Design of Oxa-Spirocyclic PHOX Ligands for the Asymmetric Synthesis of Lorcaserin via Iridium-Catalyzed Asymmetric Hydrogenation

Xiang-Yu Ye,⁺ Zhi-Qin Liang,⁺ Cong Jin, Qi-Wei Lang, Gen-Qiang Chen,^{†, ‡,*} Xumu Zhang^{†,*}

 *Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518000, People's Republic of China.
*Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518000, People's Republic of China.
<u>chengq@sustech.edu.cn</u>, <u>zhangxm@sustech.edu.cn</u>,

+ Xiang-Yu Ye and Zhi-Qin Liang contributed equally to this work.

Content

1. General Information	
2. Preparation and Analytical Data of Ligands	S3
3. Preparation and Analytical Data of Iridium Complexes	S10
4. Representative Procedures for the Synthesis of Substrates	S15
5. Representative Procedures for Asymmetric Hydrogenation	
6. Spectroscopic Data	S31
7. HPLC Spectra	S74
8. Crystalgraphic Information	
9. References	

1. General Information

Unless otherwise mentioned, all experiments were carried out under an atmosphere of argon in a glovebox or using standard Schlenk techniques. Solvents were dried with standard procedures and degassed with Ar. Flash column chromatography was performed using Tsingdao silica gel (60, particle size 300-400 mesh). NMR spectra were recorded on a Bruker DPX 400 spectrometer at 400 MHz for ¹H NMR, 101 MHz for ¹³C NMR and 162 MHz for ³¹P NMR or a Bruker DPX 600 spectrometer at 600 MHz for ¹H NMR, 151 MHz for ¹³C NMR and 243 MHz for ³¹P NMR in CDCl₃ with tetramethylsilane (TMS) as internal standard. Chemical shifts are reported in ppm and coupling constants are given in Hz. Chemical shifts were reported relative to TMS (0.00 ppm) for ¹H NMR and relative to CDCl₃ (77.0 ppm) for ¹³C NMR.

2. Preparation and Analytical Data of Ligands

Ligands L1-L5 were synthesized according to a reported procedure:^[1,2]

Scheme S1. Synthesis of L1-L5

Synthesis of compound (*R*)-2a and (*S*)-2b:

(*R*)-4'-(diphenylphosphanyl)-2*H*,2'*H*-3,3'-spirobi[benzofuran]-4-carboxylic acid ((*R*)-2a):

Chemical Formula: C₂₈H₂₁O₄P Exact Mass: 452.1177

Typical procedure: To a solution of triflates (*R*)-1a (3.90 g, 7.0 mmol) in MeOH (42 mL), Pd(OAc)₂ (259 mg, 1.16 mmol), 1,3-bis(diphenylphosphino)propane (dppp, 478 mg, 1.16 mmol), DMSO (60 mL) and Et₃N (11.6 mL) were successively added. The resulting mixture was saturated with CO and stirred under a CO atmosphere at 70°C. The reaction mixture was monitored by TLC until full conversion of (*R*)-1a. After cooling to room temperature, the mixture was concentrated under reduced pressure. The

residue was subjected to KOH hydrolysis. The product (*R*)-**2a** was afforded as white solid after purification by column chromatography (2.02 g, yield = 64%), $[α]^{25}D$ = +23.40 (c = 0.5, methanol), mp: 182 – 184 °C. ¹H NMR (400 MHz, Chloroform-*d*) : δ 7.32 – 7.22 (m, 4H), 7.22 – 7.14 (m, 3H), 7.13 – 7.01 (m, 4H), 6.90 – 6.79 (m, 2H), 6.69 – 6.64 (m, 1H), 6.29 (dd, *J* = 8.0, 0.8 Hz, 1H), 5.73 (dd, *J* = 8.0, 0.8 Hz, 1H), 5.01 (dd, *J* = 9.2, 2.6 Hz, 1H), 4.67 (d, *J* = 9.3 Hz, 1H), 4.62 (dd, *J* = 9.2, 1.3 Hz, 1H), 4.53 (d, *J* = 9.3 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*): δ 161.3, 160.2 (d, *J*(P,C) = 10.1 Hz, 2C), 143.5, 137.0 (d, *J*(P,C) = 11.0 Hz), 135.8 (d, *J*(P,C) = 20.8 Hz), 135.0 (d, *J*(P,C) = 10.9 Hz), 134.0 (d, *J*(P,C) = 17.3 Hz, 2C), 133.2 (d, *J*(P,C) = 19.0 Hz, 2C), 132.5, 132.2, 130.4, 129.9, 128.7, 128.3 (2C), 128.2 (d, *J*(P,C) = 1.8 Hz, 2C), 128.1 (d, *J*(P,C) = 7.5 Hz), 127.8 (d, *J*(P,C) = 2.5 Hz, 2C), 110.9, 108.8, 83.3 (d, *J*(P,C) = 6.4 Hz), 80.7, 56.1 (d, *J*(P,C) = 2.9 Hz). ³¹P NMR (162 MHz, Chloroform-*d*): δ -22.55. HRMS (ESI) calcd. for C₂₈H₂₀O₄P [M-H]⁻: 451.1105. Found: 451.1104.

(*S*)-4'-(bis(3,5-di-tert-butylphenyl)phosphanyl)-2*H*,2'*H*-3,3'-spirobi[benzofuran]-4-carboxylic acid ((*S*)-2b):

Exact Mass: 676.3681

2.84 g, yield = 60% (7.0 mmol scale), $[\alpha]^{25}_{D}$ = -32.00 (c = 0.5, acetone), white solid, mp: 210 – 212 °C. ¹H NMR (400 MHz, Chloroform-*d*) : δ 7.36-7.17 (m, 4H), 7.17-7.00 (m, 2H), 6.94 (d, *J* = 6.5 Hz, 1H), 6.76 (d, *J* = 8.5 Hz, 4H), 6.54 (s, 1H), 4.98 (d, *J* = 8.4 Hz, 1H), 4.74 (d, *J* = 8.3 Hz, 2H), 4.61 (d, *J* = 8.5 Hz, 1H), 1.15 (s, 18H), 1.13 (s, 18H). ¹³C NMR (101 MHz, Chloroform-*d*): δ 169.7, 162.3, 160.8 (d, *J*(P,C) = 10.3 Hz), 150.1 (d, *J*(P,C) = 6.4 Hz, 2C), 150.0 (d, *J*(P,C) = 7.0 Hz, 2C), 136.4 (d, *J*(P,C) = 8.9 Hz), 135.2 (d, *J*(P,C) = 26.0 Hz, 3C), 133.9, 133.7, 132.3 (d, *J*(P,C) = 3.7 Hz), 129.4, 128.6, 127.7 (d, *J*(P,C) = 9.8 Hz), 127.5 (d, *J*(P,C) = 10.9 Hz), 126.9, 126.8 (d, *J*(P,C) = 2.4 Hz), 124.0, 122.6, 121.8, 114.6, 109.7, 85.3, 83.4, 58.0 (d, *J*(P,C) = 3.1 Hz), 34.7 (2C), 34.6 (2C), 31.3 (6C), 31.2 (6C). ³¹P NMR (162 MHz, Chloroform-*d*): δ -20.01. HRMS (ESI) calcd. for C₄₄H₅₄O₄P [M+H]⁻: 677.3754. Found: 677.3745.

Synthesis of compound L1-L5:

(*R*)-4-benzyl-2-((*R*)-4'-(diphenylphosphanyl)-2*H*,2'*H*-3,3'-spirobi[benzofuran]-4-yl)-4,5-dihydrooxazole (L3):

Chemical Formula: C₃₇H₃₀NO₃P Exact Mass: 567.1963

Typical procedure: To a mixture of (R)-2a (669 mg, 1.48 mmol), D-phenylalaninol (702 mg, 4.65 mmol), 1-hydroxybenzotriazole (HOBt, 504 mg, 3.29 mmol) and dicyclohexylcarbodiimide (DCC, 881 mg, 4.27 mmol), 80 mL THF was added with stirring at 0 °C under Ar. The resulting mixture was heated at 40 °C for 24 h. After cooling to rt, the mixture was concentrated under reduced pressure. The product was afforded as white solid after purification by column chromatography (607 mg, yield = 70%). To a solution of the afforded product (1.04 mmol), triethylamine (0.32 mL), and 4-dimethylaminopyridine (DMAP, 5 mg, 0.04 mmol) in 65 mL dichloromethane was added MsCl (methane sulfonyl chloride, 120 µL, 1.55 mmol) at 0 °C. The mixture was stirred for 30 min, then another portion of triethylamine (1.35 mL) was added. The resulting mixture was warmed to room temperature. The reaction was monitored with TLC for a complete conversion. The crude product was purified by chromatography on a silica gel column to afford L3 (512 mg, yield = 87%), $[\alpha]^{25}D = +228.10$ (c = 1.0, CH₂Cl₂), mp: 110 – 112 °C. ¹H NMR (400 MHz, Chloroform-*d*): δ 7.34 – 7.14 (m, 11H), 7.12 - 6.95 (m, 8H), 6.76 (d, J = 7.9 Hz, 1H), 6.63 - 6.55 (m, 1H), 5.04 (d, J = 8.4 Hz, 1H), 4.82 - 4.62 (m, 3H), 4.24 - 4.12 (m, 1H), 3.68 - 3.52 (m, 2H), 2.62 (dd, J = 13.9, 4.4 Hz, 1H), 1.82 (dd, J = 13.9, 10.2 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-d): δ 161.8 (d, J(P,C) = 1.9 Hz), 161.7, 161.3, 138.2 (2C), 137.5 (d, J(P,C) = 10.5 Hz), 136.0(d, J(P,C) = 27.5 Hz), 135.7 (d, J(P,C) = 11.6 Hz), 134.0 (d, J(P,C) = 19.0 Hz, 2C),

133.4 (d, J(P,C) = 18.4 Hz), 133.1 (d, J(P,C) = 18.8 Hz, 2C), 129.7 (d, J(P,C) = 3.3 Hz), 129.3, 129.0 (2C), 128.8 (d, J(P,C) = 16.3 Hz, 2C), 128.5 (2C), 128.2 (d, J(P,C) = 6.1 Hz, 2C), 128.1 (d, J(P,C) = 7.2 Hz, 2C), 127.0 (d, J(P,C) = 2.6 Hz), 126.3, 125.6 (d, J(P,C) = 2.3 Hz), 122.6, 112.5, 109.6, 84.9 (d, J(P,C) = 5.5 Hz), 83.3, 70.7, 67.5, 58.1 (d, J(P,C) = 3.6 Hz), 40.9. ³¹P NMR (162 MHz, Chloroform-*d*): δ -23.15. HRMS (ESI) calcd for C₃₇H₃₁NO₃P⁺: 568.2036. Found: 568.2040.

(*R*)-2-((*R*)-4'-(diphenylphosphanyl)-2*H*,2'*H*-3,3'-spirobi[benzofuran]-4-yl)-4-phenyl-4,5-dihydrooxazole (L1):

Chemical Formula: C₃₆H₂₈NO₃P Exact Mass: 553.1807

540 mg, yield = 66% (1.48 mmol scale), $[α]^{25}D = +236.80$ (c = 0.5, CH₂Cl₂), white solid, mp: 105 – 107 °C. ¹H NMR (400 MHz, Chloroform-*d*): δ 7.38 – 7.30 (m, 1H), 7.30 – 7.15 (m, 8H), 7.15 – 6.94 (m, 8H), 6.86 – 6.76 (m, 2H), 6.70 (d, *J* = 7.9 Hz, 1H), 6.59 (dd, *J* = 7.6, 4.3 Hz, 1H), 5.10 – 4.95 (m, 2H), 4.83 (dd, *J* = 9.0, 2.0 Hz, 1H), 4.73 (dd, *J* = 9.1, 1.2 Hz, 1H), 4.68 – 4.62 (m, 1H), 4.03 (dd, *J* = 10.3, 8.2 Hz, 1H), 3.75 – 3.68 (m, 1H). ¹³C NMR (101 MHz, Chloroform-*d*): δ 162.8, 162.0 (d, *J*(P,C) = 2.1 Hz), 161.0, 141.8 (2C), 137.4 (d, *J*(P,C) = 10.7 Hz), 136.1 (d, *J*(P,C) = 27.0 Hz), 135.3 (d, *J*(P,C) =10.8 Hz), 134.1 (d, *J*(P,C) = 19.0 Hz, 2C), 133.6, 133.4, 133.2 (d, *J*(P,C) = 18.9 Hz, 2C), 129.5 (d, *J*(P,C) = 3.5 Hz), 129.4, 128.8, 128.6, 128.4 (2C), 128.3, 128.2 (d, *J*(P,C) = 2.7 Hz, 2C), 128.0 (d, *J*(P,C) = 7.4 Hz, 2C), 127.0 (d, *J*(P,C) = 2.4 Hz), 126.4, 125.4 (d, *J*(P,C) = 1.9 Hz), 123.0, 112.7, 109.9, 85.1 (d, *J*(P,C) = 5.3 Hz), 83.1, 73.4, 69.8, 58.2 (d, *J*(P,C) = 3.6 Hz). ³¹P NMR (243 MHz, Chloroform-*d*): δ -22.18. HRMS (ESI) calcd for C₃₆H₂₉NO₃P⁺: 554.1880. Found: 554.1867. (*R*)-2-((*R*)-4'-(diphenylphosphanyl)-2*H*,2'*H*-3,3'-spirobi[benzofuran]-4-yl)-4isopropyl-4,5-dihydrooxazole (L2):

Chemical Formula: C₃₃H₃₀NO₃P Exact Mass: 519.1963

476 mg, yield = 62% (1.48 mmol scale), $[α]^{25}D = +188.20$ (c = 0.5, CH₂Cl₂), white solid, mp: 90 – 92 °C. ¹H NMR (400 MHz, Chloroform-*d*): δ 7.27 – 7.16 (m, 8H), 7.11 – 6.98 (m, 5H), 6.99 – 6.91 (m, 1H), 6.80 (d, *J* = 8.0 Hz, 1H), 6.53 (dd, *J* = 7.6, 4.3 Hz, 1H), 5.04 (d, *J* = 8.4 Hz, 1H), 4.72 – 4.57 (m, 3H), 3.72 – 3.57 (m, 3H), 1.64 (s, 1H), 0.78 (d, *J* = 6.7 Hz, 3H), 0.68 (d, *J* = 6.7 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*): δ 168.4, 161.9, 160.9 (d, *J*(P,C) = 2.5 Hz), 137.7, 135.8, 135.7, 135.5, 134.9 (d, *J*(P,C) = 22.4 Hz), 133.9, 132.7 (d, *J*(P,C) = 18.1 Hz, 2C), 130.3, 129.8 (2C), 129.1, 128.2 (d, *J*(P,C) = 5.7 Hz, 2C), 128.1 (d, *J*(P,C) = 7.9 Hz, 2C), 128.0 (2C), 127.0 (d, *J*(P,C) = 2.5 Hz), 119.8, 112.0, 110.6, 86.6 (d, *J*(P,C) = 7.7 Hz), 85.4, 63.1, 59.2, 57.0 (d, *J*(P,C) = 3.2 Hz), 28.3, 19.6, 19.1. ³¹P NMR (162 MHz, Chloroform-*d*): δ -22.33. HRMS (ESI) calcd for C₃₃H₃₁NO₃P⁺: 520.2036. Found: 520.2023.

(*S*)-4-benzyl-2-((*S*)-4'-(bis(3,5-di-tert-butylphenyl)phosphanyl)-2*H*,2'*H*-3,3'-spirobi[benzofuran]-4-yl)-4,5-dihydrooxazole (L4):

Chemical Formula: C₅₃H₆₂NO₃P Exact Mass: 791.4467

702 mg, yield = 60% (1.48 mmol scale), $[\alpha]^{25}_{D}$ = (c = 166.00, CH₂Cl₂), white solid, mp: 94 – 96 °C. ¹H NMR (400 MHz, Chloroform-*d*): δ 7.38 (dd, *J* = 7.8, 1.1 Hz, 1H), 7.31 – 7.26 (m, 3H), 7.23 (d, *J* = 7.5 Hz, 2H), 7.17 (s, 1H), 7.12 – 6.99 (m, 3H), 6.98 – 6.82 (m, 5H), 6.74 (dd, *J* = 8.0, 0.9 Hz, 1H), 6.65 – 6.58 (m, 1H), 5.05 (d, *J* = 8.4 Hz, 1H), 4.61 (d, J = 8.4 Hz, 1H), 4.50 (d, J = 9.1 Hz, 1H), 4.31 (d, J = 9.1 Hz, 1H), 4.27 – 4.15 (m, 1H), 3.73 – 3.59 (m, 2H), 2.74 (dd, J = 14.0, 4.6 Hz, 1H), 2.04 (dd, J = 14.1, 9.5 Hz, 1H), 1.19 (s, 18H), 1.18 (s, 18H). ¹³C NMR (101 MHz, Chloroform-*d*): δ 168.8, 161.8, 160.8 (d, J(P,C) = 10.1 Hz), 150.6 (d, J(P,C) = 7.6 Hz, 2C), 150.2 (d, J(P,C) = 6.0 Hz, 2C), 138.3, 137.0 (d, J(P,C) = 7.5 Hz), 135.6 (d, J(P,C) = 20.8 Hz), 135.3 (d, J(P,C) = 11.6 Hz), 134.8 (d, J(P,C) = 26.5 Hz), 134.1 (d, J(P,C) = 2.0 Hz), 129.7, 129.6, 129.1 (2C), 128.9 (2C), 128.7 (2C), 128.4 (2C), 127.3 (d, J(P,C) = 18.8 Hz, 2C), 126.8 (d, J(P,C) = 3.3 Hz), 126.4, 123.5, 122.0, 119.9, 111.8, 110.5, 85.3 (d, J(P,C) = 5.5 Hz), 84.6, 63.7, 60.4, 57.2 (d, J(P,C) = 3.3 Hz), 35.5, 34.9 (2C), 34.7 (2C), 31.3 (12C). ³¹P NMR (162 MHz, Chloroform-*d*): δ -19.23. HRMS (ESI) calcd for C₅₃H₆₃NO₃P⁺: 792.4540. Found: 792.4518.

(*S*)-2-((*S*)-4'-(bis(3,5-di-tert-butylphenyl)phosphanyl)-2*H*,2'*H*-3,3'spirobi[benzofuran]-4-yl)-4-phenyl-4,5-dihydrooxazole (L5):

Chemical Formula: C₅₂H₆₀NO₃P Exact Mass: 777.4311

678 mg, yield = 59% (1.48 mmol scale), $[α]^{25}D = -154.40$ (c = 0.5, CH₂Cl₂), white solid, mp: 82 – 84 °C. ¹H NMR (400 MHz, Chloroform-*d*): δ 7.44 (dd, *J* = 7.7, 1.0 Hz, 1H), 7.22 – 7.17 (m, 3H), 7.09 – 6.99 (m, 4H), 6.91 (dd, *J* = 8.0, 1.0 Hz, 1H), 6.84 (d, *J* = 1.8 Hz, 1H), 6.82 (d, *J* = 1.8 Hz, 1H), 6.80 (d, *J* = 1.8 Hz, 1H), 6.78 (d, *J* = 1.8 Hz, 1H), 6.76 – 6.72 (m, 2H), 6.67 – 6.59 (m, 2H), 5.05 – 4.88 (m, 2H), 4.52 (dd, *J* = 18.2, 8.7 Hz, 2H), 4.36 (d, *J* = 9.0 Hz, 1H), 3.98 (dd, *J* = 10.1, 8.2 Hz, 1H), 3.66 – 3.57 (m, 1H), 1.11 (s, 18H), 1.07 (s, 18H). ¹³C NMR (101 MHz, Chloroform-*d*): δ 163.5, 162.0 (d, *J*(P,C) = 1.9 Hz), 160.7, 150.2 (d, *J*(P,C) = 6.4 Hz, 2C), 150.0 (d, *J*(P,C) = 6.9 Hz, 2C), 141.9, 136.4 (d, *J*(P,C) = 9.3 Hz), 135.3 (d, *J*(P,C) = 16.6 Hz), 135.1 (d, *J*(P,C) = 15.3 Hz), 129.3 (2C), 128.9 (d, *J*(P,C) = 3.0 Hz), 128.5 (2C), 128.1 (d, *J*(P,C) = 2.3 Hz, 2C), 127.9 (d, J(P,C) = 3.1 Hz, 2C), 127.0 (2C), 126.9 (d, J(P,C) = 2.3 Hz), 126.4 (2C), 126.2 (d, J(P,C) = 3.1 Hz), 122.9, 122.5, 122.0, 112.6, 109.6, 83.9 (d, J(P,C) = 4.1 Hz), 82.8, 73.7, 69.9, 58.3 (d, J(P,C) = 3.6 Hz), 34.8 (2C), 34.7 (2C), 31.3 (12C). ³¹P NMR (162 MHz, Chloroform-*d*): δ -19.31. HRMS (ESI) calcd for C₅₂H₆₁NO₃P⁺: 778.4384. Found: 778.4358.

3. Preparation and Analytical Data of Iridium Complexes

Typical procedure: iridium complexes were synthesized according to a reported procedure:^[1] Ligand (0.085 mmol), $[Ir(cod)Cl]_2$ (32 mg, 0.047 mmol) and NaBArF·3H₂O (100 mg, 0.107 mmol) were added to 2 mL of CH₂Cl₂ in a Schlenk tube under argon atmosphere. The mixture was heated to reflux for 0.5 hours. The TLC analysis revealed no free ligand existed. After cooling to room temperature, the mixture was concentrated under reduced pressure and the residue was purified by a flash column chromatography on silica gel with CH₂Cl₂/petroleum ether (1:1) to offer an orange-yellow solid.

Cat 1:

Chemical Formula: C₇₆H₅₂BF₂₄IrNO₃P Exact Mass: 1717.3024

432.7 mg, yield = 84% for one step (0.3 mmol scale), $[\alpha]^{25}_{D}$ = -160.00 (c = 0.1, CH₂Cl₂), orange-yellow solid, mp: 160 – 162 °C. ¹H NMR (400 MHz, Chloroform-*d*): δ 7.80 – 7.67 (m, 10H), 7.66 – 7.39 (m, 15H), 7.38 – 7.30 (m, 3H), 7.25 – 7.19 (m, 1H), 7.13 – 7.01 (m, 4H), 4.55 – 4.40 (m, 4H), 4.25 – 4.16 (m, 1H), 4.06 (d, *J* = 9.2 Hz, 1H), 3.88 – 3.80 (m, 1H), 3.73 - 3.64 (m, 1H), 3.50 – 3.36 (m, 1H), 2.73 – 2.65 (m, 1H), 2.20 – 2.03 (m, 1H), 2.00 (dd, *J* = 9.2, 1.6 Hz, 1H), 1.97 – 1.85 (m, 1H), 1.76 – 1.63 (m, 1H), 1.54 (s, 2H), 1.40 – 1.28 (m, 3H). ¹³C NMR (101 MHz, Chloroform-*d*): δ 168.2, 163.3, 163.2, 162.4, 161.9, 161.4, 160.9, 136.9, 136.1, 136.0, 133.7, 133.6, 133.3, 133.2, 131.5, 131.4, 131.3, 131.2, 130.8, 130.7, 130.2, 130.0, 129.9, 129.7, 129.4, 129.0, 128.9, 128.8, 128.7, 128.6, 128.4, 127.1, 126.8, 126.7, 126.6, 126.2, 126.1, 125.9, 124.9, 123.2, 123.1, 120.5, 119.9, 114.4, 86.5, 86.4, 83.6, 83.4, 83.1, 79.4, 71.6, 71.0, 67.8, 57.8, 31.0, 30.6, 29.1, 29.0, 28.8. ³¹P NMR (162 MHz, Chloroform-*d*): δ 14.12. HRMS (ESI) calcd for

C44H40IrNO3P⁺: 854.2370. Found: 854.2371.

Cat 2:

Chemical Formula: C₇₃H₅₄BF₂₄IrNO₃P Exact Mass: 1683.3180

378.6 mg, yield = 75% for one step (0.3 mmol scale), $[\alpha]^{25}_{D}$ = -90.00 (c = 0.1, CH₂Cl₂), orange-yellow solid, mp: 172 – 174 °C. ¹H NMR (400 MHz, Chloroform-*d*): δ 7.72 (d, *J* = 2.8 Hz, 8H), 7.68 – 7.34 (m, 14H), 7.29 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.16 (d, *J* = 1.0 Hz, 1H), 7.10 (d, *J* = 8.0 Hz, 1H), 7.07 – 6.93 (m, 3H), 4.71 – 4.61 (m, 1H), 4.47 – 4.36 (m, 3H), 4.27 (dd, *J* = 9.3, 6.1 Hz, 1H), 4.04 (d, *J* = 9.2 Hz, 1H), 3.76 – 3.67 (m, 1H), 3.50 – 3.40 (m, 1H), 3.29 – 3.24 (m, 1H), 2.89 – 2.80 (m, 1H), 2.32 – 2.16 (m, 1H), 2.13 – 1.94 (m, 3H), 1.91 – 1.69 (m, 2H), 1.56 (s, 2H), 1.49 – 1.37 (m, 2H), 1.02 (d, *J* = 6.9 Hz, 3H), 0.89 (d, *J* = 6.7 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*): δ 169.5, 163.1, 163.0, 162.4, 161.9, 161.5, 161.4, 160.9, 136.0, 135.8, 133.4, 133.3, 133.2, 131.3, 131.1, 131.0, 130.6, 130.2, 130.0, 129.9, 129.7, 129.1, 129.0, 128.9, 128.8, 128.7, 128.6, 127.2, 127.1, 126.9, 126.7, 126.1, 126.0, 125.9, 124.9, 123.2, 120.5, 119.5, 117.5, 117.4, 114.7, 114.3, 83.1, 82.3, 82.2, 79.8, 79.6, 72.7, 71.0, 70.9, 68.7, 57.6, 31.0, 30.9, 30.5, 29.6, 29.5, 29.2, 20.1, 14.9. ³¹P NMR (162 MHz, Chloroform-*d*): δ 14.48. HRMS (ESI) calcd for C₄₁H₄₂IrNO₃P⁺: 820.2526. Found: 818.2495.

Cat 3:

Chemical Formula: C₇₇H₅₄BF₂₄IrNO₃P Exact Mass: 1731.3180

709.7 mg, yield = 82% for one step (0.5 mmol scale), $[α]^{25}D$ = -84.00 (c = 0.1, CH₂Cl₂), orange-yellow solid, mp: 178 – 180 °C. ¹H NMR (400 MHz, Chloroform-*d*): δ 7.75 – 7.61 (m, 10H), 7.60 – 7.44 (m, 10H), 7.39 – 7.15 (m, 9H), 7.10 – 7.00 (m, 3H), 6.96 (dd, *J* = 7.7, 1.6 Hz, 1H), 4.79 - 4.65 (m, 2H), 4.36 (d, *J* = 8.9 Hz, 1H), 4.28 (dd, *J* = 8.9, 1.7 Hz, 1H), 4.22 – 4.16 (m, 1H), 3.98 (d, *J* = 9.2 Hz, 1H), 3.79 – 3.67 (m, 2H), 3.62 – 3.47 (m, 2H), 2.83 (dd, *J* = 13.2, 11.5 Hz, 1H), 2.78 - 2.68 (m, 1H), 2.23 – 1.91 (m, 4H), 1.87 – 1.75 (m, 1H), 1.68 – 1.58 (m, 2H), 1.55 (s, 2H). ¹³C NMR (400 MHz, Chloroform-*d*): δ 168.6, 163.4, 163.3, 162.4, 161.9, 161.5, 160.9, 136.4, 136.3, 134.3, 133.7, 133.6, 133.4, 133.3, 131.6, 131.1, 131.0, 130.8, 130.1, 130.0, 129.6, 129.1, 129.0, 128.7, 128.6, 128.5, 128.3, 128.2, 128.1, 127.1, 126.6, 126.4, 125.9, 125.8, 125.7, 125.2, 123.5, 123.2, 120.5, 119.5, 117.5, 117.4, 114.6, 114.2, 87.3, 87.2, 85.9, 85.8, 82.6, 79.0, 74.7, 73.2, 69.2, 66.6, 58.1, 40.8, 31.2, 30.9, 29.2, 29.1, 28.9. ³¹P NMR (162 MHz, Chloroform-*d*): δ 15.00. HRMS (ESI) calcd for C₄₅H₄₂IrNO₃P⁺: 868.2526. Found: 866.2497.

Cat 4:

Chemical Formula: C₉₃H₈₆BF₂₄IrNO₃P Exact Mass: 1955.5684

475.3 mg, yield = 81% for one step (0.3 mmol scale), $[\alpha]^{25}_{D}$ = +59.00 (c = 0.1, CH₂Cl₂), orange-yellow solid, mp: 223 – 225 °C. ¹H NMR (400 MHz, Chloroform-*d*): δ 7.78 –

7.62 (m, 9H), 7.62 – 7.44 (m, 7H), 7.43 – 7.26 (m, 7H), 7.11 – 7.02 (m, 3H), 6.98 (dd, J = 7.1, 2.1 Hz, 1H), 6.87 (dd, J = 11.7, 1.8 Hz, 2H), 4.80 – 4.70 (m, 1H), 4.59 – 4.48 (m, 1H), 4.39 (d, J = 8.9 Hz, 1H), 4.28 – 4.18 (m, 2H), 3.92 (d, J = 9.0 Hz, 1H), 3.87-3.75 (m, 2H), 3.56 (dd, J = 13.4, 3.8 Hz, 1H), 3.41- 3.36 (m, 1H), 2.99 - 2.88 (m, 1H), 2.80 (dd, J = 13.5, 11.9 Hz, 1H), 2.38 – 2.23 (m, 1H), 2.16 – 2.04 (m, 1H), 1.94 (dd, J = 9.0, 1.7 Hz, 1H), 1.79 – 1.65 (m, 2H), 1.55 (s, 4H), 1.40 – 1.09 (m, 36H). ¹³C NMR (101 MHz, Chloroform-*d*): δ 169.5, 163.3, 163.1, 162.5, 162.0, 161.5, 161.0, 160.9, 153.1, 153.0, 133.9, 130.1, 129.5, 129.1, 129.0, 128.7, 128.6, 128.4, 128.1, 127.8, 125.9, 125.8, 124.9, 124.7, 123.2, 122.8, 120.2, 117.5, 114.8, 114.2, 82.8, 78.2, 74.6, 71.4, 68.1, 67.2, 57.9, 40.6, 35.1, 31.8, 31.2, 31.1, 30.6, 30.1, 29.7, 28.4. ³¹P NMR (162 MHz, Chloroform-*d*): δ 16.37. HRMS (ESI) calcd for C₆₁H₇₄IrNO₃P⁺: 1092.5030. Found: 1092.5018.

Cat 5:

Chemical Formula: C₉₂H₈₄BF₂₄IrNO₃P Exact Mass: 1941.5528

786.5 mg, yield = 81% for one step (0.5 mmol scale), $[\alpha]^{25}_{D}$ = +70.00 (c = 0.1, CH₂Cl₂), orange-yellow solid, mp: 240 – 242 °C. ¹H NMR (400 MHz, Chloroform-*d*): δ 7.80 – 7.61 (m, 9H), 7.60 – 7.30 (m, 15H), 7.14 – 6.98 (m, 3H), 6.83 (dd, *J* = 11.7, 1.8 Hz, 2H), 4.61 (dd, *J* = 10.2, 4.8 Hz, 1H), 4.50 – 4.44 (m, 2H), 4.37 (dd, *J* = 8.9, 1.8 Hz, 1H), 4.12 (d, *J* = 7.2 Hz, 1H), 3.96 (d, *J* = 9.0 Hz, 1H), 3.90 – 3.86 (m, 1H), 3.65 – 3.52 (m, 2H), 2.82 (d, *J* = 6.7 Hz, 1H), 2.25 – 2.12 (m, 1H), 1.56 (s, 8H), 1.41 – 1.13 (m, 36H). ¹³C NMR (101 MHz, Chloroform-*d*): δ 162.2, 161.9, 145.7, 144.0, 138.1, 134.8, 132.2, 130.4, 130.3, 129.8, 129.0, 128.8, 128.1, 128.0, 127.3, 126.6, 126.3, 125.9, 125.5, 124.0, 123.7, 121.8, 120.7, 117.5, 117.4, 79.1, 76.2, 69.9, 69.7, 69.6, 69.4, 68.1, 62.9, 41.5, 35.1, 35.0, 33.5, 31.2, 31.0, 30.7, 30.4, 29.9, 28.7. ³¹P NMR (162 MHz, Chloroform-*d*):

 δ 16.82. HRMS (ESI) calcd for C₆₀H₇₂IrNO₃P⁺: 1078.4874. Found: 1076.4835.

4. Representative Procedures for the Synthesis of Substrates

The synthetic pathway of the substrate **3a-3h** is outlined as follow^[3-7]:

Scheme S2. Synthesis of substrate 3a-3h

The substrate **3a-3b** can also be synthesized by another procedure^[8]:

Scheme S3. Synthesis of substrate 3a-3b

Synthesis of substrate **3a-3h**^[3-7]:

7,8-dimethoxy-1-methylene-1,3,4,5-tetrahydro-2*H*-benzo[*d*]azepin-2-one (3a):

Chemical Formula: C₁₃H₁₅NO₃ Exact Mass: 233.1052

Typical procedure: A solution of 6,7-dimethoxy-3,4-dihydronaphthalen-2(1H)-one (2.06 g, 10.0 mmol) in MeSO₃H (10.0 mL) was cooled in an ice bath and treated with sodium azide (0.85 g, 13.0 mmol) with stirring (caution: sodium azide is a highly toxic and explosive compound, please add slowly and carefully). The reaction

mixture was allowed to warm to room temperature and stirred for a further 2 h then poured into a cold solution of 1 M aqueous KOH (200 mL) and extracted thoroughly with ethyl acetate. The extracts were washed with brine and the mixture was concentrated under reduced pressure. Then, the residue was purified by a flash column chromatography on silica gel to afford a white solid s2a (1.33 g, yield = 60%). The afforded s2a (6.0 mmol) and N, N-dimethylaminopyridine (73.2 mg, 0.6 mmol) dissolved in 0.5 M CH₂Cl₂, di-tert-butyl dicarbonate (1.57 g, 7.2 mmol) was added under vigorous stirring at 0 °C. The reaction was then allowed to stir at room temperature overnight. Brine (30 mL) and CH₂Cl₂ (20 mL) were added to the reaction mixture and the organic layer extracted. The aqueous layer was further extracted with CH₂Cl₂ (2 x 30 mL). The combined organic layers were dried over MgSO₄ concentrated in vacuum and the crude was directly submitted to a flash column chromatography on silica gel to afford a white solid s3a (1.62 g, yield = 84%). s3a (5 mmol), (CHO)_n (15.0 mmol), (nBu)₄NHSO₄ (0.50 mmol) and K₂CO₃ (15.0 mmol) was added in toluene (80 mL) and stirred at 80 °C. The reaction was followed by TLC until it was completed. Water (100 mL) was added and the resulting mixture was extracted with Et₂O (3 x 150 mL). Removal of the solvent under vacuum and purification of the residue by a flash column chromatography on silica gel afforded the desired product s4a (1.58 g, yield = 95%). Finally, TFA (5.0 mL) was added cautiously to a stirred solution of s4a (4.75 mmol) in DCM (5.0 mL). After 1h the reaction mixture was diluted with DCM (15 mL) and washed with water (2 x 15 mL) and brine. The organic layer was dried (anhydrous Na₂SO₄) and concentrated in vacuo to give 3a (1.09 g, yield = 98%) as a white solid, mp: 166 – 168 °C. ¹H NMR (400 MHz, Chloroform-*d*): δ 7.15 (br, 1H), 6.81 (s, 1H), 6.60 (s, 1H), 5.89 (s, 1H), 5.64 (s, 1H), 3.88 (s, 6H), 3.63 – 3.45 (m, 2H), 3.12 – 2.94 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*): δ 173.7, 149.2, 147.6, 145.7, 128.5, 126.3, 122.4, 112.5, 112.2, 55.94, 55.91, 41.0, 34.0. HRMS (ESI) calcd for C₁₃H₁₆NO₃⁺: 234.1125. Found: 234.1124.

8-methoxy-1-methylene-1,3,4,5-tetrahydro-2*H*-benzo[*d*]azepin-2-one (3b):

Chemical Formula: C₁₂H₁₃NO₂ Exact Mass: 203.0946

591.6 mg, yield = 29% for 4 steps (10 mmol scale), white solid, mp: 76 – 78 °C. ¹H NMR (600 MHz, Chloroform-*d*): δ 8.06 (br, 1H), 7.06 (d, *J* = 8.3 Hz, 1H), 6.86 (dd, *J* = 8.3, 2.7 Hz, 1H), 6.84 (d, *J* = 2.7 Hz, 1H), 6.12 (s, 1H), 5.79 (s, 1H), 3.81 (s, 3H), 3.62 – 3.54 (m, 2H), 3.09 – 2.99 (m, 2H). ¹³C NMR (151 MHz, Chloroform-*d*): δ 173.3, 158.6, 144.1, 135.4, 130.3, 128.3, 126.6, 114.9, 114.4, 55.4, 42.9, 32.5. HRMS (ESI) calcd for C₁₂H₁₄NO₂⁺: 204.1019. Found: 204.1020.

8-chloro-1-methylene-1,3,4,5-tetrahydro-2*H*-benzo[*d*]azepin-2-one (3c):

Chemical Formula: C₁₁H₁₀CINO Exact Mass: 207.0451

769.7 mg, yield = 37% for 4 steps (10 mmol scale), white solid, mp: 179 – 181 °C. ¹H NMR (400 MHz, Chloroform-*d*): δ 7.37 (br, 1H), 7.29 (d, *J* = 2.3 Hz, 1H), 7.22 (dd, *J* = 8.2, 2.3 Hz, 1H), 7.06 (d, *J* = 8.2 Hz, 1H), 6.00 (s, 1H), 5.67 (s, 1H), 3.63 – 3.53 (m, 2H), 3.23 – 2.92 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*): δ 172.0, 145.3, 136.4, 134.8, 132.4, 130.8, 129.0, 128.3, 124.6, 41.2, 33.6. HRMS (ESI) calcd for C₁₁H₁₁ClNO⁺: 208.0524. Found: 208.0525.

8-bromo-1-methylene-1,3,4,5-tetrahydro-2*H*-benzo[*d*]azepin-2-one (3d):

Chemical Formula: C₁₁H₁₀BrNO Exact Mass: 250.9946

226.7 mg, yield = 18% for 4 steps (5 mmol scale), white solid, mp: 173 - 175 °C. ¹H NMR (600 MHz, Chloroform-*d*): δ 7.46 (d, J = 2.1 Hz, 1H), 7.38 (dd, J = 8.2, 2.1 Hz, 1H), 7.01 (d, J = 8.2 Hz, 1H), 6.19 (br, 1H), 6.05 (s, 1H), 5.67 (s, 1H), 3.58 – 3.52 (m, 2H), 3.09 – 3.00 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*): δ 171.2, 145.0, 137.0, 135.3, 132.0, 131.3, 131.0, 125.2, 120.5, 41.5, 33.7. HRMS (ESI) calcd for C₁₁H₁₁BrNO⁺: 252.0019. Found: 252.0019.

7-chloro-1-methylene-1,3,4,5-tetrahydro-2*H*-benzo[*d*]azepin-2-one (3e):

Chemical Formula: C₁₁H₁₀CINO Exact Mass: 207.0451

239.2 mg, yield = 23% for 4 steps (5 mmol scale), white solid, mp: 175 - 177 °C. ¹H NMR (400 MHz, Chloroform-*d*): δ 7.29 – 7.17 (m, 2H), 7.13 (d, J = 2.1 Hz, 1H), 6.84 (br, 1H), 5.99 (d, J = 1.2 Hz, 1H), 5.64 (s, 1H), 3.74 – 3.45 (m, 2H), 3.27 – 3.00 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*): δ 172.2, 145.5, 138.0, 134.1, 133.4, 130.9, 129.3, 127.1, 124.1, 41.0, 34.1. HRMS (ESI) calcd for C₁₁H₁₁ClNO⁺: 208.0524. Found: 208.0524.

7-bromo-1-methylene-1,3,4,5-tetrahydro-2*H*-benzo[*d*]azepin-2-one (3f):

Chemical Formula: C₁₁H₁₀BrNO Exact Mass: 250.9946

529.2 mg, yield = 21% for 4 steps (10 mmol scale), white solid, mp: 170 – 172 °C. ¹H NMR (400 MHz, Chloroform-*d*): δ 7.45 (br, 1H), 7.35 (dd, J = 8.3, 2.1 Hz, 1H), 7.28 (d, J = 2.1 Hz, 1H), 7.17 (d, J = 8.3 Hz, 1H), 5.97 (s, 1H), 5.64 (s, 1H), 3.57 – 3.49 (m, 2H), 3.17 – 2.93 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*): δ 172.0, 145.4, 138.3, 133.9, 132.2, 131.1, 130.0, 124.3, 122.3, 41.1, 34.0. HRMS (ESI) calcd for

C₁₁H₁₁BrNO⁺: 252.0019. Found: 252.0019.

1-methylene-8-phenyl-1,3,4,5-tetrahydro-2*H*-benzo[*d*]azepin-2-one (3g):

Chemical Formula: C₁₇H₁₅NO Exact Mass: 249.1154

500.2 mg, yield = 20% for 4 steps (10 mmol scale), white solid, mp: 143 – 145 °C. ¹H NMR (400 MHz, Chloroform-*d*): δ 7.62 – 7.53 (m, 3H), 7.52 – 7.40 (m, 3H), 7.39 – 7.31 (m, 1H), 7.21 (d, *J* = 7.9 Hz, 1H), 6.72 (br, 1H), 6.03 (s, 1H), 5.72 (s, 1H), 3.68 – 3.54 (m, 2H), 3.21 – 3.03 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*): δ 172.2, 146.4, 140.3, 140.0, 135.4, 135.3, 130.0, 128.8 (2C), 128.2, 127.4, 127.2, 127.0 (2C), 124.0, 41.5, 33.9. HRMS (ESI) calcd for C₁₇H₁₆NO⁺: 250.1224. Found: 250.1223.

1-methylene-1,3,4,5-tetrahydro-2*H*-benzo[*d*]azepin-2-one (3h):

Chemical Formula: C₁₁H₁₁NO Exact Mass: 173.0841

300.9 mg, yield = 17% for 4 steps (10 mmol scale), white solid, mp: 174 – 176 °C. ¹H NMR (400 MHz, Chloroform-*d*): δ 7.38 – 7.29 (m, 2H), 7.30 – 7.20 (m, 2H), 7.17 – 7.09 (m, 1H), 5.97 (d, *J* = 1.5 Hz, 1H), 5.64 (s, 1H), 3.64 – 3.48 (m, 2H), 3.18 – 2.98 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*): δ 172.6, 146.5, 136.4, 135.0, 129.5, 129.4, 128.4, 126.8, 123.6, 41.3, 34.2. HRMS (ESI) calcd for C₁₁H₁₂NO⁺: 174.0913. Found: 174.0914.

N-benzyl-2-phenylacrylamide (3i):

Chemical Formula: C₁₆H₁₅NO Exact Mass: 237.1154

This is a known compound.^[9] Substrate **3i** was synthesized according to a reported procedure:^[9] EDC·HCl (1.15 g, 6.00 mmol) was added at ambient temperature to a stirred mixture of 2-phenylacrylic acid (5.00 mmol), HOBt·H₂O (230 mg, 1.50 mmol) and phenylmethanamine (5.25 mmol) in anhydrous MeCN (6.00 mL). After 5 min, Et₃N (0.73 mL, 5.25 mmol) was added, and the reaction mixture was allowed to stir for 6 hours at the room temperature. Thereafter, water was added, and the mixture was extracted with EtOAc. The combined organic phase was washed with brine (30.0 mL) and dried over anhydrous Na₂SO₄. After removal of the solvents in reduced pressure, the crude product was purified by column chromatography on silica gel (EtOAc/Hexane) to yield light yellow solid **3i** (605.2 mg, yield = 51%), mp: 80 – 82 °C. ¹H NMR (400 MHz, Chloroform-*d*): δ 7.47 – 7.16 (m, 10H), 6.17 (d, *J* = 1.3 Hz, 1H), 6.08 (br, 1H), 5.63 (d, *J* = 1.3 Hz, 1H), 4.52 (d, *J* = 5.9 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-*d*): δ 167.1, 144.5, 138.0, 136.9, 128.7 (2C), 128.6 (2C), 128.5, 128.1 (2C), 127.6 (2C), 127.4, 122.4, 43.8. HRMS (ESI) calcd for C₁₆H₁₆NO⁺: 238.1226. Found: 238.1224.

tert-butyl-7,8-dimethoxy-1-methylene-2-oxo-1,2,4,5-tetrahydro-3*H*benzo[*d*]azepine-3-carboxylate (3j):

Chemical Formula: C₁₈H₂₃NO₅ Exact Mass: 333.1576

The afforded **3a** (140.0 mg, 0.6 mmol) and *N*, *N*-dimethylaminopyridine (7.3 mg, 0.06 mmol) dissolved in CH_2Cl_2 (7 mL), di-*tert*-butyl dicarbonate (157 mg, 0.72 mmol) was added under vigorous stirring at 0 °C. The reaction was then allowed to stir at room

temperature overnight. Brine (10 mL) and CH₂Cl₂ (10 mL) were added to the reaction mixture and the organic layer extracted. The aqueous layer was further extracted with CH₂Cl₂ (2 x 10 mL). The combined organic layers were dried over MgSO₄ concentrated in vacuum and the crude was directly submitted to a flash column chromatography on silica gel to afford a white solid **3j** (143.9 mg, yield = 72%), mp: 140 – 142 °C. ¹H NMR (400 MHz, Chloroform-*d*): δ 6.73 (s, 1H), 6.61 (s, 1H), 5.82 (d, *J* = 1.0 Hz, 1H), 5.59 (d, *J* = 1.0 Hz, 1H), 4.16 – 4.08 (m, 2H), 3.87 (s, 6H), 3.15 – 3.07 (m, 2H), 1.54 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*): δ 170.9, 151.5, 149.4, 148.2, 147.6, 127.4, 125.4, 122.2, 113.2, 112.3, 83.2, 56.0, 55.9, 43.5, 33.1, 28.0 (3C). HRMS (ESI) calcd for C₁₈H₂₄NO₅⁺: 334.1649. Found: 334.1647.

(*E*)-3-benzylideneindolin-2-one (3k):

Chemical Formula: C₁₅H₁₁NO Exact Mass: 221.0841

This is a known compound and it was synthesized according to a reported procedure. ^[12] Yellow solid. ¹H NMR (600 MHz, Chloroform-*d*): δ 8.25 (br, 1H), 7.84 (s, 1H), 7.69 – 7.65 (m, 2H), 7.64 (d, *J* = 7.7 Hz, 1H), 7.51 – 7.46 (m, 2H), 7.46 – 7.42 (m, 1H), 7.24 – 7.20 (m, 1H), 6.92 – 6.84 (m, 2H). ¹³C NMR (151 MHz, Chloroform-*d*): δ 170.6, 141.8, 137.5, 134.8, 129.9, 129.6, 129.3 (2C), 128.6 (2C), 127.7, 123.0, 121.8, 121.6, 110.4.

(*E*)-3-benzylidenedihydrofuran-2(3*H*)-one (3l):

Chemical Formula: C₁₁H₁₀O₂ Molecular Weight: 174.1990

This is a known compound and it was synthesized according to a reported procedure.

^[13] Yellow solid. ¹H NMR (400 MHz, Chloroform-*d*): 7.57 (t, J = 3.0 Hz, 1H), 7.53 – 7.47 (m, 2H), 7.47 – 7.37 (m, 3H), 4.46 (t, J = 7.3 Hz, 2H), 3.28 – 3.24 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*): δ 172.5, 136.5, 134.5, 129.9 (2C), 129.8, 128.8 (2C), 123.5, 65.4, 27.3.

5. Representative Procedures for Asymmetric Hydrogenation

Representative procedures for asymmetric hydrogenation, as exemplified with 3a: To a 5 mL vial was added 3a (70.8 mg, 0.3 mmol) and a stir bar. Cat 5 (5.8 mg, 1 mol%) and 3 mL toluene (degassed) were added to the vial in an argon-filled glovebox. The vial was placed in an autoclave and the autoclave was pressurized with H₂ (40 atm). The reaction mixture was allowed to stir at room temperature for 24 h before carefully releasing H₂. The resulting reaction residue was passed through a short column of silicon (acetone as the eluent) to give the 4a.

According to a reported procedure^[10], the Lorcaserin (5c) can be synthesized from 4c.

(R)-7,8-dimethoxy-1-methyl-1,3,4,5-tetrahydro-2H-benzo[d]azepin-2-one (4a):

Chemical Formula: C₁₃H₁₇NO₃ Exact Mass: 235.1208

70.3 mg, yield = 99%, 98% ee, $[\alpha]^{25}_{D}$ = -144.00 (c = 0.1, CH₂Cl₂), light yellow solid, mp: 140 – 142 °C. ¹H NMR (400 MHz, Chloroform-*d*): δ 6.76 (s, 1H), 6.64 (s, 1H), 5.81 (br, 1H), 4.15 (q, *J* = 7.0 Hz, 1H), 3.87 (s, 3H), 3.86 (s, 3H), 3.82 – 3.73 (m, 1H), 3.47 – 3.35 (m, 1H), 3.30 – 3.20 (m, 1H), 3.04 – 2.94 (m, 1H), 1.56 (d, *J* = 7.0 Hz, 3H). ¹³C NMR (151 MHz, Chloroform-*d*): δ 175.7, 147.6, 147.6, 129.5, 128.9, 113.0, 109.8, 56.01, 55.97, 41.7, 40.4, 32.8, 15.0. HRMS (ESI) calcd for C₁₃H₁₈NO₃⁺ [M+H]⁺: 236.1281. Found: 236.1280. The enantiomeric excess of **4a** was determined by HPLC analysis on Chiralpak IA column. Conditions: hexane/isopropanol = 80/20, flow rate = 1.0 mL/min, uv-vis detection at λ = 210 nm, *t_R* = 17.838 min (minor), 19.254 min (major). (R)-8-methoxy-1-methyl-1,3,4,5-tetrahydro-2H-benzo[d]azepin-2-one (4b):

Chemical Formula: C₁₂H₁₅NO₂ Exact Mass: 205.1103

This is a known compound.^[10] 61.1 mg, yield = 99%, 98% ee, $[\alpha]^{25}_{D}$ = +12.00 (c = 0.1, CH₂Cl₂), light yellow solid, mp: 101 – 103 °C. ¹H NMR (400 MHz, Chloroform-*d*): δ 7.06 (d, *J* = 8.3 Hz, 1H), 6.81 (d, *J* = 2.6 Hz, 1H), 6.74 (dd, *J* = 8.3, 2.6 Hz, 1H), 5.77 (br, 1H), 4.16 (q, *J* = 7.0 Hz, 1H), 3.79 (s, 3H), 3.78 – 3.70 (m, 1H), 3.43 – 3.35 (m, 1H), 3.33 – 3.24 (m, 1H), 3.04 – 2.93 (m, 1H), 1.56 (d, *J* = 7.0 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*): 174.9, 158.6, 139.1, 130.3, 129.1, 112.0, 111.8, 55.3, 42.4, 40.9, 31.9, 14.5. HRMS (ESI) calcd for C₁₂H₁₆NO₂⁺ [M+H]⁺: 206.1176. Found: 206.1176. The enantiomeric excess of **4b** was determined by HPLC analysis on Chiralpak IA column. Conditions: hexane/isopropanol = 80/20, flow rate = 1.0 mL/min, uv-vis detection at λ = 230 nm, *t_R* = 9.891 min (major), 14.454 min (minor).

(R)-8-chloro-1-methyl-1,3,4,5-tetrahydro-2H-benzo[d]azepin-2-one (4c):

Chemical Formula: C₁₁H₁₂CINO Exact Mass: 209.0607

This is a known compound.^[10] 62.8 mg, yield = 99%, 99% ee, $[\alpha]^{24}_{D}$ = -1.60 (c = 0.5, CH₂Cl₂), light yellow solid, mp: 167 – 169 °C. ¹H NMR (400 MHz, Chloroform-*d*): δ 7.21 (d, *J* = 2.4 Hz, 1H), 7.15 (dd, *J* = 8.0, 2.4 Hz, 1H), 7.05 (d, *J* = 8.0 Hz, 1H), 6.35 (br, 1H), 4.17 (q, *J* = 7.0 Hz, 1H), 3.88 – 3.78 (m, 1H), 3.50 – 3.33 (m, 1H), 3.32 – 3.19 (m, 1H), 3.12 – 2.92 (m, 1H), 1.53 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*): δ 174.8, 139.3, 135.3, 132.6, 130.9, 126.9, 126.0, 41.5, 40.3, 32.3, 14.2. HRMS (ESI) calcd for C₁₁H₁₃ClNO⁺ [M+H]⁺: 210.0680. Found: 210.0680. The enantiomeric excess of **4c** was determined by HPLC analysis on Chiralpak IA column.

Conditions: hexane/isopropanol = 90/10, flow rate = 1.0 mL/min, uv-vis detection at λ = 210 nm, t_R = 14.554 min (major), 18.217 min (minor).

(R)-8-bromo-1-methyl-1,3,4,5-tetrahydro-2H-benzo[d]azepin-2-one (4d):

Chemical Formula: C₁₁H₁₂BrNO Exact Mass: 253.0102

This is a known compound.^[10] 75.5 mg, yield = 99%, 98% ee, $[\alpha]^{24}_{D}$ = +4.30 (c = 0.5, CH₂Cl₂), white solid, mp: 120 – 122 °C. ¹H NMR (400 MHz, Chloroform-*d*): δ 7.36 (d, J = 2.1 Hz, 1H), 7.32 (dd, J = 8.0, 2.1 Hz, 1H), 7.00 (d, J = 8.0 Hz, 1H), 5.95 (br, 1H), 4.18 (q, J = 7.0 Hz, 1H), 3.84 - 3.72 (m, 1H), 3.44 – 3.34 (m, 1H), 3.33 – 3.20 (m, 1H), 3.07 – 2.94 (m, 1H), 1.55 (d, J = 7.0 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*): δ 174.5, 139.7, 135.9, 131.2, 130.0, 128.9, 120.8, 41.6, 40.4, 32.4, 14.3. HRMS (ESI) calcd for C₁₁H₁₃BrNO⁺ [M+H]⁺: 254.0175. Found: 254.0174. The enantiomeric excess of **4d** was determined by HPLC analysis on Chiralpak IA column. Conditions: hexane/isopropanol = 80/20, flow rate = 1.0 mL/min, uv-vis detection at λ = 210 nm, t_R = 9.471min (major), 11.319 min (minor).

(R)-7-chloro-1-methyl-1,3,4,5-tetrahydro-2H-benzo[d]azepin-2-one (4e):

Chemical Formula: C₁₁H₁₂CINO Exact Mass: 209.0607

This is a known compound.^[10] 62.1 mg, yield = 99%, 97% ee, $[\alpha]^{24}_{D}$ = -88.20 (c = 0.5, CH₂Cl₂), yellow solid, mp: 164 – 166 °C. ¹H NMR (600 MHz, Chloroform-*d*): δ 7.22 – 7.15 (m, 2H), 7.14 (d, *J* = 2.1 Hz, 1H), 5.86 (br, 1H), 4.16 (q, *J* = 7.0 Hz, 1H), 3.85 – 3.75 (m, 1H), 3.46 – 3.36 (m, 1H), 3.34 – 3.26 (m, 1H), 3.08 – 2.96 (m, 1H), 1.55 (d, *J* = 7.0 Hz, 3H). ¹³C NMR (151 MHz, Chloroform-*d*): δ 174.7, 138.8, 136.1, 132.6, 129.4,

127.3, 126.9, 41.6, 40.3, 32.8, 14.6. HRMS (ESI) calcd for $C_{11}H_{13}CINO^+$ [M+H]⁺: 210.0680. Found: 210.0679. The enantiomeric excess of **4e** was determined by HPLC analysis on Chiralpak IA column. Conditions: hexane/isopropanol = 90/10, flow rate = 1.0 mL/min, uv-vis detection at λ = 210 nm, t_R = 16.199min (major), 20.358 min (minor).

(R)-7-bromo-1-methyl-1,3,4,5-tetrahydro-2H-benzo[d]azepin-2-one (4f):

Chemical Formula: C₁₁H₁₂BrNO Exact Mass: 253.0102

75.6 mg, yield = 99%, 98% ee, $[α]^{24}D$ = -85.20 (c = 0.5, CH₂Cl₂), yellow solid, mp: 111 - 113 °C. ¹H NMR (400 MHz, Chloroform-*d*): δ 7.35 (dd, *J* = 8.3, 2.2 Hz, 1H), 7.29 (d, *J* = 2.2 Hz, 1H), 7.11 (d, *J* = 8.3 Hz, 1H), 5.85 (br, 1H), 4.14 (q, *J* = 7.0 Hz, 1H), 3.84 - 3.71 (m, 1H), 3.50 - 3.35 (m, 1H), 3.34 - 3.25 (m, 1H), 3.06 - 2.95 (m, 1H), 1.54 (d, *J* = 7.0 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*): δ 174.6, 139.1, 136.7, 132.3, 129.9, 127.6, 120.7, 41.6, 40.4, 32.7, 14.5. HRMS (ESI) calcd for C₁₁H₁₃BrNO⁺ [M+H]⁺: 254.0175. Found: 254.0175. The enantiomeric excess of **4f** was determined by HPLC analysis on Chiralpak IA column. Conditions: hexane/isopropanol = 80/20, flow rate = 1.0 mL/min, uv-vis detection at λ = 230 nm, *t_R* = 10.064 min (major), 11.931 min (minor).

(R)-1-methyl-8-phenyl-1,3,4,5-tetrahydro-2H-benzo[d]azepin-2-one (4g):

Chemical Formula: C₁₇H₁₇NO Exact Mass: 251.1310

74.5mg, yield = 99%, 99% ee, $[\alpha]^{24}_{D}$ = +25.00 (c = 0.5, CH₂Cl₂), light yellow solid, mp: 164 – 166 °C. ¹H NMR (400 MHz, Chloroform-*d*): δ 7.57 (dd, *J* = 7.7, 1.6 Hz, 2H), 7.53 – 7.39 (m, 4H), 7.39 – 7.31 (m, 1H), 7.22 (d, J = 7.7 Hz, 1H), 5.69 (br, 1H), 4.26 (q, J = 7.0 Hz, 1H), 3.88 – 3.76 (m, 1H), 3.52 – 3.31 (m, 2H), 3.18- 3.04 (m, 1H), 1.64 (d, J = 7.0 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*): δ 175.2, 140.9, 140.0, 138.0, 136.0, 130.1, 128.8 (2C), 127.3, 127.1 (2C), 125.7, 124.8, 42.0, 41.0, 32.6, 14.7. HRMS (ESI) calcd for C₁₇H₁₈NO⁺ [M+H]⁺: 252.1383. Found: 252.1382. The enantiomeric excess of **4g** was determined by HPLC analysis on Chiralpak OD-3 column. Conditions: hexane/isopropanol = 80/20, flow rate = 1.0 mL/min, uv-vis detection at λ = 210 nm, $t_R = 11.481$ min (minor), 25.034 min (major).

(*R*)-1-methyl-1,3,4,5-tetrahydro-2*H*-benzo[*d*]azepin-2-one (4h):

Chemical Formula: C₁₁H₁₃NO Exact Mass: 175.0997

This is a known compound.^[10] 52.4 mg, yield = 99%, 97% ee, $[\alpha]^{24}_{D}$ = -66.20 (c = 0.5, CH₂Cl₂), light yellow solid, mp: 161 – 163 °C. ¹H NMR (400 MHz, Chloroform-*d*): δ 7.29 – 7.17 (m, 3H), 7.14 (d, *J* = 6.6 Hz, 1H), 5.89 (br, 1H), 4.20 (q, *J* = 7.0 Hz, 1H), 3.84 – 3.69 (m, 1H), 3.46 – 3.26 (m, 2H), 3.10 – 3.00 (m, 1H), 1.57 (d, *J* = 7.0 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*): δ 175.2, 137.7, 137.1, 129.5, 126.96, 126.95, 125.8, 42.1, 40.9, 32.9, 14.6. HRMS (ESI) calcd for C₁₁H₁₄NO⁺ [M+H]⁺: 176.1070. Found: 176.1069. The enantiomeric excess of **4h** was determined by HPLC analysis on Chiralpak IA column. Conditions: hexane/isopropanol = 90/10, flow rate = 1.0 mL/min, uv-vis detection at λ = 230 nm, *t_R* = 16.246 min (major), 19.042 min (minor).

(R)-N-benzyl-2-phenylpropanamide (4i):

Chemical Formula: C₁₆H₁₇NO Exact Mass: 239.1310

This is a known compound.^[11] 71.6 mg, yield = 99%, 77% ee, $[\alpha]^{24}_{D}$ = -2.20 (c = 0.5, CH₂Cl₂), yellow solid, mp: 75 – 77 °C. ¹H NMR (400 MHz, Chloroform-*d*): δ 7.51 – 7.18 (m, 8H), 7.19 – 7.07 (m, 2H), 5.69 (s, 1H), 4.55 – 4.23 (m, 2H), 3.60 (q, *J* = 7.2 Hz, 1H), 1.55 (d, *J* = 7.1 Hz, 3H). ¹³C NMR (151 MHz, Chloroform-*d*): δ 174.0, 141.2, 138.3, 128.9 (2C), 128.6 (2C), 127.6 (2C), 127.4 (2C), 127.31, 127.28, 47.1, 43.5, 18.5. HRMS (ESI) calcd for C₁₆H₁₈NO⁺ [M+H]⁺: 240.1383. Found: 240.1381. The enantiomeric excess of **4i** was determined by HPLC analysis on Chiralpak IA column. Conditions: hexane/isopropanol = 80/20, flow rate = 1.0 mL/min, uv-vis detection at λ = 230 nm, *t_R* = 5.314 min (minor), 6.697 min (major).

tert-butyl-(R)-7,8-dimethoxy-1-methyl-2-oxo-1,2,4,5-tetrahydro-3H-

benzo[d]azepine-3-carboxylate (4j):

Chemical Formula: C₁₈H₂₅NO₅ Exact Mass: 335.1733

99.4 mg, yield = 99%, 95% ee, $[\alpha]^{21}_{D}$ = -28.20 (c = 1.0, CH₂Cl₂), light yellow solid, mp: 123 – 125 °C. ¹H NMR (400 MHz, Chloroform-*d*): 6.75 (s, 1H), 6.59 (s, 1H), 4.52 – 4.33 (m, 2H), 4.14 – 4.05 (m, 1H), 3.86 (s, 6H), 3.24 – 3.18 (m, 2H), 1.56 (d, *J* = 6.8 Hz, 3H), 1.50 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*): δ 173.9, 152.7, 147.9, 147.4, 127.5, 127.0, 113.4, 109.4, 83.1, 56.0, 55.9, 42.9, 41.4, 32.8, 28.0 (3C), 14.4. HRMS (ESI) calcd for C₁₈H₂₆NO₅⁺ [M+H]⁺: 336.1805. Found: 336.1803. The enantiomeric excess of **4j** was determined by HPLC analysis on Chiralpak AD-3 column. Conditions: hexane/isopropanol = 80/20, flow rate = 1.0 mL/min, uv-vis detection at λ = 208 nm, *t_R* = 6.897 min (major), 8.396 min (minor).

(*R*)-3-benzylindolin-2-one (4k):

Chemical Formula: C₁₅H₁₃NO Exact Mass: 223.0997

65.5 mg, yield = 98%, 8% ee (60 °C, 60 atm H₂, THF, **Cat 4**), $[\alpha]^{21}_{D}$ = 7.40 (c = 1.0, CH₂Cl₂), yellow solid, mp: 130 – 132 °C. ¹H NMR (400 MHz, Chloroform-*d*): δ 8.39 (br, 1H), 7.30 – 7.13 (m, 6H), 6.93 – 6.87 (m, 1H), 6.83 (d, *J* = 7.7 Hz, 1H), 6.75 (d, *J* = 7.4 Hz, 1H), 3.75 (dd, *J* = 9.2, 4.6 Hz, 1H), 3.49 (dd, *J* = 13.7, 4.6 Hz, 1H), 2.94 (dd, *J* = 13.7, 9.2 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*): δ 179.4, 141.3, 137.7, 129.4 (2C), 128.9, 128.3 (2C), 127.9, 126.7, 124.9, 122.0, 109.6, 47.5, 36.6. HRMS (ESI) calcd for C₁₅H₁₄NO⁺ [M+H]⁺: 224.1070. Found: 224.1069. The enantiomeric excess of **4k** was determined by HPLC analysis on Chiralpak AD-3 column. Conditions: hexane/isopropanol = 80/20, flow rate = 1.0 mL/min, uv-vis detection at λ = 210 nm, *t_R* = 5.760 min (minor), 6.603 min (major).

(*R*)-3-benzyldihydrofuran-2(3*H*)-one (4l):

Chemical Formula: C₁₁H₁₂O₂ Exact Mass: 176.0837

This is a known compound.^[13] 52.3 mg, yield = 99%, 42% ee (60 °C, 60 atm H₂, 1,4dioxane, **Cat 4**), $[\alpha]^{21}D = -12.20$ (c = 1.0, CH₂Cl₂), white solid, mp: 94 – 96 °C. ¹H NMR (400 MHz, Chloroform-*d*): 7.36 – 7.16 (m, 5H), 4.29 – 4.07 (m, 2H), 3.26 (dd, *J* = 13.6, 4.0 Hz, 1H), 2.92 – 2.69 (m, 2H), 2.32 – 2.18 (m, 1H), 2.06 – 1.93 (m, 1H). ¹³C NMR (101 MHz, Chloroform-*d*): δ 178.7, 138.4, 128.9 (2C), 128.7 (2C), 126.7, 66.5, 41.1, 36.1, 28.0. HRMS (ESI) calcd for C₁₁H₁₃O₂⁺ [M+H]⁺: 177.0910. Found: 177.0910. The enantiomeric excess of **4I** was determined by HPLC analysis on Chiralpak AD-3 column. Conditions: hexane/isopropanol = 95/5, flow rate = 1.0 mL/min, uv-vis detection at $\lambda = 210$ nm, $t_R = 11.621$ min (minor), 13.176 min (major).

Lorcaserin (5c):

Chemical Formula: C₁₁H₁₄ClN Exact Mass: 195.0815

This is a known compound.^[10] Lorcaserin (5c) was synthesized according to a reported procedure:^[10] a mixture of 4c (41.8 mg, 0.2 mmol) was dissolved in THF (2 mL). The mixture was cooled to 0 °C, then borane-tetrahydrofuran complex (1M, 0.3 mL, 1.50 equiv) was added dropwise with stirring. The reaction mixture was stirred for 24 h at 24 °C. The reaction was quenched by addition of methanol (0.5 mL). The pH was adjusted to 6.0 with 1N HCl aqueous solution and stirred for 30 minutes at 24 °C. It was then neutralized with saturated aqueous Na₂CO₃ and the pH was adjusted to 8.0. The solution was extracted with EtOAc, then the organic phase was washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated under vacuum to provide 5c as a light-yellow solid (35.9 mg, yield = 92%). The material was used without further purification. 99% ee, $[\alpha]^{23}_{D} = -205.60$ (c = 0.5, CH₂Cl₂), mp: 86 - 88 °C. ¹H NMR (400 MHz, Chloroform-*d*): δ 7.06 (d, *J* = 2.2 Hz, 1H), 7.00 (dd, *J* = 8.0, 2.2 Hz, 1H), 6.93 (d, J = 8.0 Hz, 1H), 3.06 - 2.74 (m, 6H), 2.64 (q, J = 7.5 Hz, 1H), 2.19 (br, 1H), 1.25(d, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*): δ 147.3, 139.6, 131.8, 130.9, 126.6, 125.8, 54.5, 47.8, 41.5, 38.9, 17.6. HRMS (ESI) calcd for C₁₁H₁₅ClN⁺ [M+H]⁺: 196.0888. Found: 196.0888. The enantiomeric excess of 5c was determined by HPLC analysis on Chiralpak OJ-3 column. Conditions: hexane/isopropanol = 97/3, flow rate = 0.8 mL/min, uv-vis detection at λ = 220 nm, t_R = 5.674 min (major), 6.675 min (minor).

6. Spectroscopic Data

¹³C NMR (101 MHz, Chloroform-*d*) of (*S*)-**2b**:

¹³C NMR (101 MHz, Chloroform-*d*) of L1:

³¹P NMR (243 MHz, Chloroform-*d*) of L1:

¹H NMR (400 MHz, Chloroform-*d*) of L2:

---22.18

³¹P NMR (162 MHz, Chloroform-*d*) of L2:

¹H NMR (400 MHz, Chloroform-*d*) of L3:

0,00

¹³C NMR (101 MHz, Chloroform-*d*) of L3:

³¹P NMR (162 MHz, Chloroform-*d*) of L3:

---23.15

¹H NMR (400 MHz, Chloroform-*d*) of L4:

¹³C NMR (101 MHz, Chloroform-*d*) of L4:

³¹P NMR (162 MHz, Chloroform-*d*) of L4:

20 -40 -60 fl (ppm) -200 -220 -240 140 120 100 80 60 40 ò -20 -80 -100 -120 -140 -160 -180

¹³C NMR (101 MHz, Chloroform-*d*) of L5:

³¹P NMR (162 MHz, Chloroform-*d*) of L5:

--- 19.31

¹H NMR (400 MHz, Chloroform-*d*) of Cat 1:

³¹P NMR (162 MHz, Chloroform-*d*) of Cat 1:

- 14.12

¹H NMR (400 MHz, Chloroform-*d*) of Cat 2:

¹³C NMR (101 MHz, Chloroform-*d*) of Cat 2:

³¹P NMR (162 MHz, Chloroform-*d*) of Cat 2:

- 14.48

¹H NMR (400 MHz, Chloroform-*d*) of Cat 3:

¹³C NMR (101 MHz, Chloroform-*d*) of Cat 3:

- 15.00

³¹P NMR (162 MHz, Chloroform-*d*) of Cat 3:

¹H NMR (400 MHz, Chloroform-*d*) of Cat 4:

¹³C NMR (101 MHz, Chloroform-*d*) of Cat 4:

³¹P NMR (162 MHz, Chloroform-*d*) of Cat 4:

- 16.37

¹H NMR (400 MHz, Chloroform-*d*) of Cat 5:

01-1-1-1-128 01-128 01-128

¹³C NMR (101 MHz, Chloroform-*d*) of Cat 5:

³¹P NMR (162 MHz, Chloroform-*d*) of Cat 5:

— 16.82

¹H NMR (400 MHz, Chloroform-*d*) of **3a**:

¹³C NMR (101 MHz, Chloroform-*d*) of **3a**:

¹H NMR (600 MHz, Chloroform-d) of **3b**:

¹³C NMR (151 MHz, Chloroform-*d*) of **3b**:

¹³C NMR (101 MHz, Chloroform-d) of **3c**:

171.95	145.33 136.42 132.38 132.38 132.38 132.38 129.08 124.62	77.32 77.00 76.68	41.18 33.63
		\checkmark	

¹H NMR (600 MHz, Chloroform-*d*) of **3d**:

¹³C NMR (101 MHz, Chloroform-*d*) of **3d**:

¹³C NMR (101 MHz, Chloroform-*d*) of **3e**:

172.22	145.46 137.99 134.11 133.38 1133.38 129.26 122.10 124.11	77.32 77.00 76.68	40.97 34.11
1			ΪΪ

¹H NMR (400 MHz, Chloroform-*d*) of **3f**:

77728 77729 77728 77728 77728 77728	5.97	-5.64	3.55 3.55 3.55 3.05 3.05 3.05 3.05 3.05

00.0—

¹³C NMR (101 MHz, Chloroform-*d*) of **3f**:

171.96	145.44 133.90 132.18 131.07 131.07 130.04 122.31	77.32 77.00 76.68	41.06 34.02
~		~~~	4 (0)
		\checkmark	

¹H NMR (400 MHz, Chloroform-*d*) of **3g**:

¹³C NMR (101 MHz, Chloroform-*d*) of **3g**:

¹³C NMR (101 MHz, Chloroform-*d*) of **3h**:

¹H NMR (400 MHz, Chloroform-*d*) of **3i**:

¹³C NMR (101 MHz, Chloroform-*d*) of **3i**:

¹³C NMR (101 MHz, Chloroform-*d*) of **3**j:

	151.54 149.42 148.24 147.61	<pre>/127.37 /125.44 /122.20 /113.19 /112.28</pre>	83.24 77.32 77.00 76.68	<55.97 55.90	43.46	— 33.06 — 28.01
--	--------------------------------------	--	----------------------------------	-----------------	-------	--------------------

¹³C NMR (151 MHz, Chloroform-*d*) of **3**k:

¹³C NMR (101 MHz, Chloroform-*d*) of **3**I:

¹H NMR (400 MHz, Chloroform-*d*) of **4a**:

¹³C NMR (151 MHz, Chloroform-*d*) of **4a**:

¹H NMR (400 MHz, Chloroform-*d*) of **4b**:

¹³C NMR (101 MHz, Chloroform-*d*) of **4b**:

¹H NMR (400 MHz, Chloroform-*d*) of **4c**:

¹³C NMR (101 MHz, Chloroform-*d*) of 4c:

74.77	38.32 35.34 30.90 26.91 25.96	7.31 7.00 6.68	1.45	2.34	4.24
~			44	0	-
		\checkmark	- \2		

¹H NMR (400 MHz, Chloroform-*d*) of **4d**:

¹³C NMR (101 MHz, Chloroform-*d*) of **4d**:

¹H NMR (600 MHz, Chloroform-*d*) of **4e**:

¹³C NMR (151 MHz, Chloroform-*d*) of **4e**:

¹H NMR (400 MHz, Chloroform-*d*) of **4f**:

¹³C NMR (101 MHz, Chloroform-*d*) of **4f**:

¹H NMR (400 MHz, Chloroform-*d*) of **4g**:

¹³C NMR (101 MHz, Chloroform-*d*) of **4g**:

¹H NMR (400 MHz, Chloroform-*d*) of **4h**:

¹³C NMR (101 MHz, Chloroform-*d*) of **4h**:

¹H NMR (400 MHz, Chloroform-*d*) of **4i**:

0044400/0000/-/000/4000/4000	400000000000	04	0
0+++KAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	4440000000	លលំ	ō
	+++++++	22	Ö
47	1 1 1 1 1 1 0 0 0 0	· · ·	Ŷ
		\sim	

¹³C NMR (151 MHz, Chloroform-*d*) of **4i**:

-174.04	- 141.23 - 138.25 - 138.25 - 128.926 - 128.57 - 128.57 - 127.462 - 127.28	77.21 77.00 76.79	-47.13	

¹H NMR (400 MHz, Chloroform-*d*) of **4k**:

Barrier Construction (Construction) Barrier Construction (Construction) Construct

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 fl (ppm) ō

10

-10

40 30 20

¹H NMR (400 MHz, Chloroform-*d*) of **4l**:

¹³C NMR (101 MHz, Chloroform-*d*) of **4**I:

¹³C NMR (101 MHz, Chloroform-*d*) of **5c**:

- 147.29 - 139.61 - 133.84 - 133.98 - 133.98 - 126.58 - 126.58	77.32 77.00 76.68	54.53 47.76 41.50 38.86	-17.55
--	-------------------------	----------------------------------	--------

7. HPLC Spectra

(*R*)-7,8-dimethoxy-1-methyl-1,3,4,5-tetrahydro-2*H*-benzo[*d*]azepin-2-one **4a**:

Signal 1: DAD1 C, Sig=210,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
		-				
1	17.485	BV	0.4591	2.17438e4	702.48987	49.2402
2	19.258	VB	0.5067	2.24148e4	662.50220	50.7598
Total	ls :			4.41587e4	1364.99207	

Signal 1: DAD1 C, Sig=210,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	육
						I
1	17.838	BV E	0.4563	391.45914	11.88425	0.7440
2	19.254	VB R	0.5062	5.22273e4	1545.68237	99.2560
Total	s :			5.26187e4	1557.56662	

(*R*)-8-methoxy-1-methyl-1,3,4,5-tetrahydro-2*H*-benzo[*d*]azepin-2-one **4b**:

Peak	RetTime	Туре	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	%	
1	10.668	VB	0.2325	2802.12061	183.15195	49.9300	
2	14.399	BB	0.3146	2809.98242	135.12183	50.0700	

Totals :

5612.10303 318.27377

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	9.891	MM	0.2421	1.59908e4	1101.01648	99.1717
2	14.454	BB	0.3283	133.55370	6.22604	0.8283
Total	s:			1.61243e4	1107.24252	

(*R*)-8-chloro-1-methyl-1,3,4,5-tetrahydro-2*H*-benzo[*d*]azepin-2-one **4c**:

Signal 1: DAD1 C, Sig=210,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	15.317	BB	0.3326	2499.38330	112.77146	51.0664
2	18.891	BB	0.3998	2394.99146	90.20644	48.9336

4894.37476 202.97791

Signal 1: DAD1 C, Sig=210,4 Ref=360,100

Peak RetTime Type # [min]	≥ Width [min]	Area [mAU*s]	Height [mAU]	Area %
 1 14 554 BB	- 0 3171	3 7211804	1771 34985	99 7073
2 18.217 BB	0.3782	109.22614	4.08166	0.2927
Totals :		3.73211e4	1775.43152	

Signal 1: DAD1 C, Sig=210,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	9.120	VB R	0.1979	8223.95215	631.45380	49.4867
2	10.795	BB	0.2401	8394.54590	526.26166	50.5133

1.66185e4 1157.71545

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	9.471	BB	0.2092	8539.21387	610.55475	99.4958
2	11.319	BB	0.2978	43.27232	2.12335	0.5042
Total	s :			8582,48619	612,67810	

Signal 1: DAD1 C, Sig=210,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
	16 764	 BB	0 3631	 7440 10400	 304 47150	
2	20.703	MM	0.5157	5256.83984	169.89113	41.4024

1.26969e4 474.36263

Signal 1: DAD1 C, Sig=210,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	16.199	BB	0.3550	4.20209e4	1769.95740	98.8777
2	20.358	BB	0.4314	476.94000	16.58888	1.1223
Total	s :			4.24978e4	1786.54628	

(*R*)-7-bromo-1-methyl-1,3,4,5-tetrahydro-2*H*-benzo[*d*]azepin-2-one **4f**:

Signal 1: DAD1 D, Sig=230,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
	10.038	 BB	0.2184	 1071.46021	74.25084	 46.7254
2	11.849	BB	0.2790	1221.64001	65.06683	53.2746

Totals :

2293.10022 139.31767

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	10.064	VB R	0.2102	6375.16016	456.92630	99.0227
2	11.931	BB	0.2538	62.91971	3.82704	0.9773
Tota]	ls :			6438.07987	460.75334	

(*R*)-1-methyl-8-phenyl-1,3,4,5-tetrahydro-2*H*-benzo[*d*]azepin-2-one **4g**:

Peak	RetTime Type	Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	%
1	11.345 MM	0.2729	2819.14185	172.16219	50.3629
2	24.791 BB	0.5807	2778.50879	73.89603	49.6371
Total	ls :		5597.65063	246.05821	

Totals :

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
	11.481	 BB	0.2496	 23 . 85749	 1 . 45293	0.1917
2	25.034	BB	0.5956	1.24231e4	320.95847	99.8083
Tota]	s:			1.24470e4	322.41140	

(*R*)-1-methyl-1,3,4,5-tetrahydro-2*H*-benzo[*d*]azepin-2-one **4h**:

Signal 1: DAD1 D, Sig=230,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
				-		
1	16.872	BB	0.3376	536.46466	23.92044	51.0156
2	19.329	BB	0.3879	515.10468	20.03985	48.9844
Total	s:			1051.56934	43.96029	

Signal 1: DAD1 D, Sig=230,4 Ref=360,100

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	16.246	BB	0.3592	1.33946e4	547.87103	98.6624
2	19.042	BB	0.3901	181.59720	7.06007	1.3376
Total	s:			1.35762e4	554,93110	

(*R*)-*N*-benzyl-2-phenylpropanamide **4i**:

Signal 1: DAD1 D, Sig=230,4 Ref=360,100

Peak Re	etTime Type [min]	e Width [min]	Area [mAU*s]	Height [mAU]	Area %
- 1 2	 5.330 MM 6.764 MM	0.1254 0.1611	4023.33936 4250.33594	534.83826 439.75070	48.6282 51.3718
Totals	:		8273.67529	974.58896	

Signal 1: DAD1 D, Sig=230,4 Ref=360,100

Peak RetTime Type # [min]	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1 5.314 MM	0.1220	673.12250	91.97347	11.3446
2 6.697 MM	0.1612	5260.31934	543.87115	88.6554
Totals :		5933.44183	635.84463	

tert-butyl-(*R*)-7,8-dimethoxy-1-methyl-2-oxo-1,2,4,5-tetrahydro-3*H*-benzo[*d*]azepine-3-carboxylate **4j**:

Peak Re	etTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	용
		-				
1	6.897	BB	0.1978	7765.42334	552.96527	97.6408
2	8.396	BB	0.6214	187.62727	3.59178	2.3592
Totals	:			7953.05061	556.55705	

(*R*)-3-benzylindolin-2-one **4k**:

Signal 1: DAD1 A, Sig=210,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	5.777	BB	0.1797	2.78564e4	2231.26343	49.3879
2	6.625	BB	0.2031	2.85469e4	2017.11914	50.6121

```
Totals :
```

5.64033e4 4248.38257

Signal 1: DAD1 A, Sig=210,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	왕
		-				
1	5.760	VB R	0.1733	2.38037e4	1952.85767	45.8861
2	6.603	BB	0.2041	2.80719e4	1971.34717	54.1139
Total	s:			5.18756e4	3924.20483	

(S)-3-benzyldihydrofuran-2(3H)-one 4I:

Signal 1: DAD1 A, Sig=210,4 Ref=360,100

Peak #	RetTime	Туре	Width	Area	Height	Area
Ŧ	[min]		[min]	[IIIAU^S]	[IIIAU]	6
1	11.322	BB	0.3179	1155.51746	49.94479	49.0161
2	12.840	BV	0.3397	1201.90674	48.40458	50.9839

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	11.621	BB	0.3277	2.28862e4	961.58057	28.7496
2	13.176	BB	0.3909	5.67193e4	1987.74976	71.2504
1	Cotals :			7.9605	5e4 2949.33	032

Lorcaserin 5c:

Signal 1: DAD1 C, Sig=220,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	6.087	BV	0.2060	1.02219e4	727.31104	49.7892
2	6.903	VB	0.3914	1.03085e4	404.32211	50.2108
Тс	otals :			2.05304	e4 1131.63	315

Signal 1: DAD1 C, Sig=220,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	5.674	VB R	0.1887	1.64731e4	1366.42114	99.6482
2	6.675	MM	0.2647	58.16516	3.66224	0.3518
Г	otals :			1.65313	e4 1370.08	339

8. Crystalgraphic Information

The crystal data of compound **4d** has been deposited in cxy1088_0m.

Table S1 Crystal data and structure refinement for cxy1088_0m.		
Identification code	cxy1088_0m	
Empirical formula	C ₁₁ H ₁₁ NOBr	
Formula weight	253.12	
Temperature/K	100	
Crystal system	orthorhombic	
Space group	P2 ₁ 2 ₁ 2 ₁	
a/Å	4.2604(2)	
b/Å	7.8580(4)	
c/Å	30.3127(14)	
α/°	90	
β/°	90	
$\gamma/^{\circ}$	90	
Volume/Å ³	1014.82(8)	
Ζ	4	
$\rho_{calc}g/cm^3$	1.657	
µ/mm ⁻¹	4.015	
F(000)	508.0	

Crystal size/mm ³	$0.42 \times 0.38 \times 0.36$
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	5.356 to 61.358
Index ranges	$-5 \le h \le 6, -11 \le k \le 11, -43 \le l \le 42$
Reflections collected	13812
Independent reflections	3143 [Rint = 0.0485, Rsigma = 0.0365]
Data/restraints/parameters	3143/0/128
Goodness-of-fit on F ²	1.076
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0304, wR_2 = 0.0706$
Final R indexes [all data]	$R_1 = 0.0326, wR_2 = 0.0714$
Largest diff. peak/hole / e Å ⁻³	0.81/-1.13
Flack parameter	0.010(5)

Table S2. Fractional Atomic Coordinates ($\times 10^4$) and Equivalent Isotropic Displacement Parameters ($\mathring{A}^2 \times 10^3$) for cxy1088_0m. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{II} tensor.

is defined as 1/3 of of the trace of the orthogonalised U _{IJ} tensor.						
Atom	x	у	z	U(eq)		
Br1	8210.2(8)	6030.4(4)	4660.3(2)	20.74(9)		
01	4916(6)	3434(3)	2639.4(7)	19.3(5)		
N1	2679(5)	1023(3)	2885.5(8)	13.3(5)		
C1	1420(8)	5541(4)	3190.5(10)	17.2(6)		
C2	1639(7)	3640(3)	3291.8(9)	11.1(5)		
C3	3419(7)	3189(3)	3715.7(9)	11.3(5)		
C4	4783(7)	4512(4)	3960.8(10)	13.2(5)		
C5	6451(7)	4180(4)	4341.9(9)	14.9(5)		
C6	6848(9)	2522(4)	4492.8(10)	17.3(6)		
C7	3763(7)	1502(4)	3868.4(9)	11.7(5)		
C8	2430(7)	-85(4)	3648.2(10)	14.3(6)		
C9	788(7)	105(4)	3204.5(10)	14.0(6)		
C10	3210(8)	2707(3)	2906.3(9)	11.7(5)		
C11	5487(7)	1220(4)	4253.2(9)	15.4(6)		

8. References

[1] S. Li, S.-F. Zhu, C.-M. Zhang, S. Song and Q.-L. Zhou, J. Am. Chem. Soc., 2008, 130, 8584-8585.

[2] G.-Q. Chen, B.-J. Lin, J.-M. Huang, L.-Y. Zhao, Q.-S. Chen, S.-P. Jia, Q. Yin and X. Zhang, *J. Am. Chem. Soc.*, 2018, **140**, 8064-8068.

[3] C. Blackburn, C. Barrett, J. Chin, K. Garcia, K. Gigstad, A. Gould, J. Gutierrez, S. Harrison, K. Hoar, C. Lynch, R.S. Rowland, C. Tsu, J. Ringeling and H. Xu, *J. Med. Chem.*, 2013, **56**, 7201-7211.

[4] P. Caramenti, R.K. Nandi and J. Waser, Chem. - Eur. J., 2018, 24, 10049-10053.

[5] Q. Zhao, T. Poisson, X. Pannecoucke, J.-P. Bouillon and T. Besset, *Org. Lett.*, 2017, **19**, 5106-5109.

[6] B. Jiang, M. Zhao, S.-S. Li, Y.-H. Xu and T.-P. Loh, *Angew. Chem. Int., Ed.*, 2018, 57, 555-559.

[7] B. Flatt, R. Martin, T.-L. Wang, P. Mahaney, B. Murphy, X.-H. Gu, P. Foster, J. Li, P. Pircher, M. Petrowski, I. Schulman, S. Westin, J. Wrobel, G. Yan, E. Bischoff, C. Daige and R. Mohan, *J. Med. Chem.*, 2009, **52**, 904-907.

[8] S. Thimmaiah, M. Ningegowda, N.S. Shivananju, R. Ningegowda, R. Siddaraj and B.S. Priya, *Eur. J. Chem.*, 2016, **7**, 391-396.

[9] J. Zhang and T.-P. Loh, Chem. Commun., 2012, 48, 11232-11234.

[10] B.M. Smith, J.M. Smith, J.H. Tsai, J.A. Schultz, C.A. Gilson, S.A. Estrada, R.R. Chen, D.M. Park, E.B. Prieto, C.S. Gallardo, D. Sengupta, W.J. Thomsen, H.R. Saldana, K.T. Whelan, F. Menzaghi, R.R. Webb and N.R.A. Beeley, *Bioorg. Med. Chem. Lett.*, 2005, 15, 1467-1470.

[11] J.R. Dunetz, Y. Xiang, A. Baldwin and J. Ringling, *Org. Lett.*, 2011, 13, 5048-5051.
[12] G. Zeng, Y. Li, B. Qiao, X. Zhao and Z. Jiang, *Chem. Commun.*, 2019, 55, 11362-11365.

[13] J. Yang, X. Li, C. You, S. Li, Y.-Q. Guan, H. Lv and X. Zhang, *Org. Biomol. Chem.*, 2020, **18**, 856-859.