Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2020

Supplementary information submitted to ChemComm (2020)

Experimental validation of pressure swing regeneration for faster cycling in sorption enhanced dimethyl ether synthesis

Jasper van Kampen * a,b, Saskia Booneveld a, Jurriaan Boon a,b, Jaap Vente a, Martin van Sint Annaland b

a Biomass and Energy Efficiency, TNO Energy Transition, P.O. Box 15, 1755 ZG Petten, the Netherlands

b Chemical Process Intensification, TU/e, P.O. Box 513, 5600 MB Eindhoven, the Netherlands

Experimental

Materials

Experimental validation of sorption enhanced DME synthesis was performed using (a homogeneous mixture of) commercially available catalyst and adsorbent: copper-zinc oxide-alumina (CZA) catalyst, γ -Al₂O₃ (assay>98%, Riogen NJ, USA), obtained as 3 mm pellets, and molecular sieve type 3A, purchased as 1.6 mm pellets (UOP Molecular Sieves, Advanced Specialty Gas Equipment, USA).

Methods

A combination of commercially obtained CZA catalyst, γ-Al₂O₃ catalyst and zeolite 3A adsorbent was used for the experimental demonstration of direct DME synthesis from CO/CO₂/H₂-mixtures. The experimental runs were conducted on a bench-scale high-pressure reactor setup (Figure 1), allowing tests up to 2 litres of sample, typically consisting of a 1:4 ratio (weight basis) catalyst to sorbent. The ratio between catalyst and sorbent was not further optimized in this work. Adsorption was performed with different (stoichiometric) feed gas compositions, using 68.6-72.7 vol.% of hydrogen, 0-9.1 vol.% of carbon monoxide, 17.1-23.6 vol.% of carbon dioxide and inert argon, nitrogen or methane, at 25 bar(a) and a temperature range of 250-300 °C. The inert balance was used in order to keep the overall pressure stable, considering the shrinking reaction and adsorption of water. Regeneration was done by depressurisation to 1-3 bar(a) for PSA regeneration, switching to dry, inert gas, and eventual heating to 400 °C for TSA regeneration. Finally, either the inert purge gas or the reactive feed gas is used for repressurisation. A schematic overview of the PSA cycle is shown in Figure 2. Transient gas analysis was performed by micro-GC (measuring methane, CO, CO₂, nitrogen, argon, methanol and DME) and mass spectrometry measuring hydrogen (m/z=2), methane (m/z=15), water (m/z=18), carbon monoxide/nitrogen (m/z=28), methanol (m/z=31), carbon dioxide (m/z=44) and DME (m/z=45).

^{*} Corresponding author. E-mail address: jasper.vankampen@tno.nl; j.v.kampen@tue.nl

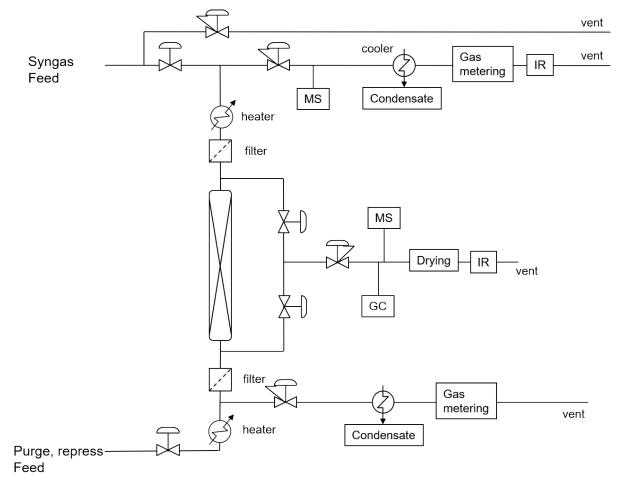


Figure 1.Schematic of the bench-scale reactor 'SEWGS 1'.

Data interpretation

In order to facilitate data interpretation, several key metrics have been defined to be able to quantify SEDMES performance. The most important metric, the carbon selectivity *S(i)*, used here is defined as follows,

$$S(i) = \frac{ny(C_n H_m O_p)}{\sum_i n_i y(i)}$$
(1)

The carbon selectivities were calculated as molar concentration-based selectivity for each of the carbon containing species, *y(i)*. For example, the selectivity towards DME can be calculated as

$$S(DME) = \frac{2y(DME)}{y(CO_1) + y(CO_2) + 2y(DME) + y(MeOH) + y(CH_4)}$$
(2)

Time integration (in the interval t: $0-t_{CO2}$, where t_{CO2} is the (interpolated) point in time where the CO_2 outlet concentration reaches a level of 5 vol.%) of the streams gives an overall yield and selectivity for the cyclic (steady state) performance of the SEDMES process.

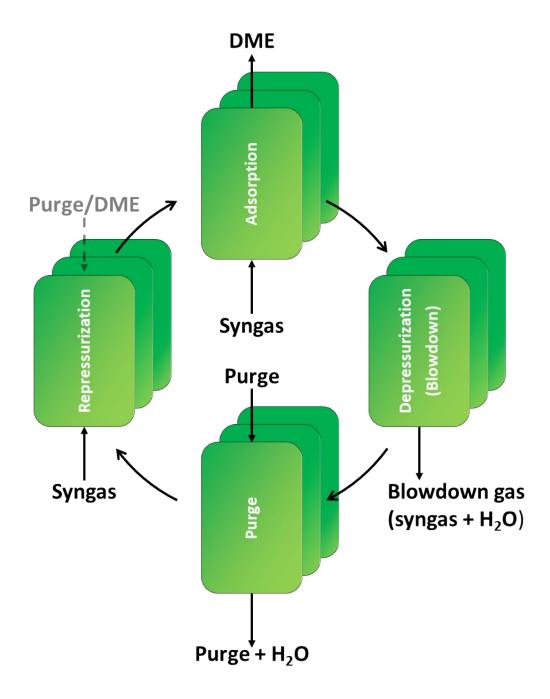


Figure 2. Schematic representation of a four step SEDMES PSA cycle.