Electronic Supplementary Information (ESI)

Electrochemically Induced Iodine Migration in Mixed Halide Perovskites: Suppression through Chloride Insertion

Junsang Cho¹, Jeffrey T. DuBose^{1,2}, Preethi S. Mathew^{1,2}, and Prashant V. Kamat^{1,2,3*}

¹Radiation Laboratory, ²Department of Chemistry and Biochemistry, and ³Department of Chemical and Biomolecular Engineering

University of Notre Dame

Notre Dame, Indiana 46556, United States

Corresponding Author: pkamat@nd.edu

Experimental Methods

Materials

All chemicals were used as acquired without additional purification. Methylammonium chloride (MACl, Sigma Aldrich), methylammonium bromide (MABr, Greatcell Solar), methylammonium iodide (MAI, Greatcell Solar), lead chloride (PbCl₂, 99.99%, Sigma-Aldrich), lead bromide (PbBr₂, 99.99%, Sigma-Aldrich), lead iodide (PbI₂, 99.99%, 10 mesh bead, Alfa-Aesar), diethyl ether (anhydrous 99.8%, Sigma-Aldrich), dimethylformamide (DMF, anhydrous 99.8%, Sigma-Aldrich), dimethyl sulfoxide (DMSO, anhydrous 99.9%, Sigma-Aldrich), fluorine-doped tin oxide conducting glass (FTO, Pilkington glass).

Preparation of Triple-Halide (Cl/Br/I) Perovskite Films

The triple-halide (Cl/Br/I) perovskite films were prepared by following the previously reported literature precedence.¹⁻³ The preparation of perovskite films was carried out in a glovebox (< 10 ppm H₂O) unless otherwise stated. Square-shaped FTO substrates (2.5 cm × 2.5 cm) were used for fabricating the perovskite films. The triple-halide perovskite films with a chemical formula of MAPb(Cl_xBr_{0.5}(1-x))_{0.5}(1-x))₃, wherein x is Cl concentration, were prepared by dissolving stoichiometric amount of precursors of PbX₂ (PbCl₂ + PbBr₂ + PbI₂) and MAX (MACl + MABr + MAI) in mixed anhydrous DMF:DMSO solvents at a volume ratio of 4:1 to make a 0.6 M (Pb²⁺) precursor solution. The stoichiometric ratio of halide precursors (Cl/Br/I) was systematically varied in the CI concentration (x) range of 0-10 % while maintain the equimolar ratio of Br/I = 1:1. The mixed precursor solutions were vigorously stirred for 1 hr at room temperature in glovebox until the solution became transparent. The precursor solutions were subsequently syringe-filtered through polytetrafluoroethylene membrane filter (0.2 µm pore size, G8549141, Whatman). A 50 µL of precursor solution was statically applied onto the FTO substrate followed by spin-casting at 4000 rpm for 25 s with an acceleration of 1200 rpm. A 0.5 mL of diethyl ether was rapidly injected as antisolvent at 10 s after spinning. The films were transferred to a preheated hot plate and treated at 100 °C for 5 minutes. The films were then taken out from the hot plate, cooled down at room temperature, and stored in the glovebox until further use.

Electrochemical measurements

Electrochemical measurements were performed with a Gamry potentiostat in a standard three-electrode setup in which the FTO/perovskite electrodes served as the working electrode, a Pt mesh (1 cm²) as the counterelectrode (cleaned by "Piranha solution", water, and finally DCM), and a Ag/AgCl wire as a pseudo-reference electrode. The Ag/AgCl pseudo-reference electrode was prepared by depositing AgCl on Ag wire surface. Calibration of the pseudoreference electrode was performed by measuring the formal potential of the ferrocene/ferrocenium redox couple reaction in DCM (0.001 M ferrocene and 0.01 M Bu₄NPF₆)

with a scan rate of 50 mV s⁻¹. The formal potential was determined to be $E = 0.37 \pm 0.05$ V with respect to our Ag/AgCl electrode.^{1,4} The electrochemical cells were assembled in ambient conditions and then purged with nitrogen for 10 minutes to ensure inert conditions in the assembled cells.

Steady-State Absorption Measurements

Steady-state absorption measurements were carried out using a Varian Cary 50 bio spectrophotometer in the wavelength of 450—750 nm. The difference absorption (ΔA) spectra were obtained by subtracting the spectrum at 0 s as a reference from the spectra acquired at later time. Spectroelectrochemical measurements were performed by recording the steady-state absorption spectra under potentiostatic (chronoamperometry) and potentiodyanmic (linear sweep voltammetry) conditions.

Fig. S1 (A,B) Absorption changes of mixed halide perovskite films with 0% Cl on FTO upon immersing the films in Bu_4NPF_6/DCM electrolyte with different electrolyte concentration of 0.1 M (A) and 0.01 M (B).

Fig. S2 (A) Absorbance spectra of mixed halide perovskites films on FTO with different Cl concentration from 0-10% (a-f). **(B)** The excitonic peak dependence of mixed halide perovskite film MAPb($Cl_xBr_{0.5(1-x)}|_{0.5(1-x)}$)₃ containing different Cl concentration. The excitonic peak which corresponds to bandgap shows a shift of 0.15 eV as we increase Cl concentration from 0-10%.

Fig. S3 SEM images of MAPb($Cl_xBr_{0.5(1-x)}l_{0.5(1-x)}$)₃ film (A) with 0% Cl and (B) with 5% Cl deposited on FTO glass before subjecting to electrochemical treatment (pristine films).

Fig. S4 (A-F) Absorbance changes recorded for the FTO/MAPb($Cl_xBr_{0.5(1-x)}l_{0.5(1-x)}$)₃ films with different Cl concentration of 0% Cl (A), 1% Cl (B), 3% Cl (C), 5% Cl (D), 8% Cl (E), and 10% Cl (F) during potentiostatic treatment at anodic bias of 1.0 V versus Ag/AgCl in 0.01 M Bu₄NPF₆/DCM electrolyte with different treatment time from 0-360 s (a-g).

Fig. S5 (A-F) Difference absorption spectra recorded for the FTO/ MAPb($Cl_xBr_{0.5(1-x)}l_{0.5(1-x)}$)₃ films with different Cl concentration of 0% Cl (A), 1% Cl (B), 3% Cl (C), 5% Cl (D), 8% Cl (E), 10% Cl (F) under anodic bias of 1.0 V versus Ag/AgCl in 0.01 M Bu₄NPF₆/DCM electrolyte with different treatment time from 0-360 s (a-g). The absorption spectrum at 0s serves as a reference to obtain the difference absorption spectra.

Fig. S6 Magnified linear sweep voltammograms acquired for the FTO/MAPb($Cl_xBr_{0.5(1-x)}l_{0.5(1-x)}$)³ films with different Cl concentration from 0-10% (a-f) with a scan rate of 5 mV/s in the voltage range of 0-1.44 V vs Ag/AgCl in 0.01 M Bu₄NPF₆/DCM electrolyte.

Fig. S7 (A-D) Absorption spectra changes recorded during stepwise application of potential between 0 V and + 1.44 V (a-i) versus Ag/AgCl in 0.01 M Bu₄NPF₆/DCM electrolyte for the FTO/MAPb($Cl_xBr_{0.5(1-x)}|_{0.5(1-x)}$)₃ films with different Cl concentration of 1% Cl (A), 3 % Cl (B), 5% Cl (C), 8% Cl (D), and 10% Cl (E).

References

1. Samu, G. F.; Balog, Á.; De Angelis, F.; Meggiolaro, D.; Kamat, P. V.; Janáky, C. Electrochemical Hole Injection Selectively Expels Iodide from Mixed Halide Perovskite Films. *J. Am. Chem. Soc.* **2019**, *141*, 10812–10820.

2. Dubose, J. T.; Kamat, P.V.; TiO₂-Assisted Halide Ion Segregation in Mixed Halide Perovskite Films. *J. Am. Chem. Soc.* **2020**, *142*, 5362–5370.

3. Cho, J.; Kamat, P.V.; How Chloride Suppresses Photoinduced Phase Segregation in Mixed Halide Perovskites. *Chem. Mater.* **2020**, *32*, 6206–6212.

4. Samu, G. F.; Scheidt, R. A.; Kamat, P. V.; Janáky, C. Electrochemistry and Spectroelectrochemistry of Lead Halide Perovskite Films: Materials Science Aspects and Boundary Conditions. *Chem. Mater.* **2018**, *30*, 561–569.