1-diphenyl-2,3-dihydro-1*H***-silole (19):** The reaction was conducted according to the general procedure B without modification using (5-(3-chlorophenyl)-3 (dichloromethylene)pentyl)diphenylsilane (89 mg, 0.20 mmol, 1.0 equiv). Isolated yields were determined following column chromatography (SiO₂, 100% hexanes, R_f = 0.9).

24 mg isolated (32% yield), yellow oil

¹H NMR (400 MHz, CDCl₃) δ 7.57 – 7.47 (m, 4H), 7.45 – 7.32 (m, 6H), 7.25 – 7.16 (m, 3H), 7.09 (ddd, *J* = 6.7, 3.2, 1.7 Hz, 1H), 5.89 (p, *J* = 1.7 Hz, 1H), 2.88 (dd, *J* = 8.9, 6.9 Hz, 2H), 2.66 – 2.60 (m, 2H), 2.60 – 2.53 (m, 2H), 1.37 – 1.22 (m, 3H).

 $^{13}C\{^{1}H\}$ NMR (101 MHz, CDCl_3) δ 169.0, 144.2, 136.8, 135.0, 134.2, 129.7, 129.4, 128.6, 128.0, 126.8, 126.2, 120.6, 38.2, 35.4, 33.9, 9.4.

HRMS (APCI) (m/z): [M + H]⁺ Calcd for C₂₄H₂₄ClSi: 375.1330; found: 375.1335.

2,2-diphenyl-2,4,5,6,7,7a-hexahydro-1*H***-benzo***[c]***silole (20)**: The reaction was conducted according to the general procedure B without modification using ((2 (dichloromethylene)cyclohexyl)methyl)diphenylsilane (72 mg, 0.20 mmol, 1.0 equiv). Isolated yields were determined following column chromatography (SiO₂, 100% hexanes, R_f = 0.9).

42 mg isolated (73% yield), pale yellow oil

¹H NMR (500 MHz, CDCl₃) δ 7.59 – 7.49 (m, 4H), 7.42 – 7.32 (m, 6H), 5.73 (d, *J* = 1.9 Hz, 1H), 2.72 – 2.58 (m, 2H), 2.18 (tdt, *J* = 13.3, 5.2, 1.4 Hz, 1H), 2.10 (ddt, *J* = 12.8, 4.9, 2.5 Hz, 1H), 1.90 – 1.76 (m, 2H), 1.58 (dd, *J* = 15.5, 8.7 Hz, 1H), 1.47 (qt, *J* = 13.0, 3.4 Hz, 1H), 1.40 – 1.29 (m, 1H), 1.24 – 1.08 (m, 1H), 0.83 (dd, *J* = 15.5, 4.7 Hz, 1H).

 $^{13}C\{^{1}H\}$ NMR (126 MHz, CDCl_3) δ 172.9, 137.5, 137.4, 135.1, 135.0, 129.3, 127.9, 118.1, 45.7, 39.3, 36.3, 28.0, 27.0, 17.6.

HRMS (APCI) (m/z): [M + H]⁺ Calcd for C₂₀H₂₃Si: 291.1563; found: 291.1553.

4-(2-(benzyloxy)ethyl)-1,1-diphenyl-2,3-dihydro-1*H***-silole (21):** The reaction was conducted according to the general procedure B without modification using (5-(benzyloxy)-3-(dichloromethylene)pentyl)diphenylsilane (88 mg, 0.20 mmol, 1.0 equiv). Isolated yields were determined following column chromatography (SiO₂, 10% Et₂O in hexanes, R_f = 0.5).

49 mg isolated (66% yield), yellow oil

¹H NMR (400 MHz, CDCl₃) δ 7.61 – 7.52 (m, 4H), 7.45 – 7.29 (m, 11H), 5.95 (p, J = 1.6 Hz, 1H), 4.57 (s, 2H), 3.75 (t, J = 6.9 Hz, 2H), 2.71 – 2.58 (m, 4H), 1.38 – 1.26 (m, 2H).

 $^{13}C\{^{1}H\}$ NMR (101 MHz, CDCl_3) δ 167.1, 138.6, 136.9, 135.0, 129.4, 128.5, 128.0, 127.8, 127.7, 121.2, 73.1, 68.9, 37.1, 35.6, 9.2.

HRMS (APCI) (m/z): [M + H]⁺ Calcd for C₂₅H₂₇OSi: 371.1826; found: 371.1823.

General Procedure for the Intermolecular Si–H insertion reaction. In an N₂-filled glovebox, a 5-mL vial was charged with Ni(DME)Cl₂ (4.4 mg, 0.020 mmol, 0.10 equiv), (\pm)-*t*-Bu-Quinox (6.1 mg, 0.024 mmol, 0.12 equiv), Zn powder (52 mg, 0.80 mmol, 4.0 equiv), and a magnetic stir bar. DMA (0.2 mL) and THF (0.2 mL) were added, and the mixture was stirred for 10 min in ambient temperature. To this mixture was added a solution containing the 1,1-dichloroalkene (0.20 mmol, 1.0 equiv) and the silane (0.22 mmol, 1.1 equiv) dissolved in THF (0.4 mL). The reaction was stirred at 50 °C. After 16 h, the reaction vial was cooled to room temperature before removing from the glovebox. It was then opened to ambient atmosphere and THF was removed under a stream of N₂. The crude residue was loaded directly onto a SiO₂ column for purification.

ethyl 3-((dimethyl(phenyl)silyl)methylene)-8-azabicyclo[3.2.1]octane-8-carboxylate (22): The reaction was conducted according to the general procedure without modification using ethyl 3-(dichloromethylene)-8-azabicyclo[3.2.1]octane-8-carboxylate (53 mg, 0.20 mmol, 1.0 equiv) and dimethylphenylsilane (33.7 μ L, 0.220 mmol, 1.1 equiv). Isolated yields were determined following column chromatography (SiO₂, 10% Et₂O in hexanes, R_f = 0.2).

48 mg isolated (75% yield), colorless oil

¹H NMR (400 MHz, CDCl₃) δ 7.57 – 7.48 (m, 2H), 7.34 (td, *J* = 4.1, 3.5, 2.0 Hz, 3H), 5.54 (s, 1H), 4.40 – 4.07 (m, 5H), 2.77 – 2.52 (m, 1H), 2.21 (d, *J* = 12.5 Hz, 1H), 2.13 (dd, *J* = 14.0, 2.4 Hz, 1H), 1.95 – 1.67 (m, 3H), 1.59 (q, *J* = 7.7, 6.4 Hz, 1H), 1.46 – 1.30 (m, 1H), 1.30 – 1.17 (m, 4H), 0.36 (d, *J* = 2.5 Hz, 6H).

 $^{13}C\{^{1}H\}$ NMR (101 MHz, CDCl_3) δ 154.1, 153.2, 139.8, 133.8, 129.0, 127.9, 126.4, 61.0, 54.3, 54.0, 28.5, 27.8, 14.9.

HRMS (APCI) (m/z): [M + H]⁺ Calcd for C₁₉H₂₈NO₂Si: 330.1884; found: 330.1886.

ethyl 3-((triphenylsilyl)methylene)-8-azabicyclo[3.2.1]octane-8-carboxylate (23): The reaction was conducted according to the general procedure without modification using ethyl 3-(dichloromethylene)-8-azabicyclo[3.2.1]octane-8-carboxylate (53 mg, 0.20 mmol, 1.0 equiv) and

triphenylsilane (57 mg, 0.22 mmol, 1.1 equiv). Isolated yields were determined following column chromatography (SiO₂, 10% Et₂O in hexanes R_f = 0.2).

55 mg isolated (61% yield), white solid

¹H NMR (400 MHz, CDCl₃) δ 7.58 (dt, J = 6.4, 1.7 Hz, 6H), 7.46 – 7.32 (m, 9H), 5.98 (s, 1H), 4.33 (d, J = 21.6 Hz, 1H), 4.21 – 3.93 (m, 3H), 2.78 (d, J = 21.4 Hz, 1H), 2.31 (dd, J = 14.3, 2.4 Hz, 1H), 2.16 (t, J = 5.6 Hz, 1H), 1.87 (s, 1H), 1.70 – 1.52 (m, 2H), 1.35 – 1.11 (m, 5H).

 $^{13}\text{C}\{^{1}\text{H}\}$ NMR (101 MHz, CDCl_3) δ 154.0, 135.8, 135.6, 129.6, 128.1, 123.0, 61.0, 54.0, 54.0, 14.9.

HRMS (APCI) (m/z): [M + H]⁺ Calcd for C₂₉H₃₂NO₂Si: 454.2197; found: 454.2195.

ethyl 3-((diethoxy(methyl)silyl)methylene)-8-azabicyclo[3.2.1]octane-8-carboxylate (24): The reaction was conducted according to the general procedure without modification using ethyl 3-(dichloromethylene)-8-azabicyclo[3.2.1]octane-8-carboxylate (53 mg, 0.20 mmol, 1.0 equiv) and diethoxymethylsilane (35 μ L, 0.22 mmol, 1.1 equiv). Isolated yields were determined following column chromatography (SiO₂, 15% Et₂O in hexanes R_f = 0.3).

39 mg isolated (59% yield), white solid

¹H NMR (400 MHz, CDCl₃) δ 5.28 (t, J = 2.1 Hz, 1H), 4.33 (s, 2H), 4.15 (q, J = 7.1 Hz, 2H), 2.57 (d, J = 14.2 Hz, 2H), 2.42 (d, J = 43.2 Hz, 1H), 2.09 (dt, J = 14.2, 1.6 Hz, 1H), 1.88 (t, J = 6.4 Hz, 2H), 1.65 – 1.53 (m, 2H), 1.29 – 1.18 (m, 10H), 0.18 (s, 3H).

 $^{13}\text{C}\{^{1}\text{H}\}$ NMR (101 MHz, CDCl_3) δ 155.7, 154.1, 123.1, 61.0, 58.2, 54.3, 54.1, 28.7, 18.5, 14.9, -2.6.

HRMS (APCI) (m/z): [M + H]⁺ Calcd for C₁₆H₃₀NO₄Si: 328.1939; found: 328.1936.

ethyl 3-((benzyldimethylsilyl)methylene)-8-azabicyclo[3.2.1]octane-8-carboxylate (25): The reaction was conducted according to the general procedure without modification using ethyl 3-(dichloromethylene)-8-azabicyclo[3.2.1]octane-8-carboxylate (53 mg, 0.20 mmol, 1.0 equiv) and Benzyldimethylsilane (35 μ L, 0.22 mmol, 1.1 equiv). Isolated yields were determined following column chromatography (SiO₂, 10% Et₂O in hexanes, R_f= 0.2).

49 mg isolated (72% yield), yellow oil

¹H NMR (400 MHz, CDCl₃) δ 7.24 – 7.17 (m, 2H), 7.10 – 7.03 (m, 1H), 7.03 – 6.96 (m, 2H), 5.35 (d, *J* = 2.0 Hz, 1H), 4.29 (d, *J* = 22.8 Hz, 2H), 4.20 – 4.12 (m, 2H), 2.72 – 2.35 (m, 1H), 2.26 (d, *J* = 12.9 Hz, 1H), 2.15 (s, 2H), 2.12 – 2.04 (m, 1H), 1.94 – 1.80 (m, 2H), 1.64 – 1.42 (m, 2H), 1.27 (t, *J* = 7.1 Hz, 4H), 0.08 (d, *J* = 6.6 Hz, 6H).

 $^{13}C\{^{1}H\}$ NMR (101 MHz, CDCl_3) δ 154.1, 140.1, 128.3, 128.3, 126.5, 124.1, 61.0, 54.4, 54.0, 28.7, 27.9, 26.8, 14.9, -1.5, -1.6.

HRMS (APCI) (m/z): [M + H]⁺ Calcd for C₂₀H₃₀NO₂Si: 344.2040; found: 344.2038.

methyldiphenyl((tetrahydro-4*H***-pyran-4-ylidene)methyl)silane (26):** The reaction was conducted according to the general procedure without modification **33** (33 mg, 0.20 mmol, 1.0 equiv) and methyldiphenylsilane (44 μ L, 0.22 mmol, 1.1 equiv). Isolated yields were determined following column chromatography (SiO₂, 10% Et₂O in hexanes, R_f = 0.3).

43 mg isolated (73% yield), colorless oil

¹H NMR (400 MHz, CDCl₃) δ 7.58 – 7.47 (m, 4H), 7.40 – 7.29 (m, 6H), 5.57 (t, *J* = 1.1 Hz, 1H), 3.79 – 3.72 (m, 2H), 3.55 – 3.48 (m, 2H), 2.41 (t, *J* = 4.9 Hz, 2H), 0.64 (s, 3H).

 $^{13}\text{C}\{^{1}\text{H}\}$ NMR (101 MHz, CDCl_3) δ 157.4, 137.8, 134.7, 129.3, 128.0, 118.8, 69.8, 68.9, 40.7, 35.7, -1.7.

HRMS (APCI) (m/z): [M + H]⁺ Calcd for C₁₉H₂₃OSi: 295.1513; found: 295.1508.

1-(3,4-difluorophenyl)-4-((methyldiphenylsilyl)methylene)piperidine (27): The reaction was conducted according to the general procedure with following modification 4-(dichloromethylene)-1-(3,4-difluorophenyl)piperidine (56 mg, 0.20 mmol, 1.0 equiv), Methyldiphenylsilane (44 μ L, 0.22 mmol, 1.1 equiv), Ni(DME)Cl₂ (8.8 mg, 0.040 mmol, 0.20 equiv), (±)-*t*-Bu-Quinox (12 mg, 0.048 mmol, 0.24 equiv) and Zn powder (52 mg, 0.80 mmol, 4.0 equiv). Isolated yields were determined following column chromatography (SiO₂, 100% hexanes, R_f= 0.2).

40 mg isolated (49% yield), colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 7.60 – 7.52 (m, 4H), 7.42 – 7.32 (m, 6H), 7.05 – 6.94 (m, 1H), 6.66 (ddd, J = 13.5, 6.8, 3.0 Hz, 1H), 6.54 (dtd, J = 8.4, 3.3, 1.5 Hz, 1H), 5.63 (s, 1H), 3.28 – 3.21 (m, 2H), 3.03 – 2.97 (m, 2H), 2.54 – 2.47 (m, 2H), 2.27 (t, J = 5.9 Hz, 2H), 0.66 (s, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 158.0, 137.7, 134.7, 129.3, 128.0, 119.3, 119.1, 117.4, 117.3 (d, ${}^{2}J_{CF}$ = 18.2 Hz), 111.8, 105.6 (d, ${}^{2}J_{CF}$ = 20.2 Hz), 51.9, 51.1, 39.1, 33.8, -1.6.

¹⁹F NMR (376 MHz, CDCl₃) δ -138.3 (dt, J = 22.0, 12.2 Hz), -151.7 – -152.0 (m).

HRMS (APCI) (m/z): [M + H]⁺ Calcd for C₂₅H₂₆F₂NSi: 406.1797; found: 406.1794.

((1,4-dioxaspiro[4.5]decan-8-ylidene)methyl)(methyl)diphenylsilane (28): The reaction was conducted according to the general procedure with following modification 8-(dichloromethylene)-1,4-dioxaspiro[4.5]decane (45 mg, 0.20 mmol, 1.0 equiv), Methyldiphenylsilane (44 μ L, 0.22 mmol, 1.1 equiv), Ni(DME)Cl₂ (8.8 mg, 0.040 mmol, 0.20 equiv), (±)-*t*-Bu-Quinox (12 mg, 0.048 mmol, 0.24 equiv) and Zn powder (52 mg, 0.80 mmol, 4.0 equiv). Isolated yields were determined following column chromatography (SiO₂, 5% Et₂O in hexanes, R_f = 0.2).

29 mg isolated (41% yield), colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 7.59 – 7.53 (m, 4H), 7.38 – 7.31 (m, 6H), 5.55 (s, 1H), 3.97 – 3.91 (m, 4H), 2.51 – 2.42 (m, 2H), 2.27 – 2.19 (m, 2H), 1.82 – 1.75 (m, 2H), 1.56 – 1.47 (m, 2H), 0.64 (s, 3H).

 $^{13}C\{^{1}H\}$ NMR (101 MHz, CDCl_3) δ 160.1, 137.7, 134.5, 128.9, 127.7, 118.3, 108.2, 64.2, 37.1, 36.2, 35.1, 31.4, -1.9.

HRMS (APCI) (m/z): [M + H]⁺ Calcd for C₂₂H₂₇O₂Si: 351.1775; found: 351.1778.

diphenyl((tetrahydro-4*H***-pyran-4-ylidene)methyl)(vinyl)silane (29)**: The reaction was conducted according to the general procedure without modification **33** (33 mg, 0.20 mmol, 1.0 equiv) and diphenyl(vinyl)silane¹⁶ (46 mg, 0.22 mmol, 1.1 equiv). Isolated yields were determined following column chromatography (SiO₂, 5% Et₂O in hexanes, $R_f = 0.4$).

21 mg isolated (34% yield), colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 7.59 – 7.53 (m, 4H), 7.42 – 7.31 (m, 6H), 6.57 – 6.48 (m, 1H), 6.22 (dd, J = 14.5, 3.7 Hz, 1H), 5.82 (dd, J = 20.1, 3.7 Hz, 1H), 5.59 (s, 1H), 3.80 – 3.73 (m, 2H), 3.54 (t, J = 5.5 Hz, 2H), 2.44 (t, J = 6.1 Hz, 2H), 2.22 (t, J = 5.1 Hz, 2H).

 $^{13}C\{^{1}H\}$ NMR (101 MHz, CDCl_3) δ 158.5, 135.8, 135.6, 135.4, 129.5, 128.0, 121.9, 116.6, 69.8, 68.9, 40.8, 36.1.

HRMS (APCI) (m/z): [M + H]⁺ Calcd for C₂₀H₂₃OSi: 307.1513; found: 307.1509.

5. Hiyama Cross-Coupling Product

ethyl 3-(4-acetylbenzylidene)-8-azabicyclo[3.2.1]octane-8-carboxylate (30): According to a previously reported procedure:¹⁷ Under an N₂ atmosphere, an oven dried 25-mL round bottom flask was charged with 4-iodoacetophenone (74 mg, 0.30 mmol, 1.5 equiv). A solution containing **25** (69 mg, 0.20 mmol, 1.0 equiv) dissolved in anhydrous THF (1 mL) was added to the flask and stirred at 0 °C. To this reaction mixture, TBAF in 1 M THF (0.40 mL, 0.40 mmol, 2,0 equiv) was added dropwise. The mixture turned deep orange gradually over 10 min. After 15 min of stirring at 0 °C, solid Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 0.025 equiv) was added, and the reaction was warmed to room temperature. The reaction mixture was stirred for 4 h at ambient temperature. The reaction mixture was filtered through a silica pad. The filtrate was concentrated, and the crude product was purified by column chromatography (SiO₂, 10% EtOAc in hexanes, $R_f = 0.15$) to yield ethyl 3-(4-acetylbenzylidene)-8-azabicyclo[3.2.1]octane-8-carboxylate as a white solid (34 mg, 54% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, *J* = 8.3 Hz, 2H), 7.25 (d, *J* = 8.2 Hz, 2H), 6.45 (s, 1H), 4.32 (d, *J* = 36.5 Hz, 1H), 4.17 (q, *J* = 7.1 Hz, 2H), 2.73 (s, 1H), 2.57 (s, 5H), 2.23 – 2.15 (m, 1H), 1.98 – 1.76 (m, 2H), 1.74 – 1.61 (m, 1H), 1.49 – 1.36 (m, 1H), 1.28 (t, *J* = 7.1 Hz, 3H).

 $^{13}C\{^{1}H\}$ NMR (101 MHz, CDCl_3) δ 197.6, 154.1, 142.4, 138.1, 135.1, 129.1, 128.4, 128.0, 61.0, 54.4, 43.1, 28.6, 28.1, 26.6, 14.9.

HRMS (APCI) (m/z): [M + H]⁺ Calcd for C₁₉H₂₄NO₃: 314.1751; found: 314.1753.

6. Sequential Hydrosilylation and Vinylidene Si-H Insertion Product

(3-(3,4-dimethoxyphenyl)propyl)diphenylsilane (S53): According to a previously reported procedure:⁴ In a N₂ filled glovebox, a 20-dram vial is charged with **S3** (31 mg, 0.042 mmol, 0.025 equiv) dissolved in C₆D₆ (2 mL). To this mixture, a solution containing **31** (0.30 mL, 2.0 mmol, 1.0 equiv) and diphenylsilane (0.30 mL, 2.0 mmol, 1.0 equiv) dissolved in C₆D₆ (1 mL) was added. The reaction mixture was stirred for 2 h at room temperature. After full conversion of the unsaturated alcohol, the reaction vial was then removed from the glovebox and opened to ambient temperature. The crude mixture was loaded directly onto a SiO₂ column (SiO₂, 100% CH₂Cl₂, R_f = 0.3) to provide (3-(3,4-dimethoxyphenyl)propyl)diphenylsilane (432 mg, 71% yield) as a yellow viscous liquid.

¹H NMR (300 MHz, CDCl₃) δ 7.68 – 7.48 (m, 3H), 7.46 – 7.30 (m, 6H), 6.77 (d, *J* = 8.1 Hz, 1H), 6.72 – 6.59 (m, 2H), 4.87 (t, *J* = 3.6 Hz, 1H), 3.86 (s, 3H), 3.84 (s, 3H), 2.62 (t, *J* = 7.5 Hz, 2H), 1.77 (p, *J* = 7.9 Hz, 2H), 1.36 – 1.07 (m, 2H).

 $^{13}C\{^{1}H\}$ NMR (101 MHz, CDCl_3) δ 148.9, 147.2, 135.3, 134.9, 134.5, 129.7, 128.1, 120.5, 111.9, 111.2, 56.0, 55.9, 38.8, 26.5, 11.8.

HRMS (APCI) (m/z): [M - H]⁺ Calcd for C₂₃H₂₅O₂Si: 361.1618; found: 361.1619.

ethyl 4-(((3-(3,4-dimethoxyphenyl)propyl)diphenylsilyl)methylene)piperidine-1carboxylate (32): The reaction was conducted according to the general procedure for the intermolecular Si–H insertion reaction without modification using ethyl 4-(dichloromethylene)piperidine-1-carboxylate (48 mg, 0.20 mmol, 1.0 equiv) and (3-(3,4dimethoxyphenyl)propyl)diphenylsilane (80 mg, 0.22 mmol, 1.1 equiv). Isolated yields were determined following column chromatography (SiO₂, 20% Et₂O in hexanes, R_f = 0.4).

60 mg isolated (57% yield), yellow viscous oil

¹H NMR (400 MHz, CDCl₃) δ 7.58 – 7.46 (m, 4H), 7.45 – 7.28 (m, 6H), 6.78 (d, *J* = 8.1 Hz, 1H), 6.72 – 6.54 (m, 2H), 5.64 (s, 1H), 4.13 (dq, *J* = 14.2, 7.1 Hz, 2H), 3.85 (d, *J* = 7.9 Hz, 7H), 3.53 (t, *J* = 5.9 Hz, 2H), 3.22 (t, *J* = 5.8 Hz, 2H), 2.59 (t, *J* = 7.4 Hz, 2H), 2.37 (t, *J* = 5.9 Hz, 2H), 2.06 (t, *J* = 5.8 Hz, 2H), 1.73 (dq, *J* = 12.1, 8.2, 7.5 Hz, 2H), 1.39 – 1.08 (m, 6H).

 $^{13}C\{^{1}H\}$ NMR (101 MHz, CDCl₃) δ 158.2, 155.5, 151.1, 148.9, 147.2, 136.6, 135.0, 129.3, 128.0, 120.5, 118.6, 111.9, 111.2, 61.4, 56.0, 55.9, 45.7, 44.8, 39.6, 39.3, 26.2, 14.8, 14.5.
HRMS (APCI) (m/z): [M + H]⁺ Calcd for C₃₂H₃₀NO₄Si: 530.2721; found: 530.2729.

7. Deuterium Isotope Experiments

methyldiphenyl((tetrahydro-4H-pyran-4-ylidene)methyl-d)silane (26-*d***1)**: In an N₂-filled glovebox, a 5-mL vial was charged with Ni(DME)Cl₂ (4.4 mg, 0.020 mmol, 0.10 equiv), (±)-*t*-Bu-Quinox (6.1 mg, 0.024 mmol, 0.12 equiv), Zn powder (52 mg, 0.80 mmol, 4.0 equiv), and a magnetic stir bar. DMA (0.2 mL) and THF (0.2 mL) were added, and the mixture was stirred for 10 min in ambient temperature. To this mixture was added a solution containing **33** (33 mg, 0.20 mmol, 1.0 equiv) and methyldiphenylsilane-*d*¹⁸ (44 mg, 0.22 mmol, 1.1 equiv) dissolved in THF (0.4 mL). The reaction was stirred at 50 °C. After 16 h, the crude reaction mixture was cooled to room temperature before removing from the reaction vial from the glovebox. It was then opened to ambient atmosphere, THF was removed under an N₂ stream, and the crude residue was loaded directly onto a SiO₂ column for purification (SiO₂, 10% Et₂O in hexanes, R_f = 0.2) to provide methyldiphenyl((tetrahydro-4H-pyran-4-ylidene)methyl-d)silane as a colorless liquid (46 mg, 77% yield, >99% deuterium incorporation).

¹H NMR (400 MHz, CDCl₃) δ 7.63 – 7.49 (m, 4H), 7.45 – 7.29 (m, 6H), 3.76 (t, *J* = 5.5 Hz, 2H), 3.53 (t, *J* = 5.5 Hz, 2H), 2.46 – 2.37 (m, 2H), 2.23 – 2.14 (m, 2H), 0.65 (s, 3H).

Kinetic Isotope Effect Experiment: In an N₂-filled glovebox, a 5-mL vial was charged with Ni(DME)Cl₂ (4.4 mg, 0.020 mmol, 0.10 equiv), (±)-t-Bu-Quinox (6.1 mg, 0.024 mmol, 0.12 equiv), Zn powder (52 mg, 0.80 mmol, 4.0 equiv), and a magnetic stir bar. DMA (0.2 mL) and THF (0.2 mL) were added, and the mixture was stirred for 10 min in ambient temperature. To this mixture was added a solution containing 33 (33 mg, 0.20 mmol, 1.0 equiv), methyldiphenylsilane-d¹⁸ (399 mg, 2.00 mmol, 10.0 equiv) and methyldiphenylsilane (399 mg, 2.00 mmol, 10.0 equiv) dissolved in THF (0.4 mL). The reaction was stirred at 50 °C. After 16 h, the crude reaction mixture was cooled to room temperature before removing the reaction vial from the glovebox. It was then opened to ambient atmosphere, THF was removed under an N₂ stream, and the crude residue was loaded directly onto a SiO₂ column for purification (SiO₂, 10% Et₂O in hexanes, $R_f = 0.2$) to provide the mixture of methyldiphenyl((tetrahydro-4H-pyran-4-ylidene)methyl-d)silane and methyldiphenyl((tetrahydro-4H-pyran-4-ylidene)methyl)silane as a colorless liquid (92 mg, 78% overall yield, KIE = 1.0 from ¹H NMR).

¹H NMR (400 MHz, CDCl₃) δ 7.62 – 7.51 (m, 4H), 7.43 – 7.32 (m, 6H), 5.59 (s, 0.52H), 3.82 – 3.71 (m, 2H), 3.60 – 3.47 (m, 2H), 2.42 (t, *J* = 5.5 Hz, 2H), 2.25 – 2.14 (m, 2H), 0.66 (s, 3H).

Scrambling Experiment with 33: In an N₂-filled glovebox, a 5-mL vial was charged with Ni(DME)Cl₂ (4.4 mg, 0.020 mmol, 0.10 equiv), (±)-*t*-Bu-Quinox (6.1 mg, 0.024 mmol, 0.12 equiv), Zn powder (52 mg, 0.80 mmol, 4.0 equiv), and a magnetic stir bar. DMA (0.2 mL) and THF (0.2 mL) were added, and the mixture was stirred for 10 min in ambient temperature. To this mixture was added a solution containing **33** (33 mg, 0.20 mmol, 1.0 equiv), methyldiphenylsilane-*d*¹⁸ (22 mg, 0.11 mmol, 0.55 equiv) and dimethylphenylsilane (17 µL 0.11 mmol, 0.55 equiv) dissolved in THF (0.4 mL). The reaction was stirred at 50 °C. After 16 h, the crude reaction mixture was cooled to room temperature before removing from the glovebox. It was then opened to ambient atmosphere, THF was removed under an N₂ stream. The crude residue was then loaded directly onto a SiO₂ column for purification (SiO₂, 100% hexanes, R_f = 1.0) to provide the mixture of unreacted silanes as a colorless liquid and then (SiO₂, 10% Et₂O in hexanes, R_f = 0.2) to provide the mixture of **26** and **34** as a colorless liquid.

Mixture of unreacted silanes: ¹H NMR (400 MHz, CDCl₃) δ 7.62 – 7.53 (m, 9H), 7.46 – 7.32 (m, 14H), 4.97 (q, *J* = 3.8 Hz, 1H), 0.65 (d, *J* = 3.9 Hz, 7H); *Mixture of* **26** *and* **34**: ¹H NMR (400 MHz, CDCl₃) δ 7.66 – 7.48 (m, 5H), 7.46 – 7.31 (m, 10H), 5.40 (s, 1H), 3.81 – 3.64 (m, 5H), 3.63 – 3.55 (m, 2H), 3.56 – 3.49 (m, 2H), 2.54 – 2.49 (m, 1H), 2.41 (t, *J* = 5.5 Hz, 2H), 2.35 (t, *J* = 5.5 Hz, 2H), 2.25 (t, *J* = 5.5 Hz, 2H), 2.22 – 2.15 (m, 2H), 0.64 (s, 3H), 0.37 (s, 7H).

Figure S1 ¹H NMR of mixture of unreacted silanes recovered by column chromatography (400 MHz, CDCl₃, 295 K)

$$\begin{array}{rcl} Ni(dme)Cl_{2} \ (10 \ mol\%) \\ (\pm)^{t^{E}Bu}Quinox \ (12 \ mol\%) \\ \hline & & & & \\ \hline \hline & & & \\ \hline \hline & & & \\ \hline \hline \\ \hline & & & \\ \hline \hline & & & \\ \hline \hline & & & \\ \hline \hline \\ \hline & & & \hline$$

Scrambling Experiment without 33: In an N₂-filled glovebox, a 5-mL vial was charged with Ni(DME)Cl₂ (4.4 mg, 0.020 mmol, 0.10 equiv), (±)-*t*-Bu-Quinox (6.1 mg, 0.024 mmol, 0.12 equiv), Zn powder (52 mg, 0.80 mmol, 4.0 equiv), and a magnetic stir bar. DMA (0.2 mL) and THF (0.2 mL) were added and the mixture was stirred for 10 min in ambient temperature. To this mixture was added a solution of the methyldiphenylsilane-*d*¹⁸ (20 mg, 0.10 mmol, 1.0 equiv) and dimethylphenylsilane (15 μ L, 0.10 mmol, 1.0 equiv) dissolved in THF (0.4 mL). The reaction was stirred at 50 °C. After 1 h, the crude reaction mixture was cooled to room temperature and run through a short silica pad inside the glovebox before checking ¹H NMR.

¹H NMR (400 MHz, C₆D₆) δ 5.09 (s, 0.43H), 4,58 (s, 0.45H), 0.46 (d, *J* = 3.9 Hz, 3H), 0.21 (d, *J* = 3.9 Hz, 6H).

Figure S3 ¹H NMR of crude mixture of scrambled silanes (400 MHz, C₆D₆, 295 K)

8. NMR Data for the 1,1-Dichloroalkene Substrates

9. NMR Data for the Si-H insertion Products

10.0

9.5

Figure S44

f1 (ppm)

¹³C NMR of **2** (126 MHz, CDCl₃, 295K)

o

Figure S58 ¹³C NMR of **17** (101 MHz, CDCl₃, 295K)

Figure S62 ¹³C NMR of **19** (126 MHz, CDCl₃, 295K)

Figure S64 ¹³C NMR of **20** (126 MHz, CDCl₃, 295K)

10. NMR Data for the Hiyama Coupling Product

11. NMR Data for the Sequential Hydrosilylation and Vinylidene Si-H Insertion Product

Figure S88 ¹³C NMR of 32 (101 MHz, CDCl₃, 295K)

13. References

- 1. Zhou, Y.-Y.; Hartline, D. R.; Steiman, T. J.; Fanwick, P. E.; Uyeda, C. *Inorg. Chem.* **2014**, *53*, 21, 11770.
- 2. Farley, C. M.; Zhou, Y.-Y.; Banka, N.; Uyeda, C. J. Am. Chem. Soc. **2018**, *140* (40), 12710.
- 3. Zhou, Y.-Y.; Uyeda, C. *Science.* **2019**, *363* (6429), 857.
- 4. Steiman T. J.; Uyeda C. *J. Am. Chem. Soc.* **2015**, *137*, 18, 6104-6110.
- 5. Iyoda M.; Nakagawa T.; Ebe H.; Oda M.; Nakagawa M.; Yamamoto K.; Higuchi H.; Ojima J. *Bull. Chem. Soc. Jpn.*, **1994**, *67*, 3, 778-791.
- 6. Fleming F. F.; Wang Q.; Zhang Z.; Steward O. W. *J. Org. Chem.*, **2002**, *67*, 17, 5953-5956.
- 7. Hazelden I. R.; Carmona R. C.; Langer T.; Pringle P. G.; Bower J. F. *Angew. Chem. Int. Ed.*, **2018**, *18*, 57, 5124-5128.
- 8. Larsen M. A.; Cho S. H.; Hartwig J. F. J. Am. Chem. Soc., **2016**, 138, 3, 762-765.
- 9. Small B. L.; Brookhart M.; Bennett A. M. A. *J. Am. Chem. Soc.*, **1998**, *120*, 16, 4049-4050.
- 10. Huang Q.; Fazio A.; Dai G.; Campo M. A.; Larock R. C. *J. Am. Chem. Soc.*, **2004**, *126*, 24, 7460-7461.
- 11. Alonso E.; Ramon D. J.; Yus M. *Tetrahedron*, **1997**, *53*, 14355-14368.
- 12. Yang X.; Toste D. F. J. Am. Chem. Soc., **2015**, *137*, 9, 3205-3208.
- 13. Moragas T.; Cornella J.; Martin R. *J. Am. Chem. Soc.*, **2014**, *136*, 51, 17702-17705.
- 14. Alcaraz L.; Cridland A.; Kinchin E. *Org. Lett.*, **2001**, *25*, 3, 4051-4053.
- 15. Chang W.-C.; Mansoorabadi S. O.; Liu H. W. J. Am. Chem. Soc., **2013**, 135, 22, 8153-8156.
- 16. Savela R.; Zawartka W.; Leino R. *Organomatallics*, **2012**, *31*, 8, 3199-3206.
- 17. Trost B. M.; Ball Z. T. J. Am. Chem. Soc., **2015**, *127*, 50, 17644-17655.
- 18. Zhao Y.; Zhang S.; Yamamoto Y.; Bao M.; Jin T.; Terada M. *Adv. Synth. Catal.*, **2019**, *361*, 20, 4817-4824.