Electronic Supplementary Information

Broad bandwidth emission and in situ electric field modulation of photoluminescence in Nd-doped ferroelectric crystals

Lan Xu^{a,b}, Zujian Wang^a, Bin Su^{a,c}, Junjie Xiong^{a,c}, Xiaoming Yang^a, Rongbing Su^a, Chao He^{*,a,b,c}, and Xifa Long^{*,a,b,c}

^a Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China

^b Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, China

^c Fujian College, University of Chinese Academy of Sciences, Fuzhou, 350002, China
*Corresponding author: hechao@fjirsm.ac.cn, lxf@fjirsm.ac.cn

Experimental Section:

The Nd-doped ferroelectric crystals ($Pb_{0.97}Nd_{0.02}$)[($Mg_{1/3}Nb_{2/3}$)_{0.61}Ti_{0.39}]O₃ [Nd:PMNT] with tetragonal perovskite structure were grown by top-seeded solution-growth method.^[1] The plates were sliced along the <001> direction for electrical, photoluminescence performance measurements. The transparent indium tin oxide (ITO) was deposited on both sides of samples using magnetron sputtering system for photoluminescence response measurement. The polarization-electric field (*P-E*) hysteresis loop and current vs electric field (*I-V*) curve were measured using a ferroelectric analyzer (TF2000, aix-ACCT, Germany). The piezoresponse images before and after poling through an explanted direct current power source were observed by a piezoresponse force microscopy (PFM, Cypher ES, Asylum Research, USA) using conductive proves (ASYELEC-01, Asylum Research, USA) at room temperature. A UV/V/NIR fluorescence spectrometer (FLS980, Edinburgh Instruments, England) was used to measure photoluminescence (PL) response.

Fig. S1 The ferroelectric polarization-electric field (*P-E*) hysteresis loop and the current-electric field (*I-E*) curve of Nd:PMNT single crystal. The values of the remanent polarization (*P_r*) and coercive field (*E*_C) were 36.7 μ C/cm² and 4.91 kV/cm, respectively.

Fig. S2 Schematic diagram of the interaction between Nd^{3+} ions and B-site ions moving from a B₁ position to a B₂ position, when the 90° domains switching induced by an external electric field.

Fig. S3 The PFM phase image of a Nd:PMNT crystal under (a) zero field (10 μ m×10 μ m) and (b) a coercive field along the *z* direction (5 μ m×5 μ m). The schematic diagram is the distribution of the 180° domain (c) in the virgin sample and (d) under the coercive electric field along the *z* direction.

Fig. S4 Transmittance of Nd:PMNT crystals under the electric field of 0 kV/cm, $E_{\rm C}$ and $2E_{\rm C}$. The transmittance was increased by about 6.4% from 0 kV/cm to $E_{\rm C}$, and by about 0.6% from $E_{\rm C}$ to $2E_{\rm C}$.

Reference

[1] X. Long, Z.-G. Ye, Acta Mater., 2007, **55**, 6507-6512.