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1 Deconvolution with Iteratively Re-weighted Least Squares

Let f be the the subsampled NMR (complex) signal measured at {t1, . . . , tk} and viewed as the
column vector f ∈ Ck. The sampling schedule {t1, . . . , tk} is a fixed subset of the full sampling
grid {l∆t : l = 0, 1, . . . , n − 1}. The CS methodology when applied in NMR context provides
the algorithms and theory which enable for the recovery of the NMR spectrum s ∈ Cn from the
sub-sampled signal, even if k � n. The CS problem is formulated in terms of the measurement
matrix F ∈ Mk×n(C). In the NMR application of CS the matrix F consists of rows of the n× n
inverse Fourier matrix corresponding to the sampling schedule and we have

f = Fs. (1)

Note that Eq. (1) with known f and unknown s and k < n, has infinitely many solutions. The
fundamental insight of the CS theory [1] specifies the NMR spectrum s as the unique solution of
the convex optimization problem

s = arg min
x∈Cn

(
‖Fx− f‖22 + λ‖x‖1

)
. (2)

The first term in this sum promotes the consistency of tested x with the measured data whereas,
the second term promotes the sparseness of x and λ > 0 fixes the balance between the two.

The Eq. (2) can be modified to take better account of the measurement noise. We
can consider two cases:

• Unstructured noise: the covariance noise matrix Σ is diagonal and isotropic, Σ = σ21 where
σ is the standard deviation of the noise. In order to take into an account the level of noise
in the reconstruction framework (2) one sets λ proportional to σ2.
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• Structured noise: the covariance noise matrix Σ is not necessarily diagonal. The `2 norm
used in the data consistency term should be replaced by its weighted version ‖Fx − f‖2Q,

where Q = Σ−1 and for a given complex positive definite matrix G and a complex vector y
we define ‖y‖2G = y†Gy where y† is the conjugated transpose of y. In order to justify the
proposed modification of the data consistency term let us discuss an instructive example.
For that matter consider two independent measurements f1 = f(t1), f2 = f(t2) of the signal
in which the noise level of f(t1) is two times smaller than that of f(t2). The corresponding
covariance matrix of Σ is of the form

Σ =

[
σ2 0
0 4σ2

]
where σ is the noise level entering f(t1). Let us denote f# = Fx the signal corresponding
to the spectrum x. The consistency term

‖Fx− f‖22 = |f#1 − f1|2 + |f#2 − f2|2

entering the standard formulation of the CS-problem is replaced by

‖Fx− f‖2Q = (f#† − f†)Σ−1(f# − f) =
1

σ2
|f#1 − f1|2 +

1

4σ2
|f#2 − f2|2.

Our modification introduces the weights in the data consistency term that correctly reflect
the noise level of the corresponding measurements. Points with larger noise enter the sum
with smaller weights. The above discussion and conclusion easily generalizes to larger number
of independent measurements. In case of the non-zero correlations between the noise of the
measurements, Σ must be first diagonalized in an appropriate orthonormal basis and the
above justification can be then repeated.

Let us note that for the unstructured noise (Σ = σ21) we have

‖Fx− f‖2Q = σ−2‖Fx− f‖22 (3)

and thus the cases of structured and unstructured noise are consistent:

arg min
x∈Cn

(
‖Fx− f‖2Q + λ‖x‖1

)
= arg min

x∈Cn

(
σ−2‖Fx− f‖22 + λ‖x‖1

)
= arg min

x∈Cn

(
‖Fx− f‖22 + σ2λ‖x‖1

)
.

Let us also note that in each case we can absorb λ into Σ by the possible scaling Σ λΣ.
Now, we will describe algorithm known as Iteratively Reweighted Least Squares (IRLS) [2, 3, 4]

dedicated for the solution of

s = arg min
x∈Cn

(
‖Fx− f‖2Q + ‖x‖1

)
. (4)

Note first, that the `1 norm ‖x‖1 =
∑n
i=1 |xi| can be well approximated by the weighted `2 -norm∑n

i=1 |wixi|2, where the weights wi = |xi|−1/2 are regularized for very small xi’s. This seemingly
trivial observation is the starting point of IRLS[5], which is an iterative procedure that solves the
quadratic problem

sl = arg min
x∈Cn

‖Fx− f‖2Q + ‖wlx‖22 (5)

where l is the iteration loop number and wl is the weight vector corresponding to sl−1 as de-
scribed above. Thus defining Dl = diag(d1, . . . dn) where dj = 1

|sl−1,j |+ε (we write sl−1,j for the

jth component of the vector sl−1), Eq.(5) can be written in the form of generalized Tikhonov
regularization

sl = arg min
x∈Cn

‖Fx− f‖2Q + ‖x‖2Dl
(6)

and the latter can be solved explicitly

sl = (F ∗QF +Dl)
−1F ∗Qf.
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J-coupling in IRLS

The J-modulation of the NMR signal f is represented in vector language by a complex vector
M ∈ Ck. For example M corresponding to the J-coupling considered in the main text (i.e.
approximately the same for all components) is of the form M(tj) = cos(πJtj). The unmodulated

version f̃ of f is defined by the equality f = Mf̃ , or more precisely f(ti) = M(ti)f̃(ti) where
i ∈ {1, . . . , k}. Let C ∈Mk×k(C) denote the modulation (diagonal) matrix

C = diag(M(t1), . . . ,M(tk)).

The relation between f̃ , f and the spectrum s̃ corresponding to unmodulated signal f̃ is of the
form

f = Cf̃ = CF s̃.

Note, that while the noise in the measured signal f is unstructured, the noise of f̃ is structured
(since f̃ = C−1f).

Denoting the spectrum related to modulated signal f by s we have f = Fs. Remarkably,
the spectrum s̃ is sparser than s for typical modulations encountered in NMR. For example in
the simplest case of one dimensional J-modulated signal, singlets in s̃ are doubled in s, i.e. the
number m̃ of significant elements of the spectrum s̃ is approximately half of the number m of the
significant component of s. The standard estimation for the number of measurements k required
for the exact CS reconstruction is[6]

k ∼ m log(n). (7)

This estimation and the preceding remark show that that number of measurements
k̃ required for the recovery of s̃ gets divided by the factor 2 when compared with k
required for the recovery of s. The above observations motivate the development of a CS
methodology dedicated to the signal in the presence of modulations, which we formulate in what
follows.

Assuming that the J-modulated (measured) signal f is corrupted by the unstructured noise
with covariance matrix Σ, the de-modulated signal f̃ = C−1f is corrupted by the structured noise
with the covariance matrix Σ̃ = C−1ΣC†−1. In particular the weighting matrix Q̃ = Σ̃−1 is equal
to C†QC and we get

‖Fx− f̃‖2
Q̃

= (Fx− f̃)†C†QC(Fx− f)

= (CFx− Cf̃)†Q(CFx− Cf̃)

= (CFx− f)†Q(CFx− f)

= ‖CFx− f‖2Q.

This computation shows that the solution of minimization problem

s̃ = arg min
x∈Cn

(
‖Fx− f̃‖2

Q̃
+ ‖x‖1

)
coincides with that corresponding to

s̃ = arg min
x∈Cn

(
‖CFx− f‖2Q + ‖x‖1

)
and the latter can be found by the IRLS in the iterative procedure

s̃l = arg min
x∈Cn

(
‖CFx− f‖2Q + ‖x‖2Dl

)
. (8)

In the resulting spectrum the multiplets reflecting the modulation (e.g. doublets) will be replaced
by singlets. Keeping in mind the fact that in the standard experimental setup the measurement
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noise of f is described by Σ = σ21, and substituting λ = σ2 as explained above, we observe that
Eq.(8) boils down to the iterative procedure based on generalized Tikhonov regularization

s̃l = arg min
x∈Cn

(
‖CFx− f‖22 + λ‖x‖2Dl

)
. (9)

Remarkably this is the IRLS algorithm in the orthodox form (c.f. (2)) applied to

s̃ = arg min
x∈Cn

(
‖CFx− f‖22 + λ‖x‖1

)
, (10)

which in turn may be viewed as mathematical formulation of the problem of CS-type of finding a
sparse spectrum s̃ whose consistency with the measurement vector f is given by the measurement
matrix CF : f = CF s̃.

Summarizing, in the above considerations we explained the following two aspects:

• we formulate the CS-problem suitable for the case of noisy measurements described by the
structured measurements noise; we also describe the solution of this problem and relate it
with the Tikhonov regularization;

• we applied the modified CS-methodology to the J-modulated signals in NMR and explain
the advantages of our approach when compared to the orthodox version of CS.

4



2 Protein samples and NMR spectroscopy

A [U-2H,15N,13C] labeled sample of the monomeric photosensory module (57 kDa) DrBphPPSM
from Deinococcus radiodurans was produced exactly as described in our previous study[7, 8]. The
monomeric variant contains three mutations, which disrupt the dimer interface: F145S, L311E,
and L314E[9].

A 3D BEST-TROSY-HNCA experiment [10] was recorded for the DrBphPPSM sample during
38.5 hours with 2930 mildly relaxation-matched NUS points (probability density exponentially
biased with T2 = 70 ms) in the 13Cα dimension. The spectral widths (acquisition times) were
12.8 kHz (80 ms), 2.9 kHz (22 ms), and 6.0 kHz (42.4 ms), for 1H, 15N, and 13C spectral dimensions,
respectively. For the processing, the original NUS data set was sub-sampled to create the following
data sets:

• The ”traditional” low resolution spectrum processed using IRLS algorithm without the vir-
tual decoupling, 1170 NUS points (15.4 hours of measurement time) were retained from the
original NUS data with maximal evolution time of 14 ms for the 13Cα dimension (Figure
S1a)).

• The high resolution spectra processed using IRLS (undecoupled) and the region-selective
D-IRLS algorithm (decoupled). The original NUS data was sub-sampled down to 1200 NUS
points (15.8 hours of measurement time). The resulting sampling probability distribution
for this spectrum corresponded to the sampling in the 13C dimension matched to the J-
coupling and mildly biased for the relaxation (T2 = 70 ms, J=35 Hz), i.e. proportional to
exp(−t/T2)| cos(πJt)|, with additional elimination of the points whose values of | cos(πJt)|
were less than 0.2 (Figure S1b)).

A [U-2H,15N,13C] labeled sample of the longest human Tau protein isoform hTau40 with 441
residues was prepared as following: full length hTau40 with an amino-terminal His6-SUMO-Tag
(in a modified pET28b plasmid, Genescript) was expressed in E. coli BL21( λDE3) Star™(Novagen)
cells. [U-2H,15N,13C] isotope (Merck) enriched protein was produced using 2xM9 minimal medium[11]
supplemented with 15NH4Cl and D-(2H/13C)- glucose as the sole nitrogen and carbon sources, re-
spectively, in D2O. The cells were grown at 37 °C until an OD600 ≈ 0.8. Expression was induced by
addition of 1mM isopropyl-thiogalactoside (IPTG) (Thermo Scientific) for 16h at 22 °C. Cells were
harvested by centrifugation and subsequently resuspended in lysis buffer (20mM NaPi, 500mM
NaCl, pH 7.8), and lysed by an Emulsiflex C3 (Avestin) homogenizer. Cleared lysate was purified
with HisTrap HP column (GE Healthcare). Fractions containing hTau40 were pooled and dialyzed
over-night, against human SenP1 cleavage buffer (20 mM TrisHCl, 150 mM NaCl, 1 mM DTT,
pH 7.8). After dialysis SenP1 protease (Addgene #16356)[12] was added and the enzymatic cleav-
age was performed for 4 hours at room temperature, followed by a second HisTrap HP column step.
Fractions containing cleaved hTau40 in the flow-through were collected, concentrated, and subse-
quently purified by gel filtration using a HiLoad 10/60 200 pg (GE Healthcare) pre-equilibrated
with NMR buffer (25mM NaPi, 50mM NaCl, 1mM EDTA, pH 6.9). The pure hTau40 fractions
were concentrated to about 500 µM, flash frozen in liquid nitrogen, and stored at -80 °C till usage.

A 3D BEST-TROSY-HN13Cα experiment [10] for hTau40 was recorded and processed similar
to the DrBphPPSM spectrum described above. Namely, it was acquired during 13 hours with
1552 NUS points using spectral width (acquisition times) of 9.6 kHz (106 ms), 2.9 kHz (22 ms),
and 6.0 kHz (42.4 ms), for 1H, 15N, and 13C spectral dimensions, respectively. For the processing,
the originally random NUS data set was sub-sampled to create the following data sets:

• The ”traditional” low resolution spectrum was processed using IRLS algorithm without the
virtual decoupling, 555 NUS points (4.6 hours of measurement time) were retained from the
original NUS data with a maximal evolution time of 14 ms for the 13Cα dimension (Figure
S1c)).

• The high resolution spectra processed using IRLS (undecoupled) and the region-selective
D-IRLS algorithm (decoupled). The original NUS data was sub-sampled down to 1200 NUS
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Figure S1: Sampling schedules used in the original experiments (blue) and sub-sampled data
(red). The original schedules include 2930 points for DrBphPPSM and 1552 for Tau and follow
the relaxation-matched NUS scheme with T2 = 200 ms for Tau c) and d) and T2 = 70 ms for
DrBphPPSM c) and d). Schedules used for calculation of the ”low-resolution” spectra, shown
in panels a) and c) for DrBphPPSM and Tau, respectively, were created by truncating the 13C
dimension to 14 ms which resulted in 1170 a) and 555 c) points. The ”J-modulated” schedules
shown in panels b) and d), for DrBphPPSM and Tau, respectively, were created by selecting 1200
points that matched the | cos(πJt)| envelope in the 13C dimension (with elimination of points for
which | cos(πJt)| < 0.2).
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points (10 hours of measurement time). The resulting sampling probability distribution
for this spectrum corresponded to the sampling in the 13C dimension matched to the J-
coupling and mildly biased for the relaxation (T2 = 200 ms, J=35 Hz), i.e. proportional to
exp(−t/T2) cos(πJt), with additional elimination of the points whose values of | cos(πJt)|
were less than 0.2 (Figure S1d)).
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Figure S2: 15N/13C projections of 3D HNCA spectra of a) Tau and b) DrBphPPSM proteins. The
plots show superimposed traditional ”low-resolution” and high-resolution deconvoluted spectra
with 14 ms and 42.4 ms of maximum evolution time in the 13C dimension, respectively.

3 Simulations with synthetic peaks

Synthetic peaks were injected into the spectrum of Tau protein in order to estimate accuracy
of the spectra reconstructions. Comparison was performed between the reconstruction obtained
using two types of NUS sampling schedules:

• matched to both 13Cα transverse relaxation and J-modulation

• matched to the 13Cα relaxation only

and three calculations modes:

• high resolution spectrum with 13Cα maximum evolution time of 42 ms - IRLS reconstruction
without the deconvolution

• high resolution spectrum with 13Cα maximum evolution time of 42 ms - IRLS reconstruction
with the deconvolution (D-IRLS) for the whole spectrum

• region-selective processing with IRLS for the Gly region (<45 ppm in 13Cα) and D-IRLS for
the rest of the spectrum (as in Figure 1 in the main text).

Each version of the reconstruction was calculated 15 times using selected with a corresponding
random distribution (sub-sampled) NUS data sets from the larger pool of measured data (total
1552 flat-random NUS). In each calculation 20 peaks, including 5 Gly-type peaks, were injected
with random positions (without overlap between each other and the existing Tau protein peaks)
and intensities varying in the range 0.05-1.0 of a typical medium strong peak in the original Tau
spectrum. The non-Gly signals were injected as the doublets with random J-coupling value in
the range 35±5 Hz. The resulting peaks were automatically picked in the reconstructed spectra
using function pkFindROI in nmrPipe software[13]. For the undecoupled spectrum, intensities
and frequencies of the picked doublet components were added and averaged, respectively. Thus,
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in each variant of the spectrum reconstructions, up to 225 non-Gly synthetic peaks were picked
and quantified. Statistics on the peaks in accuracy of the peak intensities and positions is shown
in Figure S3, where the comparisons are given for four calculations using 250, 400, 700, and 1000
NUS points.
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Figure S3: The results of simulations with synthetic peaks injected into the experimental spectrum
of Tau protein. The columns correspond to: undecoupled IRLS (blue), D-IRLS with (red) and
without (green) Gly-region extraction, all with J-modulated sampling scheme, and D-IRLS with
Gly-region extraction with non-modulated sampling (purple). The plots show: a) R2 coefficients
of peak intensity reconstruction, b) number of detected weak peaks out of 42 lowest intensity
injected peaks, c) deviation of peak position in 15N dimension, d) deviation of peak position in
13Cα dimension. Numbers at the tops of the columns indicate their exact heights.

4 Important parameters

Both main text and SI mentioned several important parameters of the deconvolution approach.
For clarity, we list them again below.

• Sampling level. For the two complex systems used in this work, the 7.3% sampling was
sufficient for the IRLS-D of high-resolution HNCA. Even lower levels may be fine for smaller
proteins and if spectrum resolution is increased, e.g. for 15N dimension. In practice, however,
the signal-to-noise ratio also plays an important role, and the total measurement time should
be selected accordingly.

• The sampling scheme: modulation and cut-off. The signal-to-noise ratio can be
improved by using J-modulated density of sampling points. The modulation also improves
robustness of the CS reconstruction by avoiding zero-crossings of the signal. The latter is
additionally assured by the hard threshold eliminating time points where the cosine function
is lower than the threshold value. In this paper, we used the cosine modulation of 35 Hz and
a threshold of 0.2. The setting should work nicely for all protein systems.

• Deconvolution constant. Although the J-couplings in the signal may vary up to ±5 Hz,
using the average value 35 Hz is fine as long as the line width in the spectrum exceeds the
variation range.
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• Non-deconvolved region. As described in the main text, the deconvolution can be per-
formed selectively in different regions. In the case of HNCA spectrum, the border of the
deconvolution region should be set to exclude glycine resonances i.e. at about 45 ppm. As
long as no signal is crossed by the border and no singlets are found in the deconvolution
region, the parameter specific value does not affect the reconstruction quality.

• Regularization parameters (λ and ε). The regularization parameters of the IRLS al-
gorithm play a similar role in controlling the sparsity of the spectrum. In the IRLS version
implemented in mddnmr software[14] used in this study, ε is set automatically. It is also
recommended to keep the λ parameter (CS lambda in the program) to its default value of
1.0. The value may require increase by orders of magnitude if non-modulated NUS schedule
was used and, consequently, the time points near the zero-crossings of the J-modulating
cosine function used in the deconvloution are extensively sampled.
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