Chem. Comm.

Supporting Information

Quantitative description of surface adsorption of surfactant in aqueous solution without the Gibbs equation

Qing Ren and Feiwu Chen*

Determination of parameter β_{k} in the polynomial function f and the thickness of surface layer h.
The equations needed here are from the original paper and their labels are also changed as follows

$$
\begin{align*}
& \gamma=\gamma_{0}+\frac{v R T}{A_{\mathrm{sm}}} \ln a_{B}^{\mathrm{s}} \tag{S1}\\
& \gamma=\gamma_{1}-v R T h c_{B}^{\alpha} f \ln (f)+v R T h \sum_{k=2}^{m+1} \frac{k-1}{k} \beta_{k-1}\left(c_{B}^{\alpha}\right)^{k} \tag{S2}\\
& A_{\mathrm{ma}}=\left|A_{\mathrm{sm}}\right| / N_{\mathrm{A}} \tag{S3}\\
& A_{\mathrm{ma}}=A_{\mathrm{s}} /\left(n_{B}^{\mathrm{s}} N_{\mathrm{A}}\right)=1 /\left(c_{B}^{\mathrm{s}} h N_{\mathrm{A}}\right) \tag{S4}
\end{align*}
$$

where γ, T, h and R are the surface tension, temperature, surface thickness of the solution and gas constant. The superscript s and α are symbols to denote separately surface and bulk phases. c is the surfactant concentration of solution. γ_{0} and γ_{1} are the integration constant. N_{A} is Avogadro constant. $A_{m a}$ is the molecular area of surfactant.

In order to get an optimal thickness $h_{\text {opt }}$, the following procedure is proposed:
(A) Fit γ and c_{B}^{α} with eqn (S2) for a certain h, then calculate c_{B}^{s} using $c_{B}^{\mathrm{s}}=f c_{B}^{\alpha}$ and the molecular area A_{1} with eqn (S4).
(B) Fit γ and c_{B}^{s} with Eqn (S1) and calculate the molecular area A_{2} with eqn (S3).
(C) If the difference of A_{1} and A_{2} is smaller than some given criterion, the given h will be $h_{\text {opt }}$ and A_{1} (or A_{2}) will be the molecular area $A_{\text {ma }}$, and the procedure will be stopped. Otherwise, go to the step (A) with another h until the threshold for the difference of A_{1} and A_{2} is reached.
The surfactant OTABr is taken as an example to show how β_{k} and h could be calculated step by step with the procedure described above. The data of surface tension of $O T A B r$ at different concentrations ${ }^{1}$ is listed in the Table S1.

Table S1. The surface tension of OTABr at different concentration. \boldsymbol{c} is the concentration of surfactant, γ is the surface tension.

$c(\mathrm{~mol} / \mathrm{L})$	0.02	0.04	0.06	0.08	0.10	0.12	0.14	0.16
$\gamma(\mathrm{mN} / \mathrm{m})$	69.4	63.1	59.5	54.6	51.1	48.9	46.5	44.0
$c(\mathrm{~mol} / \mathrm{L})$	0.18	0.20	0.30	0.40	0.50	0.60	0.80	1.00
$\gamma(\mathrm{mN} / \mathrm{m})$	41.7	39.8	36.4	35.8	35.5	35.4	35.2	35.1

The three-step procedure described above is used for fitting. At step (A), m in Eqn(S2) is assumed to be 2, which is sufficient for the present problem. Thus, Eqn (S2) becomes

$$
\begin{equation*}
\gamma=\gamma_{1}-v R \operatorname{Th}\left(c_{B}^{\alpha} f \ln (f)-\frac{1}{2} \beta_{1}\left(c_{B}^{\alpha}\right)^{2}-\frac{2}{3} \beta_{2}\left(c_{B}^{\alpha}\right)^{3}\right) \tag{S5}
\end{equation*}
$$

where $f=\beta_{0}+\beta_{1} c_{B}^{\alpha}+\beta_{2}\left(c_{B}^{\alpha}\right)^{2}$. The first 13 points in Table S1 are used for fitting. The last three points are not considered in the fitting procedure because the variation of surface tension of these points is very small. The
guess interval for h is chosen to be [$0.1 \mathrm{~nm}, 5.0 \mathrm{~nm}$] which is big enough for the present study. We then get 50 values of h including two boundary points, which divide the interval into 49 sub-intervals. For each fixed h we performed the nonlinear fitting according to the Eqn (S5) using the curve_fit() function in the optimize module of SciPy ${ }^{2}$. The trust region reflective algorithm ${ }^{3}$ was applied to get the corresponding β_{0}, β_{1} and β_{2}. After fitting, we obtain 50 sets of β_{0}, β_{1} and β_{2}. We then calculate the surface concentration of OTABr with $c_{B}^{\mathrm{s}}=f c_{B}^{\alpha}$ for the first 13 points listed in Table S1. Finally, we compute the molecular area A_{1} with Eqn (S4) at the saturated point. The saturated concentrations of OTABr, HTABr and DTABr are $0.5 \mathrm{~mol} / \mathrm{L}, 1.3 \mathrm{~mol} / \mathrm{L}$ and $0.08 \mathrm{~mol} / \mathrm{L}$, respectively.

At step (B), Using each set of c_{B}^{s} data obtained from step (A), we fit γ and c_{B}^{s} with eqn (S1) and calculate the molecular area A_{2} with Eqn (S3) without the first 2 points with lower concentrations.

At step (C), If the difference of A_{1} and A_{2} for some h is smaller than the criterion 10^{-2} square angstroms (\AA^{2}), we stop the procedure and the given h is considered to be $h_{\text {opt }}$ and A_{1} (or A_{2}) will be the molecular area $A_{\text {ma }}$. Otherwise, we have to get another interval of h by comparing the differences of all sets of A_{1} and A_{2}. For OTABr, we found that: for $h=4.8 \mathrm{~nm}, A_{1}=34.609 \AA^{2}$ and $A_{2}=34.429 \AA^{2}$; for $h=4.9 \mathrm{~nm}, A_{1}=34.330 \AA^{2}$ and $A_{2}=34.455$ \AA^{2}. If we connect two points $\left(4.8, A_{2}=34.429\right)$ and $\left(4.9, A_{2}=34.455\right)$ with a line segment, and $\left(4.8, A_{1}=34.609\right)$ and (4.9, $A_{1}=34.330$) with another line segment. The two line segments have a cross point. Thus, the $h_{\text {opt }}$ must lie between 4.8 and 4.9 nm . The new interval is [$4.8 \mathrm{~nm}, 4.9 \mathrm{~nm}$]. This is our empirical rule. Once the new interval is determined, we then go to step (A) and repeat the procedure until the difference of A_{1} and A_{2} is less than the criterion $10^{-2} \AA^{2}$. The final results are listed in Table $S 2$, which including various parameters of the three surfactants.

The simulation results for HTABr, OTABr and DTABr are listed in Table S2. As can be seen from the table, $h_{\text {opt }}$ is a simulation parameter in eqn (S2) and (S5), and may not be the true value of the thickness of surface layer. However, like the length of alkyl chain, a large magnitude of $h_{\text {opt }}$ indicates a strong capability of lowering the surface tension of pure water.

Table S2. Various parameters of three surfactant solutions.

Surfactant	$h_{\text {opt }} / \mathrm{nm}$	β_{0}	$\beta_{1} / \mathrm{L} \cdot \mathrm{mol}^{-1}$	$\beta_{2} / \mathrm{L}^{2} \cdot \mathrm{~mol}^{-2}$	$\gamma_{1} / \mathrm{N} \cdot \mathrm{m}^{-1}$	$\mathrm{RMSE} / \mathrm{N} \cdot \mathrm{m}^{-1}$
HTABr	1.235	6.4141	-5.0880	1.4855	5.7425×10^{-2}	4.4954×10^{-4}
OTABr	4.859	6.8382	-15.835	12.254	7.4993×10^{-2}	4.0170×10^{-4}
DTABr	17.692	6.9150	-72.384	245.78	6.6672×10^{-2}	7.2229×10^{-4}

Density functional theory B3LYP ${ }^{4}$ with the basis set Def2-TZVP ${ }^{5,6}$ has been exploited to optimize the geometry structures of HTABr, OTABr and DTABr. Their molecular sizes are then calculated and plotted with Multiwfn. ${ }^{7}$ Since three surfactants are the alkyl-trimethylammonium bromide family but with different alkyl length, only OTABr is shown in Fig. S1.

Besides density functional theory calculation, MP2 ${ }^{8}$ calculations have also been carried out to estimate the molecular areas of surfactants. The lengths of $\mathrm{HTABr}, \mathrm{OTABr}$ and DTABr are $12.95,15.50$ and $18.04 \AA$, respectively. The smallest and biggest molecular areas estimated from MP2 calculations are 34.14 and $60.12 \AA^{2}$ separately. These calculations confirm the results of density functional theory.

Figure S1. Molecular size of OTABr without bromide ion

References:

1 D. Gómez-Díaz, J. M. Navaza and B. Sanjurjo, J. Chem. Eng. Data, 2007, 52, 889-891.
2 P. Virtanen, R. Gommers, T.E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright and S.J. van der Walt, Nat. Methods, 2020, 17, 261-272.
3 M.A. Branch, T.F. Coleman, and Y. Li, SIAM J. Sci. Comput., 1999, 21, 1-23.
4 A. D. Becke, J. Chem. Phys, 1993, 98, 5648-5652.
5 B. Miehlich, A. Savin, H. Stoll and H. Preuss, Phys. Rev. B, 1998, 37, 785.
6 F. Weigend, and R. Ahlrichs, Phys. Chem. Chem. Phys., 2005, 7, 3297-3305.
7 T. Lu and F. W. Chen, J. Comput. Chem., 2012, 33, 580-592 (2012).
8 C. Møller and M. S. Plesset, Phys. Rev. 1934, 46, 618

