Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2020

Contents

Experimental Se	ection	2–4
Fig. S1-2	¹ H and ¹³ C NMR spectra of (R_p, R_p) -2	5–6
Fig. S3–4	¹ H and ¹³ C NMR spectra of 3	7–8
Fig. S5	Solvent accessible surface area of (R_p, R_p) -2.	9
Table S1	Crystallographic data and structure refinements for (R_p, R_p) -2.	10
Table S2	Photophysical data for 2 and 3	11
Fig. S6	Emission decay curves for 3 in toluene and (R_p, R_p) - 2 in PMMA film	12
Fig. S7	Temperature-dependence of emission for (R_p, R_p) -2 in 2-MeTHF	13
Fig. S8	Charts of g_{lum} of (R_p, R_p) - and (S_p, S_p) -2 in toluene and PMMA film	14
Equations (S1-2)	Equations for determination of $ g_{lum} $ values	14
Fig. S9	UV/Vis absorption and CD spectra of (R_p, R_p) - and (S_p, S_p) -2 in PMMA film	15
Table S3	Selected data for singlet excitation energy, major configuration, coefficient,	
	oscillator strength, and the character of charge transfer for (R_p, R_p) -2	16
Table S4	TEDM and TMDM of singlet transitions for (R_p, R_p) -2	16
Table S5	Selected data for SOC excitation energy, major configuration, coefficient,	
	oscillator strength, and the character of charge transfer for (R_p, R_p) -2	17
Table S6	Absolute TEDM and TMDM of SOC ₁ –SOC ₆ for (R_p, R_p) -2	18

Experimental Section

General:

¹H and ¹³C NMR spectra were recorded with a JEOL JNM ECZ-500R instrument at 500 and 125 MHz. Mass spectra were obtained with a Bruker microTOF II spectrometer. UV/visible absorption spectra were acquired using a JASCO V-730 spectrometer. Emission spectra were obtained using a Jasco FP-8500 spectrometer. Quantum yields were measured by the absolute method using a Jasco FP-8500 spectrometer equipped with a Jasco ILF-835 integrating sphere. Temperature dependent emission spectra were obtained using a Jasco FP-6500 spectrometer. Quantum yields at 77 K were measured by the absolute method using a Jasco FP-6500 spectrometer equipped with a Jasco INK-533 integrating sphere. Time dependent emission decay was measured on a Hamamatsu Photonics Quantaurus-Tau fluorescence lifetime system. Circular dichroism (CD) spectra were recorded on a JASCO J-1500 spectropolarimeter at room temperature; two scans were accumulated. Circularly polarized luminescence (CPL) spectra were recorded on a JASCO CPL-300 at room temperature. Spin-coated film was fabricated with a MIKASA MS-B100 spin-coater. All samples for CPL were excited around 350 nm. In the meaurement on CPL, eight scans for toluene solution and six scans for spin-coated PMMA film were accumulated.

Synthesis

Synthesis of (R_p, R_p) -2

A mixture of (R_p) -1 (118.5 mg, 0.37 mmol), Pt(dtbpy)Cl₂ (211.4 mg, 0.38 mmol), CuI (14.7 mg 0.077 mmol) was placed in a round-bottom flask equipped with a magnetic stirring bar. After degassing the reaction mixture several times, degassed solutions of CH₂Cl₂ (60 mL) and Et₃N (30 mL) were added to the mixture. After the mixture was stirred at room temperature for 5 days, H₂O and CH₂Cl₂ was added to the reaction mixture. The organic layer was extracted with CH₂Cl₂ and washed with brine. The organic layer was dried over MgSO₄ and then MgSO₄ was removed by filtration. After the solvent was removed with a rotary evaporator, the residue was purified by column chromatography on NH-SiO₂ (CH₂Cl₂/MeOH = 20/1 v/v as eluent). Further purification was carried out by gel permeation chromatography (CH₂Cl₂) to afford (R_p , R_p)-2 (87.9 mg, 0.057 mmol, 31%) as a dark red solid.

 $R_{\rm f}$ = 0.93 (CH₂Cl₂/MeOH = 20/1 v/v). ¹H NMR (CDCl₃, 500 MHz) δ 1.41 (s, 36H), 2.77 (m, 4H), 3.14 (m, 8H), 3.68 (s, 12H), 3.71(m, 4H), 6.08 (s, 4H), 7.44 (dd, J = 1.7, 5.7 Hz, 4H), 7.52 (s, 4H), 7.87 (d, J = 1.7 Hz, 4H), 9.85 (d, J = 5.7 Hz, 4H) ppm; ¹³C NMR (CDCl₃, 125 MHz) δ 29.1, 30.3, 33.6, 35.7, 55.2, 85.6, 102.3, 113.4, 118.3, 122.6, 124.0, 126.1, 137.6, 144.0, 151.8, 156.2, 156.6, 162.6 ppm. IR(ATR): \tilde{v} = 2962, 2930, 2098, 1484, 1415, 1248, 1205, 1091, 846, 713 cm⁻¹. HRMS (ESI) calcd. For C₈₀H₈₅N₄O₄Pt₂ [M+H]⁺ : 1555.5866, found for 1555.5861.

 (S_p, S_p) -2 was obtained in 22% yield by the same procedure of (R_p, R_p) -2.

Synthesis of 3

A mixture of 4-ethynylanisole (185.0 mg, 1.4 mmol), $Pt(dtbpy)Cl_2$ (106.8 mg, 0.2 mmol), CuI (20.0 mg 0.1 mmol) was placed in a round-bottom flask equipped with a magnetic stirring bar. After degassing the reaction mixture several times, degassed solutions of CH_2Cl_2 (80 mL) and diisopropylamine (20 mL) were added to the mixture. After the mixture was stirred at room temperature for 1 days, the solvent was removed with a rotary evaporator. The residue was purified by recrystallization (CH_2Cl_2 /Hexane) to afford **3** (111.1 mg, 0.15 mmol, 75%) as an orange solid.

¹H NMR (CDCl₃, 500 MHz) δ 1.44 (s, 18H), δ 3.80 (s, 6H), 6.80 (d, J = 8.6 Hz, 4H), δ 7.51 (br, 2H), 7.56 (dd, J = 2.3, 6.3 Hz, 2H), δ 7.95 (d, J = 1.2 Hz, 2H), 9.71 (br, 2H) ppm; ¹³C NMR (CDCl₃, 125 MHz) δ 30.25, 35.80, 55.24, 113.24, 118.90 (two peaks), 124.59, 133.38, 150.94 (two peaks), 156.20, 157.66, 163.35 ppm. IR(ATR): $\tilde{v} = 2964$, 2902, 2833, 2133, 1504, ,1417, 1238, 1030, 827 cm⁻¹. HRMS (ESI) calcd. For C₃₆H₃₈N₂O₂PtNa [M+Na]⁺ : 748.2476, found for 748.2481.

X-ray structure determination: Crystals suitable for X-ray diffraction studies were analyzed using a Rigaku MicroMax-007HFM MoKa rotating anode generator equipped with VariMax optics, an AFC1 goniometer, and Saturn 724+ detector. The reflection data for them was integrated, scaled and averaged using Rigaku CrysAlis^{PRO}. The structures were solved by a direct method (SHELXT) and refined using a full-matrix least-squares method on F2 for all reflections (SHELXL-2018/3). The solvent molecules were "squeezed" during the structure refinement. All calculations were performed on the Olex2 program package. Crystallographic data are given in Table S1 in the Supporting Information. CCDC-2022660 ((R_p , R_p)-2) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via https://www.ccdc.cam.ac.uk/structures/

Computational methods

DFT calculations were carried out by using the Gaussian 16 program package,^[1] with the LanL2DZ basis set for Pt atoms and 6-31G(d) for C, H, N, and O atoms. Optimized geometries in the ground and triplet states were determined by DFT calculations with the MN15 functional, which shows excellent performance in the calculation of structures, energies, and properties of organic and inorganic molecules. TD-DFT and SOC-TD-DFT calculations were carried out by using Orca program package,^[2] with the SARC-ZORA-SVP basis set for Pt atoms and ZORA-SVP basis set for C, H, N, and O atoms with ZORA Hamiltonian. The energy levels, electronic configurations, CPL parameters in the single and SOC excited states were estimated from TD-DFT and SOC-TD-DFT calculations, respectively, with LC-BLYP functional.

Gaussian 16, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

[2] F. Neese, F. Wennmohs, U. Becker, C. Riplinger. The ORCA quantum chemistry program package. *J. Chem. Phys.* **2020**, *152*, 224108–224118.

Fig. S1 ¹H NMR spectrum of (R_p, R_p) -2 (CDCl₃, 500 MHz).

Fig. S2 ¹³C NMR spectrum of (R_p, R_p) -2 (CDCl₃, 125 MHz).

Fig. S3 ¹H NMR spectrum of 3 (CDCl₃, 500 MHz).

Fig. S4 ¹³C NMR spectrum of 3 (CDCl₃, 125 MHz).

Fig. S5 Solvent accessible surface area of (R_p, R_p) -2.

Parameter	$(R_{\rm p}, R_{\rm p})$ -2
Formula	$C_{80}H_{86}N_4O_4Pt_2$
Formula weight	1557.70
Temperature (K)	123
Crystal color, habit	red, needle
Crystal size, mm	$0.10\times 0.05\times 0.05$
Crystal system	monoclinic
Space group	<i>P</i> 2 ₁ (#4)
<i>a</i> , Å	21.7528(3)
<i>b</i> , Å	51.3282(5)
<i>c</i> , Å	22.4375(3)
α , deg	90
β , deg	113.3919(17)
γ, deg	90
V, Å ³	22993.1(6)
Z value	15
$D_{ m calcd}, { m g~cm^{-3}}$	1.687
μ (Mo _{Kα}), cm ⁻¹	46.18
<i>F</i> (000)	11730.0
$2\theta_{\rm max}$, deg	58.0
No. of reflections measured	218948
No. of observed reflections	105599
No. of variables	3242
$R_1 (\mathbf{I} > 2\sigma(\mathbf{I}))^{[\mathbf{a}]}$	0.0619
w <i>R</i> ₂ (all reflns) ^[b]	0.1907
Goodness of fit	0.879
[a] $R_1 = \Sigma(\overline{ F_0 - F_c }) / \overline{\Sigma(F_0 - F_c)} / \Sigma(F_0 - F_c) / \Sigma(F_c - F_c$). [b] w $R_2 = [\Sigma[w(F_o^2 - F_c^2)^2] / \Sigma w(F_o^2)^2]^{1/2}$.

Table S1 Crystallographic data and structure refinements for (R_p, R_p) -2.

\mathbf{c}
and
2
for
data
Ц
/sica
ophy
Ħ
z
Ы
S
le
0
La

[ump]	$\lambda_{abs,max}$ [m	[נ	$\lambda_{ m lum,max}$ [mn	ם][e]	$\Phi^{[c,d]}$		$\tau [\mu s]^{[e]}$		$ g_{ m abs} {:} g_{ m lum} ^{[f]}$	
Comprex	solution ^a	film ^b	solution ^a	film ^b	solution ^a	film ^b	solution ^a	film ^b	solution ^a	film ^b
2	432	399	656	610	0.001	0.007	N. D.	0.02, 0.07	0.001:0.001	0.001:0.001
3	431		601	ı	0.025	ı	0.10, 0.45	ı	ı	ı
[a] Data were o	btained from	l a 2.0×1	0 ⁻⁴ M solut	ion in to	oluene at 29	8 K. [b] I	Data were obta	ained from a	10 wt% PMM	A film at 298
K. [c] Excited a	t each $\lambda_{abs,max}$. [d] De	termined by	the abs	olute metho	d using a	n integrating s	sphere. [e] E	xcited at 340 m	m. [f] Excited
at 350 nm.										

Fig. S6 Emission decay curves for (a) **3** in degassed toluene $(2.0 \times 10^{-4} \text{ M})$ and (b) (R_p, R_p) -**2** in PMMA film (10 wt%) monitored at each λ_{max} at 298 K (λ_{ex} = 340 nm).

Fig. S7 Temperature-dependence of emission for (R_p, R_p) -2 in 2-MeTHF (2.0×10⁻⁴ M) at 77–298 K ($\lambda_{ex} = 502$ nm).

Fig. S8 Charts of g_{lum} of (R_p, R_p) - and (S_p, S_p) -2 in toluene (2.0×10⁻⁴ M) and PMMA film (10 wt%).

Determination of $|g_{lum}|$ values of (R_p, R_p) - and (S_p, S_p) -2 in toluene (2.0×10⁻⁴ M) and PMMA film (10 wt%) Because of the low quantum efficiency of the emission from platinum complex at room temperature in both states, the CPL spectra must become noisy. Thus, we obtained the absolute dissymmetry factors $|g_{lum}|$ by equation (S1) and (S2).

(S1) $|g_{\text{lum}}| = (|g_{\text{lum},R}| + |g_{\text{lum},S}|)/2$

(S2) $|g_{\text{lum},R}|$ and $|g_{\text{lum},S}|$ = absolute averaged value of the g_{lum} of each enantiomer in a wavelength of 657–757 nm ($\lambda_{\text{PLmax}} \pm 50 \text{ nm}$) for toluene solution and 606–646 nm ($\lambda_{\text{PLmax}} \pm 20 \text{ nm}$) for PMMA film The λ_{PLmax} is the λ_{max} of corresponding non polarized emission recorded on a JASCO CPL-300.

Calculated values are shown below. $|g_{\text{lum},R}|$ in toluene = 0.73×10^{-3}

 $|g_{\text{lum},S}|$ in toluene = 1.27×10^{-3} $|g_{\text{lum}}|$ in toluene = 1.0×10^{-3}

 $|g_{\text{lum},R}|$ in PMMA = 1.09×10^{-3} $|g_{\text{lum},S}|$ in PMMA = 0.88×10^{-3} $|g_{\text{lum}}|$ in PMMA = 1.0×10^{-3}

Fig. S9 UV/Vis absorption and CD spectra of (R_p, R_p) - and (S_p, S_p) -2 in PMMA film (10 wt%).

Table S3 Selected data for singlet excitation energy, major configuration, coefficient, oscillator strength, and the character of charge transfer for (R_p, R_p) -**2**.^a

State	Excitation energy / eV (/nm)	Major configuration	Coefficient	Oscillator strength	Character
\mathbf{S}_1	2.76 (450)	$H(a) \rightarrow L(a)$	0.35272	0.0818	¹ LLCT
		$H(b) \rightarrow L(b)$	0.29265		
\mathbf{S}_2	2.76 (450)	$H(a) \rightarrow L(b)$	0.35606	0.1291	¹ LLCT
		$H(b) \rightarrow L(a)$	0.29789		

^aEstimated from TD-DFT calculations (LC-BLYP/ZORA-def2-SVP, SARC-ZORA-SVP with relativistic ZORA Hamiltonian) based on ground state optimized structure (MN15/6-31G(d), LanL2DZ). H: HOMO, L: LUMO.

Table S4 Transition electronic and magnetic dipole moments of singlet transitions for (R_p, R_p) -2.^a

State	TEDM / a.u.			TMDM ^b / a.u.		
	x	у	Z	х	у	Z
\mathbf{S}_1	-0.00011	-0.00005	-1.10104	-0.00004	0.00004	-0.26458
\mathbf{S}_2	1.24217	0.60737	-0.0001	0.45350	-0.63244	-0.00002

^aEstimated from TD-DFT calculations (LC-BLYP/ZORA-def2-SVP, SARC-ZORA-SVP with relativistic ZORA Hamiltonian) based on ground state optimized structure (MN15/6-31G(d), LanL2DZ). ^bThe value outputted by Orca program is exactly half from true value due to the program error. TEDM: Transition electronic dipole moment, TMDM: Transition magnetic dipole moment.

State	Excitation energy / cm ⁻¹ (/nm)	Configuration	Weight	Oscillator strength	Character
SOC_1	16253.5 (615)	T _{2,0}	0.30269	0.000018839	³ LLCT
		T _{1,1}	0.29265		
		T _{1,-1}	0.29266		
SOC_2	16253.7 (615)	T _{1,0}	0.36816	0.000012515	³ LLCT
		T _{2,1}	0.26022		
		$T_{2,-1}$	0.26022		
SOC ₃	16253.7 (614)	T _{1,0}	0.51801	0.000623664	³ LLCT
		T _{2,1}	0.18828		
		$T_{2,-1}$	0.18828		
SOC_4	16288.0 (614)	T _{2,0}	0.58775	0.000147529	³ LLCT
		T _{1,1}	0.1539		
		$T_{1,-1}$	0.1539		
SOC ₅	16314.6 (613)	T _{1,1}	0.45084	0.000248374	³ LLCT
		$T_{1,-1}$	0.45084		
SOC ₆	16317.1 (613)	T _{2,1}	0.44892	0.000205480	³ LLCT
		$T_{2,-1}$	0.44892		
SOC ₇	18390.4 (544)	\mathbf{S}_1	0.56827	0.067287054	¹ LLCT
		T _{3,-1}	0.11615		
		T _{3,1}	0.11615		
SOC ₈	18413.9 (543)	S_2	0.55511	0.044409541	¹ LLCT
		T _{4,-1}	0.12486		
		T _{4,1}	0.12486		

Table S5 Selected data for SOC excitation energy, major configuration, coefficient, oscillator strength, and the character of charge transfer for (R_p, R_p) -2.^a

^aEstimated from SOC-TD-DFT calculations (LC-BLYP/ZORA-def2-SVP, SARC-ZORA-SVP with relativistic ZORA Hamiltonian) based on ground state optimized structure (MN15/6-31G(d), LanL2DZ). H: HOMO, L: LUMO.

State	TEDM / a.u.			TMDM ^b / a.u.				
	Х	у	Z	Х	у	Z	$ \cos\theta $	
SOC_1	0.00097	0.00052	0.01950	0.00046	0.00598	0.02706	0.968	
SOC_2	0.01398	0.00750	0.00133	0.00658	0.08586	0.00190	0.535	
SOC ₃	0.10970	0.02411	0.00006	0.02100	0.02822	0.00004	0.755	
SOC_4	0.00008	0.00004	0.05461	0.00002	0.00002	0.04982	1.000	
SOC ₅	0.00087	0.00063	0.07079	0.00048	0.00024	0.05522	1.000	
SOC_6	0.05374	0.03544	0.00146	0.02614	0.01526	0.00114	0.997	

Table S6 Absolute TEDM and TMDM of SOC₁–SOC₆ for (R_p, R_p) -2.^a

^aEstimated from SOC-TD-DFT calculation (LC-BLYP/ZORA-def2-SVP, SARC-ZORA-SVP with relativistic ZORA Hamiltonian) based on optimized structure of lowest triplet state (UMN15/6-31G(d), LanL2DZ). ^bThe value outputted by Orca program is exactly half from true value due to the program error. TEDM: Transition electronic dipole moment, TMDM: Transition magnetic dipole moment.