Electronic supporting information

For

Exploring the homopolar dehydrocoupling of ammonia borane by solid-state multinuclear NMR spectroscopy

Binayak Roy*+, Urbi Pal‡, Ankita Bishnoi*, Luke O'Dell‡, Pratibha Sharma*

*Department of Energy Science and Engineering, Indian Institute of Technology Bombay, India

+School of Chemistry, Monash University, Clayton, Australia

‡Institute for Frontier Materials, Deakin University, Geelong Waurn Ponds, Australia

Experimental procedure

Preparation of the post dehydrogenated product

Ammonia borane (AB, 90% purity) and aluminium phosphate (AP) was procured from Sigma-Aldrich Australia, and used without any further purification. 100 mg of ammonia borane was dissolved in 5 ml of THF at room temperature. The solution then was slowly added to 100 mg of aluminium phosphate and stirred at 200 rpm for 3 hours. The dispersion was placed under vacuum in a Schlenk line for the removal of THF solvent. The vacuum evaporation resulted in the elimination of THF solvent, and the resulting powder had AB impregnated within the porous structure of AP. This powder was named as AB+AP and stored in glove box at room temperature. The post heated decomposed samples have been prepared by heating the ammonia borane samples under dynamic heating condition. The AB and AB+AP samples were heated in a STF-16 tubular furnace from room temperature to 300°C under the heating rate of 10°C/min in Ar atmosphere. The post heated products of pure and supported AB were further analysed through solid state 2D NMR spectroscopy.

NMR data acquisition and analysis details

All solid-state NMR experiments were carried out at $B_0 = 11.75$ T using a 500 MHz Bruker Avance III NMR spectrometer, equipped with a 1.3 mm ultra-fast MAS probe and a 62.5 kHz MAS rate. The samples were packed in MAS zirconia rotors in a glovebox under an argon atmosphere to minimize contact with moisture. The chemical shifts of ¹¹B and ¹H are reported in ppm referenced to boron trifluoride diethyl etherate (Et₂O-BF₃) and nitromethane, respectively. ¹⁴N overtone frequencies are reported in kHz due to the MAS-rate dependent position of the overtone signals, as detailed elsewhere in the literature¹, and were referenced using the overtone signal from glycine.

The ${}^{1}H_{-}{}^{14}N^{OT}$ HMQC spectra were acquired with a standard HMQC pulse sequence but with WURST-80 pulses on the ${}^{14}N^{OT}$ channel in order to improve the excitation bandwidth (200 µs duration, 100 kHz sweep range). 256 scans were acquired for each slice with a 2 s recycle delay, and 128 slices were acquired in the indirect dimension with a t₁ increment of 8 µs.

The ¹¹B MQMAS spectrum was obtained using a 3 pulse split-t₁ pulse sequence, 60 scans acquired for each slice with a 1 s recycle delay, and 196 slices acquired in the indirect dimension with a t₁ increment of 16 μ s.

The ¹H-¹¹B HETCOR spectra were obtained with a 2.5 ms contact time, a ramped contact pulse on the ¹H channel, 32 scans acquired for each slice with a 2 s recycle delay, and 128 slices acquired in the indirect dimension with a t_1 increment of 50 μ s.

All spectra were processed using the Bruker TopSpin software, with the "xfshear" command applied in the case of the MQMAS spectrum.

	δ_{obs}	δ _{iso}	C _Q (kHz)	η _α	P _Q (kHz)	Assignment
Site 1	32.66	28.34	2784	0.17	2797	Peripheral BN ₂ H
Site 2	30.65	26.66	2716	0.27	2749	Internal BN ₃
Site 3	27.42	24.01	2718	0.28	2754	Peripheral BN ₃
Site 4	23.44	19.9	2588	0.24	2612	Homopolar Boron site
Site 5	1.64	1.25	-	-		BN ₄

Table S1: The ¹¹B MQMAS model fitting parameters of the product of supported AB

¹H dimension in the ¹H-¹¹B HETCOR spectra of pure AB

Figure S1: The ¹H chemical shifts of supported AB and pure AB as observed in ¹H MAS and 2D ¹H-¹¹B HETCOR analysis

A comparison (Figure S1) between the ¹H MAS and 2D ¹H-¹¹B HETCOR spectra of the supported AB shows that the HETCOR analysis reveals much more detailed information than its ¹H MAS spectra. A comparison between the HETCOR spectra of supported and pure AB shows a significantly different ¹H chemical shift profile, which may arise from the involvement of B-B interaction.

Figure S2: Solid state ¹H-¹¹B HETCOR NMR spectra of the post dehydrogenated product of pure AB depicting the ¹H and ¹¹B chemical shifts along the Y and X axis, respectively

Figure S3: Solid state ¹H-¹¹B HETCOR NMR spectra of the post dehydrogenated product of supported AB depicting the ¹H and ¹¹B chemical shifts along the Y and X axis, respectively for the contact time of 2 ms

Figure S4: Solid state ¹H-¹¹B HETCOR NMR spectra of the post dehydrogenated product of supported AB depicting the ¹H and ¹¹B chemical shifts along the Y and X axis, respectively for the contact time of 1 ms

Figure S5: Solid state ¹H-¹¹B HETCOR NMR spectra of the post dehydrogenated product of supported AB depicting the ¹H and ¹¹B chemical shifts along the Y and X axis, respectively for the contact time of 0.5 ms

Figure S6: Solid state ¹H-¹¹B HETCOR NMR spectra of the post dehydrogenated product of supported AB depicting the ¹H and ¹¹B chemical shifts along the Y and X axis, respectively for the contact time of 0.25 ms

Figure S7: Solid state ¹H-¹¹B HETCOR NMR spectra of the post dehydrogenated product of supported AB depicting the ¹H and ¹¹B chemical shifts along the Y and X axis, respectively for the contact time of 0.1 ms

Figure S8: A schematic representation of homopolar B-B interaction in the ammonia borane decomposition

The ¹H spectra at each individual contact time has been fitted assuming the presence of only ¹H species at 4.5, 3.5 and 2.7 ppm, as seen in the HETCOR spectra. However, additional peaks may also be present which are masked by the anisotropic broadening of the solid sample.

Figure S9: ¹H peak fit of the ¹H spectra coupled with the planar B(III) site at the contact time of 2.5 ms

Figure S10: ¹H peak fit of the ¹H spectra coupled with the planar B(III) site at the contact time of 2 ms

Figure S11: ¹H peak fit of the ¹H spectra coupled with the planar B(III) site at the contact time of 1 ms

¹H chemical shift (ppm)

Figure S11: ¹H peak fit of the ¹H spectra coupled with the planar B(III) site at the contact time of 0.5 ms

¹H chemical shift (ppm)

Figure S13: ¹H peak fit of the ¹H spectra coupled with the planar B(III) site at the contact time of 0.25 ms.

Figure S14: ¹H peak fit of the ¹H spectra coupled with the planar B(III) site at the contact time of 0.1 ms.

Figure S15: percentile presence of ¹H sites coupling with ¹¹B (III) sites as a function of contact time.