# **Supporting Information**

## **Planar Pentacoordinate Silicon and Germanium Atoms**

Meng-hui Wang,<sup>a</sup> Xue Dong,<sup>a</sup> Zhong-hua Cui,<sup>a,\*</sup> Mesías Orozco-Ic,<sup>b</sup> Yi-hong Ding,<sup>c,\*</sup>

Jorge Barroso,<sup>b,\*</sup> and Gabriel Merino.<sup>b,\*</sup>

<sup>a</sup>Institute of Atomic and Molecular Physics, Jilin University, Changchun 130023, People's Republic of China; Beijing National Laboratory for Molecular Sciences

<sup>b</sup>Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados, Unidad Mérida

<sup>c</sup>Institute of Theoretical Chemistry, Jilin University, Changchun 130023, People's Republic of China

KEYWORDS. Planar pentacoordinate silicon, Planar pentacoordinate germanium, Global minimum, Localization, Potential energy surfaces.

E-mail: yhdd@jlu.edu.cn E-mail: jorge.barroso@cinvestav.mx E-mail: gmerino@cinvestav.mx E-mail: zcui@jlu.edu.cn

## **Computational details**

An exhaustive exploration of the potential energy surface (PES) of  $XMg_5^{2-}$ ,  $XMg_4Y^{-}$ (X=Si, Ge; Y=Al, Ga, In, Tl), and SiMg<sub>3</sub>In<sub>2</sub> in their singlet and triplet spin states was performed using the grid-based isomeric strategy,<sup>1,2</sup> and the PSO algorithm as implemented in the CALYPSO code.<sup>3,4</sup> An initial screening at the B3LYP/def2-SVP<sup>5</sup> level was made and the resulting low-lying (<20 kcal/mol above the putative global minimum) isomers were further optimized using the def2-TZVP basis set.<sup>5</sup> Single-point calculations for the low-lying energy isomers were performed at the CCSD(T)<sup>6</sup>/def2-TZVP//B3LYP/def2-TZVP<sup>5</sup> level. A further optimization of the lower-lying energy structures was carried out at the TPSS-D3/def2-TZVP<sup>7,8</sup> level and energy corrected with a single-point at CCSD(T)/def2-TZVP.<sup>5,6</sup> So, the structural, bonding, and energy values for the cluster discussed in the main text are those obtained at the CCSD(T)/def2-TZVP<sup>5,6</sup>//TPSS-D3/def2-TZVP.<sup>7,8</sup> To gain a better insight into the chemical bonding, the natural bonding orbital (NBO)<sup>9-11</sup> analysis was performed. The partial third-order (P3) self-energy approximation of the electron propagator was employed to compute the vertical electron detachment energies (VDEs). All valence orbitals were retained in the P3/def2-TZVP//TPSS-D3/def2-TZVP determinations of VDEs, with a pole strength value above the 0.8 threshold value for reliability.<sup>12,13</sup> All these calculations were done with the Gaussian09 program.<sup>14</sup>

In addition, the induced magnetic field<sup>15-17</sup> ( $\mathbf{B}^{ind}$ ) and the induced current-density<sup>18-20</sup> analysis was carried out using the Aromagnetic<sup>21</sup> and GIMIC<sup>18-20</sup> programs, respectively. The molecular magnetic response to a homogeneous external magnetic field is calculated in a rectangular grid where the molecule is located. These magnetic calculations were performed at the PW91/def2-TZVP<sup>22</sup> level.

Finally, to verify the kinetic stability of the ppX clusters, Born-Oppenheimer molecular dynamics (BOMD) simulations were carried out at the PBE/DZVP<sup>23,24</sup> level for 10 ps, and with and a step size of 0.5 fs from the equilibrium global minimum structure. The velocities were randomly assigned to the atoms according to a Maxwell-Boltzmann distribution at 300K. These simulations were performed using the CP2K software package.<sup>25</sup>

|                                   | ppX                     | ppX                              | ptX                     | ppY                     |
|-----------------------------------|-------------------------|----------------------------------|-------------------------|-------------------------|
|                                   | $C_{2\nu}, {}^{1}A_{1}$ | $C_{2\nu}, {}^{3}\mathrm{B}_{1}$ | $C_s$ , <sup>1</sup> A' | $C_s$ , <sup>1</sup> A' |
| SiMg <sub>4</sub> Al <sup>-</sup> | 0.0 (0.0)               | 4.2 (4.2)                        | 3.6 (3.5)               | -0.2 (-0.4)             |
| GeMg <sub>4</sub> Al <sup>-</sup> | 0.0 (0.0)               | 4.0 (3.9)                        | 2.1 (1.8)               | -1.7 (-2.1)             |
| SiMg <sub>4</sub> Ga <sup>-</sup> | 0.0 (0.0)               | 4.0 (3.9)                        | 4.5 (4.3)               | 0.0 (-0.2)              |
| GeMg <sub>4</sub> Ga <sup>-</sup> | 0.0 (0.0)               | 3.5 (3.6)                        | 3.1 (2.9)               | -1.6 (-1.9)             |
| SiMg <sub>4</sub> In <sup>-</sup> | 0.0 (0.0)               | 3.1 (3.0)                        | 3.7 (3.5)               | 4.4 (4.4)               |
| GeMg <sub>4</sub> In <sup>-</sup> | 0.0 (0.0)               | 2.9 (2.8)                        | 2.4 (2.2)               | 2.8 (2.8)               |
| SiMg <sub>4</sub> Tl <sup>-</sup> | 0.0 (0.0)               | 2.3 (2.3)                        | 3.9 (3.8)               | 6.0 (6.0)               |
| GeMg <sub>4</sub> Tl <sup>-</sup> | 0.0 (0.0)               | 2.0 (1.9)                        | 3.0 (2.8)               | 4.8 (4.6)               |

**Figure S1**. The low-lying isomers of the  $XMg_4Y^2$  species. The relative energy is in kcal/mol computed at the CCSD(T)/def2-TZVP//TPSS-D3/def2-TZVP level and at the CCSD(T)/def2-TZVP//B3LYP/def2-TZVP level between (in parentheses).



**Figure S2**. Relative energies (in kcal/mol) of the low-lying isomers of  $SiMg_5^{2-}$  computed at the CCSD(T)/def2-TZVP//B3LYP/def2-TZVP level. The T1-Diagnostic values are between parentheses. "\*" indicates that the structure was obtained at the UB3LYP/def2-TZVP level with broken-symmetry method.



**Figure S3**. Relative energies (kcal/mol) of the low-lying isomers of GeMg<sub>5</sub><sup>2-</sup> computed at the CCSD(T)/def2-TZVP//B3LYP/def2-TZVP level. The T1-Diagnostic values are between parentheses. "\*" indicates that the structure was obtained at the UB3LYP/def2-TZVP level with broken-symmetry method.



**Figure S4**. Structures of the XM<sub>4</sub>Y<sup>-</sup> species (X=Si, Ge; M=Be, Mg, Ca; Y=Al, Ga, In, Tl) optimized at the B3LYP/def2-TZVP level. NImag refers to the number of imaginary frequencies.



**Figure S5**. Relative energies (kcal/mol) of the low-lying isomers of  $SiMg_4Al^-$  computed at the CCSD(T)/def2-TZVP//B3LYP/def2-TZVP level. The T1-Diagnostic values are between parentheses.



**Figure S6**. Relative energies (kcal/mol) of the low-lying isomers of GeMg<sub>4</sub>Al<sup>-</sup> computed at the CCSD(T)/def2-TZVP//B3LYP/def2-TZVP level. The T1-Diagnostic values are between parentheses.



Figure S7. Relative energies (kcal/mol) of the low-lying isomers of  $SiMg_4Ga^-$  computed at the CCSD(T)/def2-TZVP//B3LYP/def2-TZVP level. The T1-Diagnostic values are between parentheses.



**Figure S8**. Relative energies (kcal/mol) of the low-lying isomers of  $GeMg_4Ga^{-1}$  computed at the CCSD(T)/def2-TZVP//B3LYP/def2-TZVP level. The T1-Diagnostic values are between parentheses.



**Figure S9**. Relative energies (kcal/mol) of the low-lying isomers of  $SiMg_4In^-$  computed at the CCSD(T)/def2-TZVP//B3LYP/def2-TZVP level. The T1-Diagnostic values are between parentheses.





**Figure S10**. Relative energies (kcal/mol) of the low-lying isomers of  $GeMg_4In^-$  computed at the CCSD(T)/def2-TZVP//B3LYP/def2-TZVP level. The T1-Diagnostic values are between parentheses.



Figure S11. Relative energies (kcal/mol) of the low-lying isomers of  $SiMg_4Tl^-$  computed at the CCSD(T)/def2-TZVP//B3LYP/def2-TZVP level. The T1-Diagnostic values are between parentheses.



Figure S12. Relative energies (kcal/mol) of the low-lying isomers of  $GeMg_4Tl^-$  computed at the CCSD(T)/def2-TZVP//B3LYP/def2-TZVP level. The T1-Diagnostic values are between parentheses.



**Figure S13**. Structures of the  $XM_3Y_2$  species (X=Si, Ge; M=Be, Mg, Ca; Y=Al, Ga, In, Tl) optimized at the B3LYP/def2-TZVP level. Nimag refers to the number of imaginary frequencies.



Figure S14. Relative energies (kcal/mol) of the low-lying isomers of  $SiMg_3In_2$  computed at the CCSD(T)/def2-TZVP//B3LYP/def2-TZVP level. The T1-Diagnostic values are between parentheses.



Figure S15. Molecular orbitals of the triplet SiMg<sub>5</sub><sup>2-</sup>.



Figure S16. Molecular orbitals of the planar pentacoordinate SiMg<sub>4</sub>In<sup>-</sup> and SiMg<sub>3</sub>In<sub>2</sub>.



**Figure S17**. The  $B^{ind}_{z}$  isolines computed at the PW91/def2-TZVP level for a) SiMg<sub>4</sub>In<sup>-</sup> and b) SiMg<sub>3</sub>In<sub>2</sub>



**Figure S18**. The induced current-density ( $J^{ind}$ ) vector maps for a) SiMg<sub>4</sub>In<sup>-</sup> and b) SiMg<sub>3</sub>In<sub>2</sub>, calculated in the molecular plane (top) and 1 bohr (bottom) above the molecular plane. The arrows indicate the direction of  $J^{ind}$ . The  $|J^{ind}|$  scale is given in atomic units (1 a.u. = 100.63 nA/T/Å<sup>2</sup>).



**Figure S19**. a) The B<sup>ind</sup><sub>z</sub> isolines for SiMg<sub>5</sub><sup>2-</sup> and b) The induced current-density (**J**<sup>ind</sup>) vector maps for a) SiMg<sub>5</sub><sup>2-</sup> calculated in the molecular plane (left) and 1 bohr (right) above the molecular plane. The arrows indicate the direction of **J**<sup>ind</sup>. The |**J**<sup>ind</sup>| scale is given in atomic units (1 a.u. = 100.63 nA/T/Å<sup>2</sup>).

|                                   | Qx    | Q <sub>Y</sub> | Q <sub>Mg</sub> | BD <sub>X-Y</sub> | BD <sub>X-Mg</sub> | WBI <sub>X-Y</sub> | WBI <sub>X</sub> .<br>Mg |
|-----------------------------------|-------|----------------|-----------------|-------------------|--------------------|--------------------|--------------------------|
| SiMg <sub>5</sub> <sup>2-</sup>   | -3.04 | -              | 0.24            | -                 | 2.69               | -                  | 0.33                     |
| GeMg <sub>5</sub> <sup>2-</sup>   | -2.84 | -              | 0.24            | -                 | 2.76               | -                  | 0.30                     |
| SiMg <sub>4</sub> Al <sup>-</sup> | -2.46 | -0.60          | 0.41<br>(0.62)  | 2.50              | 2.66<br>(2.63)     | 1.24               | 0.30<br>(0.26)           |
| GeMg <sub>4</sub> Al <sup>-</sup> | -2.33 | -0.57          | 0.37<br>(0.58)  | 2.55              | 2.67<br>(2.68)     | 1.23               | 0.32<br>(0.26)           |
| SiMg <sub>4</sub> Ga <sup>-</sup> | -2.41 | -0.70          | 0.43<br>(0.61)  | 2.51              | 2.64<br>(2.64)     | 1.28               | 0.32<br>(0.27)           |
| GeMg <sub>4</sub> Ga              | -2.29 | -0.62          | 0.39<br>(0.56)  | 2.57              | 2.67<br>(2.68)     | 1.25               | 0.35<br>(0.25)           |
| SiMg <sub>4</sub> In <sup>-</sup> | -2.57 | -0.44          | 0.43<br>(0.58)  | 2.74              | 2.63<br>(2.68)     | 1.05               | 0.32<br>(0.28)           |
| GeMg <sub>4</sub> In <sup>-</sup> | -2.41 | -0.43          | 0.38<br>(0.54)  | 2.79              | 2.67<br>(2.68)     | 1.06               | 0.35<br>(0.28)           |
| SiMg <sub>4</sub> Tl <sup>-</sup> | -2.59 | -0.39          | 0.43<br>(0.56)  | 2.82              | 2.63<br>(2.65)     | 0.99               | 0.33<br>(0.27)           |
| GeMg <sub>4</sub> Tl <sup>-</sup> | -2.44 | -0.37          | 0.39<br>(0.51)  | 2.88              | 2.66<br>(2.68)     | 1.00               | 0.36<br>(0.28)           |
| SiMg <sub>3</sub> In <sub>2</sub> | -2.19 | -0.03          | 0.67<br>(0.91)  | 2.70              | 2.69<br>(2.53)     | 0.89               | 0.25<br>(0.42)           |

**Table S1**. NPA charges (Q) in |e|, bond distance (BD) in Å, and WBI values of the planar pentacoordinate isomers of  $XMg_5^{2-}$ ,  $XMg_4Y^-$ , (X = Si, Ge; Y = Al, Ga, In, Tl), and SiMg\_3In<sub>2</sub> at the TPSS/def2-TZVP level.

Values between parentheses refers to the Mg connected to the Y atom.

**Table S2**. Smallest frequencies ( $\nu_{min}$ , cm<sup>-1</sup>), energy level in eV of HOMO, LUMO and HOMO–LUMO gap ( $\Delta_{H-L}$ , eV) and the valence populations of Si and Ge atoms (*z*-axis is perpendicular to molecular plane, and *x*-axis is along with the direction of the substituted atoms) computed at the TPSS/def2-TZVP level.

| Species                           | $\Box_{\min}$ | НОМО  | LUMO  | $\Delta_{	ext{H-L}}$ | Si/Ge                                        |
|-----------------------------------|---------------|-------|-------|----------------------|----------------------------------------------|
| SiMg <sub>5</sub> <sup>2-</sup>   | 48.0          | 2.55  | 4.69  | 2.14                 | $3s^{1.97}3p_x^{1.51}3p_y^{1.51}3p_z^{1.87}$ |
| SiMg <sub>4</sub> Al-             | 20.7          | -0.63 | 0.49  | 1.12                 | $3s^{1.81}3p_x^{1.68}3p_y^{1.20}3p_z^{1.62}$ |
| SiMg <sub>4</sub> Ga <sup>-</sup> | 10.6          | -0.61 | 0.53  | 1.14                 | $3s^{1.82}3p_x^{1.62}3p_y^{1.20}3p_z^{1.62}$ |
| SiMg <sub>4</sub> In-             | 23.2          | -0.62 | 0.49  | 1.11                 | $3s^{1.87}3p_x^{1.68}3p_y^{1.21}3p_z^{1.66}$ |
| SiMg <sub>4</sub> Tl <sup>-</sup> | 22.8          | -0.58 | 0.52  | 1.10                 | $3s^{1.89}3p_x^{1.67}3p_y^{1.21}3p_z^{1.67}$ |
| GeMg <sub>5</sub> <sup>2-</sup>   | 31.6          | 2.56  | 4.66  | 2.10                 | $4s^{1.97}4p_x^{1.44}4p_y^{1.44}4p_z^{1.78}$ |
| GeMg <sub>4</sub> Al <sup>-</sup> | 9.5           | -0.64 | 0.51  | 1.15                 | $4s^{1.84}4p_x^{1.70}4p_y^{1.09}4p_z^{1.55}$ |
| GeMg <sub>4</sub> Ga <sup>-</sup> | -9.2          | -0.62 | 0.56  | 1.18                 | $4s^{1.85}4p_x^{1.64}4p_y^{1.09}4p_z^{1.54}$ |
| GeMg <sub>4</sub> In <sup>-</sup> | 10.0          | -0.62 | 0.51  | 1.13                 | $4s^{1.89}4p_x^{1.69}4p_y^{1.09}4p_z^{1.57}$ |
| GeMg <sub>4</sub> Tl <sup>-</sup> | 10.2          | -0.58 | 0.53  | 1.11                 | $4s^{1.90}4p_x^{1.68}4p_y^{1.09}4p_z^{1.58}$ |
| SiMg <sub>3</sub> In <sub>2</sub> | 10.1          | -4.42 | -2.95 | 1.47                 | $3s^{1.79}3p_x^{1.53}3p_y^{1.15}3p_z^{1.60}$ |

| Detachment from | n MO           | SiMg₄In     | SiMg₄Tl <sup>.</sup> | GeMg₄In     | GeMg₄Tl-    |
|-----------------|----------------|-------------|----------------------|-------------|-------------|
| НОМО            | a <sub>1</sub> | 2.04 (0.84) | 1.99 (0.84)          | 2.04 (0.84) | 1.98 (0.85) |
| HOMO-1          | $a_1$          | 2.60 (0.83) | 2.56 (0.83)          | 2.60 (0.83) | 2.56 (0.83) |
| HOMO-2          | $b_2$          | 2.68 (0.83) | 2.73 (0.82)          | 2.70 (0.83) | 2.75 (0.82) |
| НОМО-3          | $a_1$          | 2.97 (0.82) | 2.91 (0.83)          | 2.91 (0.83) | 2.85 (0.83) |

**Table S3**. Computed electron detachment (in eV) of XMg<sub>4</sub>Y· (X=Si, Ge; Y=In, Tl) clusters computed at the P3/def2-TZVP level. Pole strength is given in parentheses.

## Coordinates of ppX (Si, Ge) obtained at the TPSS-D3/def2-TZVP level.

SiMg<sub>5</sub><sup>2-</sup> D5h 12 0.839502804 2.583723959 0.000000000 12 0.000000000 -2.197846874 1.596829224 12 2.716688140 0.000000000 0.000000000 12 0.839502804 -2.583723959 0.000000000 12 -2.197846874 -1.596829224 0.000000000 14 0.000000000 0.000000000 0.000000000 GeMg<sub>5</sub><sup>2-</sup> D5h Mg 0.852235000 2.622911000 0.000000000 Mg 2.757892000 0.000000000 0.000000000 Mg -2.231182000 0.000000000 1.621048000 Mg -2.231181000 -1.6210480000.000000000 Mg 0.852236000 -2.6229110000.000000000 Ge 0.000000000 0.000000000 0.000000000 SiMg<sub>4</sub>AlptX 12 -0.108169000 -3.143515000 0.000000000 12 -1.978125000 -0.866728000 0.000000000 12 1.930007000 -0.9807420000.000000000 12 2.487195000 1.880696000 0.00000000 13 -2.1516070001.939642000 0.000000000 14 0.000000000 0.000000000 0.864866000 GeMg<sub>4</sub>Al<sup>-</sup> ptX 0.000000000 12 -0.093032000 -3.339420000 12 -1.0624740000.000000000 -1.966475000 12 1.930485000 -1.153806000 0.000000000 12 2.535056000 1.706715000 0.000000000 13 -2.220955000 1.754673000 0.000000000 32 0.000000000 0.730534000 0.000000000 SiMg<sub>4</sub>Ga<sup>-</sup> ptX 12 2.505599000 -2.5149790000.000000000 12 -0.385648000 -1.929862000 0.000000000 12 2.660779000 0.458159000 0.000000000 12 0.000000000 1.269853000 3.019806000 31 -2.342161000 0.075215000 0.000000000 14 0.000000000 0.662203000 0.000000000 GeMg<sub>4</sub>Ga<sup>-</sup> ptX 12 2,485007000 -2.6791820000.000000000

| 12         | -0.396661000                   | -2.032312000 | 0.000000000  |
|------------|--------------------------------|--------------|--------------|
| 12         | 2.680230000                    | 0.297126000  | 0.000000000  |
| 12         | 1.387020000                    | 2.918174000  | 0.000000000  |
| 31         | -2.382811000                   | -0.031444000 | 0.000000000  |
| 32         | 0.000000000                    | 0.591534000  | 0.000000000  |
|            |                                |              |              |
| SiM        | g <sub>4</sub> In <sup>-</sup> |              |              |
| ptX        | -                              |              |              |
| 12         | 3.969921000                    | -0.564696000 | 0.000000000  |
| 12         | 1.172142000                    | -1.513004000 | 0.000000000  |
| 12         | 2.422885000                    | 1.968697000  | 0.000000000  |
| 12         | -0.063721000                   | 3.471051000  | 0.000000000  |
| 49         | -1.837035000                   | -1.056816000 | 0.000000000  |
| 14         | 0.000000000                    | 0.817102000  | 0.000000000  |
|            |                                |              |              |
| GeN        | ∕lg₄In⁻                        |              |              |
| ptX        |                                |              |              |
| 12         | 3.966560000                    | -0.755315000 | 0.000000000  |
| 12         | 1.147845000                    | -1.647125000 | 0.000000000  |
| 12         | 2.488932000                    | 1.822323000  | 0.000000000  |
| 12         | 0.046385000                    | 3.412759000  | 0.000000000  |
| 49         | -1.873401000                   | -1.170557000 | 0.000000000  |
| 32         | 0.000000000                    | 0.730174000  | 0.000000000  |
| <b>a r</b> |                                |              |              |
| SIM        | g <sub>4</sub> 11-             |              |              |
| ptX        |                                | 4            |              |
| 12         | 4.253352000                    | 1.353902000  | 0.000000000  |
| 12         | 1.972606000                    | -0.533229000 | 0.000000000  |
| 12         | 1.858345000                    | 3.105448000  | 0.000000000  |
| 12         | -0.996645000                   | 3.611345000  | 0.000000000  |
| 81         | -1.050023000                   | -1.317976000 | 0.000000000  |
| 14         | 0.000000000                    | 1.164747000  | 0.000000000  |
| Gal        | (σ.Tl-                         |              |              |
| ntY        | 1g411                          |              |              |
| 12         | 1 288757000                    | 1 136083000  | 0.00000000   |
| 12         | 1.058680000                    | 0.604707000  | 0.000000000  |
| 12         | 1.958080000                    | -0.094797000 | 0.000000000  |
| 12         | 0.802842000                    | 2.907377000  | 0.000000000  |
| 12         | -0.892843000                   | 3.38189/000  | 0.000000000  |
| ð1<br>22   | -1.0823/4000                   | -1.430//4000 | 0.000000000  |
| 32         | 0.000000000                    | 1.063924000  | 0.000000000  |
| SiM        | g <sub>4</sub> Al <sup>-</sup> |              |              |
| ррХ        |                                |              |              |
| 12         | 0.000000000                    | 2.418873000  | -0.980105000 |
| 12         | 0.000000000                    | 1.466591000  | 2.271379000  |
| 13         | 0.000000000                    | 0.000000000  | -2.443421000 |
| 12         | 0.000000000                    | -2.418873000 | -0.980105000 |
| 12         | 0.000000000                    | -1.466591000 | 2.271379000  |
| 14         | 0.000000000                    | 0.000000000  | 0.055279000  |
| -          |                                |              |              |

GeMg<sub>4</sub>Al<sup>-</sup> nnX

| pрл        |                  |              |              |
|------------|------------------|--------------|--------------|
| 12         | 0.000000000      | 2.437331000  | -1.033705000 |
| 12         | 0.000000000      | 1 473628000  | 2 302341000  |
| 12         | 0.000000000      | 0.00000000   | 2.302371000  |
| 13         | 0.000000000      | 0.000000000  | -2.491//1000 |
| 12         | 0.000000000      | -2.437331000 | -1.033705000 |
| 12         | 0.000000000      | -1.473628000 | 2.302341000  |
| 32         | 0.000000000      | 0.000000000  | 0.060805000  |
| 52         | 0.000000000      | 0.000000000  | 0.000805000  |
| 0.74       | C                |              |              |
| SiMg       | <sub>4</sub> Ga- |              |              |
| ppX        |                  |              |              |
| 12         | 0.000000000      | 2.396233000  | 0.550918000  |
| 12         | 0.000000000      | 1 468052000  | -2 753782000 |
| 12         | 0.000000000      | 0.000000000  | 1 05(101000  |
| 51         | 0.000000000      | 0.000000000  | 1.930101000  |
| 12         | 0.000000000      | -2.396233000 | 0.550918000  |
| 12         | 0.000000000      | -1.468052000 | -2.753782000 |
| 14         | 0 000000000      | 0 000000000  | -0 555028000 |
|            |                  |              |              |
| GeM        | g₄Ga⁻            |              |              |
| nnY        | 540 <b>u</b>     |              |              |
| 12<br>12   | 0 00000000       | 0 41000000   | 0 (7104(000  |
| 12         | 0.000000000      | 2.413229000  | -0.6/1946000 |
| 12         | 0.000000000      | 1.474503000  | 2.715099000  |
| 31         | 0.000000000      | 0.000000000  | -2.085053000 |
| 12         | 0.000000000      | -2 413229000 | -0 671946000 |
| 12         | 0.000000000      | 1 474502000  | 2 71 500000  |
| 12         | 0.000000000      | -1.4/4505000 | 2./15099000  |
| 32         | 0.000000000      | 0.000000000  | 0.487530000  |
|            |                  |              |              |
| SiMg       | 4In⁻             |              |              |
| ррХ        |                  |              |              |
| 12         | 0 000000000      | 2 435921000  | 0.057174000  |
| 12         | 0.000000000      | 1 446249000  | 2 166952000  |
| 12         | 0.000000000      | 1.440248000  | -5.100852000 |
| 49         | 0.000000000      | 0.000000000  | 1.792532000  |
| 12         | 0.000000000      | -2.435921000 | 0.057174000  |
| 12         | 0 000000000      | -1 446248000 | -3 166852000 |
| 14         | 0.0000000000     | 0.000000000  | -0.942987000 |
| 14         | 0.0000000000     | 0.000000000  | -0.742787000 |
| GoM        | a In-            |              |              |
| UCIVI      | g4111            |              |              |
| ррх        |                  |              |              |
| 12         | 0.000000000      | 2.453867000  | 0.211661000  |
| 12         | 0.000000000      | 1.453769000  | -3.088402000 |
| <b>4</b> 9 | 0.000000000      | 0.000000000  | 1 953904000  |
| 10         | 0.000000000      | 0.000000000  | 0.211661000  |
| 12         | 0.000000000      | -2.455867000 | 0.211001000  |
| 12         | 0.000000000      | -1.453/69000 | -3.088402000 |
| 32         | 0.000000000      | 0.000000000  | -0.834359000 |
|            |                  |              |              |
| SiMg       | 4Tl-             |              |              |
| ppX        |                  |              |              |
| 12         | 0 00000000       | 2 /31881000  | -0 380087000 |
| 12         |                  | 2.7J1001000  | -0.307007000 |
| 12         | 0.000000000      | 1.4394/4000  | -3.0199/3000 |
|            |                  |              |              |

| 81<br>12 | 0.000000000 | 0.000000000  | 1.428745000  |
|----------|-------------|--------------|--------------|
| 12       | 0.000000000 | -1.439474000 | -3.619973000 |
| 14       | 0.000000000 | 0.00000000   | -1.393634000 |

GeMg<sub>4</sub>Tl<sup>-</sup> ppX

| ррл |             |              |              |
|-----|-------------|--------------|--------------|
| 12  | 0.000000000 | 2.449670000  | -0.220296000 |
| 12  | 0.000000000 | 1.445966000  | -3.524329000 |
| 81  | 0.000000000 | 0.000000000  | 1.609776000  |
| 12  | 0.000000000 | -2.449670000 | -0.220296000 |
| 12  | 0.000000000 | -1.445966000 | -3.524329000 |
| 32  | 0.000000000 | 0.000000000  | -1.266276000 |
|     |             |              |              |

# SiMg<sub>4</sub>Al<sup>-</sup>

| ppX-triplet |             |              |              |  |  |
|-------------|-------------|--------------|--------------|--|--|
| 12          | 0.000000000 | 2.471331000  | -0.918623000 |  |  |
| 12          | 0.000000000 | 1.784297000  | 2.073115000  |  |  |
| 13          | 0.000000000 | 0.000000000  | -2.310206000 |  |  |
| 12          | 0.000000000 | -2.471331000 | -0.918623000 |  |  |
| 12          | 0.000000000 | -1.784297000 | 2.073115000  |  |  |
| 14          | 0.000000000 | 0.000000000  | 0.166062000  |  |  |

# GeMg<sub>4</sub>Al<sup>-</sup>

| ppX-triplet |             |              |              |  |  |
|-------------|-------------|--------------|--------------|--|--|
| 12          | 0.000000000 | 2.478024000  | -0.999682000 |  |  |
| 12          | 0.000000000 | 1.885859000  | 2.031044000  |  |  |
| 13          | 0.000000000 | 0.000000000  | -2.355088000 |  |  |
| 12          | 0.000000000 | -2.478024000 | -0.999682000 |  |  |
| 12          | 0.000000000 | -1.885859000 | 2.031044000  |  |  |
| 32          | 0.000000000 | 0.000000000  | 0.183233000  |  |  |

SiMg<sub>4</sub>Ga<sup>-</sup> ppX-triplet

| 12 | 0.000000000 | 2.436628000  | 0.508560000  |
|----|-------------|--------------|--------------|
| 12 | 0.000000000 | 1.827644000  | -2.510286000 |
| 31 | 0.000000000 | 0.000000000  | 1.844047000  |
| 12 | 0.000000000 | -2.436628000 | 0.508560000  |
| 12 | 0.000000000 | -1.827644000 | -2.510286000 |
| 14 | 0.000000000 | 0.000000000  | -0.651718000 |

# GeMg<sub>4</sub>Ga<sup>-</sup> ppX-triplet

| PP1 • • | in proc     |              |              |  |
|---------|-------------|--------------|--------------|--|
| 12      | 0.000000000 | 2.434980000  | -0.663424000 |  |
| 12      | 0.000000000 | 1.951434000  | 2.386847000  |  |
| 31      | 0.000000000 | 0.000000000  | -1.963301000 |  |
| 12      | 0.000000000 | -2.434980000 | -0.663424000 |  |
| 12      | 0.000000000 | -1.951434000 | 2.386847000  |  |
| 32      | 0.000000000 | 0.000000000  | 0.609381000  |  |
|         |             |              |              |  |

SiMg<sub>4</sub>In<sup>-</sup> ppX-triplet

| 12   | 0.000000000                     | 2.472317000   | 0.044751000    |
|------|---------------------------------|---------------|----------------|
| 12   | 0.000000000                     | 1.750785000   | -2.944744000   |
| 49   | 0.000000000                     | 0.000000000   | 1.708726000    |
| 12   | 0.000000000                     | -2.472317000  | 0.044751000    |
| 12   | 0.000000000                     | -1.750785000  | -2.944744000   |
| 14   | 0.000000000                     | 0.000000000   | -1.009124000   |
|      | 0.00000000000                   | 0.00000000000 | 1.000 12 10000 |
| GeM  | lg4In-                          |               |                |
| ppX- | -triplet                        |               |                |
| 12   | 0.000000000                     | 2.470536000   | 0.225438000    |
| 12   | 0.000000000                     | 1.842351000   | -2.811499000   |
| 49   | 0.000000000                     | 0.000000000   | 1.868231000    |
| 12   | 0.000000000                     | -2.470536000  | 0.225438000    |
| 12   | 0.000000000                     | -1.842351000  | -2.811499000   |
| 32   | 0.000000000                     | 0.000000000   | -0.921184000   |
|      |                                 |               |                |
| SiM  | $g_4Tl^-$                       |               |                |
| ppX- | -triplet                        |               |                |
| 12   | 0.000000000                     | 2.457984000   | -0.379127000   |
| 12   | 0.000000000                     | 1.747926000   | -3.381757000   |
| 81   | 0.000000000                     | 0.000000000   | 1.364027000    |
| 12   | 0.000000000                     | -2.457984000  | -0.379127000   |
| 12   | 0.000000000                     | -1.747926000  | -3.381757000   |
| 14   | 0.000000000                     | 0.000000000   | -1.444640000   |
|      |                                 |               |                |
| GeM  | [g <sub>4</sub> Tl <sup>-</sup> |               |                |
| ppX- | -triplet                        |               |                |
| 12   | 0.000000000                     | 2.451422000   | -0.180357000   |
| 12   | 0.000000000                     | 1.839572000   | -3.234387000   |
| 81   | 0.000000000                     | 0.000000000   | 1.542051000    |
| 12   | 0.000000000                     | -2.451422000  | -0.180357000   |
| 12   | 0.000000000                     | -1.839572000  | -3.234387000   |
| 32   | 0.000000000                     | 0.000000000   | -1.342259000   |
|      |                                 |               |                |
| SiMg | g <sub>4</sub> Al-              |               |                |
| ррΥ  |                                 |               |                |
| 12   | 0.313520000                     | -0.877392000  | 2.260176000    |
| 12   | 0.313520000                     | 2.070794000   | 1.461896000    |
| 14   | -0.003903000                    | -2.099095000  | 0.000000000    |
| 12   | 0.313520000                     | -0.877392000  | -2.260176000   |
| 12   | 0.313520000                     | 2.070794000   | -1.461896000   |
| 13   | -1.153409000                    | 0.057360000   | 0.000000000    |
|      |                                 |               |                |
| GeM  | [g <sub>4</sub> Al <sup>-</sup> |               |                |
| ppY  |                                 |               |                |
| 12   | 0.282695000                     | -0.458465000  | 2.288378000    |
| 12   | 0.282695000                     | 2.492693000   | 1.459356000    |
| 32   | 0.046700000                     | -1.719203000  | 0.000000000    |
|      |                                 |               |                |

| 12 | 0.282695000  | -0.458465000 | -2.288378000 |
|----|--------------|--------------|--------------|
| 12 | 0.282695000  | 2.492693000  | -1.459356000 |
| 13 | -1.158751000 | 0.476385000  | 0.000000000  |
|    |              |              |              |

SiMg<sub>4</sub>Ga<sup>-</sup> ppY

| рр ү |             |              |              |
|------|-------------|--------------|--------------|
| 12   | 0.000000000 | 2.379558000  | -1.105573000 |
| 12   | 0.000000000 | 1.519202000  | 2.341500000  |
| 14   | 0.000000000 | 0.000000000  | -2.304888000 |
| 12   | 0.000000000 | -2.379558000 | -1.105573000 |
| 12   | 0.000000000 | -1.519202000 | 2.341500000  |
| 31   | 0.000000000 | 0.000000000  | 0.084070000  |
|      |             |              |              |

GeMg<sub>4</sub>Ga<sup>-</sup>

| 000  |
|------|
| 000  |
| 000  |
| 000  |
| 5000 |
| 0000 |
|      |

# SiMg<sub>4</sub>In<sup>-</sup>

| ppY |              |              |              |
|-----|--------------|--------------|--------------|
| 12  | 0.947991000  | -2.204984000 | 0.928285000  |
| 12  | -2.032654000 | -1.483352000 | 0.794387000  |
| 14  | 2.177973000  | -0.006066000 | 0.419366000  |
| 12  | 0.961627000  | 2.200819000  | 0.927425000  |
| 12  | -2.022721000 | 1.495968000  | 0.792638000  |
| 49  | -0.096786000 | -0.000336000 | -0.962938000 |

# GeMg<sub>4</sub>In<sup>-</sup>

| ppY |              |              |              |
|-----|--------------|--------------|--------------|
| 12  | 0.807899000  | -0.680380000 | 2.242467000  |
| 12  | 0.807899000  | 2.306810000  | 1.488694000  |
| 32  | 0.333698000  | -1.913520000 | 0.000000000  |
| 12  | 0.807899000  | -0.680380000 | -2.242467000 |
| 12  | 0.807899000  | 2.306810000  | -1.488694000 |
| 49  | -1.009337000 | 0.453027000  | 0.000000000  |
|     |              |              |              |

## SiMg<sub>4</sub>Tl<sup>-</sup>

| 211112 | 54 * *       |              |              |
|--------|--------------|--------------|--------------|
| ppY    |              |              |              |
| 12     | -1.272233000 | -2.128181000 | -1.133472000 |
| 12     | 1.724283000  | -1.550820000 | -1.365085000 |
| 14     | -2.304429000 | 0.020469000  | -0.220810000 |
| 12     | -1.222376000 | 2.124237000  | -1.178019000 |
| 12     | 1.762669000  | 1.477763000  | -1.396380000 |
| 81     | 0.251283000  | 0.007870000  | 0.789714000  |
|        |              |              |              |

GeMg<sub>4</sub>Tl<sup>-</sup>

| ppY                          |                                                                                       |                                                                           |                                                                            |  |
|------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------|--|
| 12                           | 1.034151000                                                                           | -2.135472000                                                              | 1.102011000                                                                |  |
| 12                           | -1.921179000                                                                          | -1.422101000                                                              | 1.548553000                                                                |  |
| 32                           | 2.094880000                                                                           | -0.020613000                                                              | 0.066561000                                                                |  |
| 12                           | 1.115003000                                                                           | 2.200525000                                                               | 0.953477000                                                                |  |
| 12                           | -1.852314000                                                                          | 1.606945000                                                               | 1.437694000                                                                |  |
| 81                           | -0.586964000                                                                          | -0.028878000                                                              | -0.773219000                                                               |  |
|                              |                                                                                       |                                                                           |                                                                            |  |
|                              |                                                                                       |                                                                           |                                                                            |  |
| SiMg                         | $_3In_2$                                                                              |                                                                           |                                                                            |  |
| SiMg<br>In                   | <sup>3</sup> In <sub>2</sub><br>0.000000000                                           | 2.670722000                                                               | -0.338232000                                                               |  |
| SiMg<br>In<br>Mg             | <sup>3</sup> In <sub>2</sub><br>0.000000000<br>0.000000000                            | 2.670722000<br>1.543438000                                                | -0.338232000<br>2.460742000                                                |  |
| SiMg<br>In<br>Mg<br>Mg       | <sup>3</sup> In <sub>2</sub><br>0.000000000<br>0.00000000<br>0.00000000               | 2.670722000<br>1.543438000<br>0.000000000                                 | -0.338232000<br>2.460742000<br>-2.365151000                                |  |
| SiMg<br>In<br>Mg<br>In       | <sup>3</sup> In <sub>2</sub><br>0.000000000<br>0.000000000<br>0.000000000<br>0.000000 | 2.670722000<br>1.543438000<br>0.000000000<br>-2.670722000                 | -0.338232000<br>2.460742000<br>-2.365151000<br>-0.338232000                |  |
| SiMg<br>In<br>Mg<br>In<br>Mg | <sup>3</sup> In <sub>2</sub><br>0.000000000<br>0.00000000<br>0.00000000<br>0.000000   | 2.670722000<br>1.543438000<br>0.000000000<br>-2.670722000<br>-1.543438000 | -0.338232000<br>2.460742000<br>-2.365151000<br>-0.338232000<br>2.460742000 |  |

## References

- (1) C. B. Shao, Y. H. Ding, Grid-Based Comprehensive Isomeric Search Algorithm, Jilin University, Changchun, China. 2010.
- (2) J.-f. Xin, X.-r. Han, F.-f. He, Y.-h. Ding, Front. Chem. 2019, 7, 193.
- (3) J. Lv, Y. Wang, L. Zhu, Y. Ma, J. Chem. Phys. 2012, 137, 084104.
- (4) Y. Wang, J. Lv, L. Zhu, Y. Ma, Comput. Phys. Commun. 2012, 183, 2063–2070.
- (5) F. Weigend, Phys. Chem. Chem. Phys., 2006, 8, 1057–1065.
- (6) G. E. Scuseria, C. L. Janssen and H. F. Schaefer, *J. Chem. Phys.*, 1988, **89**, 7382–7387.
- (7) J. M. Tao, J. P. Perdew, V. N. Staroverov, G. E. Scuseria, *Phys. Rev. Lett.*, 2003, 91, 146401.
- (8) S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys., 2010, 132, 154104.
- (9) J. P. Foster, F. Weinhold, J. Am. Chem. Soc. 1980, 102, 7211-7218.
- (10) A. E. Reed, R. B. Weinstock, F. Weinhold, J. Chem. Phys. 1985, 83, 735-746.
- (11) E. D. Glendening, F. Weinhold, J. Comput. Chem. 1998, 19, 593-609.
- (12) V. V. Zakjevskii, S. King. O. Dolgounitcheva, V. G. Zakrzewski, J. V. Ortiz, J. Am. Chem. Soc. 2006, **128**, 13350-13351.
- (13) J. V. Ortiz, WIREs Comput. Mol. Sci. 2013, 3, 123-142.

(14) M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, H. Borkent, W. Laarhoven, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. J. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 16, Revision C.01, Gaussian, Inc., Wallingford, CT, 2016.

- (15) G. Merino, T. Heine, G. Seifert, Chem. Eur. J. 2004, 10, 4367-4371.
- (16) T. Heine, R. Islas, G. Merino, J. Comput. Chem. 2007, 28, 302-309.
- (17) R. Islas, T. Heine, G. Merino, Acc. Chem. Res. 2012, 45, 215-228.
- (18) J. Jusélius, D. Sundholm and J. Gauss, J. Chem. Phys. 2004, 121, 3952-3963.
- (19) H. Fliegl, S. Taubert, O. Lehtonen and D. Sundholm, *Phys. Chem. Chem. Phys.*2011, 13, 20500–20518.
- (20) D. Sundholm, H. Fliegl and R. J. F. Berger, *Wiley Interdiscip. Rev. Comput. Mol. Sci.* 2016, **6**, 639–678.

(21) M. Orozco-Ic, J. L. Cabellos, G. Merino, Aromagnetic. 2016, Cinvestav-Mérida, México.

(22) J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J.Singh, C. Fiolhais, *Phys. Rev. B* 1992, 46, 6671–6687.

(23) J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865-68.

(24) N. Godbout, D.R. Salahub, J. Andzelm, E. Wimmer, Can. J. Phys. 1992, 70, 560.

(25) J. M. Millam, V. Bakken, W. Chen, W. L. Hase, H. B. Schlegel, *J. Chem. Phys.*1999, 111, 3800–3805.