Antibody drug conjugates with hydroxamic acid cargoes for histone deacetylase (HDAC) inhibition

Claudio Cianferotti, Valentina Faltoni, Elena Cini, Elena Ermini, Francesca Migliorini, Elena Petricci, Maurizio Taddei, Laura Salvini, Gianfranco Batistuzzi, Ferdinando M. Milazzo, Anna Maria Anastasi, Caterina Chiapparino, Rita De Santis and Giuseppe Giannini.Supporting InformationGeneral methods2

Synthesis of compound 7 2
Synthesis of compound $\mathbf{8}$ 3
Synthesis of compound $\mathbf{1 0}$ 4
Synthesis of compound 11 4
Synthesis of compound 12 5
Synthesis of compound 15 5
General procedure for the preparation of ADCs 6
General Procedure for plasma stability assay 8
General biology procedures and in vivo experiments 9
Figure S1 (MALDI of conjugate 17) 11
Figure S2 (MALDI of conjugate 18) 13
Figure S3 (MALDI of conjugate 19) 15
Figure S4 (MALDI of conjugate 20) 17
Figure S5 (Binding of ADCs to tumor cells) 19
Figure S6 (Internalization of ADCs by tumor cells) 20
Figure S7 (Acetylation of HDAC-target proteins in A549 cells through Western Blot analysis) 21
NMR spectra, HPLC-MS and MS-ESI for product characterizations 22

General methods

All reagents were used as purchased from commercial suppliers without further purification. The reactions were carried out in oven dried or flamed vessels. Solvents were dried and purified by conventional methods prior use or, if available, purchased in anhydrous form. Flash column chromatography was performed with Merck silica gel 60, 0.040-0.063 mm (230-400 mesh). Merck aluminum backed plates pre-coated with silica gel 60 (UV254) were used for analytical thin layer chromatography and were visualized by staining with a KMnO 4 solution. NMR spectra were recorded at $25^{\circ} \mathrm{C}$ and 400 or 600 MHz for 1 H and 100 or 150 MHz for ${ }^{13} \mathrm{C}$. The solvent is specified for each spectrum. Splitting patterns are designated as s , singlet; d , doublet; t , triplet; q , quartet; m , multiplet; br, broad. Chemical shifts (d) are given in ppm relative to the resonance of their respective residual solvent peaks. High and low resolution mass spectroscopy analyses were recorded by electrospray ionization with a mass spectrometer Q-exactive Plus. Melting points were determined in open capillary tubes and are uncorrected. HPLC/MS analysis were performed with the chromatographic LC/MSD system Agilent 1100 series, connected with UV detector (254 nm) using an Intersil ODS-3V C18 column ($5 \mu \mathrm{~m}, 4.6 \mathrm{x}$ $250 \mathrm{~mm})$, flow $0.8 \mathrm{~mL} / \mathrm{min}, \mathrm{MeCN}(0.1 \% \mathrm{HCOOH}) / \mathrm{H}_{2} \mathrm{O}(0.1 \% \mathrm{HCOOH})$ gradient from 1:9 to 9:1 in 10 minutes. ESI ionization, flow of the drying gas $\left(\mathrm{N}_{2}\right) 9 \mathrm{~L} / \mathrm{min}$, temperature $350^{\circ} \mathrm{C}$, atomizing pressure 40 PSI, fragmentation.

6-(2,5-Dioxo-2,5-dihydro-1H-pyrrol-1-yl)-N-(prop-2-yn-1-yl)hexanamide (5)

To a solution of 6-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)hexanoic acid ($500 \mathrm{mg}, 2.37 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ dry $(25 \mathrm{~mL})$ in a round-bottom flask under magnetic stirring and atmosphere of N_{2} at $0^{\circ} \mathrm{C}$ in an ice bath were added in sequence propargylamine $(162 \mu \mathrm{~L}, 2.37 \mathrm{mmol})$, 1-hydroxybenzotriazole hydrate (HOBt, $580 \mathrm{mg}, 3.79 \mathrm{mmol})$, $\mathrm{HBTU}(1437 \mathrm{mg}, 3.79 \mathrm{mmol})$ and DIPEA $(1.65 \mathrm{~mL}, 9.48 \mathrm{mmol})$. The clear solution was warmed to room temperature and stirred overnight. The reaction mixture was then diluted with EtOAc (35 mL) and washed with NaHCO_{3} ss $(3 \times 15 \mathrm{~mL}), \mathrm{HCl} 1 \mathrm{~N}(3 \times 15 \mathrm{~mL})$, water $(3 \times 15 \mathrm{~mL})$ and brine ($2 \times 15 \mathrm{~mL}$), dried over anhydrous sodium sulfate, filtered, concentrated in vacuo and purified by silica gel flash chromatography (PE:EtOAc 1:1) to provide compound 5 ($330 \mathrm{mg}, 1.33 \mathrm{mmol}$) as a white solid (yield 56\%).). Spectral data are consistent with reported values ${ }^{1}$.

[^0]
(4-Mercaptophenyl)methanol (6)

The product was prepared according to literature ${ }^{2}$
In a 250 mL two-neck round bottom flask provided with an addition funnel was added a solution of $\mathrm{LiAlH}_{4} 1 \mathrm{M}$ in THF ($38.9 \mathrm{~mL}, 38.9 \mathrm{mmol}$) under an atmosphere of N_{2}; the solution was cooled to $0^{\circ} \mathrm{C}$ in an ice bath and a solution of 4-mercaptobenzoic acid ($2 \mathrm{~g}, 12.97 \mathrm{mmol}$) in THF dry (26 mL) was added dropwise in 30^{\prime} through the addition funnel. The resulting mixture was vigorously stirred at room temperature for 16 h . The reaction mixture was cooled to $0^{\circ} \mathrm{C}$, quenched with water (3 mL), acidified to pH 2 with HCl 1 N and extracted with $\operatorname{EtOAc}(3 \times 30 \mathrm{~mL})$; the organic phase was washed with water ($3 \times 40 \mathrm{~mL}$) and brine (2 x 40 mL), dried over anhydrous sodium sulfate, filtered and concentrated in vacuo. The crude reaction mixture was purified by silica gel flash chromatography (PE:EtOAc 4:1) to provide compound $6(1.204 \mathrm{~g}, 8.60 \mathrm{mmol})$ as a white solid (yield 74%).

6-(3-((4-(hydroxymethyl)phenyl)thio)-2,5-dioxopyrrolidin-1-yl)-N-(prop-2-yn-1-yl)hexanamide (7)

Freshly prepared thiol $\mathbf{6}(135 \mathrm{mg}, 0.96 \mathrm{mmol})$ was added to a solution of compound $5(200 \mathrm{mg}, 0.80$ $\mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(8 \mathrm{~mL})$ in a round bottom flask under an atmosphere of N_{2}. The resulting solution was stirred at room temperature overnight and concentrated in vacuo. The crude reaction mixture was purified by silica gel flash chromatography (PE:EtOAc 1:4) to provide the desired alcohol 7 ($242 \mathrm{mg}, 0.62 \mathrm{mmol}$) as a yellow oil (yield 78%). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.50-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H})$, $6.57(\mathrm{~s}, 1 \mathrm{H}), 4.58(\mathrm{~s}, 2 \mathrm{H}), 4.08-3.79(\mathrm{~m}, 3 \mathrm{H}), 3.27(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.19-2.98(\mathrm{~m}, 1 \mathrm{H}), 2.77-2.53$ $(\mathrm{m}, 1 \mathrm{H}), 2.18(\mathrm{~s}, 1 \mathrm{H}), 2.01(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.55-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.25-1.23(\mathrm{~m}, 2 \mathrm{H}), 1.02-0.96(\mathrm{~m}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.08,174.32,172.63,142.93,134.66,127.61,126.99,79.35$, $71.03,63.37,43.49,38.38,35.62,35.47,28.60,26.70,25.66,24.58$. Elemental Analysis calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}: \mathrm{C}, 61.84 ; \mathrm{H}, 6.23$; N, 7.21; O, 16.47; S, 8.25 found C, $61.82 ; \mathrm{H}, 6.25 ; \mathrm{N}, 7.20 ; \mathrm{O}, 16.50$; S, 8.23.

N1-((4-((2,5-dioxo-1-(6-0xo-6-(prop-2-yn-1-ylamino)hexyl)pyrrolidin-3-yl)thio)benzyl)oxy)-N8phenyloctanediamide (8)

[^1]The alcohol $7(246 \mathrm{mg}, 0.63 \mathrm{mmol})$ solubilized in dry THF (15 mL) was converted into the corresponding bromide by adding $\mathrm{PBr}_{3}(87 \mu \mathrm{~L}, 0.96 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ and stirring the solution at $0^{\circ} \mathrm{C}$ for 3 h . The crude reaction mixture was concentrated in vacuo and filtered through a silica gel path with EtOAc to provide the corresponding bromide in 71% yield as a bright orange oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.47(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.47(\mathrm{~s}, 2 \mathrm{H}), 4.14(\mathrm{dd}, J=9.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~s}, 2 \mathrm{H}), 3.38$ (t, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.14(\mathrm{dd}, J=18.8,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{dd}, J=18.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{~s}, 1 \mathrm{H}), 2.15(\mathrm{~d}$, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.64-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.42(\mathrm{~m}, 2 \mathrm{H}), 1.20-1.16(\mathrm{~m}, 2 \mathrm{H}) ;$ MS-ESI: m/z 473-475[M+ $\mathrm{Na}]^{+}$. Vorinostat ($1,96 \mathrm{mg}, 0.36 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH}(6 \mathrm{~mL})$ and $\mathrm{NaOH} 40 \%$ solution (76 $\mu \mathrm{L}, 0.76 \mathrm{mmol}$) was added. The resulting mixture was stirred for 10^{\prime} and then added to the bromide (201 $\mathrm{mg}, 0.44 \mathrm{mmol}$). Immediately the solution turned purple, after 10^{\prime} the base was neutralized with HCl 1 N , diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried over anhydrous sodium sulfate, filtered and concentrated in vacuo. The crude reaction mixture was purified by silica gel flash chromatography (PE:EtOAc 1:4) to provide compound $\mathbf{8}(150 \mathrm{mg}, 0.24 \mathrm{mmol})$ as a white solid (yield $67 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta 7.54-$ $7.52(\mathrm{~m}, 4 \mathrm{H}), 7.42(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.08(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{~s}, 2 \mathrm{H}), 4.22(\mathrm{~d}$, $\mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 2 \mathrm{H}), 3.38(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.21(\mathrm{dd}, J=18.5,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{dd}, J=18.6$, $3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{~s}, 1 \mathrm{H}), 2.36(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.16(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.06(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.69-$ $1.68(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.57(\mathrm{~m}, 4 \mathrm{H}), 1.43-1.29(\mathrm{~m}, 6 \mathrm{H}), 1.21-1.19(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$: $\delta 175.56,174.68,173.13,172.09,138.39,137.20,134.74,129.68,129.01,124.20,120.06,79.84,71.57$, $43.82,38.98,37.40,36.25,36.01,29.78,29.19,28.70,27.31,26.31,25.44,25.03$. Anal calcd for $\mathrm{C}_{34} \mathrm{H}_{42} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}: \mathrm{C}, 64.33 ; \mathrm{H}, 6.67$; N, 8.83; O, 15.12; S, 5.05 found C, $64.35 ; \mathrm{H}, 6.69 ; \mathrm{N}, 8.82 ; \mathrm{O}, 15.15$; S, 4.99.

6-(1-((6-(2,5-dioxo-3-((4-(((8-0x0-8-(phenylamino)octanamido)oxy)methyl)phenyl)thio)pyrrolidin-1-yl)hexanamido)methyl)-1H-1,2,3-triazol-4-yl)hexanoic acid (10)

Compounds $8(90 \mathrm{mg}, 0.14 \mathrm{mmol})$ and $9(17 \mathrm{mg}, 0.11 \mathrm{mmol})$ were dissolved in DMF dry $(10 \mathrm{~mL})$ in a round-bottom flask under magnetic stirring and atmosphere of argon. The solution was degassed with three cycles of argon/vacuum. To this solution, a freshly prepared aqueous mixture (5.5 mL) of $\mathrm{Cu}(\mathrm{OAc})_{2}$ ($7 \mathrm{mg}, 0.03 \mathrm{mmol}$) and sodium ascorbate ($13 \mathrm{mg}, 0.07 \mathrm{mmol}$), previously degassed by argon/vacuum cycles, was added dropwise. The reaction mixture was degassed and left to stir under argon at room temperature for 72 h . The solvent was evaporated and the crude reaction mixture was purified by silica gel flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH} 9: 1\right)$ to provide compound $\mathbf{1 0}(57 \mathrm{mg}, 0.09 \mathrm{mmol})$ as a white solid (yield 65\%). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 7.85(\mathrm{~s}, 1 \mathrm{H}), 7.54-7.51(\mathrm{~m}, 4 \mathrm{H}), 7.41(\mathrm{~d}, J=7.9 \mathrm{~Hz}$,
$2 \mathrm{H}), 7.29(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{~s}, 2 \mathrm{H}), 4.42(\mathrm{~s}, 2 \mathrm{H}), 4.38(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H})$, $4.24(\mathrm{dd}, J=9.0,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.22(\mathrm{dd}, J=18.7,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{dd}, J=18.6$, $3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.26(\mathrm{~m}, 2 \mathrm{H}), 2.21(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.06(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $1.94-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.59(\mathrm{~m}, 8 \mathrm{H}), 1.38-1.33(\mathrm{~m}, 8 \mathrm{H}), 1.22-1.18(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right): ~ \delta 177.81,176.74,176.54,176.29,174.77,141.06,139.74,134.94,133.09,131.02,129.64$, $125.47,121.27,78.14,74.94,51.49,44.91,39.76,37.86,37.11,33.71,30.89,29.86,28.28,27.29,26.68$, 26.40, 25.58. Anal calcd for $\mathrm{C}_{40} \mathrm{H}_{53} \mathrm{~N}_{7} \mathrm{O}_{8} \mathrm{~S}: \mathrm{C}, 60.66 ; \mathrm{H}, 6.75 ; \mathrm{N}, 12.38 ; \mathrm{O}, 16.16 ; \mathrm{S}, 4.05$ found C, 60.65 ; H, 6.73; N, 12.38; O, 16.15; S, 4.09.

(E)-6-(3-((4-(()3-(4-()(2-(1H-indol-3-yl)ethyl)(2-

hydroxyethyl)amino)methyl)phenyl)acrylamido)oxy)methyl)phenyl)thio)-2,5-dioxopyrrolidin-1-yl)-N-(prop-2-yn-1-yl)hexanamide (11)

The alcohol 7 ($246 \mathrm{mg}, 0.63 \mathrm{mmol}$) solubilized in dry THF (15 mL) was then converted into the corresponding bromide by adding $\mathrm{PBr}_{3}(87 \mu \mathrm{~L}, 0.96 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ and stirring the solution at $0{ }^{\circ} \mathrm{C}$ for 3 h . The crude reaction mixture was concentrated in vacuo and filtered through a silica gel path with EtOAc to provide the corresponding bromide in 71% yield as a bright orange oil. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, CDCl_{3}, : $\delta 7.47(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.47(\mathrm{~s}, 2 \mathrm{H}), 4.14(\mathrm{dd}, J=9.2,2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.94(\mathrm{~s}, 2 \mathrm{H}), 3.38(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.14(\mathrm{dd}, J=18.8,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{dd}, J=18.8,2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.21(\mathrm{~s}, 1 \mathrm{H}), 2.15(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.64-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.42(\mathrm{~m}, 2 \mathrm{H}), 1.20-1.16(\mathrm{~m}, 2 \mathrm{H})$; MSESI: m/z 473-475 [M + Na] ${ }^{+}$. Dacinostat ($\left.4,136 \mathrm{mg}, 0.36 \mathrm{mmol}\right)$ was dissolved in MeOH (6 mL) and $\mathrm{NaOH} 40 \%$ solution ($76 \mu \mathrm{~L}, 0.76 \mathrm{mmol}$) was added. The resulting mixture was stirred for 10 ' and then added to the bromide ($201 \mathrm{mg}, 0.44 \mathrm{mmol}$). Immediately the solution turned purple, after 10 ' the base was neutralized with HCl 1 N , diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried over anhydrous sodium sulfate, filtered and concentrated in vacuo. The crude reaction mixture was purified by silica gel flash chromatography (PE:EtOAc 1:4) to provide compound $11(208 \mathrm{mg}, 0.28 \mathrm{mmol})$ as a white solid (yield $77 \%) .{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.59-7.33(\mathrm{~m}, 11 \mathrm{H}), 7.17(\mathrm{~s}, 1 \mathrm{H}), 7.08(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 6.46(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{~s}, 2 \mathrm{H}), 4.60(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.23$ $(\mathrm{m}, 1 \mathrm{H}), 3.97-3.93(\mathrm{~m}, 4 \mathrm{H}), 3.65-3.31(\mathrm{~m}, 8 \mathrm{H}), 3.25-3.20(\mathrm{~m}, 1 \mathrm{H}), 2.65(\mathrm{~d}, J=18.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{~s}$, $1 \mathrm{H}), 2.21-2.14(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.39-1.29(\mathrm{~m}, 2 \mathrm{H}), 1.19-1.18(\mathrm{~m} 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 177.33,176.37,175.21,141.09,137.83,134.57,132.31,130.79$, $130.72,129.44,127.48,127.32,124.34,122.69,120.01,119.67,118.72,112.51,109.16,80.92,58.16$, $56.40,55.58,54.39,51.54,49.64,49.43,49.21,44.77,44.62,39.57,36.92,36.34,29.32,27.97,27.01$,
25.93, 21.15. Anal calcd for $\mathrm{C}_{42} \mathrm{H}_{47} \mathrm{~N}_{5} \mathrm{O}_{6} \mathrm{~S}: \mathrm{C}, 67.27 ; \mathrm{H}, 6.32 ; \mathrm{N}, 9.34 ; \mathrm{O}, 12.80 ; \mathrm{S}, 4.28$ found C, 67.25; H, 6.33; N, 9.37; O, 12.79; S, 4.26.

(E)-6-(4-((6-(3-)(4-()(3-(4-()(2-(1H-indol-3-yl)ethyl)(2-

hydroxyethyl)amino)methyl)phenyl)acrylamido)oxy)methyl)phenyl)thio)-2,5-dioxopyrrolidin-1-

yl)hexanamido)methyl)-1H-1,2,3-triazol-1-yl)hexanoic acid (12)

Compounds $11(105 \mathrm{mg}, 0.14 \mathrm{mmol})$ and $9(17 \mathrm{mg}, 0.11 \mathrm{mmol})$ were dissolved in DMF dry $(10 \mathrm{~mL})$ in a round-bottom flask under magnetic stirring and atmosphere of argon. The solution was degassed with three cycles of argon/vacuum. To this solution, a freshly prepared aqueous mixture (5.5 mL) of $\mathrm{Cu}(\mathrm{OAc})_{2}$ ($7 \mathrm{mg}, 0.03 \mathrm{mmol}$) and sodium ascorbate ($13 \mathrm{mg}, 0.07 \mathrm{mmol}$), previously degassed by argon/vacuum cycles, was added dropwise. The reaction mixture was degassed and left to stir under argon at room temperature for 72 h . The solvent was evaporated and the crude was purified by silica gel flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH} 9: 1\right)$ to provide compound $12(62 \mathrm{mg}, 0.068 \mathrm{mmol})$ as a white solid (yield 62\%). 1H NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.81(\mathrm{~s}, 1 \mathrm{H}), 7.53-7.44(\mathrm{~m}, 9 \mathrm{H}), 7.35(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.32 (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.08-7-06(\mathrm{~m}, 2 \mathrm{H}), 6.93(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.95(\mathrm{~s}$, $2 \mathrm{H}), 4.42(\mathrm{~s}, 2 \mathrm{H}), 4.35-4.32(\mathrm{~m}, 3 \mathrm{H}), 4.15(\mathrm{~s}, 2 \mathrm{H}), 3.81(\mathrm{~m}, 2 \mathrm{H}), 3.37-3.34(\mathrm{~m}, 2 \mathrm{H}), 3.24-3.11(\mathrm{~m}$, $7 \mathrm{H}), 2.64(\mathrm{~d}, J=18.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.24-2.17(\mathrm{~m}, 4 \mathrm{H}), 1.88-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.57(\mathrm{~m}, 4 \mathrm{H}), 1.38-1.37$ $(\mathrm{m}, 4 \mathrm{H}), 1.16-1.14(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) 177.68, 176.76, 176.73, 175.85, 175.62, $141.48,141.23,138.25,137.26,134.99,133.91,132.33,131.01,129.84,129.52,127.99,124.34,124.15$, $122.75,120.04,119.00,112.56,110.25,69.32,58.56,57.24,56.07,54.86,51.17,45.02,40.17,39.76$, $37.10,36.62,35.66,32.47,31.58,30.95,30.11,28.26,27.27,27.02,26.23,25.61,24.99,24.88,23.98$, 21.66, 14.30, 11.34.. Anal calcd for $\mathrm{C}_{48} \mathrm{H}_{58} \mathrm{~N}_{8} \mathrm{O}_{8} \mathrm{~S}$: C, 63.56; H, 6.44; N, 12.35; O, 14.11; S, 3.53 found C, 63.55; H, 6.45; N, 12.37; O, 14.14; S, 3.49.

4-((S)-2-((S)-2-(7-ethoxy-7-oxoheptanamido)-3-methylbutanamido)-5-ureidopentanamido)benzyl

 8-oxo-8-(phenylamino)octanoate (15)Vorinostat ($1,162 \mathrm{mg}, 0.61 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH}(6 \mathrm{~mL})$ and $\mathrm{NaOH} 40 \%$ solution ($730 \mu \mathrm{~L}$, 0.73 mmol) was added. The resulting mixture was stirred for 10^{\prime} and then added to the bromide $\mathbf{1 4}$ (559 $\mathrm{mg}, 0.92 \mathrm{mmol}$) prepared as described in reference 18 . Immediately the solution turned purple, after 10 , the base was neutralized with HCl 1 N and the solvent was evaporated. The crude reaction mixture was purified by silica gel flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH} 9: 1\right)$ to provide compound $\mathbf{1 5}(214 \mathrm{mg}, 0.27$ mmol) as a yellow oil (yield 46%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD} 3 \mathrm{OD}$) δ
7.65-7-56 (m, 4H), 7.40-7-29 (m, 4H), 7.10 (t, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~s}, 2 \mathrm{H}), 4.58-4.55(\mathrm{~m}, 2 \mathrm{H}), 4.21(\mathrm{~d}$, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.92(\mathrm{dd}, J=13.3,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.28$ $-3.08(\mathrm{~m}, 2 \mathrm{H}), 2.42-2.39(\mathrm{~m}, 2 \mathrm{H}), 2.34-2.30(\mathrm{~m}, 4 \mathrm{H}), 2.15-1-93(\mathrm{~m}, 3 \mathrm{H}), 1.96-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.60$ $(\mathrm{m}, 10 \mathrm{H}), 1.42-1.31(\mathrm{~m}, 6 \mathrm{H}), 1.26(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.01-0.97(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD} 3 \mathrm{OD}$): $176.44,175.34,174.53,174.10,172.45,167.51,162.01,139.72,138.43,131.02,129.64,128.47,125.00$, $121.43,121.18,64.77,61.32,60.59,60.50,55.07,45.39,37.81,36.53,36.42,34.84,33.72,33.62,31.76$, $31.51,30.44,30.33,30.26,29.73,29.59,27.62,26.60,26.49,26.40,26.33,25.60,20.17,19.98,19.94$, 19.81, 18.92, 14.55. Anal calcd for $\mathrm{C}_{41} \mathrm{H}_{60} \mathrm{~N}_{6} \mathrm{O}_{9}$: C, 61.94; H, 7.86; N, 14.10; O, 16.10 found C, 61.96; H, 7.85; N, 14.11; O, 16.08.

General procedure for the preparation of ADCs through conjugation via ε-amino groups of lysine residues. 17 (Ctx-NH-10), 18 (Trast-NH-10), 19 (Ctx-NH-12), 20 (Trast-NH-16).

The proper carboxylic acid ($\mathbf{1 0}, \mathbf{1 2}$ or $\mathbf{1 6}$, obtained from ester $\mathbf{1 5}$ through hydrolysis using 3 equivalents of LiOH in a $1: 1: 1$ mixture of $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O} / \mathrm{EtOH}$ for $2 \mathrm{~h}, 0.020 \mathrm{mmol}$) was dissolved in anhydrous DMF $(0.5 \mathrm{~mL})$ in a round-bottom flask under magnetic stirring and atmosphere of N_{2}. DCC ($7 \mathrm{mg}, 0.035$ mmol) and N -hydroxysuccinimide ($3.4 \mathrm{mg}, 0.030 \mathrm{mmol}$) were then added to the resulting solution and the mixture was stirred at room temperature for 16 hours. The white solid was removed by filtration and the solvent removed under vacuum, to provide a white solid (MS(ESI): m/z $911[\mathrm{M}+\mathrm{Na}]^{+}$for activated $\mathbf{1 0}, 1026[\mathrm{M}+\mathrm{Na}]^{+}$for activated $\mathbf{1 2}$ and $887[\mathrm{M}+\mathrm{Na}]^{+}$for activated 16) that was dissolved in DMSO in order to obtain a solution of 10 mM .

Contemporary, a solution of the proper antibody (Trastuzumab or Cetuximab) was buffer exchanged using a 10 kDa cutoff dialysis membrane to obtain antibodies dissolved in PBS pH 7.4 and to remove interfering preservative (glycine). The concentration of the antibodies after dialysis was determined measuring the OD280 and the observed absorbance was divided by 1.35. A 40 fold molar excess of the various NHS ester 10 mM solution was the added to the dialyzed antibody solution.

The reaction was incubated at room temperature with gentle continuous mixing and after 1 hour quenched with a 20 mM glycine aqueous solution. The final product was dialyzed in PBS overnight at $4^{\circ} \mathrm{C}$ using a 10 kDa cutoff membrane in order to remove the excess of unreacted payload.

The DAR was determined by MALDI mass spectrometry, using an Ultraflex III mass spectrometer (Bruker, GmbH), operating in positive linear mode. Briefly, $100 \mu \mathrm{~L}$ of unconjugated antibodies and products 17, 18, 19 and $\mathbf{2 0}$ was desalted using PD spin trap G25 (GEHealthcare) eluting in water. A 10 $\mathrm{mg} / \mathrm{ml}$ s-DHB MALDI matrix solution was prepared in $0.1 \% \mathrm{TFA}$ dissolved in a mixture of water and
acetonitrile (50:50, v/v). The sample solution ($2 \mu \mathrm{~L}$) was deposited on MALDI target using a double layer sample deposition method. The mass spectra were acquired in a mass range from 50 kDa to 180 kDa . The average DAR was calculated (over three experiments) dividing mass difference between unconjugated and conjugated antibodies by the MW of the linker-payload.

Compound 17 DAR $=4 \pm 0.5$. Compound $18 \mathrm{DAR}=5 \pm 0.5$. Compound 19 DAR 3 ± 0.5. Compound 206 ± 0.5.

General Procedure for plasma stability assay ${ }^{3}$.

A solution containing $\mathbf{1 0}, 12$ or $\mathbf{1 5}(4 \mu \mathrm{~L}, 10 \mathrm{mM})$ in methanol was added to mouse plasma $(0.5 \mathrm{~mL})$ in sodium phosphate buffer (0.5 mL) and incubated at $37^{\circ} \mathrm{C}$. Aliquots $(50 \mu \mathrm{~L})$ were withdrawn at different time. The sample was extracted with acetonitrile $(0.2 \mathrm{~mL})$ and centrifugated for 10 minutes at 10000 rpm. The supernatant $(0.15 \mathrm{~mL})$ was evaporated, solubilized in methanol (1 mL) and subjected to HPLC/MS analysis analysis. Intersil ODS-3V C18 column ($5 \mu \mathrm{~m}, 4.6 \times 250 \mathrm{~mm}$), flow $0.8 \mathrm{~mL} / \mathrm{min}$, $\mathrm{MeCN}(0.1 \% \mathrm{HCOOH}) / \mathrm{H}_{2} \mathrm{O}(0.1 \% \mathrm{HCOOH})$ gradient from 1:9 to $9: 1$ in 10 minutes. ESI ionization, flow of the drying gas $\left(\mathrm{N}_{2}\right) 9 \mathrm{~L} / \mathrm{min}$, temperature $350{ }^{\circ} \mathrm{C}$, atomizing pressure 40 PSI , fragmentation. Analysis done in triplicate.

Quantisation (single ion current) was done based on a calibration curve done with compounds alone in concentration range $1-20 \mathrm{mM}$ in $\mathrm{MeOH} / \mathrm{PBS}$ extracted with acetonitrile and submitted to the same workup.

For compounds $\mathbf{1 0}$ and $\mathbf{1 2}$ we observed $85 \pm 8 \%$ remaining after 12 h incubation. For compound $\mathbf{1 5}$ we observed $45 \pm 10 \%$ remaining after 12 of incubation with formation acid 16 ($25 \pm 5 \%$).

[^2]
General biology procedures

Cell lines

A549 (human non-small cell lung carcinoma) cell line was from DSMZ, Capan-1 (human pancreas carcinoma) cell line was from ATCC, and SKBR3 (human breast carcinoma) cell line was kindly provided by Istituto Superiore di Sanità of Rome. Capan-1 and SKBR3 cells were cultivated in RPMI1640 medium supplemented with 10% FBS, 2 m ; L-glutamine (L-Glu) and 1% non-essential amino acids (NEAA), whereas A549 cells were cultivated in DMEM medium supplemented with 10% FBS and 2 mM L-Glu.

ADC binding (FACS Analysis)

Pellets of A549, Capan-1 or SKBR3 cells were incubated 1 h at $4^{\circ} \mathrm{C}$ with ADCs or related antibodies, Cetuximab (Ctx) and Trastuzumab (Trast), all at $5 \mu \mathrm{~g} / \mathrm{mL}$ in $100 \mu \mathrm{~L}$. After washings, cells were incubated with mouse anti-human FITC-conjugated $\operatorname{Ig}(B D)$ and propidium iodide. Cytofluorimetry was performed with FACScalibur (BD).

High content screening (HCS) fluorescence imaging
Cells were seeded in 96-well microtiter plates in complete medium and then incubated with Ctx, Trast or ADCs $(5 \mu \mathrm{~g} / \mathrm{mL})$, for the indicated times. After cell fixation with 4% formaldehyde in PBS, permeabilization with 0.2% Tween-20 in PBS (PBS-T) and blocking with 2\% BSA in PBS-T, Ctx, Trast or ADCs were detected by FITC conjugated mouse anti-human $\operatorname{Ig}(B D)$.

Expression of protein targets after cell fixation, permeabilization and blocking as described above, was evaluated by adding the following specific primary antibodies: rabbit anti-acetyl-Histone H3 (Lys9/Lys14) (Cell Signaling) or mouse anti acetyl-tubulin (6-11B-1) (Santa Cruz). FITC-conjugated goat anti-rabbit or goat anti-mouse $\operatorname{IgG}(\mathrm{BD})$ were then added, according to the primary antibody used. Cells were counterstained with Draq5 dye (Cell Signaling). Fluorescence signals were acquired by the High Content Screening (HCS) system Operetta (Perkin Elmer) and images analyzed through Harmony software (Perkin Elmer).

Western blotting

Tumor cells were seeded in $10-\mathrm{cm}$ culture plates in complete medium, and then cultivated with $5 \mu \mathrm{~g} / \mathrm{mL}$ Ctx, Trast or ADCs, or with 50 nM reference HDAC inhibitors (HDACis), for 3 hours. Whole cell lysates were then prepared and protein content was determined by Bradford method. Equal amounts of soluble proteins were separated on SDS-PAGE and then transferred to nitrocellulose membrane (Amersham Hybond-ECL; GE Healthcare). Membranes were blocked 3 hours with 5\% non-fat dry milk in PBS 0.05% Tween-20 (PBS-T) before overnight incubation, at $4^{\circ} \mathrm{C}$, with one of the following primary antibodies: rabbit anti- acetyl-Histone H4 (Ser1/Lys5/Lys8/Lys12) (Santa Cruz) or mouse anti acetyltubulin (6-11B-1) (Santa Cruz). Immunoblotting with mouse anti- β-actin antibody (Sigma Aldrich) was performed to normalize protein loading. After washings with PBS-T, membranes were incubated 1 hour with the appropriate secondary HRP-conjugated anti-rabbit or anti-mouse IgGs (Sigma Aldrich and Amersham GE-Healthcare, respectively). Immunoreactive bands were visualized by enhanced chemiluminescence detection and analyzed through phosphoimaging (STORM, Molecular Dynamics) or by exposure to X-ray film (Amersham Hyperfilm ECL; GE-Healthcare).

ADC tumor cell proliferation

The effect of test items on cell proliferation was evaluated on the human non-small cell lung carcinoma A549 cell line. Cells were seeded (at 5.000 cells/well) into 96 -well plates in complete culture medium and then incubated for 6 days, in quadruplicate, with scalar concentrations of ADCs, ranging from 500 to 100 nM , or of reference HDACis (from 2000 to 100 nM range of doses). Inhibition of cell proliferation was measured by CellTiter-Glo Luminescent Cell Viability Assay (Promega), through a Veritas luminometer (Promega). Data were expressed as the average ($\pm \mathrm{SE}$) of percentage inhibition of two independent experiments. The IC50 values were ultimately calculated by using the GraphPad Prism 5.02 software.

A

B
FIGURE SI1 A Comparison of MALDI spectra of ADC 17 (blue line, up) and cetuximab alone (red line, down). B Expansion of di- and mono-charged peak mass. The images are representative of one over 3 experiments

A

B
FIGURE SI 2 A Comparison of MALDI spectra of conjugate 18 (blue line, up) and trastuzumab alone (red line, down). B Expansion of di- and mono-charged peak mass. The image is representative of one over 3 experiments.

A

B

FIGURE SI 3 A Comparison of MALDI spectra of conjugate 19 (up) and cetuximab alone (down). B
Expansion of di- and mono-charged peak mass. The image is representative of one over 3 experiments.

A

B
FIGURE SI 4 A Comparison of MALDI spectra of trastuzumab alone (blue line, up) and conjugate 20 (red line); down). B Expansion of di- and mono-charged peak mass, conjugate $\mathbf{2 0}$ up and trastuzumab alone down . The image is representative of one over 3 experiments

FIGURE SI 5 |Receptor binding of new ADCs. Binding of ADCs $\mathbf{1 7}$ (pink line) and $\mathbf{1 9}$ (light blue line) compared to cetuximab (Ctx; red line) (left panel), and of ADCs 18 (brown line) and 20 (cyan line) compared to trastuzumab (Trast; orange line) (right panel), by cytofluorimetry analysis on human lung (A549), breast (SKBR3) and pancreas (Capan-1) carcinoma cell lines. Cell pellets were incubated with test items and then stained with FITC-conjugated mouse anti-human Ig and propidium iodide. Dark grey peaks refer to cells without primary antibody.
vehicle

FIGURE SI 6 | Internalization of new ADCs, as compared to Cetuximab or Trastuzumab, (all at $5 \mu \mathrm{~g} / \mathrm{mL}$) by tumor cells, as measured by HCS fluorescence imaging after 1 hour incubation. Insets show specific (blue) fluorescence signals within the cells. Draq5 dye staining of nucleus (grey). Each image is representative of at least 5 fields of duplicate wells. Magnification 60X. Data are from one representative experiment out of two.

WB Acetyl-H3 (A549 cells)

FIGURE SI 7 | Effect of SAHA, Dacinostat, Cetuximab and Trastuzumab, compared to ADCs 17-20, on acetylation of α-tubulin and histone H3 in A549 (human lung carcinoma) cells. Cells were cultivated 3 hours, at $37^{\circ} \mathrm{C}$, with medium (vehicle), reference $\mathrm{HDACi}(50 \mathrm{nM})$ or antibodies ($5 \mu \mathrm{~g} / \mathrm{mL}$), and then western blot analysis was carried out on total protein lysates. Densitometric analysis of specific band intensity, after normalization to beta-actin, expressed as fold change, of one representative blot is shown. Data refer to two experiments.
${ }^{1} \mathrm{H}$-NMR spectrum of 7

${ }^{13} \mathrm{C}$-NMR spectrum of 7

${ }^{1} \mathrm{H}$-NMR spectrum of $\mathbf{8}$

${ }^{13} \mathrm{C}$-NMR spectrum of $\mathbf{8}$

HPLC-MS and MS-ESI 8 (MW: 634)

${ }^{1} \mathrm{H}$-NMR spectrum of $\mathbf{1 0}$

${ }^{13} \mathrm{C}$-NMR spectrum of $\mathbf{1 0}$

1	1	1	1	1	1		1	1	1		,	1	1	1	1
180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30

HPLC-MS and MS-ESI 10 (MW: 791)

${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $\mathbf{1 1}$

${ }^{13} \mathrm{C}$-NMR spectrum of $\mathbf{1 1}$

HPLC-MS and MS-ESI 11 (MW: 749)

${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $\mathbf{1 2}$

${ }^{13} \mathrm{C}$-NMR spectrum of $\mathbf{1 2}$

					1	T					1	1				1	
180	170	160	150	140	130	120	110	100	$\begin{array}{r} 90 \\ \mathrm{f} 1(\mathrm{ppm}) \end{array}$	80	70	60	50	40	30	20	10

HPLC-MS and MS-ESI 12 (MW: 906)

${ }^{1} \mathrm{H}$－NMR spectrum of $\mathbf{1 5}$

${ }^{13} \mathrm{C}$－NMR spectrum of $\mathbf{1 5}$

	寅		
式梼	I	11	リリア

1	，	1	1			1	T	1	1	1	1		1	1	1	1	1
180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

HPLC-MS and MS-ESI 15 (MW: 795)

[^0]: ${ }^{1}$ S. Köhling, G. Künze, K. Lemmnitzer, M. Bermudez, G. Wolber, J. Schiller, D. Huster, J. Rademann, Chem. Eur. J. 2016, 22, 5563-5574

[^1]: ${ }^{2}$ Q. Xie, C. Ni, R. Zhang, L. Li, J. Rong, J. Hu, Angew. Chemie Int. Ed. 2017, 56, 3206-3210.).

[^2]: ${ }^{3}$ G. M. Dubowchik, R. A. Firestone, L. Padilla, D. Willner, S. J. Hofstead, K. Mosure, J. O. Knipe, S. J. Lasch and P. A. Trail, Bioconjug. Chem., 2002, 13, 855-869

